

Pychievements, the Python Achievements Framework!

Pychievements is a framework for creating and tracking achievements within a Python application.
It includes functions specifically for creating commandline applications, though it is flexible
enough to be used for any application such as web applications.

See the examples [https://github.com/PacketPerception/pychievements/tree/master/examples] to get a good feel for what Pychievements offers. Source can be found on github [https://github.com/PacketPerception/pychievements].

	Getting Started
	Installing Pychievements

	Introduction to Pychievments

	Examples

	Reference
	Achievements

	Icons

	Trackers

	Signals

	Backends

	CLI

Contribute

If you’d like to contribute, simply fork the repository [https://github.com/PacketPerception/pychievements], commit your changes
to the master branch (or branch off of it), and send a pull request. Make
sure you add yourself to AUTHORS [http://github.com/PacketPerception/pychievements/blob/master/AUTHORS].

License

Pychievements is license under the MIT license. You can find it in github, LICENSE [http://github.com/PacketPerception/pychievements/blob/master/LICENSE]

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Getting Started will guide you through creating your first achievements an introducing you to
the pieces of the system. From there, visit the Reference for in-depth information.

Installing Pychievements

	Pychievements can be installed with pip:

	$ pip install pychievements

Introduction to Pychievments

Pychievements has a number of modules that you’ll need to be at least familiar with:

	tracker

	The default achievement tracker for pychievements is instantiated at import and is used to
track all registered achievements for specific tracked_ids.

	Achievement

	Base Achievment class.

	icons.Icon

	Base Icon class. Icons are used to know what to display for a given goal within an
achievement and have two states, achieved and unachieved.

	backends.AchievementBackend

	Pychievements have pluggable backends for storing tracked achievement data. The default
AchievementBackend simply keeps everyting in memory, meaning it will be lost when the
application is closed. The backend the tracker is using can be updated with the
set_backend method.

	signals

	You can register functions as callbacks that can recieve Pychievement signals. Signals can
be generated when a level is changed, when a new goal is reached, or when all goals have
been achieved for a given achievement.

Achievements

At the core of Pychievements is the Achievement class. It is used to define goals that are
obtained at specified levels. Levels are simply an integer. At a minimum, achievements must have
the following attributes defined:

	name : Display name of your achievement

	category : Defaults to “achievements”

	goals : A tuple of goals. A goal is a dictionary with the following keys: [“level”, “name”,
“icon”, “description”]

An example Achievement class:

class MyAchievement(Achievement):
 name = "My Achievement"
 category = "achievements"
 keywords = ("my", "achievement")
 goals = (
 {"level": 10, "name": "Level 1", "icon": icons.star, "description": "Level One" },
 {"level": 20, "name": "Level 2", "icon": icons.star, "description": "Level Two" },
 {"level": 30, "name": "Level 3", "icon": icons.star, "description": "Level Three" },
)

An achievements current level for an id can tracked with either the increment or evaluate
functions, which the achievment can override to provide custom level manipulation.

The Tracker

A singleton tracker is created on import that is available as pychievements.tracker. The
tracker provides an interface for interacting with registered achievements for a given
tracked_id. The tracker lets you:

	increment level of an achievement for a tracked_id

	evaluate level of an achievement for a tracked_id

	query all achievements by category or keywords

	query all achieved goals of an achievement for a tracked_id

	query all unachieved goals of an achievement for a tracked_id

	query the current goal being worked towards of an achievement for a tracked_id

The tracker works with the configured backend to store and retrieve all of the tracked levels.

Icons

Icons are simple classes that provide the “icon” (or what is displayed) for an achievment goal. It
must define what to display for when the goal has been achieved (achieved) or not
(unachieved)

Examples

The easiest way to get started to check out the examples in the examples [https://github.com/PacketPerception/pychievements/tree/master/examples] folder in the
the repository [https://github.com/PacketPerception/pychievements]. Then check out the Reference for more information.

Reference

Achievements

	
class pychievements.achievements.Achievement(current=0)

	Base Achievement class.

An achievement primarily consists of ‘goals’, being levels that can be reached. Instances of
Achievements are used to track progress, and the current level for individual IDs. For this,
an Achievement implements a number of functions to interact with the current level.
Achievements can also have a category (string) and keywords (tuple of strings) that can
be used to filter Achievements.

Goals are defined as a tuple of tuples with the format:

goals = (
 {'level': 10, 'name': 'Level 1', 'icon': icons.star, 'description': 'Level One'},
 {'level': 20, 'name': 'Level 2', 'icon': icons.star, 'description': 'Level Two'},
 {'level': 30, 'name': 'Level 3', 'icon': icons.star, 'description': 'Level Three'},
)

Arguments:

	level

	A positive integer that must be reached (greater than or equal) to be considered ‘met’

	name

	A short name for the level

	icon

	The Icon to represent the level before it has been achieved. This must be an
pychievements.icons.Icon class.

