

Welcome to PyBpod’s documentation!

Note

All examples and Bpod’s state machine and communication logic were based on the original version made available by Josh Sanders (Sanworks) [https://github.com/sanworks].

What is PyBpod?

[image: _images/pybpod_main_window.png]
PyBpod is a GUI application that enables interaction with the latest Bpod devices [https://sanworks.io/shop/products.php?productFamily=bpod] version.

This project is maintained by a team of SW developers at the Champalimaud Foundation [http://research.fchampalimaud.org]. Please find more information on section Project Info.

What is Bpod?

[image: _images/pybpodapi-logo.png]
Bpod is a system from Sanworks [https://sanworks.io/index.php] for precise measurement of small animal behavior.
It is a family of open source hardware devices which includes also software and firmware to control these devices. The software was originally developed in Matlab providing retro-compatibility with the BControl [http://brodywiki.princeton.edu/bcontrol/index.php/Main_Page] system.

See also

Bpod device: https://sanworks.io/shop/viewproduct?productID=1011

Bpod on Github: https://github.com/sanworks/Bpod

Bpod Wiki: https://sites.google.com/site/bpoddocumentation/

BControl project: http://brodywiki.princeton.edu/bcontrol/index.php/Main_Page/

Why a Python port?

Python is one of the most popular programming languages today [1] [https://pypl.github.io/PYPL.html]. This is special true for the science research community because it is an open language, easy to learn, with a strong support community and with a lot of libraries available.

Questions?

If you have any questions or want to report a problem with this library please fill in an issue here [https://github.com/pybpod/pybpod/issues].

Contents

Getting started

	Introduction

	Installing and updating
	User installation

	Installation for developers

	Execute PyBpod

	Update PyBpod

	Basic usage
	Projects

	Bpod boards

	Subjects

	Protocols

	Experiments and experimental setups

	Sessions

	GUI User settings

	Writing a protocol for Bpod
	What is a Bpod protocol?

	Protocol example explained

	Plugins
	Available Plugins

	How to install plugins

	Examples of available plugins

Developers

	GUI explained
	Libraries that make up the GUI

	GUI Windows

	Bpod interaction
	Multiprocessing

	Starting protocol on Bpod

	Developing plugins
	What is a PyBpod GUI plugin?

	Session history plugin, an example

	Contributing

API reference

	PyBpod API [https://pybpod-api.readthedocs.io/]

	PyBpod GUI API [https://pybpod-gui-api.readthedocs.io/]

About

	Project Info
	The SWP Team

	Bpod project

	License

	Maintenance team

	Questions?

	Changelog
	v1.8.0 (2019/11/09)

	v1.7.8 (2019/06/03)

	v1.7.7 (2019/06/03)

	v1.7.6 (2019/06/03)

	v1.7.5 (2019/05/15)

	v1.7.4 (2019/05/08)

	v1.7.3 (2019/05/08)

	v1.7.2 (2019/05/03)

Installing and updating

Note

	Linux
	
	Make sure your user has permissions to access the serial ports.

	Execute the next command:

sudo usermod -a -G dialout [your username]

	Restart the computer.

User installation

	Install Python 3.6.

	Install PyBpod from PyPi:

pip install pybpod

	Execute PyBpod:

start-pybpod

Note

On the first execution a user_settings.py file will be created on the User system folder.

Installation for developers

	Download & install Anaconda [https://www.anaconda.com/download/] or Miniconda [https://conda.io/miniconda.html].

Warning

	Windows
	
	On windows if you install Anaconda/Miniconda for all the users, you should make sure you run the “Anaconda Prompt” as administrator.

	To avoid issues, make sure you install Anaconda/Miniconda only for your user.

2. Download the environment configuration file for your Operating System and create a virtual environment with it by
executing the following commands in the “Anaconda Prompt”.

Windows 10: environment-windows-10.yml [https://raw.githubusercontent.com/pybpod/pybpod/master/utils/environment-windows-10.yml] (right click->Save Link as):

conda env create -f utils/environment-windows-10.yml

Ubuntu 17.10 and up: environment-ubuntu-17.10.yml [https://raw.githubusercontent.com/pybpod/pybpod/master/utils/environment-ubuntu-17.10.yml] (right click->Save Link as):

conda env create -f utils/environment-ubuntu-17.10.yml

Mac OSx: environment-macOSx.yml [https://raw.githubusercontent.com/pybpod/pybpod/master/utils/environment-macOSx.yml] (right click->Save Link as):

conda env create -f utils/environment-macOSx.yml

	Activate the environment you just created.

activate pybpod-environment

	Clone the PyBpod repository and initialize all the submodules.

git clone https://github.com/pybpod/pybpod.git
git submodule update --init

	Access the created repository folder.

cd pybpod

	Run the “install.py” script to install all necessary dependencies.

python utils/install.py

	Run the PyBpod application.

start-pybpod

Execute PyBpod

	Open “Anaconda Prompt” and activate the “pybpod-environment”.

activate pybpod-environment

	Run the application, in your pybpod directory.

start-pybpod

Update PyBpod

	Open the “Anaconda Prompt” and activate the “pybpod-environment”.

activate pybpod-environment

	Execute the next commands in your pybpod directory.

git pull
git submodule update --recursive --remote

Basic usage

Projects

When you open PyBpod for the first time, you can create a new project or load a previous project from your filesystem.

[image: ../_images/new_project_menu.png]
With PyBpod you can easily organize your work. Projects allow you to aggregate several experiments in one place.

Note

You can open several projects at the same time to compare data.

Each project has a set of experiments, subjects, boards, protocols and users as it is possible to see from the example
in the next figure.

[image: ../_images/project_structure.png]
An experiment can have one or more Setups. Each Setup mostly defines an association between a Board and a Protocol. It
is also possible to associate one or more subjects as well as variable definitions for that particular Setup.

When running a particular Setup, the Session data will appear under it in the project tree as well as under the subjects
that were part of that Session.

Bpod boards

PyBpod GUI supports multiple Bpod boards to be run in parallel. Just add a new board, select serial port, run your experiment and open the console window.

[image: ../_images/board_sample.png]
The console window allows you to see real time output from the Bpod.

[image: ../_images/board_console_sample.png]

Note

On the Board details window you can activate or deactivate ports by checking or unchecking them in the ports list.

Subjects

The subjects allow you to manage the animals for your experiments. By keeping the list of animals updated you will have
better control of your experiments. PyBpod allows you to know in which Sessions each subject participated and you can
see details for each Session within PyBpod.

[image: ../_images/subjects.png]

Protocols

Protocols allow you to define how the state matrix works. They are fully written in Python but follow a similar syntax from the Bpod Matlab equivalents.

PyBpod GUI ships with a code editor with syntax highlight and you don’t have to hardcode the serial port or other settings.
Let the GUI do the job for you and focus on your experiments!

[image: ../_images/protocols.png]

Experiments and experimental setups

The experiments node hold all your experiments important data. Each experiment, runs a protocol and has a list of experimental setups (you can also call it arenas), where one or more subjects can be placed to run execute the selected protocol.
From each setup you should associate a corresponding Bpod board that will be responsibile for running your protocol.

The workflow goes like this:

	Inside the project, add an experiment.

	Assign a protocol to the experiment.

	Inside the experiment, add several setups.

	Assign a Bpod board to each of the setups.

	Assign one or more subjects to each setup.

	Run the experiment for one setup or run them all at the same time!

[image: ../_images/experiments.png]
[image: ../_images/setups.png]

Sessions

Each time you run a Bpod protocol on a setup a new session is created. The GUI collects the output from the PyBpod API and processes these events on a list (which we call session history).
Besides being on memory, this history is automatically saved on a text file, so you never lose Bpod data.

If you navigate to your project on the filesystem, and locate the desired setp, you should find several files:

	CSV and JSON are default outputs from the pybpod-api (for example, you can open CSV on excel and quickly produce some plots)

	Plain text file is the output from the GUI

[image: ../_images/project-folders-organization.png]
You can also develop plugins that enhance session data visualization and access them by right-clicking the desired session.

[image: ../_images/sessions.png]

GUI User settings

You can edit user settings directly from the GUI. User settings enable you to tweak the GUI the way you like it.
Example of parameters you may change are:

	Loaded plugins

	Default project path

	Refresh time for console window

	And much more…

[image: ../_images/user_settings.png]

Writing a protocol for Bpod

What is a Bpod protocol?

To use Bpod, you must first program a behavioral protocol. The following guide is based on the original version for Bpod Matlab [https://sites.google.com/site/bpoddocumentation/bpod-user-guide/protocol-writing].

Protocol example explained

First, you will need to import Bpod modules.

	1
2

	 # Bpod main module and State machine module
 from pybpodapi.protocol import Bpod, StateMachine

Then, initialize Bpod. The GUI will automatically set the serial port based on the serial port selected for the board and the workspace will be the subject folder.

You can run several trials for each Bpod execution. In this example, we will use 5 trials. Each trial can be of type1 (rewarded left) or type2 (rewarded right).

	 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 nTrials = 5
 trialTypes = [1, 2] # 1 (rewarded left) or 2 (rewarded right)

 for i in range(nTrials): # Main loop
 print('Trial: ', i+1)
 thisTrialType = random.choice(trialTypes) # Randomly choose trial type =
 if thisTrialType == 1:
 stimulus = 'PWM1' # set stimulus channel for trial type 1
 leftAction = 'Reward'
 rightAction = 'Punish'
 rewardValve = 1
 elif thisTrialType == 2:
 stimulus = 'PWM3' # set stimulus channel for trial type 1
 leftAction = 'Punish'
 rightAction = 'Reward'
 rewardValve = 3

Now, inside the loop, we will create and configure a state machine for each trial.
A state machine has state name, state timer, names of states to enter if certain events occur and output actions.
Please see State Machine API for detailed information about state machine design.

	22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	 sma = StateMachine(my_bpod.hardware)

 sma.add_state(
 state_name='WaitForPort2Poke',
 state_timer=1,
 state_change_conditions={'Port2In': 'FlashStimulus'},
 output_actions=[(OutputChannel.PWM2, 255)])
 sma.add_state(
 state_name='FlashStimulus',
 state_timer=0.1,
 state_change_conditions={'Tup': 'WaitForResponse'},
 output_actions=[(stimulus, 255)])
 sma.add_state(
 state_name='WaitForResponse',
 state_timer=1,
 state_change_conditions={'Port1In': leftAction, 'Port3In': rightAction},
 output_actions=[])
 sma.add_state(
 state_name='Reward',
 state_timer=0.1,
 state_change_conditions={'Tup': 'exit'},
 output_actions=[('Valve', rewardValve)]) # Reward correct choice
 sma.add_state(
 state_name='Punish',
 state_timer=3,
 state_change_conditions={'Tup': 'exit'},
 output_actions=[('LED', 1), ('LED', 2), ('LED', 3)]) # Signal incorrect choice

After configuring the state machine, we send it to the Bpod device by calling the method send_state_machine. We are then ready to run the next trial, by calling the run_state_machine method.
On run completion, we can print the data available for the current trial including events and states.

	49
50
51
52
53
54
55

	 my_bpod.send_state_machine(sma) # Send state machine description to Bpod device

 print("Waiting for poke. Reward: ", 'left' if thisTrialType == 1 else 'right')

 my_bpod.run_state_machine(sma) # Run state machine

 print("Current trial info: ", my_bpod.session.current_trial())

Finally, after the loop finishes, we can stop Bpod execution.

	56

	 my_bpod.close() # Disconnect Bpod and perform post-run actions

See also

PyBpod API [http://pybpod-api.readthedocs.io/en/latest/]

Plugins

PyBpod GUI can be enhanced with plugins. This way you can easily adapt the GUI for your needs.

You can use plugins for:

	extending or overwriting basic PyBpod functionalities

	creating new visualization tools for PyBpod sessions (e.g., plots, message filters)

	adding new windows, tools or any other GUI-related functionality

For detailed information on how to develop plugins please see Developing PyBpod GUI plugins.

