
pyActLearn Documentation
Release 0.2.0.dev0

Tinghui Wang

May 20, 2017

Contents

1 Components 3
1.1 pyActLearn.CASAS . 3
1.2 pyActLearn.learning . 3
1.3 pyActLearn.performance . 3

2 Roadmap 5
2.1 Installation . 6
2.2 pyActLearn.CASAS . 7
2.3 pyActLearn.learning . 22
2.4 pyActLearn.performance . 22
2.5 Reference . 25

3 Indices and tables 27

Bibliography 29

Python Module Index 31

i

ii

pyActLearn Documentation, Release 0.2.0.dev0

pyActLearn is an activity recognition platform designed to recognize ADL (Activities of Daily Living) in smart homes
equipped with less intrusive passive monitoring sensors, such as motion detectors, door sensors, thermometers, light
switches, etc.

Contents 1

pyActLearn Documentation, Release 0.2.0.dev0

2 Contents

CHAPTER 1

Components

pyActLearn.CASAS

pyActLearn.CASAS contains classes and functions that load and pre-process smart home sensor event data. The pre-
processed data are stored in an hdf5 data format with smart home information stored as attributes of the dataset. The
processed data are splitted into weeks and days. Class pyActLearn.CASAS.hdf5.CASASHDF5 can load the
hdf5 dataset and use as a feeder for activity recognition learning algorithm.

pyActLearn.learning

pyActLearn.learning contains classes and functions that implement supervised and unsupervised learning algorithms
for activity recognition. Some of the classes refers to models provided by other python packages such as hmmlearn
(for multinomial hidden markov models) and sklearn (for support vector machine, decision tree, and random forest).

pyActLearn.performance

pyActLearn.performance contains classes and functions that implement multiple performance metrics for activity
recognition, including confusion matrix, multi-class classification metrics, event-based scoring, and activity timeli-
ness.

3

pyActLearn Documentation, Release 0.2.0.dev0

4 Chapter 1. Components

CHAPTER 2

Roadmap

• Data Loading

– [X] Load event list from legacy raw text files

– [X] Load event list from csv event files

– [X] Load sensor information from JSON meta-data file

– [X] Divide event list by days or weeks

• Pre-processing

– [X] Statistical feature extraction using sliding window approach

– [X] Raw interpretation

• Algorithm implementations

– Supervised Learning

* [X] Decision Tree

* [X] HMM

* [X] SVM

* [X] Multi-layer Perceptron

* [X] Stacked De-noising Auto-encoder with fine tuning

* [X] Recurrent Neural Network with LSTM Cell

* [] Recurrent Neural Network with GRU

– Un-supervised Learning

* [X] Stacked De-noising Auto-encoder

* [X] k-skip-2-gram with Negative Sampling (word2vec)

– Transfer Learning

• Evaluation

5

pyActLearn Documentation, Release 0.2.0.dev0

– [] n-Fold Cross-validation

– [X] Traditional Multi-class Classification Metrics

– [X] Event-based Continuous Evaluation Metrics

– [X] Event-based Activity Diagram

• Annotation

– [X] Back annotate dataset with predicted results

– [X] Back annotate with probability

• Visualization

– [X] Sensor distance on floor plan

Installation

Install using pip

You can install pyActLearn package using Python package manager pip. The package source codes are avaialble on
github.

$ pip3 install git+git://github.com/TinghuiWang/pyActLearn.git \
-r https://raw.githubusercontent.com/TinghuiWang/pyActLearn/master/requirements.txt

Note: At the moment, pyActLearn package only supports Python 3. In most Linux distributions, the Python 3 package
manager is named as pip3.

You can also add --user switch to the command to install the package in your home folder, and --upgrade switch
to pull the latest version from github.

Warning: pip may try to install or update packages such as Numpy, Scipy and Theano if they are not present or
outdated. If you want to use your system package manager such as apt or yum, you can add --no-deps switch
and install all the requirements manually.

Install in Develop Mode

To install the package in developer mode, first fork your own copy of pyActLearn on github. Then, you can clone and
edit your repository and install with setup.py script using the following command (replace user with your own
github user name).

$ git clone https://github.com/USER/pyActLearn.git
$ python3 setup.py develop

6 Chapter 2. Roadmap

pyActLearn Documentation, Release 0.2.0.dev0

pyActLearn.CASAS

CASAS.data

CASAS.data implements pyActLearn.CASAS.data.CASASData.

Sensor Event File Format

pyActLearn.CASAS.data.CASASData can load the smart home raw sensor event logs in raw text (legacy)
format, and comma separated (.csv) files.

Legacy format

Here is a snip of sensor event logs of a smart home in raw text format:

2009-06-01 17:51:20.055202 M046 ON
2009-06-01 17:51:22.036689 M046 OFF
2009-06-01 17:51:28.053264 M046 ON
2009-06-01 17:51:30.072223 M046 OFF
2009-06-01 17:51:35.046958 M045 OFF
2009-06-01 17:51:41.096098 M045 ON
2009-06-01 17:51:44.096236 M046 ON
2009-06-01 17:51:45.053722 M045 OFF
2009-06-01 17:51:46.015612 M045 ON
2009-06-01 17:51:47.005712 M046 OFF
2009-06-01 17:51:48.004619 M046 ON
2009-06-01 17:51:49.076356 M046 OFF
2009-06-01 17:51:50.035392 M046 ON

The following is an example to load the sensor event logs in legacy text format into class pyActLearn.CASAS.
data.CASASData.

from pyActLearn.CASAS.data import CASASData
data = CASASData(path='twor.summer.2009/annotate')

CSV format

Some of the smart home data set are updated to CSV format. Those datasets usually come with meta-data about the
smart home including floorplan, sensor location, activities annotated, and other information.