Note

There are simple ASCII icons available from pychievements.icons

	description

	A longer description of the level.

Achievements can be updated in two ways: increment and evaluate. Increment increments
the current level given an optional set of arguments, where evaluate performs a custom
evaluation a sets the current level based on that evaluation.

Increment is best used when the application is aware of achievement tracking, and calls
to increment can be placed throughout the application.

Evaluate is best used when actions may happen externally, and cannot be tracked using repeated
calls to increment. Evaluate will also return the list of achieved goals after it has performed
its evaluation.

An Achievement can be initialized with a current level, for example when restoring for a
saved state.

	
achieved

	Returns a list of achieved goals

	
current

	Returns the current level being achieved (meaning haven’t achieved yet) as a tuple:

	::

	(current_level, (required_level, name, icon, description))

If all achievements have been achieved, the current level is returned with a None:

	::

	(current_level, None)

	
evaluate(*args, **kwargs)

	Performs a custom evaluation to set the current level of an achievement. Returns a list of
achieved goals after the level is determined.

	
increment(amount=1, *args, **kwargs)

	Increases the current level. Achievements can redefine this function to take options to
increase the level based on given arguments. By default, this will simply increment the
current count by amount (which defaults to 1).

	
set_level(level)

	Overrides the current level with the given level

	
unachieved

	Returns a list of goals that have not been met yet

Icons

pychievments.icons includes the Icon class as well as a number of pre-defined icons useful
for CLI applications.

	unicodeCheck

	unicdeCheckBox

	star

	
class pychievements.icons.Icon(unachieved='', achieved='')

	Simple class to represent an Icon for an achievement. It provides to functions,
achieved, and unachieved, which will return the displayable icon for the appropriate
state.

The base Icon class can be used without modification to create simple text Icons, e.g.:

star = Icon(unachieved=' No ', achieved=' Yes ')

	
achieved(tracked_id=None, achievement=None)

	Returns the achieved icon

	
unachieved(tracked_id=None, achievement=None)

	Returns the unachieved icon

Trackers

	
class pychievements.trackers.AchievementTracker(backend=None)

	AchievementTracker tracks achievements and current levels for tracked_id using a configured
achievement backend.

A default instance of Achievement tracker is created as a singleton when pycheivements is
imported as pychievements.tracker. Most often, this is what you will want to use.

Arguments:

	backend:

	The backend to use for storing/retrieving achievement data. If None, the default
AchievementBackend will be used, which stores all data in memory.

Note

The backend the tracker is using can be updated at any time using the set_backend()
function.

	
achieved(tracked_id, achievement)

	Returns achieved for a given tracked_id. See :ref:Achievement

	
achievement_for_id(tracked_id, achievement)

	Returns Achievement for a given tracked_id. Achievement can be an Achievement
class or a string of the name of an achievement class that has been registered with this
tracker.

Raises NotRegistered if the given achievement is not registered with the tracker.

If tracked_id has not been tracked yet by this tracker, it will be created.

	
achievements(category=None, keywords=[])

	Returns all registered achievements.

Arguments:

	category

	Filters returned achievements by category. This is a strict string match.

	keywords

	Filters returned achievements by keywords. Returned achievements will match all
given keywords

	
achievements_for_id(tracked_id, category=None, keywords=[])

	Returns all of the achievements for tracked_id that match the given category and
keywords

	
current(tracked_id, achievement)

	Returns current for a given tracked_id. See :ref:Achievement

	
evaluate(tracked_id, achievement, *args, **kwargs)

	Evaluates an achievement for a given tracked_id. Achievement can be an Achievement
class or a string of the name of an achievement class that has been registered with
this tracker.

Raises NotRegistered if the given achievement is not registered with the tracker.

If tracked_id has not been tracked yet by this tracker, it will be created before
evaluating.

Returns list of achieved goals for the given achievement after evaluation

	
get_tracked_ids()

	Returns all tracked ids

	
increment(tracked_id, achievement, amount=1, *args, **kwargs)

	Increments an achievement for a given tracked_id. Achievement can be an Achievement
class or a string of the name of an achievement class that has been registered with this
tracker.

Raises NotRegistered if the given achievement is not registered with the tracker.

If tracked_id has not been tracked yet by this tracker, it will be created before
incrementing.