Available Plugins

PyBpod has several plugins and modules for different purposes.
The ones developed by our team are:

	Session history (GitHub [https://github.com/pybpod/pybpod-gui-plugin-session-history])

	Trial timeline (GitHub [https://github.com/pybpod/pybpod-gui-plugin-trial-timeline])

	Wave player (GitHub [https://github.com/pybpod/pybpod-gui-plugin-waveplayer])

	Alyx module (GitHub [https://github.com/pybpod/pybpod-gui-plugin-alyx])

	Rotary encoder module (Documentation [https://pybpod-api-rotary-encoder-module.readthedocs.io/], GitHub [https://github.com/pybpod/pybpod-gui-plugin-rotaryencoder])

	Harp Sound card module (Documentation [https://pybpod-soundcard-module.readthedocs.io/], GitHub [https://github.com/pybpod/pybpod-gui-plugin-soundcard])

	Emulator module (Documentation [https://pybpod-gui-plugin-emulator.readthedocs.io/], GitHub [https://github.com/pybpod/pybpod-gui-plugin-emulator])

More information can be found at the PyBpod’s page in GitHub here [https://github.com/pybpod].

Community made plugins

There are also some plugins developed by the PyBpod’s community.
The following plugins were developed by the de la Rocha lab:

	Water calibration (BitBucket [https://bitbucket.org/delaRochaLab/water-calibration-plugin/])

	Graphics Trend plugin for 2FC tasks (BitBucket [https://bitbucket.org/delaRochaLab/trend-2fc-plugin/src/master-3A/])

	Raster plot visualization of live or recorded sessions (BitBucket [https://bitbucket.org/delaRochaLab/raster-plugin/])

	Sound calibration (BitBucket [https://bitbucket.org/delaRochaLab/sound-calibration-plugin/src/master-3A/])

Warning

These plugins might not work with the latest PyBpod version. Please check their respective documentation to confirm for which PyBpod version they were developed.

How to install plugins

Installing plugins only takes 3 steps.

First, you will need to edit your user settings. On the top menu, go to Options > Edit user settings.
Then, locate the following labels:

	GENERIC_EDITOR_PLUGINS_PATH -> this variable expects a string value which should correspond to a filesystem folder path where your plugins are located

	﻿GENERIC_EDITOR_PLUGINS_LIST -> this variable expects a list of strings which are the names of the plugins to be loaded when the GUI starts up

Warning

If you are using Windows OS, you must use double slash for paths. Example: GENERIC_EDITOR_PLUGINS_PATH = ‘C:\\Users\\YOUR_NAME\\bpod_plugins’.

[image: ../_images/user_settings_plugins.png]
Second, download the plugin folder you want and place it on the “plugins” folder you have just indicated before.

Finally, restart the GUI. Depending on the kind of plugin, you will see a new option on the top menu or by right-clicking a node in the project tree.

Note

If you are developing plugins and you already installed them with PIP, you may leave the GENERIC_EDITOR_PLUGINS_PATH = None because they will be already on the Python path.

Examples of available plugins

Session history

This plugin allows you to display session data in a table view and you can order events by column.

https://github.com/pybpod/pybpod-gui-plugin-session-history

[image: ../_images/session_history.png]

Session timeline

This plugin displays trial states in a bar plot.

https://github.com/pybpod/pybpod-gui-plugin-timeline

[image: ../_images/session_timeline.png]

GUI explained

Note

Quick rationale

There are a lot of things going on under the hood when you run the PyBpod GUI.
We will try to resume the basic concepts here but keep in mind that it is a lot of information so don’t get frustrated if you don’t get it at first.
There were a lot of man-hours involved in this project and we strongly believe that dividing code in modules and libraries, though it seems more complicated at first, greatly improves code reusability and low-coupling.

Libraries that make up the GUI

Qt and PyQt

First, PyBpod GUI relies on PyQt [https://riverbankcomputing.com/software/pyqt/intro], a set of Python v2 and v3 bindings for The Qt Company’s [https://www.qt.io] Qt application framework which runs on all platforms supported by Qt including Windows, OS X, Linux, iOS and Android.
Qt is more than a GUI toolkit. It includes abstractions of network sockets, threads, Unicode, regular expressions, SQL databases, SVG, OpenGL, XML, a fully functional web browser, a help system, a multimedia framework, as well as a rich collection of GUI widgets.

https://riverbankcomputing.com/software/pyqt/intro

PyForms

Because developing complex applications with PyQt can be hard to maintain, we rely on Pyforms, a Python 2.7.x and 3.x cross-enviroment framework for developing GUI applications, which promotes modular software design and code reusability with minimal effort.

https://github.com/UmSenhorQualquer/pyforms

PyformsGenericEditor

But we got even far, and since several GUI applications share the same concepts, we have developed PyformsGenericEditor, which allows for quickly bootstrapping a GUI application with file menus, project trees, form fields, etc.
It also abstracts the concepts of creating, saving and deleting projects. This generic editor can then be adapted for specific use cases by providing plugins which define how projects are saved on filesystem, how to populate the project tree, which options show up in the menus and so on.

Thus PyBpod GUI is itself a plugin for the PyformsGenericEditor.

[image: ../_images/pge_overview_annotated.png]

PyBpod API

Pybpod API is a Python library that enables communication with the latest Bpod device version. It is responsible for translating the protocols you write into a state matrix array and send it to the Bpod device.

http://pybpod-api.readthedocs.io/en/latest/

Confapp

Python library to provide settings files for modular applications.

https://github.com/UmSenhorQualquer/confapp

Pybranch

Library that offers multiprocessing communication.

https://bitbucket.org/fchampalimaud/pybranch

Logging-bootstrap

Library that provides simple methods for bootstrapping a logger with default settings.

https://bitbucket.org/fchampalimaud/logging-bootstrap

GUI Windows

Explaining how GUI windows work, how they relate to PyformsGenericEditor and Pyforms, how the model is organized (inheritance).

Warning

To be implemented soon

Bpod interaction

	On this page you will learn:
	
	How multiprocessing works

	How GUI handles protocols and communicates with Bpod

	How messages from bpod since “_publish_data” go to the multiprocessing queue until they are parsed on the factory

Multiprocessing

PyBpod GUI allows to control several Bpod boxes from a single application.
To achieve parallel execution, we use Qt Threads [http://doc.qt.io/qt-5/thread-basics.html] to avoid interface from freezing and Python3 multiprocessing [https://docs.python.org/3.5/library/multiprocessing.html] for getting the most out of computer CPU parallelization capabilities.

For each setup you run a protocol, a new Qt Thread and a process child will be created and get allocated to a single Bpod connection. This ensures the maximum performance. Moreover, if a Bpod box fails, the other Bpod boxes are not affected.

[image: ../_images/gui-multiprocessing-highlevel.svg]

Starting protocol on Bpod

From the moment you press the button “run” on the GUI until output shows up in the console and it is saved on session history file, a lot of stuff is going on.
First, let’s see how the GUI handles the “run” button. SetupWindow class is responsible for painting the setup window, including input fields and buttons.

class SetupWindow(Setup, BaseWidget):
 """
 Define here which fields from the setup model should appear on the details section.

 The model fields shall be defined as UI components like text fields, buttons, combo boxes, etc.

 You may also assign actions to these components.

 (...)

 """

 def __init__(self, experiment=None):
 BaseWidget.__init__(self, 'Experiment')

 self._name = ControlText('Subject name')
 self._board = ControlCombo('Box')
 self._run_task_btn = ControlButton('Run')

 Setup.__init__(self, experiment)

 self.reload_boards()

 self._formset = [
 '_name',
 '_board',
 (' ', ' ', '_run_protocol_btn'),
 ' '
]

 (...)

 self._run_protocol_btn.value = self._run_protocol

 def _run_protocol(self):
 """
 Defines behavior of the button :attr:`SetupWindow._run_task_btn`.

 This methods is called every time the user presses the run button.
 """
 try:
 if self.status == SetupWindow.STATUS_RUNNING_PROTOCOL_HANDLER:
 self.stop_protocol()
 elif self.status == SetupWindow.STATUS_READY:
 self.run_protocol()
 except RunSetupError as err:
 QMessageBox.warning(self, "Warning", str(err))
 except Exception as err:
 QMessageBox.critical(self, "Unexpected Error", str(err))

The “run” button click event will fire a complex sequence of calls. Detail explanation of this process is out of scope of this tutorial. However, the following diagram resumes this process. What is important to retain is that the pybpod GUI library makes us of the Pybranch library to handle Qt Threads and python multiprocessing. Notice how inheritance is used for several classes to promote code reusability and separating concepts.

[image: ../_images/gui-bpod-communication.svg]

Developing plugins

What is a PyBpod GUI plugin?

PyBpod relies on a generic GUI framework, called PyformsGenericEditor which offers a basic user interface and can be extended to provide specific functionality through the installation of plugins.

	You can use plugins for:
	
	extending or overwriting PyBpod core concepts (e.g., experiments, subjects, boxes);

	creating new visualization tools for PyBpod sessions (e.g., plots, message filters);

	adding new windows, tools or any other UI-related functionality;

Each plugin will be associated with a specific element of PyformsGenericEditor (e.g., project tree node, menu option, workspace area, etc).

Session history plugin, an example

This plugin allows you to display session data in a table view and you can order events by column.

https://github.com/pybpod/pybpod-gui-plugin-session-history

[image: ../_images/session_history.png]

Quick review on sessions

Each time you run a Bpod protocol on a subject, a new session is created. The GUI collects output from the PyBpod API and processes these events on a list (which we call session history).
Besides being on memory, this history is automatically saved on a text file, so you never loose Bpod data.

If you navigate to your project on the filesystem, and locate the desired subject, you should find several files:

	CSV and JSON are default outputs from the pybpod-api (for example, you can open CSV on excel and quickly produce some plots)

	Plain text file is the output from the GUI

[image: ../_images/session_data_filesystem.png]
Let’s take a look at a plain text file which was output from running a protocol on the GUI.

print_statement, 2017-05-23T15:41:29.638353, Trial:
print_statement, 2017-05-23T15:41:29.654188, Waiting for poke. Reward:
event_occurrence, 2017-05-23T15:41:33.672094, 50, Port2In, 2017-05-23 15:41:33.672094
event_occurrence, 2017-05-23T15:41:33.771925, 88, Tup, 2017-05-23 15:41:33.771925
state_entry, 2017-05-23T15:41:41.324848, 3, WaitForResponse, 4.1312, 4.3405
state_entry, 2017-05-23T15:41:41.324861, 4, Punish, 4.3405, 11.6663
state_entry, 2017-05-23T15:41:41.324908, 5, Reward, nan, nan
state_change, 2017-05-23T15:41:41.324930, 1, Port2In, 4.0312
state_change, 2017-05-23T15:41:41.324939, 2, Tup, 4.1312
state_change, 2017-05-23T15:41:41.324947, 2, Tup, 11.6663
print_statement, 2017-05-23T15:41:42.317543, Current trial info: {'Bpod start timestamp': 0.011, 'States timestamps': {'WaitForPort2Poke': [(0, 4.0312)], 'FlashStimulus': [(4.0312, 4.1312)], 'WaitForResponse': [(4.1312, 4.3405)], 'Punish': [(4.3405, 11.6663)], 'Reward': [(nan, nan)]}, 'Events timestamps': {'Port2In': [4.0312], 'Tup': [4.1312, 11.6663], 'Port2Out': [4.3405], 'Port3In': [8.6663], 'Port3Out': [8.8762]}}
print_statement, 2017-05-23T15:41:42.322411, Trial:
print_statement, 2017-05-23T15:41:42.325805, Waiting for poke. Reward:
event_occurrence, 2017-05-23T15:41:48.035732, 48, Port1In, 2017-05-23 15:41:48.035732
event_occurrence, 2017-05-23T15:41:48.136440, 88, Tup, 2017-05-23 15:41:48.136440
state_entry, 2017-05-23T15:41:48.160769, 3, WaitForResponse, 3.2538, 3.4102
state_entry, 2017-05-23T15:41:48.160775, 4, Reward, 3.4102, 5.8133
state_entry, 2017-05-23T15:41:48.160781, 5, Punish, nan, nan
state_change, 2017-05-23T15:41:48.160791, 1, Port2In, 3.1538
state_change, 2017-05-23T15:41:48.160804, 3, Port2Out, 3.4102
state_change, 2017-05-23T15:41:48.160808, 4, Port1In, 5.7133
print_statement, 2017-05-23T15:41:49.142529, Current trial info: {'Bpod start timestamp': 12.689, 'States timestamps': {'WaitForPort2Poke': [(0, 3.1538)], 'FlashStimulus': [(3.1538, 3.2538)], 'WaitForResponse': [(3.2538, 3.4102)], 'Reward': [(3.4102, 5.8133)], 'Punish': [(nan, nan)]}, 'Events timestamps': {'Port2In': [3.1538], 'Tup': [3.2538, 5.8133], 'Port2Out': [3.4102], 'Port1In': [5.7133]}}
print_statement, 2017-05-23T15:41:49.147563, Trial:
print_statement, 2017-05-23T15:41:49.151724, Waiting for poke. Reward:
event_occurrence, 2017-05-23T15:41:52.731798, 50, Port2In, 2017-05-23 15:41:52.731798
event_occurrence, 2017-05-23T15:41:53.845332, 48, Port1In, 2017-05-23 15:41:53.845332
event_occurrence, 2017-05-23T15:41:53.946396, 88, Tup, 2017-05-23 15:41:53.946396
state_entry, 2017-05-23T15:41:53.974354, 1, WaitForPort2Poke, 0, 3.5869
state_entry, 2017-05-23T15:41:53.974475, 5, Punish, nan, nan
state_change, 2017-05-23T15:41:53.974495, 1, Port2In, 3.5869
state_change, 2017-05-23T15:41:53.974536, 3, Port2Out, 3.8881
state_change, 2017-05-23T15:41:53.974545, 4, Port1In, 4.7007
print_statement, 2017-05-23T15:41:54.955371, Current trial info: {'Bpod start timestamp': 19.513, 'States timestamps': {'WaitForPort2Poke': [(0, 3.5869)], 'FlashStimulus': [(3.5869, 3.6869)], 'WaitForResponse': [(3.6869, 3.8881)], 'Reward': [(3.8881, 4.8007)], 'Punish': [(nan, nan)]}, 'Events timestamps': {'Port2In': [3.5869], 'Tup': [3.6869, 4.8007], 'Port2Out': [3.8881], 'Port1In': [4.7007]}}

What is going on here? Each line is a new message, where the first column identifies the type of an event on the session history: it can be a bpod state change, state entry, a user print, etc.
These events represent messages that were sent from the Bpod and processed by the GUI.

Parsing board messages

Currently, PyBpod GUI supports the following events from Bpod board:

	Session History Event Type

	Occurs during trial run?

	Description

	Event occurrence

	YES

	Any Bpod event during trial run

	State change

	NO

	Events detected by Bpod’s inputs can be set to trigger transitions between specific states.

	State entry

	NO

	State entered during the state matrix run

	Print statement

	YES

	User defined print messages on protocol

All these classes represent board messages and inherit a generic class BoardMessage.
For more information on how the GUI parses these messages, see Message factory.

Register plugin on the GUI

The first thing you need to do is to register your plugin. For that, edit your user settings. From the top menu, go to Options > Edit user settings.
Edit the GENERIC_EDITOR_PLUGINS_PATH variable as this:

 GENERIC_EDITOR_PLUGINS_LIST = [
 'pybpodgui_plugin',
 'pybpodgui_plugin_session_history',
]

	For the GUI to be able to detect the plugin source code you have 2 options:
	
	Download the plugin folder you want and place it on the “plugins” folder you have just indicated before (useful when you run pybpod GUI as an executable)

	Install the plugin with PIP (only applies if you are running the GUI from source code).

On this example, we will assume option #2 since we will be developing a plugin from the source code.
In that case, you may leave the GENERIC_EDITOR_PLUGINS_PATH = None because the plugin will be already on the Python path.
But don’t forget! Every time you make changes to the plugin you have to install it with PIP again (unless your IDE does that for you).

Finally, restart the GUI. The Session History plugin is a type of plugin that will be connected to a session and extend its behavior.
Thus, after installing this plugin, you will see a new option by right-clicking a session node in the project tree. But how this works?

Connecting the plugin with a session node

Every node on the project tree node has a window assigned to it.
In order to plugins show up on a project tree node, we need to extend the corresponing node window behavior.
For example:

	an experiment node is connected to the pybpodgui_api.models.experiment.experiment_treenode.ExperimentTreeNode class

	a board node is connected to the pybpodgui_api.models.board.board_treenode.BoardTreeNode class

	a session node is connected to the pybpodgui_api.models.session.session_treenode.SessionTreeNode class

The PyformsGenericEditor enables that all these classes may be extended by looking for classes on plugins that have the same name and path.

On the Session History plugin, since we want to override session behavior we need to have the following structrure:

[image: ../_images/module_session_treenode.png]
On the models.session.__init__.py module, you must define the class that will override the original SessionTreeNode class.
If you inspect the __init__.py you will find this:

from pybpodgui_plugin_session_history.models.session.session_treenode import SessionTreeNode as Session

By using Python inheritance, PyformsGenericEditor discovers that SessionTreeNode will match the original class from the GUI.

On the session_treenode.py file on our plugin, one can now redefine the behavior of the desired methods. In this case, we are overriding the
create_treenode method to add a new option when the user right-clicks the project tree node.
We also override other methods to personalize details such as window title or double-clicking.

(...)

from pybpodgui_plugin_session_history.session_history import SessionHistory

(...)

class SessionTreeNode(object):
 def create_treenode(self, tree):
 """
 Extends create_treenode behavior by calling the parent and adding a new option
 when user right-clicks the node.

 See also: pybpodgui_api.models.session.session_treenode.SessionTreeNode.create_treenode

 """
 node = super(SessionTreeNode, self).create_treenode(tree)

 tree.add_popup_menu_option('History', self.open_session_history_plugin, item=self.node,
 icon=QIcon(conf.SESSIONLOG_PLUGIN_ICON))

 return node

 def node_double_clicked_event(self):
 super(SessionTreeNode, self).node_double_clicked_event()
 self.open_session_history_plugin()

 def open_session_history_plugin(self):
 if not hasattr(self, 'session_history_plugin'):
 self.session_history_plugin = SessionHistory(self)
 self.session_history_plugin.show()
 self.session_history_plugin.subwindow.resize(*conf.SESSIONLOG_PLUGIN_WINDOW_SIZE)
 else:
 self.session_history_plugin.show()

 def remove(self):
 if hasattr(self, 'session_history_plugin'): self.mainwindow.mdi_area -= self.session_history_plugin
 super(SessionTreeNode, self).remove()

 @property
 def name(self):
 return super(SessionTreeNode, self.__class__).name.fget(self)

 @name.setter
 def name(self, value):
 super(SessionTreeNode, self.__class__).name.fset(self, value)
 if hasattr(self, 'session_history_plugin'): self.session_history_plugin.title = value

This should be the final result:

[image: ../_images/session_node_history.png]

Handling session history from the plugin

On the previous section, we defined a new action for the session node.
We have done that by linking the “History” menu option to the method open_session_history_plugin.
Inside this method we invoke a class from the session_history.py module.

The session_history.py is responsible for creating a new window that shows up in the GUI workspace.
This window must inherit from BaseWidget in order to make use of the necessary PyForms controls.

Since the GUI holds session history on memory, a list of board messages, session plugins can easily access to this list and process the events as needed.
In our window, we will define a ControlList to list all the session history events. We will then define a timer that fires periodically to check for new messages and update the list.

(...)

from pyforms.basewidget import BaseWidget
from pyforms.controls import ControlProgress
from pyforms.controls import ControlList

(...)

from pybpodgui_plugin.com.messaging import ErrorMessage
from pybpodgui_plugin.com.messaging import PrintStatement
from pybpodgui_plugin.com.messaging import StateChange
from pybpodgui_plugin.com.messaging import StateEntry
from pybpodgui_plugin.com.messaging import EventOccurrence

(...)

class SessionHistory(BaseWidget):
 """ Plugin main window """

 def __init__(self, session):
 (...)

 self._log = ControlList()

 self._formset = [
 '_log',
]

 self._history_index = 0
 self._log.readonly = True
 self._log.horizontal_headers = ['#', 'Type', 'Name', 'Channel Id', 'Start', 'End', 'PC timestamp']
 self._log.set_sorting_enabled(True)

 (...)

 self._timer = QTimer()
 self._timer.timeout.connect(self.read_message_queue)

 (...)

 def read_message_queue(self, update_gui=False):
 """ Update board queue and retrieve most recent messages """
 messages_history = self.session.messages_history
 recent_history = messages_history[self._history_index:]

 if update_gui:
 self._progress.show()
 self._progress.value = 0
 try:
 for message in recent_history:

 table_line = None
 if issubclass(type(message), StateChange):
 table_line = (self._history_index, message.MESSAGE_TYPE_ALIAS, message.event_name,
 '-', message.board_timestamp, message.board_timestamp, str(message.pc_timestamp))

 if issubclass(type(message), StateEntry):
 table_line = (self._history_index, message.MESSAGE_TYPE_ALIAS, message.state_name,
 '-', message.start_timestamp, message.end_timestamp, str(message.pc_timestamp))

 if issubclass(type(message), EventOccurrence):
 table_line = (self._history_index, message.MESSAGE_TYPE_ALIAS, message.event_name,
 message.event_id, '-', '-', str(message.pc_timestamp))

 if table_line:
 self._log += table_line
 QEventLoop()

 if update_gui:
 self._progress += 1
 if self._progress.value >= 99: self._progress.value = 0

 self._history_index += 1

 except Exception as err:
 if hasattr(self, '_timer'):
 self._timer.stop()
 logger.error(str(err), exc_info=True)
 QMessageBox.critical(self, "Error",
 "Unexpected error while loading session history. Pleas see log for more details.")

 if update_gui:
 self._progress.hide()

 (...)

This should be the final result:

[image: ../_images/session_history_window_closeup.png]

Contributing

This is an open source project and we welcome contributions from anyone interested.

	You can contribute in the following ways:
	
	Work on the main bpod plugin and do a git merge request: https://bitbucket.org/fchampalimaud/pybpod-gui-plugin

	Fill in issues, suggestions, ask for new features, etc: https://bitbucket.org/fchampalimaud/pybpod-gui-plugin/issues

	Developing plugins for Bpod

Project Info

The SWP Team

[image: ../_images/fc_logo.jpg]
Scientific Software Platform (Champalimaud Foundation) [http://research.fchampalimaud.org/en/research/platforms/staff/Scientific%20Software/]

The Scientific Software Platform (SWP) from the Champalimaud Foundation provides technical know-how in software engineering and high quality software support for the Neuroscience and Cancer research community at the Champalimaud Foundation.

We typical work on computer vision / tracking, behavioral experiments, image registration and database management.

Bpod project

PyBpod is a python port of the Bpod Matlab project [https://github.com/sanworks/Bpod].

All examples and Bpod’s state machine and communication logic were based on the original version made available by Josh Sanders (Sanworks) [https://github.com/sanworks].

License

This is Open Source software with a MIT license.

Maintenance team

The current and past members of the pybpod team.

	@cajomferro [https://github.com/cajomferro/] Carlos Mão de Ferro

	@JBauto [https://github.com/JBauto] João Baúto

	@UmSenhorQualquer [https://github.com/UmSenhorQualquer/] Ricardo Ribeiro

	@MicBoucinha [https://github.com/MicBoucinha/] Luís Teixeira

Questions?

If you have any questions or want to report a problem with this library please fill a issue here [https://github.com/pybpod/pybpod/issues].