Returns an list of achieved goals if a new goal was reached, or False

	
is_registered(achievement)

	Check if an achievement is registered with this AchievementTracker

	
register(achievement_or_iterable, **options)

	Registers the given achievement(s) to be tracked.

	
remove_id(tracked_id)

	Remove all tracked information for tracked_id

	
set_backend(backend)

	Configures a new backend for storing achievement data.

	
set_level(tracked_id, achievement, level)

	Returns set_level for a given tracked_id. See :ref:Achievement

	
unachieved(tracked_id, achievement)

	Returns unachieved for a given tracked_id. See :ref:Achievement

	
unregister(achievement_or_iterable)

	Un-registers the given achievement(s).

If an achievement isn’t already registered, this will raise NotRegistered.

Signals

	
class pychievements.signals.Signal

	Base class for all signals

Internal attributes:

	receivers

	{ receiverkey(id): receiver }

	
connect(receiver, sender=None, dispatch_uid=None)

	Connect receiver to sender for signal.

Arguments:

	receiver

	A function or an instance method which is to recieve signals.

	sender

	The sender to which the receiver should respond. Must be None to recieve events
from any sender.

	dispatch_uid

	An identifier used to uniquely identify a particular instance of a receiver. This
will usually be a string, though it may be anything hashable.

	
disconnect(receiver=None, sender=None, dispatch_uid=None)

	Disconnect receiver from sender for signal.

Arguments:

	receiver

	The registered receiver to disconnect. May be none if
dispatch_uid is specified.

	sender

	The registered sender to disconnect

	dispatch_uid

	the unique identifier of the receiver to disconnect

	
send(sender, **named)

	Send signal from sender to all connected receivers.

If any receiver raises an error, the error propagates back through send,
terminating the dispatch loop, so it is quite possible to not have all
receivers called if a raises an error.

Arguments:

	sender

	The sender of the signal Either a specific object or None.

	named

	Named arguments which will be passed to receivers.

Returns a list of tuple pairs [(receiver, response), ...].

	
send_robust(sender, **named)

	Send signal from sender to all connected receivers catching errors.

Arguments:

	sender

	The sender of the signal. Can be any python object (normally one
registered with a connect if you actually want something to
occur).

	named

	Named arguments which will be passed to receivers. These
arguments must be a subset of the argument names defined in
providing_args.

Return a list of tuple pairs [(receiver, response), ...].

If any receiver raises an error (specifically any subclass of
Exception), the error instance is returned as the result for that
receiver. The traceback is always attached to the error at
__traceback__.

	
pychievements.signals.receiver(signal, **kwargs)

	A decorator for connecting receivers to signals. Used by passing in the
signal (or list of signals) and keyword arguments to connect:

@receiver(goal_achieved)
def signal_receiver(sender, **kwargs):
 ...

@receiver([goal_achieved, level_increased], sender=tracker)
def signals_receiver(sender, **kwargs):
 ...

Backends

	
class pychievements.backends.AchievementBackend

	Achievement backends implement the getting/setting/updating of achievements for tracked_id.
Achievements in the system are tracked for a specific, unique ID, tracked_id.

AchievementBackend is the most basic implementation of an AchievementBackend, storing all
tracked information in memory and never persisting it. All of the functions of an
AchievementBackend work to retrieve an Achievement instance for a given tracked_id, and
run the appropriate function on it, storing the results. In the least, storing results for a
specific achievement, for a specific target_id should include the target_id, the
Achievement class name (Achievement.__name__), and the current level
(Achievement.current)

Note

AchievementBackend is NOT thread safe

	
achievement_for_id(tracked_id, achievement)

	Retrieves the current Achievement for the given tracked_id. If the given
tracked_id does not exist yet, it should be created. Also, if the given tracked_id
hasn’t tracked the given Achievement yet, a new instance of the Achievement should
be created for the given tracked_id

	
achievements_for_id(tracked_id, achievements)

	Returns the current achievement for each achievement in achievements for the given
tracked_id

	
remove_id(tracked_id)

	Removes tracked_id from the backend

	
set_level_for_id(tracked_id, achievement, level)

	Set the level for an Achievement for the given tracked_id

	
class pychievements.backends.SQLiteAchievementBackend(dbfile)

	Stores achievement data in a SQLite database.

Arguments:

	dbfile

	The full path and file name to store the SQLite database

To use, create the backend and then use the set_backend() method of the tracker.

mybackend = SQLiteAchievementBackend('/some/db.file')
tracker.set_backend(mybackend)

CLI

	
pychievements.cli.print_goal(goal, achieved=False, level=None, indent=2)

	Print a goals description with its icon. Achieved (True/False) will choose the correct icon
from the goal. If a level is specified, a tracker line will be added under the icon showing
the current level out of the required level for the goal. If level is > the required level,
achieved will be set to true.

	
pychievements.cli.print_goals(achievement_or_iter, indent=2)

	Displays all of the available goals registered for the given achievement(s)

	
pychievements.cli.print_goals_for_tracked(tracked_id, achievement_or_iter=None, achieved=True, unachieved=False, only_current=False, level=False, category=None, keywords=[], indent=2, tracker=None)

	Prints goals for a specific tracked_id from as tracked by a tracker. By default, this
will print out all achieved goals for every achievement in the tracker.