Changelog

v1.8.0 (2019/11/09)

	PyBpod’s version number is now shared between the main packages of PyBpod
(pybpod, pybpod-api, pybpod-gui-api and pybpod-gui-plugin).

	
	pybpod-api (v1.8.0)
	
	Fixed several documentation related issues

	Updated documentation

	Add support to kill a task or skip all trials to run_state_machine

	
	pybpod-gui-api (v1.8.0)
	
	Documentation fixes

	Add support to kill tasks

	
	pybpod-gui-plugin (v1.8.0)
	
	Add support to kill tasks (updated Subject and Setup panels)

	Fixed bug where bpods that weren’t connected were removed from the list when refreshed

	Fixed Task selection on setup panel being active while running a protocol

	Fixed issue#51 (Behaviour ports were being reset in every load)

	
	pybpod-gui-plugin-emulator (v0.1.4)
	
	Add task kill button to UI

	Reordered the “Test Protocol IO” button in the UI

	
	pybpod-gui-plugin-rotaryencoder (v0.1.4)
	
	Added support for enabling/disabling moduleOutputStream in the GUI

	
	pybpod-gui-plugin-soundcard (v0.1.6)
	
	Added libusb backend support

	Increased timeout duration on read

v1.7.8 (2019/06/03)

	Fixed a problem with the setup requirements

v1.7.7 (2019/06/03)

	Fixed a problem with pybpod-gui-plugin-waveplayer.

v1.7.6 (2019/06/03)

	Requirements for PyBpod now point to specific package versions to ease upgrades

	
	pybpod-api (updated to v1.6.4)
	
	Fixed problem with bad indexing when accessing modules in _bpodcom_module_write

	
	pybpod-gui-plugin-waveplayer (v1.0)
	
	Corrected version number in the package and PyPi

v1.7.5 (2019/05/15)

	
	pybpod-gui-plugin (updated to v1.6.2)
	
	Fixed png that was creating a warning on PyBpod initialization

	Now it points correctly to the master branch

	
	pyforms-gui (updated to v4.901.2)
	
	Version update so that PyPI considers a new version and the updates mentioned in v1.7.2 release are applied.

	
	pybpod-alyx-module (updated to v1.1.1)
	
	Removed unnecessary requests package requirement

	
	pybpod-gui-plugin-emulator (v0.1.3)
	
	Fixed override messages not being sent properly on Windows

	Fix for pause not working

	
	pybpod-rotaryencoder-module (v0.1.1)
	
	Fix for version override which would present always as version 0

	
	pybpod-soundcard-module (v0.1.5)
	
	Added bumpversion support to this module

v1.7.4 (2019/05/08)

	The pybpodgui_plugin_session_history is now pointing to the master branch as it should (v1.4.1)

v1.7.3 (2019/05/08)

	Fixed problem with wrong pybpod-alyx-module version (now it is v1.1)

v1.7.2 (2019/05/03)

	Python base version changed to v3.6.6

	Conda environment files are now more coherent between Windows and Linux

	
	pybpod-api (updated to v1.6.3)
	
	Data from interrupted trials are ignored

	Added new trigger_input message to manually override inputs and trigger events

	Fixed manual override of output channels

	Fixed problem with GlobalTimers that were writing to the wrong indexes

	Added new ‘message’ options to send serial messages to the modules connected to BPod’s State Machine

	
	pybpod-gui-api (updated to v1.2.2)
	
	Setups ran through a subject are now ran correctly

	Added PYBPODGUI_API_AUTO_SAVE_PROJECT_ON_RUN option to user_settings

	ScriptCmds are now executed as subprocesses

	
	pybpod-gui-plugin (updated to v1.6.1)
	
	Fixed bug when subject were added to setups when canceling the confirmation dialog

	Subject window now works properly and with the same options as within the setup (run, pause, detach from GUI option)

	Fixed path problem in Pre and Post commands on Windows that prevented to run Pre and Post commands properly.

	
	pyforms-gui (updated to v4.9.2)
	
	Code Editor now is presented properly on Windows

	Normalized font labels size

	
	pybpod-alyx-module (updated to v1.1)
	
	Import of Alyx subjects now allows to ignore all existing subject or replace all

	Subjects that are dead, are now removed automatically from the list

	
	New modules and plugins
	
	pybpod-soundcard-module (v0.1.4). More details on this module in: https://pybpod-soundcard-module.readthedocs.io/

	pybpod-gui-plugin-emulator (v0.1). More details on this module in: https://pybpod-gui-plugin-emulator.readthedocs.io/en/v0.1.0/

Indices and tables

	Index

	Module Index

	Search Page

Index

 _static/basic-usage/experiment_detail_window.png
06 Projects

v I simple_project_bpod
v @3 Experiments
. light_chasing_experiment
v - m236
23052017.153832
¥ trial_events_experiment
v i rodentt

23052017.154129
v U Bpod Boxes

[bpod
[bpod2
v @ Protocols
B add_trial_events
B light_chasing loop

(x]5)

Detais
Exp. name [light_chasing_experiment

Protocol | light_chasing loop

_static/basic-usage/experiments.png
Projects a®

~ M Test project
~ @ Experiments
S
~ [Setup Al
20171122-131..
[Setup B1
~ 4 Trial events experi...
[Setup A2
~ < Subjects
e Subject A
wa Subject B
~ % Bpod boards
= Board A
= Board B
~ @ Protocols
Bb global_timer_exam...
B light_chasing

Details

Exp. name Light chansing experiment

Protocol | light-chasing

[Run all |

_static/basic-usage/board-console.png
Projects o= [
~ M Test project

~ @ Experiments

~ @ Light chansing ex... | (21 | 20171122-131933 | EVENT-SUMMARY | host-time:0.0001 pc-time:20171122131933 Tup |~

v Auto-scroll | Clear |

~ [Setup AL 221 20171122_131933 | EVENT-SUMMARY | host-time:0.2501 pc-time:20171122131933 Tup
20171122-1.. 23] 20171122_131933 | EVENT-SUMMARY | host-time:0.5001 pc-time:20171122131933 Tup

[Setup B1 241 20171122_131933 | EVENT-SUMMARY | host-time:0.7501 pc-time:20171122131933 Tup

~ . Trial events expe... 251 20171122_131933 | EVENT-SUMMARY | host-time:1.0001 pc-time:20171122131933 Tup

[Setup A2 26| 20171122_131933 | EVENT-SUMMARY | host-time:1.2501 pc-time:20171122131933 Tup

~ & Subjects 271 20171122_131933 | EVENT-SUMMARY | host-time:1.5001 pc-time:20171122131933 Tup

m Subject A 28 | 20171122_131933 | EVENT-SUMMARY | host-time:1.7501 pc-time:20171122131933 Tup
- 4% Bpod boards 29 | 20171122_131933 | EVENT-SUMMARY | host-time:2.0001 pc-time:20171122131933 Tup
30 | 20171122_131933 | EVENT-SUMMARY | host-time:2.2501 pc-time:20171122131933 Tup
31 20171122_131933 | EVENT-SUMMARY | host-time:2.5001 pc-time:20171122131933 Tup
1= Board B 32 20171122_131933 | EVENT-SUMMARY | host-time:2.7501 pc-time:20171122131933 Tup
~ @ Protocols 33 20171122_131933 | EVENT-SUMMARY | host-time:3.0 pc-time:20171122131933
B global_timer_exa... | GlobalTimerl_End
34 20171122_131933 | STATE | host-time: pc-time:20171122131933 TimerTrig
35| 20171122_131933 | STATE | host-time: pc-time:20171122131933 Port1Lit
36 | 20171122_131933 | STATE | host-time: pc-time:20171122131933 Port1Lit
37| 20171122_131933 | STATE | host-time: pc-time:20171122131933 Port1Lit
38 | 20171122_131933 | STATE | host-time: pc-time:20171122131933 Port1Lit
39 | 20171122_131933 | STATE | host-time: pc-time:20171122131933 Port1Lit
40 | 20171122_131933 | STATE | host-time: pc-time:20171122131933 Port1Lit

41 20171122_131933 | STATE | host-time: pc-time:20171122131933 Port3Lit
42120171122 121022 | STATE | hact-tima: ne-tima:20171122121032 Part2l it

_static/basic-usage/boards.png
Projects. 88
Test project
~ @ Experiments
~ 4 Light chansing ex...
~ [Setup AL Box name |Board A

20171122-1.. e —
i Setup B1 Serial port | Console
7 & Trial events expe... | B o 1 led o disable ports Load ports
i Setup A2 po!
~ & Subjects BNC
. Subject A

~ 9% Bpod boards
A
= Board B
~ @ Protocols
B global_timer_exa...

_images/project-folders-organization.png
— boards
— Board A

L— board-settings.json
'— Board B
L— board-settings.json
— experiments
— Light chansing experiment
— experiment-settings.json
L— setups
— Setup A1
— 20171122-143113.csv
— setup-settings.json
L— Setup B1

L— setup-settings.json
— Trial events experiment
— experiment-settings.json
L— setups

L— Setup A2

L— setup-settings.json

— project-settings.json
— subjects
— Subject A
L— subject-settings.json
— Subject B
L— subject-settings.json
— tasks
— global_timer_example
— global_timer_example.py
— __init__.py
— light_chasing
— __init__.py
— light_chasing.py

_static/basic-usage/project-folders-organization.png
— boards
— Board A

L— board-settings.json
'— Board B
L— board-settings.json
— experiments
— Light chansing experiment
— experiment-settings.json
L— setups
— Setup A1
— 20171122-143113.csv
— setup-settings.json
L— Setup B1

L— setup-settings.json
— Trial events experiment
— experiment-settings.json
L— setups

L— Setup A2

L— setup-settings.json

— project-settings.json
— subjects
— Subject A
L— subject-settings.json
— Subject B
L— subject-settings.json
— tasks
— global_timer_example
— global_timer_example.py
— __init__.py
— light_chasing
— __init__.py
— light_chasing.py

_images/project_structure.png
File window Options Help Tools
BNew [open Idsave
Projects [

__Testoroect D
43 Experiments
~ i Light chasing experiment
Bpod2 with light chasi.
~ & Manual override experim.
» [Untitled setup 2 (1)
Untitled setup 24
» [untitled setup 3
Testing setup
~ & subjects
Untitled subject 6
~ . test_mouse0
20190128-142657
‘@ Untitled subject 2
20190304-105408
20190322-135519
20190327-145252
~ = test_mouse1
20190121-145954
20190222-133852
20190403-135752
20190424-174055
~ Y& Bpod boards
= Bpod v2
I Untitled box 1
~ ¢ Protocols
@ global_timer_example
@ bnc_triggered_state_cha...
@ sound_camera
@ _iblrig_misc_flush_water
@ Untitled task 2
@ manual_override
@ light_ (haslng loop
@ random

@ testismmdcard

_static/basic-usage/projects.png
Projects

~ -
~ @ Experiments
~ 4 Light chansing ex...

~ [Setup AL Project name [Test project

20171122-1..
i Setup B1 Project path
~ 4 Trial events expe...
i Setup A2
~ & Subjects
.o Subject A
~ % Bpod boards
= Board A
= Board B
@ Protocols
B global_timer_exa..

Details

“

_images/new_project_menu.png
Window Options Help Tools

£ Open a project

i save current project
i save current project as
i save all projects

4 Exit

_static/basic-usage/file_menu.png
I Save current project
[Save current project as
[Save all projects

_images/pge_overview_annotated.png
Project tree: nodes
that make up this
project in a tree-like
view

Details: select a
node in the project
tree and get more

detailed information
here

_static/basic-usage/multiple_boxes_with_session_plot.png
eoe
006
v I test bpod
v 3 Experiments
v light chasing_experiment
v = m236
23052017.153832
2405201713311
24052017_133123
Y trial events_experiment
v = rodentt
23052017.154129
24052017.132322
v B3 Bpod Boxes
[bpod
[bpod2
¥ 3 Protocols
B add_trial_events
B light_chasing_loop

Projects.

00

Detaits

Session name 24052017_133123
Started on 413:31:23 | Ended on
Subject name m236 | Task name ng_loop

Board name bpod1

Serial port |/dev/tty.usbmodem1461

lle path setups/m236/24052017_133123.txt

PyBpod GUI
Trials-plot: 23052017.154129
[
eoce bpod2 log bpod1 log
" IShow detailed log | Reset "I Show detailed log | Res:
21120170524.132331 | state_change | Portlin: 9.5153 1420170524 133133 | state_entry | PortlActivel: 5.8319 --> 10.0
2220170524 132331 | state_change | Port10ut: 8.1542 15 | 20170524_133133 | state_entry | Port2Activel: 2.841 --> 3.0463

23| 20170524 132331 | state_change | Port2in: 8.8902

24 20170524_132331| state_change | Tup: 8.9902

25 | 20170524 132331 | state_change | Tup: 9.6153

26 | 20170524_132331 | state_change | Port20ut: 9.2091

27| 20170524_132332 | print_statement | Current trial info: {'Bpod start
timestamp': 0.038, ‘States timestamps’: {'WaitForPort2Poke': [(0,
6.7992)], ‘FlashStimulus” ((6.7992, 7.0692)), 'WaitForResponse"
[(7.0692, 7.6574)], ‘Reward': [(7.6574, 9.6153)], ‘Punish': [(nan, nan)l},
‘Events timestamps'; {PPort3In’: [6.7992], ‘Port30ut": [7.0692], ‘Portlin':
[7.6574, 9.5153), ‘Port10ut': [8.1542), ‘Port2in’; [8.8902), 'Tup': [8.9902,
9.6153), 'Port20ut': [9.2091]}}

28 | 20170524_132332 | print_statement | Tri
29 | 20170524_132332 | print_statement | Waiting for poke. Reward:
30 | 20170524_132333 | event_occurrence | Port2in (50): None

311 20170524.132333 | event_occurrence | Port20ut (51): None
3220170524 132333 | event_occurrence | Tup (88): None

33| 20170524_132333 | event_occurrence | Port2in (50): None

16 | 20170524_133133 | state_entry | Port3Activel: 3.0463 --> 5.831¢
17 | 20170524 133133 | state_change | Tup: 0.0001

18| 20170524.133133 | state_change | Portin: 2.841

19| 20170524_133133 | state_change | Port1Out: 3.0463

20 | 20170524 133133 | state_change | Port2In: 5.8319
21120170524_133133 | state_change | Port20ut: 6.188
2220170524 133133 | state_change | Port3in: 8.8699
2320170524 133133 | state_change | Port30ut: 9.152

24| 20170524_133133 | state_change | GlobalTimer1_End: 10.0

25 | 20170524 133134 | print_statement | Current trial info: {'Bpod sta
timestamp': 0.015, ‘States timestamps' {'TimerTrig*: [(0, 0.0001)],
‘Port1Active1' [(0.0001, 2.841), (5.8319, 10.0)], ‘Port2Active’ [(2.841
3.0463)], ‘Port3Activel' [(3.0463, 5.8319)]}, 'Events timestamps':
[0.0001], ‘Port1in’: [2.841], ‘Port10ut: [3.0463], ‘Port2in': [5.8319],
‘Port20ut': [6.188], ‘Port3In’: [8.8699), ‘Port30ut' [9.152],
‘GlobalTimer1_End [10.01})

_images/pybpodapi-logo.png
fpen source animal behavior measurement & control

Image retrieved from: hitps://sanworks.io/shop/productsfimages/1001_2.jpg

_images/session_data_filesystem.png
[boards
[experiments.
project-settings json

[tasks

[light_chasi..._experiment @ » | experiment..ettingsjson © [T G

trial_events_experiment @ » [subjects

20170523.._events.csv @
20170523...events.json @
23052017.1541291xt @
‘setup-settings json o

_images/protocols.png
Projects CEN ot g DEX
~ B Test project
~ @ Experiments

Font size [10 ~| @

~ 4 Light chansing ex... 7 from pybpodapi.bpod import Bpod E
~ [Setup AL 8 from pybpodapi.state_machine import StateMachine
20171122-1... 9 from pybpodapi.bpod.hardware.events import EventName
i Setup B1 10 from pybpodapi.bpod.hardware.output_channels import OutputChannel
~ 4 Trial events expe... u
i Setup A2 E
T Subjects 14 my bpod = Bpod ()
.o Subject A = [
e Subject B .
16 sma = stateMachine (my_bpod)
~ % Bpod boards 17
W= Baard A 18 # Set global timer 1 for 3 seconds
= Board B 19 sma.set_global_timer legacy(timer_id=l, timer_duration=3)
~ @ Protocols 20
21 sma.add state(
22 state_name='TimerTrig', # Trigger global timer
23 state_timer=0,
24 state_change_conditions={EventName.Tup: 'Portllit'},
25 output_actions=[(OutputChannel.GlobalTimerTrig, 1)]1)
26
27 sma.add_state(
28 state_name='Portllit', # Infinite loop (with next state). Only a global timer can save |
29 state_timer=.25,
30 state_change_conditions={EventName.Tup: 'Port3Lit', EventName.GlobalTir
31 output_actions=[(OutputChannel.PWMl, 255)]1)

33 sma.add_state(b

_static/basic-usage/protocols.png
Projects CEN ot g DEX
~ B Test project
~ @ Experiments

Font size [10 ~| @

~ 4 Light chansing ex... 7 from pybpodapi.bpod import Bpod E
~ [Setup AL 8 from pybpodapi.state_machine import StateMachine
20171122-1... 9 from pybpodapi.bpod.hardware.events import EventName
i Setup B1 10 from pybpodapi.bpod.hardware.output_channels import OutputChannel
~ 4 Trial events expe... u
i Setup A2 E
T Subjects 14 my bpod = Bpod ()
.o Subject A = [
e Subject B .
16 sma = stateMachine (my_bpod)
~ % Bpod boards 17
W= Baard A 18 # Set global timer 1 for 3 seconds
= Board B 19 sma.set_global_timer legacy(timer_id=l, timer_duration=3)
~ @ Protocols 20
21 sma.add state(
22 state_name='TimerTrig', # Trigger global timer
23 state_timer=0,
24 state_change_conditions={EventName.Tup: 'Portllit'},
25 output_actions=[(OutputChannel.GlobalTimerTrig, 1)]1)
26
27 sma.add_state(
28 state_name='Portllit', # Infinite loop (with next state). Only a global timer can save |
29 state_timer=.25,
30 state_change_conditions={EventName.Tup: 'Port3Lit', EventName.GlobalTir
31 output_actions=[(OutputChannel.PWMl, 255)]1)

33 sma.add_state(b

_images/pybpod_main_window.png
File window Options Help Tools
BNew [open [dsave

Projects ® [jm

Bpodv2 log

[SEE]

ntitled project 1 (luis@local)
- @3 Experiments
- & Untitled experiment 2

Auto-scroll | Clear

Trial Timeline: 20190506-175642

[untitled setup 0
Untitled experiment 0
» [Untitled setup 2 (1)
» [untitled setup 24
» [untitled setup 3
» [l Testing setup
Untitled experiment 1
~ < subjects
« Untitled subject 6
- = test_mouse0
20190128-142657
= Untitled subject 2
20190304-105408
20190322-135519
20190327-145252
- = test_mouse1
20190121-145954
20190222-133852
20190403-135752
20190424-174055

20190424-174620

[INFO, 2019-05-06 17:
'10.000004]

['STATE', 2019-05-06 17:56:53.086703', 0, '0.0001", ‘TimerTrig’, '0.0001']

['STATE', 2019-05-06 17:56:53.086751',0.0001", '5.0296", 'Port1ActiveT’,
'5.0295000000000005°]

['STATE', 2019-05-06 17:56:53.086782', '7.3283000000000005', '9.6041", "Port1ActiveT’,
'2.2758000000000003]

['STATE', 2019-05-06 17:56:53.086809",
'2.29871]

['STATE', 2019-05-06 17:56:53.086834', '9.6041", '10.0', "Port3ActiveT’,
'0.39589999999999925']

['stdout’, '2019-05-06 17:56:53.087302", ", ", "Current trial info: {'Bpod start timestamp':
0.347012, 'Trial start timestamp': 0.347012, "Trial end timestamp': 10.347016, 'States
timestamps': { TimerTrig’: [(0, 0.0001)], 'Port1Active1":[(0.0001, 5.0296),
(7.3283000000000005, 9.6041)], "Port3Active1': [(5.0296, 7.3283000000000005),
(9.6041, 10.0)]}, 'Events timestamps’: {'GlobalTimer1_Start': [0.0001], ‘Tup': [0.0001],
"Port1In': [5.0296, 9.6041], "Port 10Ut [5.067, 9.8597], "Port3In’; [7.3283000000000005],
*Port30ut’: [7.6092], ‘GlobalTimer1_End: [10.0]}}", "]

['stdout’, '2019-05-06 17:56:53.087344", ", ", \n', "]

['INFO’, 2019-05-06 17:56:53.087390", ", ", 'SESSION-ENDED', '2019-05-06
17:56:53.087387]

53.086611','0.347012', '10.347016', 'TRIAL-BPOD-TIME',

'5.0296', '7.3283000000000005', "Port3Active1’,

TimerTrig
Port1Activel
Port3Activel

20190424-174644
20190429-112400
20190506-175321
20190506-175350
20190506-175502
20190506-175607

light_chasing_loop task editor

~ & Bpod boards
™ Bpod v2
I Untitled box 1

~ & Protocols
@ global_timer_example
@ bnc_triggered_state,
@ sound_camera
@ _iblrig_misc_flush_wa.
@ Untitled task 2

@ manual_override v

@ light_chasing_loop
@ Albert example

@ random_task bl

@ test_soundcard

Font size| 12

22 state_name= TinerTrig', # Trigger global timer
23 state_timer:

27 # Infinite loop (with next state). Only a global timer can save us.
28 sma.add_state(

24 state_change_conditions={Bpod.Events.Tup: 'Portlactivel'},
25 output_actions=[(Bpod.OutputChannels.GlobalTimerTrig, 1))
26

“Port3Activel’, Bpod.Events.G.

Users

Untitled user 3 (2)
luis

Untitled user 2 (1)
Untitled user 3 (1)
& Untitled user 3

29 state_name='portlactivel’,
30 state_timer=o,

31 state_change_conditions={Bpod.Events.PortiIn:

32 output_actions=[(Bpod.OutputChannels.PWM1, 255)])

33

34 sma.add_state(

35 state_name='port3activel’,

36 state_timer=o,

37 state_change_conditions={Bpod.Events.Port3I

38 output_actions=[(Bpod.OutputChannels.PWM3, 255)])

39

49 my_bpod.send_state_machine(sma)

a1

42 my_bpod.run_state_machine(sma)

a3

44 print(*current trial info: {o}*.format(my_bpod.session.current_trial))
a5

my_bpod. close()

“PortlActivel’, Bpod.Events.G.

3 4 5
Time (sec)

w”

Details

Session [20190506-175642

started on [2019/05/01

_static/basic-usage/session_data_filesystem.png
[boards
[experiments.
project-settings json

[tasks

[light_chasi..._experiment @ » | experiment..ettingsjson © [T G

trial_events_experiment @ » [subjects

20170523.._events.csv @
20170523...events.json @
23052017.1541291xt @
‘setup-settings json o

_images/session_history.png
Session History: 23052017.1563832

"

10
n

12
13
14
15
16
7
18
19
20

21

Type

event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
state_entry

state_entry

state_entry

state_entry

state_entry

state entry.

Name
Tup

Portiin
Portiout
Port2in
Port20ut
Portain
Port30ut
Portiin
Portiout
Port2in
Port20ut
Portain
Port30ut
Portiin
Portiout
GlobalTimerl_End
TimerTrig
PortiActivel
PortiActivel
PortiActivel
Port2Activel

Port2Activel

Channel 1d
88
a8
a9
50
51
52
53
a8
a9
50
51
52
53
a8
a9
69

start

0,0001
3,404
4,6997
1,6805

3.4514

End

0,0001
1,6805
34514
54822
1,9548

441

PC timestamp

2017-05-23 15:38:32.750759
2017-05-23 15:36:34.337437
2017-05-23 15:38:34.711813

2017-05-23 15:38:35.897727
2017-05-23 15:38:36.209355
2017-05-23 15:38:37.167616

2017-05-23 15:36:37.457466
2017-05-23 15:38:36.239203
2017-05-23 15:38:38.540030
2017-05-23 15:38:39.384421
2017-05-23 15:36:39.686982
2017-05-23 15:36:40.575766
2017-05-23 15:38:40.855924
2017-05-23 15:38:42.095029
2017-05-23 15:38:42.345171

2017-05-23 15:36:42.750479
2017-05-23 15:38:42.779671

2017-05-23 15:38:42.779692
2017-05-23 15:38:42.779700
2017-05-23 15:38:42.779707
2017-05-23 15:38:42.779714

2017-06-23 15:38:42.779723

_images/session_history_window_closeup.png
Session History: 23052017.1563832

"

10
n

12
13
14
15
16
7
18
19
20

21

Type

event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
state_entry

state_entry

state_entry

state_entry

state_entry

state entry.