Arguments:

	achievment_or_iter

	If None, this will print goals for all achievements registered with the tracker.
Otherwise an Achievement or list of achievements can be given to show goals for.

	achieved

	If True, prints out goals that have allready been achieved.

	unachieved

	If True, prints out goals that have not been achieved.

	only_current

	If True, only prints the goal currently being worked on (next to be achieved). This will
override the achieved and unachieved options.

	category

	Category to filter achievements from the tracker.

	keywords

	Keywords to filter achievements from the tracker.

	level

	If True, show the current level with the achievements

	tracker

	The tracker to use for getting information about achievements and tracked_id. If
tracker is None, this will default to using the default tracker.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pychievements	

 	
 	
 pychievements.achievements	

 	
 	
 pychievements.backends	

 	
 	
 pychievements.cli	

 	
 	
 pychievements.icons	

 	
 	
 pychievements.signals	

 	
 	
 pychievements.trackers	

Index

 A
 | C
 | D
 | E
 | G
 | I
 | P
 | R
 | S
 | U

A

 	
 	achieved (pychievements.achievements.Achievement attribute)

 	achieved() (pychievements.icons.Icon method)

 	(pychievements.trackers.AchievementTracker method)

 	Achievement (class in pychievements.achievements)

 	achievement_for_id() (pychievements.backends.AchievementBackend method)

 	(pychievements.trackers.AchievementTracker method)

 	
 	AchievementBackend (class in pychievements.backends)

 	achievements() (pychievements.trackers.AchievementTracker method)

 	achievements_for_id() (pychievements.backends.AchievementBackend method)

 	(pychievements.trackers.AchievementTracker method)

 	AchievementTracker (class in pychievements.trackers)

C

 	
 	connect() (pychievements.signals.Signal method)

 	
 	current (pychievements.achievements.Achievement attribute)

 	current() (pychievements.trackers.AchievementTracker method)

D

 	
 	disconnect() (pychievements.signals.Signal method)

E

 	
 	evaluate() (pychievements.achievements.Achievement method)

 	(pychievements.trackers.AchievementTracker method)

G

 	
 	get_tracked_ids() (pychievements.trackers.AchievementTracker method)

I

 	
 	Icon (class in pychievements.icons)

 	increment() (pychievements.achievements.Achievement method)

 	(pychievements.trackers.AchievementTracker method)

 	
 	is_registered() (pychievements.trackers.AchievementTracker method)

P

 	
 	print_goal() (in module pychievements.cli)

 	print_goals() (in module pychievements.cli)

 	print_goals_for_tracked() (in module pychievements.cli)

 	pychievements.achievements (module)

 	
 	pychievements.backends (module)

 	pychievements.cli (module)

 	pychievements.icons (module)

 	pychievements.signals (module)

 	pychievements.trackers (module)

R

 	
 	receiver() (in module pychievements.signals)

 	register() (pychievements.trackers.AchievementTracker method)

 	
 	remove_id() (pychievements.backends.AchievementBackend method)

 	(pychievements.trackers.AchievementTracker method)

S

 	
 	send() (pychievements.signals.Signal method)

 	send_robust() (pychievements.signals.Signal method)

 	set_backend() (pychievements.trackers.AchievementTracker method)

 	set_level() (pychievements.achievements.Achievement method)

 	(pychievements.trackers.AchievementTracker method)

 	
 	set_level_for_id() (pychievements.backends.AchievementBackend method)

 	Signal (class in pychievements.signals)

 	SQLiteAchievementBackend (class in pychievements.backends)

U

 	
 	unachieved (pychievements.achievements.Achievement attribute)

 	unachieved() (pychievements.icons.Icon method)

 	(pychievements.trackers.AchievementTracker method)

 	
 	unregister() (pychievements.trackers.AchievementTracker method)

 nav.xhtml

 Table of Contents

 		Pychievements, the Python Achievements Framework!

 		Getting Started

 		Installing Pychievements

 		Introduction to Pychievments

 		Achievements

 		The Tracker

 		Icons

 		Examples

 		Reference

 		Achievements

 		Icons

 		Trackers

 		Signals

 		Backends

 		CLI

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