Name
Tup

Portiin
Portiout
Port2in
Port20ut
Portain
Port30ut
Portiin
Portiout
Port2in
Port20ut
Portain
Port30ut
Portiin
Portiout
GlobalTimerl_End
TimerTrig
PortiActivel
PortiActivel
PortiActivel
Port2Activel

Port2Activel

Channel 1d
88
a8
a9
50
51
52
53
a8
a9
50
51
52
53
a8
a9
69

start

0,0001
3,404
4,6997
1,6805

3.4514

End

0,0001
1,6805
34514
54822
1,9548

441

PC timestamp

2017-05-23 15:38:32.750759
2017-05-23 15:36:34.337437
2017-05-23 15:38:34.711813

2017-05-23 15:38:35.897727
2017-05-23 15:38:36.209355
2017-05-23 15:38:37.167616

2017-05-23 15:36:37.457466
2017-05-23 15:38:36.239203
2017-05-23 15:38:38.540030
2017-05-23 15:38:39.384421
2017-05-23 15:36:39.686982
2017-05-23 15:36:40.575766
2017-05-23 15:38:40.855924
2017-05-23 15:38:42.095029
2017-05-23 15:38:42.345171

2017-05-23 15:36:42.750479
2017-05-23 15:38:42.779671

2017-05-23 15:38:42.779692
2017-05-23 15:38:42.779700
2017-05-23 15:38:42.779707
2017-05-23 15:38:42.779714

2017-06-23 15:38:42.779723

_images/experiments.png
Projects a®

~ M Test project
~ @ Experiments
S
~ [Setup Al
20171122-131..
[Setup B1
~ 4 Trial events experi...
[Setup A2
~ < Subjects
e Subject A
wa Subject B
~ % Bpod boards
= Board A
= Board B
~ @ Protocols
Bb global_timer_exam...
B light_chasing

Details

Exp. name Light chansing experiment

Protocol | light-chasing

[Run all |

_images/fc_logo.jpg

_images/module_session_treenode.png
1 pybpod-gui-plugin-session-history
pybpodgui_plugin_session_history
models
session

resources
& _init_py
& session_history.py
 settings.py

£ gitignore

LICENSE

MANIFEST.in

2, README.md

4 setup.py

_static/basic-usage/setups.png
Projects B®
Test project
~ @ Experiments

~ 4 Light chansing exp

Details

20171122-131... | Setup name (Setup AL

5 Setup B1 Box |Board A
~ 4 Trial events experi...
i Setup A2
~ & Subjects —
. Subject A | R
.o Subject B —
~ % Bpod boards Subisc \m‘—
= Board A Add subject | Subject B -
= Board B
+ @ Protocols Add subject
B global_timer_exam... Subjects

B light_chasing Subject A

Subject B

_images/session_node_history.png
v I test bpod
v (@3 Experiments
v . light_chasing_experiment
v - m236

23052017 153832

23052017.154129
24052017.132322

v U2 Brod Boxes

[bpod1

[bpod2
v 1@ Protocols

B add_trial_events

B light_chasing loop

Session name 23052017_153832

PyBpod GUI

_static/basic-usage/subjects.png
Projects

~ B Test project
~ @ Experiments
~ 4 Light chansing ex... || Details ®)

~ i Setup AL :
20171122-1.. | || Name [Subject A ‘

[Setup B1
~ 4 Trial events expe...
[Setup A2
~ < Subjects
-
wa Subject B
~ % Bpod boards
= Board A
= Board B
~ @ Protocols
B global_timer_exa..

nav.xhtml

 Table of Contents

 		
 Welcome to PyBpod’s documentation!

 		
 Installing and updating

 		
 User installation

 		
 Installation for developers

 		
 Execute PyBpod

 		
 Update PyBpod

 		
 Basic usage

 		
 Projects

 		
 Bpod boards

 		
 Subjects

 		
 Protocols

 		
 Experiments and experimental setups

 		
 Sessions

 		
 GUI User settings

 		
 Writing a protocol for Bpod

 		
 What is a Bpod protocol?

 		
 Protocol example explained

 		
 Plugins

 		
 Available Plugins

 		
 Community made plugins

 		
 How to install plugins

 		
 Examples of available plugins

 		
 Session history

 		
 Session timeline

 		
 GUI explained

 		
 Libraries that make up the GUI

 		
 Qt and PyQt

 		
 PyForms

 		
 PyformsGenericEditor

 		
 PyBpod API

 		
 Confapp

 		
 Pybranch

 		
 Logging-bootstrap

 		
 GUI Windows

 		
 Bpod interaction

 		
 Multiprocessing

 		
 Starting protocol on Bpod

 		
 Developing plugins

 		
 What is a PyBpod GUI plugin?

 		
 Session history plugin, an example

 		
 Quick review on sessions

 		
 Parsing board messages

 		
 Register plugin on the GUI

 		
 Connecting the plugin with a session node

 		
 Handling session history from the plugin

 		
 Contributing

 		
 Project Info

 		
 The SWP Team

 		
 Bpod project

 		
 License

 		
 Maintenance team

 		
 Questions?

 		
 Changelog

 		
 v1.8.0 (2019/11/09)

 		
 v1.7.8 (2019/06/03)

 		
 v1.7.7 (2019/06/03)

 		
 v1.7.6 (2019/06/03)

 		
 v1.7.5 (2019/05/15)

 		
 v1.7.4 (2019/05/08)

 		
 v1.7.3 (2019/05/08)

 		
 v1.7.2 (2019/05/03)

_static/basic-usage/session_timeline.png
] 2200 2300 2400 2600 2700 @2750300 2900

Portilit |

«| [T D

_static/basic-usage/sessions.png
Projects. =]
~ B Test project
~ @ Experiments
~ 4 Light chansing e...

il Setup B
~ 4 Trial events exp...
i Setup A2
~ & Subjects
e Subject A
e Subject B
~ 9% Bpod boards
= Board A

Session History: 20171122-143113

[-lEix]

v

Auto-scroll

| Channelld Start End PCtimestamp *

= Board B
~ @ Protocols

Details a®

Session [20171122-143113

Started on 017/11/22 14:39:36]
Endedon| |
Serial port [fdev/ttyACMO |
File path 0171122143113 csy]

Port3Lit

2759500

_images/board_console_sample.png
File window Options Help Tools
BNew [open Idsave

Projects ® Details
~ [Test project (User 01@local) *
(3 Experiments Setup name |Bpod2 with light chasing
- Light chasing experi...
Bpod2 with light b\n * | Board |Bpodv2 =

['EVENT’, '2019-05-09 15:43:32.104452', '5.731", ", '94,
32.104575','5.731',

‘Port1in]
‘Port3Active1’,"]

- Manual override ex. RANSITION', '2019-05-09 15:
» i untitled setup2 (1) || [T :

Protocol | light_ch:

» [untitled setup 24 ['EVENT’, '2019-05-09 15:43:32.423323', '6.0503', ", '95', ‘Port 10ut’]
» [untitled setup 3
» [Testing setup ['EVENT', '2019-05-09 15:43:34.200329', '7.827100000000001", ", '94', ‘Port1in’]
~ & Subjects Detach from GUI | Run
« Untitled subject 6 ['EVENT', '2019-05-09 15:43:34.499385', '8.126000000000001", ", ‘95", ‘Port10ut’]
~ ‘= test_mouse0
20190128-142657 ['EVENT', '2019-05-09 15:43:35.639248', '9.2661", ", '94', ‘Port1in’] BTest protocol 10
:g:zgzx:i:;i; ['EVENT', '2019-05-09 15:43:35. 95", ‘Port10ut]
- ['EVENT', 2019-05-09 15:43:36. ‘GlobalTimer1_End’]
Untitled subject 2 [END-TRIAL, '2019-05-09 15:43:36. 373527', ', .'T‘ne trial ended", "]
20190304-105408 [INFO', 2019-05-09 15:
20190322-135519 '10.000003999999999']

0.0001", TimerTrig’, '0.0001] Subjects | variables

20190327-145252

~ = test_mousel ','5.731, PortiActivet’, 5.7309]
20190121-145954 '4.2697 Add subject
20190222-133852 ['stdout’, '2019-05-09 15:43: s ,"Olrrenttrlallnfn.('Bpnd start timestamp': 0.355712,
0190403135752 “Trial start timestamp': 0.355712, 'Trial end timestamp': 10.355716, 'States timestamps': { TimerTrig': [-
0190424174055 [(0,0.0001)], Port1Active1": [(0.0001, 5.731)], 'Port3Active1": [(5.731, 10.0)]}, 'Events timestamps': 2
{GlobalTimer1_start': [0.0001], Tup": [0.0001], 'Port1In": [5.731, 7.827100000000001, 9.2661], test_mouse0
- 1 Bpod boards 'Port10ut': [6.0503, 8.126000000000001, 9.5786], 'GlobalTimer1_End': [10.0]}}", "] -
= Bpod v2 ['stdoul :36.374275/, “\n', "]
I Untitled box 1 36.374319',", ", 'SESSION-ENDED, '2019-05-09 15:43:36.374316']
~ ¢ Protocols

@ bnc_triggered_stat...
@ sound_camera

@ _iblrig_misc_flush_...
@ Untitled task 2

@ manual_override

@ light_chasing_loop
@ random_task

@ test_soundcard
Users

& User01

User 02 4

_images/setups.png
Projects B®
Test project
~ @ Experiments

~ 4 Light chansing exp

Details

20171122-131... | Setup name (Setup AL

5 Setup B1 Box |Board A
~ 4 Trial events experi...
i Setup A2
~ & Subjects —
. Subject A | R
.o Subject B —
~ % Bpod boards Subisc \m‘—
= Board A Add subject | Subject B -
= Board B
+ @ Protocols Add subject
B global_timer_exam... Subjects

B light_chasing Subject A

Subject B

_static/bpod_interaction/bpod2.png
Details.

Subject name m603

Box | bpod2

Run

_images/board_sample.png
Details ®

Box name [Bpod v2

Serial port | /dev/ttyACMO ~][e]
Net port |36000 B
[Cconsole |
[Load board info

Events | Inputch. | Outputch. | Ports
Enabled or disable ports

Wired

Behavior

] port2
Port3
(] port4

_images/subjects.png
Projects

~ B Test project
~ @ Experiments
~ 4 Light chansing ex... || Details ®)

~ i Setup AL :
20171122-1.. | || Name [Subject A ‘

[Setup B1
~ 4 Trial events expe...
[Setup A2
~ < Subjects
-
wa Subject B
~ % Bpod boards
= Board A
= Board B
~ @ Protocols
B global_timer_exa..

_images/session_timeline.png
] 2200 2300 2400 2600 2700 @2750300 2900

Portilit |

«| [T D

_static/basic-usage/user_settings.png
& Python File Window [{¢]

@ Edit user settings

v L3 Experiments
¥ light_chasing experiment
v - m236
23052017.153832
2405201713311
24052017.133123
¥ s trial_events_experiment
v i rodentt
23052017.154129
24052017.132322
v 3% Bpod Boxes
[bpod
[bpod2
v @ Protocols
B add_trial_events
B light_chasing loop

Project name [test_bpod

Project path ntrol-examples/test_bpod

Font size

Il save |

import. logging
FFF#EPFFFF## PYFORMS GENERIC EDITOR SETTINGS FHHHHHFFHF
(GENERIC_EDITOR WINDOW_GEOETRY = 100, 100, 1200, 800

(GENERIC_EDITOR TITLE = "Pydpod GUI"

APP_LOG_HANDLER_CONSOLE_LEVEL = logging DEBUG
PYFORMS_LOG_HANDLER_CONSOLE_LEVEL = logging DEBUG.

‘PYFORMS_MAINWINDOW MARGIN = 0
‘PYFORMS_STYLESHEET = '
‘PYFORMS_STYLESHEET DARWIN = '
‘PYFORMS_SILENT_PLUGINS FINDER = True

‘PYFORMS_MATPLOTLIS ENABLED = True
‘PYFORMS_WEB_ENABLED = True
‘PYFORMS_GL_ENABLED = False
‘PYFORMS_VISVIS_ENASLED = False

(GENERIC_EDITOR_PLUGINS_PATH = None
(GENERIC_EDITOR_PLUGINS_LIST = [

“pybpodgui plugin’,
pybpodgui_plugin_tireline’,
pybpodgui_plugin_session_history’,
“bge_welcone_plugin’,

1

WELCOME_PLUGIN_URL = 'http://pybpod.readthedocs. io’

FEFFFFFFFFRE BEODGUI PLUGIN SETTINGS ###HHHHHHHE
DEFAULT_PROJECT_PATH = '/Users/carlos/Dropbox/2rojects/chanpal imaud-projects/pycontrol /pycontrol-exanples/test_bpod

'BPODGUI_LOG_HANDLER_CONSOLE_LEVEL = logging.DEBUG
'BPODAPI_LOG_HANDLER_CONSOLE_LEVEL = logging.DEBUG

'BOARD_LOG_WINDOW_REFRESH RATE = 0.2 #5
RSSTONTOG PLIGTN REFRESH RATE = 0.2 #

_images/sessions.png
Projects. =]
~ B Test project
~ @ Experiments
~ 4 Light chansing e...

il Setup B
~ 4 Trial events exp...
i Setup A2
~ & Subjects
e Subject A
e Subject B
~ 9% Bpod boards
= Board A

Session History: 20171122-143113

[-lEix]

v

Auto-scroll

| Channelld Start End PCtimestamp *

= Board B
~ @ Protocols

Details a®

Session [20171122-143113

Started on 017/11/22 14:39:36]
Endedon| |
Serial port [fdev/ttyACMO |
File path 0171122143113 csy]

Port3Lit

2759500

_static/basic-usage/user_settings_plugins.png
eoe User settings editor.

Fontsize 12

ld save

12 GENERIC_EDITOR TITLE = "By2pod GUI
13

14 # APP_LOG_HANDLER_CONSOLE_LEVEL = logging DEBUG

15 # PYFORMS_LOG_HANDLER_CONSOLE_LEVEL = logging DEBUG
16

17 PYFORMS MAINWINDOW MARGIN = 0

18 PYFORMS STYLESHEET = '’

19 PYFORMS_STYLESHEET DARWIN = '

20 PYFORMS_SILENT PLUGINS_FINDER = True

2

22 PYFORMS_MATPLOTLIB ENABLED = True

23 PYFORMS_WEB_ENABLED = True

24 PYrORMS_GL ENABLED = False

25 PYrORMS_VISVIS_ENABLED = False

26

27 GENERIC_EDITOR PLUGINS_PATH = Nome

28 GENERIC_EDITOR PLUGINS LIST = [

29 ‘pybpodgui_plugin’,

30 ‘pybpodgui_plugin_timeline’,

1 ‘pybpodgui_plugin_session history’,

32 ‘bye_welcome_plugin’,

3

34

35 WELCOME_PLUGIN_URL = 'http://pybpod.readthedocs. io
36

3

38 FEFFRRRRREFF BPODGUL PLUGLN SETTINGS HHFFHHFFFFEF
39

40 DEFAULT_PROJECT_PATH = ' /Users/carlos/Dropbox/Projects/champalimaud-projects/pycontrol /pycontrol-examples/test b
a1

42 BPODGUI_LOG_HANDLER_CONSOLE_LEVEL = logging.DEBUG

43 BPODAPI_LOG_HANDLER CONSOLE_LEVEL = logging.DEBUG

a

45 BOARD_LOG_WINDOW_REFRESH_RATE = 0.2 #5

46 SESSIONLOG_PLUGIN_REFRESH_RATE = 0.2 #5

a

_static/board_console_sample.png
File window Options Help Tools
BNew [open Idsave

Projects ® Details
~ [Test project (User 01@local) *
(3 Experiments Setup name |Bpod2 with light chasing
- Light chasing experi...
Bpod2 with light b\n * | Board |Bpodv2 =

['EVENT’, '2019-05-09 15:43:32.104452', '5.731", ", '94,
32.104575','5.731',

‘Port1in]
‘Port3Active1’,"]

- Manual override ex. RANSITION', '2019-05-09 15:
» i untitled setup2 (1) || [T :

Protocol | light_ch:

» [untitled setup 24 ['EVENT’, '2019-05-09 15:43:32.423323', '6.0503', ", '95', ‘Port 10ut’]
» [untitled setup 3
» [Testing setup ['EVENT', '2019-05-09 15:43:34.200329', '7.827100000000001", ", '94', ‘Port1in’]
~ & Subjects Detach from GUI | Run
« Untitled subject 6 ['EVENT', '2019-05-09 15:43:34.499385', '8.126000000000001", ", ‘95", ‘Port10ut’]
~ ‘= test_mouse0
20190128-142657 ['EVENT', '2019-05-09 15:43:35.639248', '9.2661", ", '94', ‘Port1in’] BTest protocol 10
:g:zgzx:i:;i; ['EVENT', '2019-05-09 15:43:35. 95", ‘Port10ut]
- ['EVENT', 2019-05-09 15:43:36. ‘GlobalTimer1_End’]
Untitled subject 2 [END-TRIAL, '2019-05-09 15:43:36. 373527', ', .'T‘ne trial ended", "]
20190304-105408 [INFO', 2019-05-09 15:
20190322-135519 '10.000003999999999']

0.0001", TimerTrig’, '0.0001] Subjects | variables

20190327-145252

~ = test_mousel ','5.731, PortiActivet’, 5.7309]
20190121-145954 '4.2697 Add subject
20190222-133852 ['stdout’, '2019-05-09 15:43: s ,"Olrrenttrlallnfn.('Bpnd start timestamp': 0.355712,
0190403135752 “Trial start timestamp': 0.355712, 'Trial end timestamp': 10.355716, 'States timestamps': { TimerTrig': [-
0190424174055 [(0,0.0001)], Port1Active1": [(0.0001, 5.731)], 'Port3Active1": [(5.731, 10.0)]}, 'Events timestamps': 2
{GlobalTimer1_start': [0.0001], Tup": [0.0001], 'Port1In": [5.731, 7.827100000000001, 9.2661], test_mouse0
- 1 Bpod boards 'Port10ut': [6.0503, 8.126000000000001, 9.5786], 'GlobalTimer1_End': [10.0]}}", "] -
= Bpod v2 ['stdoul :36.374275/, “\n', "]
I Untitled box 1 36.374319',", ", 'SESSION-ENDED, '2019-05-09 15:43:36.374316']
~ ¢ Protocols

@ bnc_triggered_stat...
@ sound_camera

@ _iblrig_misc_flush_...
@ Untitled task 2

@ manual_override

@ light_chasing_loop
@ random_task

@ test_soundcard
Users

& User01

User 02 4

_images/user_settings.png
& Python File Window [{¢]

@ Edit user settings

v L3 Experiments
¥ light_chasing experiment
v - m236
23052017.153832
2405201713311
24052017.133123
¥ s trial_events_experiment
v i rodentt
23052017.154129
24052017.132322
v 3% Bpod Boxes
[bpod
[bpod2
v @ Protocols
B add_trial_events
B light_chasing loop

Project name [test_bpod

Project path ntrol-examples/test_bpod

Font size

Il save |

import. logging
FFF#EPFFFF## PYFORMS GENERIC EDITOR SETTINGS FHHHHHFFHF
(GENERIC_EDITOR WINDOW_GEOETRY = 100, 100, 1200, 800

(GENERIC_EDITOR TITLE = "Pydpod GUI"

APP_LOG_HANDLER_CONSOLE_LEVEL = logging DEBUG
PYFORMS_LOG_HANDLER_CONSOLE_LEVEL = logging DEBUG.

‘PYFORMS_MAINWINDOW MARGIN = 0
‘PYFORMS_STYLESHEET = '
‘PYFORMS_STYLESHEET DARWIN = '
‘PYFORMS_SILENT_PLUGINS FINDER = True

‘PYFORMS_MATPLOTLIS ENABLED = True
‘PYFORMS_WEB_ENABLED = True
‘PYFORMS_GL_ENABLED = False
‘PYFORMS_VISVIS_ENASLED = False

(GENERIC_EDITOR_PLUGINS_PATH = None
(GENERIC_EDITOR_PLUGINS_LIST = [

“pybpodgui plugin’,
pybpodgui_plugin_tireline’,
pybpodgui_plugin_session_history’,
“bge_welcone_plugin’,

1

WELCOME_PLUGIN_URL = 'http://pybpod.readthedocs. io’

FEFFFFFFFFRE BEODGUI PLUGIN SETTINGS ###HHHHHHHE
DEFAULT_PROJECT_PATH = '/Users/carlos/Dropbox/2rojects/chanpal imaud-projects/pycontrol /pycontrol-exanples/test_bpod

'BPODGUI_LOG_HANDLER_CONSOLE_LEVEL = logging.DEBUG
'BPODAPI_LOG_HANDLER_CONSOLE_LEVEL = logging.DEBUG

'BOARD_LOG_WINDOW_REFRESH RATE = 0.2 #5
RSSTONTOG PLIGTN REFRESH RATE = 0.2 #

_images/user_settings_plugins.png
eoe User settings editor.

Fontsize 12

ld save

12 GENERIC_EDITOR TITLE = "By2pod GUI
13

14 # APP_LOG_HANDLER_CONSOLE_LEVEL = logging DEBUG

15 # PYFORMS_LOG_HANDLER_CONSOLE_LEVEL = logging DEBUG
16

17 PYFORMS MAINWINDOW MARGIN = 0

18 PYFORMS STYLESHEET = '’

19 PYFORMS_STYLESHEET DARWIN = '

20 PYFORMS_SILENT PLUGINS_FINDER = True

2

22 PYFORMS_MATPLOTLIB ENABLED = True

23 PYFORMS_WEB_ENABLED = True

24 PYrORMS_GL ENABLED = False

25 PYrORMS_VISVIS_ENABLED = False

26

27 GENERIC_EDITOR PLUGINS_PATH = Nome

28 GENERIC_EDITOR PLUGINS LIST = [

29 ‘pybpodgui_plugin’,

30 ‘pybpodgui_plugin_timeline’,

1 ‘pybpodgui_plugin_session history’,

32 ‘bye_welcome_plugin’,

3

34

35 WELCOME_PLUGIN_URL = 'http://pybpod.readthedocs. io
36

3

38 FEFFRRRRREFF BPODGUL PLUGLN SETTINGS HHFFHHFFFFEF
39

40 DEFAULT_PROJECT_PATH = ' /Users/carlos/Dropbox/Projects/champalimaud-projects/pycontrol /pycontrol-examples/test b
a1

42 BPODGUI_LOG_HANDLER_CONSOLE_LEVEL = logging.DEBUG

43 BPODAPI_LOG_HANDLER CONSOLE_LEVEL = logging.DEBUG

a

45 BOARD_LOG_WINDOW_REFRESH_RATE = 0.2 #5

46 SESSIONLOG_PLUGIN_REFRESH_RATE = 0.2 #5

a

_static/board_sample.png
Details ®

Box name [Bpod v2

Serial port | /dev/ttyACMO ~][e]
Net port |36000 B
[Cconsole |
[Load board info

Events | Inputch. | Outputch. | Ports
Enabled or disable ports

Wired

Behavior

] port2
Port3
(] port4

_static/basic-usage/session_history.png
Session History: 23052017.1563832

"

10
n

12
13
14
15
16
7
18
19
20

21

Type

event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
state_entry

state_entry

state_entry

state_entry

state_entry

state entry.

Name
Tup

Portiin
Portiout
Port2in
Port20ut
Portain
Port30ut
Portiin
Portiout
Port2in
Port20ut
Portain
Port30ut
Portiin
Portiout
GlobalTimerl_End
TimerTrig
PortiActivel
PortiActivel
PortiActivel
Port2Activel

Port2Activel

Channel 1d
88
a8
a9
50
51
52
53
a8
a9
50
51
52
53
a8
a9
69

start

0,0001
3,404
4,6997
1,6805

3.4514

End

0,0001
1,6805
34514
54822
1,9548

441

PC timestamp

2017-05-23 15:38:32.750759
2017-05-23 15:36:34.337437
2017-05-23 15:38:34.711813

2017-05-23 15:38:35.897727
2017-05-23 15:38:36.209355
2017-05-23 15:38:37.167616

2017-05-23 15:36:37.457466
2017-05-23 15:38:36.239203
2017-05-23 15:38:38.540030
2017-05-23 15:38:39.384421
2017-05-23 15:36:39.686982
2017-05-23 15:36:40.575766
2017-05-23 15:38:40.855924
2017-05-23 15:38:42.095029
2017-05-23 15:38:42.345171

2017-05-23 15:36:42.750479
2017-05-23 15:38:42.779671

2017-05-23 15:38:42.779692
2017-05-23 15:38:42.779700
2017-05-23 15:38:42.779707
2017-05-23 15:38:42.779714

2017-06-23 15:38:42.779723

_static/bpod_gui_sample.png
v [simple_project_bpod
v (3 Experiments
v o myexp2
v - m236
28032017_180108
31032017_180306
- my_exp3
v 903 Bpod Boxes
i bpodt
1 bpoc2
v [Protocols
B add_trial_events

Bb one_state

: 31032017_180306

Taskname light_chasing_loop

task editor

Fontsize | 12 [J L Save

Vusr/bin/python
-*- coding: utf-8 *-

Light Chasing Loop example

Follow Light on 3 pokes and repeat states until a timeout occurs.

connect noseports to ports 1-3.

£rom pybpodapi.model.bpod import Bpod

£rom pybpodapi.model.state_machine import StateMachine

my_bpod = BPOD_INSTANCE

sma = Statemachine (y_bpod.hardvare)

Set global timer 1 for 3 seconds

sma.set_global_timer_legacy(timer IDsl, timer durations30)

sma.add_state(

state_names'Timerrrig',

Trigger global timer

: 31032017_180306

state_change | Port20ut: 11.0109
change | Port2Out: 14.0362
state_change | Port20ut: 16,0128
state_change | Port20ut: 17.7889

state_change | Port2ln: 10.7466
state_change | Port2ln: 137505
state_change | Port2ln: 157754
state_change | Port2ln: 17,5595
state_change | Port2Out 76613
sate

state_change | Port3In: 8.7655
state_change | Port3In: 12.0896.
state_change | Port3In: 14.3967
state_change | Port3in: 16.3191
state_change | Port3In: 18,0907
state_change | Port30ut: 8.9682
state_change | Port30ut: 12.293
state_change | Port30ut: 14.6109
state_change | Port30ut: 16.4975.

state_change | Port30ut: 18,222

| Stats_change | GigoaTimer(End: 30,0

48 1 prnt staterment | Raw evens: {Siates’
1231201,

ss§§5§§z§§§§§§§§§2§§

10.124, 10,7466, 11.0109, 12.0896, 12.583,
13.1478, 13,3496, 13.7505, 14.0362,
14.3967, 146109, 15.1749, 153126,
15.7754, 16,0128, 163191, 16.4975,
160481, 17,1155, 17,5505, 17.7080.
18.0807, 18,222, 30.0], Evens': [88, 48, 49,
50,51, 52, 53, 48, 49, 50, 51, 52, 53, 48, 43,
50, 51, 52, 53, 48, 49, 50, 51, 52, 53, 48, 49,
50, 51, 52, 53, 69], StateTimestamps" 0,

_static/bpod_no_background.png

_static/file.png

_static/minus.png

_static/fc_logo.jpg

_static/project_structure.png
File window Options Help Tools
BNew [open Idsave
Projects [

__Testoroect D
43 Experiments
~ i Light chasing experiment
Bpod2 with light chasi.
~ & Manual override experim.
» [Untitled setup 2 (1)
Untitled setup 24
» [untitled setup 3
Testing setup
~ & subjects
Untitled subject 6
~ . test_mouse0
20190128-142657
‘@ Untitled subject 2
20190304-105408
20190322-135519
20190327-145252
~ = test_mouse1
20190121-145954
20190222-133852
20190403-135752
20190424-174055
~ Y& Bpod boards
= Bpod v2
I Untitled box 1
~ ¢ Protocols
@ global_timer_example
@ bnc_triggered_state_cha...
@ sound_camera
@ _iblrig_misc_flush_water
@ Untitled task 2
@ manual_override
@ light_ (haslng loop
@ random

@ testismmdcard

_static/pybpod_main_window.png
File window Options Help Tools
BNew [open [dsave

Projects ® [jm

Bpodv2 log

[SEE]

ntitled project 1 (luis@local)
- @3 Experiments
- & Untitled experiment 2

Auto-scroll | Clear

Trial Timeline: 20190506-175642

[untitled setup 0
Untitled experiment 0
» [Untitled setup 2 (1)
» [untitled setup 24
» [untitled setup 3
» [l Testing setup
Untitled experiment 1
~ < subjects
« Untitled subject 6
- = test_mouse0
20190128-142657
= Untitled subject 2
20190304-105408
20190322-135519
20190327-145252
- = test_mouse1
20190121-145954
20190222-133852
20190403-135752
20190424-174055

20190424-174620

[INFO, 2019-05-06 17:
'10.000004]

['STATE', 2019-05-06 17:56:53.086703', 0, '0.0001", ‘TimerTrig’, '0.0001']

['STATE', 2019-05-06 17:56:53.086751',0.0001", '5.0296", 'Port1ActiveT’,
'5.0295000000000005°]

['STATE', 2019-05-06 17:56:53.086782', '7.3283000000000005', '9.6041", "Port1ActiveT’,
'2.2758000000000003]

['STATE', 2019-05-06 17:56:53.086809",
'2.29871]

['STATE', 2019-05-06 17:56:53.086834', '9.6041", '10.0', "Port3ActiveT’,
'0.39589999999999925']

['stdout’, '2019-05-06 17:56:53.087302", ", ", "Current trial info: {'Bpod start timestamp':
0.347012, 'Trial start timestamp': 0.347012, "Trial end timestamp': 10.347016, 'States
timestamps': { TimerTrig’: [(0, 0.0001)], 'Port1Active1":[(0.0001, 5.0296),
(7.3283000000000005, 9.6041)], "Port3Active1': [(5.0296, 7.3283000000000005),
(9.6041, 10.0)]}, 'Events timestamps’: {'GlobalTimer1_Start': [0.0001], ‘Tup': [0.0001],
"Port1In': [5.0296, 9.6041], "Port 10Ut [5.067, 9.8597], "Port3In’; [7.3283000000000005],
*Port30ut’: [7.6092], ‘GlobalTimer1_End: [10.0]}}", "]

['stdout’, '2019-05-06 17:56:53.087344", ", ", \n', "]

['INFO’, 2019-05-06 17:56:53.087390", ", ", 'SESSION-ENDED', '2019-05-06
17:56:53.087387]

53.086611','0.347012', '10.347016', 'TRIAL-BPOD-TIME',

'5.0296', '7.3283000000000005', "Port3Active1’,

TimerTrig
Port1Activel
Port3Activel

20190424-174644
20190429-112400
20190506-175321
20190506-175350
20190506-175502
20190506-175607

light_chasing_loop task editor

~ & Bpod boards
™ Bpod v2
I Untitled box 1

~ & Protocols
@ global_timer_example
@ bnc_triggered_state,
@ sound_camera
@ _iblrig_misc_flush_wa.
@ Untitled task 2

@ manual_override v

@ light_chasing_loop
@ Albert example

@ random_task bl

@ test_soundcard

Font size| 12

22 state_name= TinerTrig', # Trigger global timer
23 state_timer:

27 # Infinite loop (with next state). Only a global timer can save us.
28 sma.add_state(

24 state_change_conditions={Bpod.Events.Tup: 'Portlactivel'},
25 output_actions=[(Bpod.OutputChannels.GlobalTimerTrig, 1))
26

“Port3Activel’, Bpod.Events.G.

Users

Untitled user 3 (2)
luis

Untitled user 2 (1)
Untitled user 3 (1)
& Untitled user 3

29 state_name='portlactivel’,
30 state_timer=o,

31 state_change_conditions={Bpod.Events.PortiIn:

32 output_actions=[(Bpod.OutputChannels.PWM1, 255)])

33

34 sma.add_state(

35 state_name='port3activel’,

36 state_timer=o,

37 state_change_conditions={Bpod.Events.Port3I

38 output_actions=[(Bpod.OutputChannels.PWM3, 255)])

39

49 my_bpod.send_state_machine(sma)

a1

42 my_bpod.run_state_machine(sma)

a3

44 print(*current trial info: {o}*.format(my_bpod.session.current_trial))
a5

my_bpod. close()

“PortlActivel’, Bpod.Events.G.

3 4 5
Time (sec)

w”

Details

Session [20190506-175642

started on [2019/05/01

_static/new_project_menu.png
Window Options Help Tools

£ Open a project

i save current project
i save current project as
i save all projects

4 Exit

_static/plus.png

_static/bpod_interaction/setup_window_detail.png
Details.

Subject name m236

Box | bpod1

Run

_static/bpod_interaction/several_boxes.png
v light chasing_experim.
‘= m236
23052017.153832
24052017_133111
24052017_133123
= mB03
> trial_events_experiment
v 3 Bod Boxes
i bpod?
5 bpod2
v B Protocols

B add_t

i
Box | bpod1

_static/running_bpod_script.png
Running pybpod-api version: 8.3

Bpod version: 0.7.5
Firmaare version: 9

Available examples:
1. Print Bpod info

2. Add trial events

3. Test manual override
4. Test serial messages
8. Close program

Select option: 2
Running add trial events
27/01/2017 05:47:22 | INFO | pybpodapi.model.bpod | start | Bpod successfully started!
27/01/2017 05:47:22 | INFO | examples | run | Tria

27/01/2017 05:47:22 | INFO | examples | run | Tria

_static/pybpodapi-logo.png
fpen source animal behavior measurement & control

Image retrieved from: hitps://sanworks.io/shop/productsfimages/1001_2.jpg

_static/advanced/pge_overview.png
[Open a project

I Save current project
I Save current project as
d Save all projects.

_static/advanced/pge_overview_annotated.png
Project tree: nodes
that make up this
project in a tree-like
view

Details: select a
node in the project
tree and get more

detailed information
here

_static/advanced/module_session_history.png
1 pybpod-gui-plugin-session-history
pybpodgui_plugin_session_history
models
session
&
& session_treenode.py
init_.py

resources
py

init
session,
 settings.py
gitignore
LICENSE
£ MANIFEST.in
i README.md
3 setup.py

_static/advanced/module_session_treenode.png
1 pybpod-gui-plugin-session-history
pybpodgui_plugin_session_history
models
session

resources
& _init_py
& session_history.py
 settings.py

£ gitignore

LICENSE

MANIFEST.in

2, README.md

4 setup.py

_static/basic-usage/add_box.png
t_bpod
Experiments
¥ a light chasing experiment
v e m236
23052017.153832
v i trial events_experiment
v e rodent!
23052017.154129
24052017_132322

¥ B Protocols
B add_trial_events
B light_chasing loop

_static/advanced/session_history_window_closeup.png
Session History: 23052017.1563832

"

10
n

12
13
14
15
16
7
18
19
20

21

Type

event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
event occurrence
state_entry

state_entry

state_entry

state_entry

state_entry

state entry.

Name
Tup

Portiin
Portiout
Port2in
Port20ut
Portain
Port30ut
Portiin
Portiout
Port2in
Port20ut
Portain
Port30ut
Portiin
Portiout
GlobalTimerl_End
TimerTrig
PortiActivel
PortiActivel
PortiActivel
Port2Activel

Port2Activel

Channel 1d
88
a8
a9
50
51
52
53
a8
a9
50
51
52
53
a8
a9
69

start

0,0001
3,404
4,6997
1,6805

3.4514

End

0,0001
1,6805
34514
54822
1,9548

441

PC timestamp

2017-05-23 15:38:32.750759
2017-05-23 15:36:34.337437
2017-05-23 15:38:34.711813

2017-05-23 15:38:35.897727
2017-05-23 15:38:36.209355
2017-05-23 15:38:37.167616

2017-05-23 15:36:37.457466
2017-05-23 15:38:36.239203
2017-05-23 15:38:38.540030
2017-05-23 15:38:39.384421
2017-05-23 15:36:39.686982
2017-05-23 15:36:40.575766
2017-05-23 15:38:40.855924
2017-05-23 15:38:42.095029
2017-05-23 15:38:42.345171

2017-05-23 15:36:42.750479
2017-05-23 15:38:42.779671

2017-05-23 15:38:42.779692
2017-05-23 15:38:42.779700
2017-05-23 15:38:42.779707
2017-05-23 15:38:42.779714

2017-06-23 15:38:42.779723

_static/advanced/session_node_history.png
v I test bpod
v (@3 Experiments
v . light_chasing_experiment
v - m236

23052017 153832

23052017.154129
24052017.132322

v U2 Brod Boxes

[bpod1

[bpod2
v 1@ Protocols

B add_trial_events

B light_chasing loop

Session name 23052017_153832

PyBpod GUI