The binary sensor events are logged inside file event.csv. Here is a snip of it:

2/1/2009,8:00:38 AM,M048,OFF,,,
2/1/2009,8:00:38 AM,M049,OFF,,,
2/1/2009,8:00:39 AM,M028,ON,,,
2/1/2009,8:00:39 AM,M042,ON,,,
2/1/2009,8:00:40 AM,M029,ON,,,
2/1/2009,8:00:40 AM,M042,OFF,,,
2/1/2009,8:00:40 AM,L003,OFF,,,
2/1/2009,8:00:42 AM,M043,OFF,,,
2/1/2009,8:00:42 AM,M037,ON,,,
2/1/2009,8:00:42 AM,M050,OFF,,,
2/1/2009,8:00:42 AM,M044,OFF,,,

2.2. pyActLearn.CASAS 7

pyActLearn Documentation, Release 0.2.0.dev0

2/1/2009,8:00:42 AM,M028,OFF,,,
2/1/2009,8:00:43 AM,M029,OFF,,,

The metadata about the smart home is in a json file format. Here is a snip of the metadata for twor dataset:

{
"name": "TWOR_2009_test",
"floorplan": "TWOR_2009.png",
"sensors": [

{
"name": "M004",
"type": "Motion",
"locX": 0.5605087077755726,
"locY": 0.061440840882448416,
"sizeX": 0.0222007722007722,
"sizeY": 0.018656716417910446,
"description": ""

},
],
"activities": [

{
"name": "Meal Preparation",
"color": "#FF8A2BE2",
"is_noise": false,
"is_ignored": false

},
]}

To load such a dataset, provide the directory path to the constructor of pyActLearn.CASAS.data.CASASData.

from pyActLearn.CASAS.data import CASASData
data = CASASData(path='twor.summer.2009/')

Note: The constructor of pyActLearn.CASAS.data.CASASData differentiates the format of sensor log by
determining whether the path is a directory or file. If it is a file, it assumes that it is in legacy raw text format. If it is
a directory, the constructor looks for event.csv file within the directory for binary sensor events, and dataset.
json for mete-data about the smart home.

Event Pre-processing

Raw sensor event data may need to be pre-processed before the learning algorithm can consume them. For algorithms
like Hidden Markov Model, only raw sensor series are needed. For algorithms like decision tree, random forest, multi-
layer perceptron, etc., statistic features within a sliding window of fixed length or variable length are calculated. For
data used in stacked auto-encoder, the input needs to be normalized between 0 to 1.

pyActLearn.CASAS.data.CASASData.populate_feature() function handles the pre-processing of all
binary sensor events. The statistical features implemented in this function includes

• Window Duration

• Last Sensor

• Hour of the Event

• Seconds of the Event

8 Chapter 2. Roadmap

pyActLearn Documentation, Release 0.2.0.dev0

• Sensor Count

• Sensor Elapse Time

• Dominant Sensor

Methods to enable and disable specific features or activities are provided as well. Please refer to pyActLearn.
CASAS.data.CASASData API reference for more information.

Export Data

After the data are pre-processed, the features and labels can be exported to excel file (.xlsx) via function
pyActLearn.CASAS.data.CASASData.write_to_xlsx().

pyActLearn.CASAS.data.CASASData.export_hdf5() will save the pre-processed features and target la-
bels in hdf5 format. The meta-data is saved as attributes of the root node of hdf5 dataset. The hdf5 file can be viewed
using hdfviewer.

Here is an example loading raw sensor events and save to hdf5 dataset file.

from pyActLearn.CASAS.data import CASASData
data = CASASData(path='datasets/twor.2009/')
data.populate_feature(method='stat', normalized=True, per_sensor=True)
data..export_hdf5(filename='hdf5/twor_2009_stat.hdf5', comments='')

API Reference

class pyActLearn.CASAS.data.CASASData(path)
Bases: object

A class to load activity data from CASAS smart home datasets.

The class load raw activity sensor events from CASAS smart home datasets. The class provides methods to pre-
process the data for future learning algorithms for activity recognition. The pre-processed data can be exported
to xlsx files for verification, and hdf5 file for faster read and search when evaluating a activity recognition
algorithm.

Parameters path (str) – path to a dataset directory, the dataset event.rst file for dataset in legacy
format.

Variables

• sensor_list (dict) – A dictionary containing sensor information.

• activity_list (dict) – A dictionary containing activity information.

• event_list (list of dict) – List of data used to store raw events.

• x (numpy.ndarray) – 2D numpy array that contains calculated feature data.

• y (numpy.ndarray) – 2D numpy array that contains activity label corresponding to fea-
ture array

• data_path (str) – path to data file.

• home (pyActLearn.CASAS.home.CASASHome) – CASAS.home.CASASHome ob-
ject that stores the home information associated with the dataset.

• is_legacy (bool) – Defaults to False. If the dataset loaded is in legacy format or not.

• is_stat_feature (bool) – Calculate statistical features or use raw data in x

2.2. pyActLearn.CASAS 9

https://support.hdfgroup.org/products/java/hdfview/
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyActLearn Documentation, Release 0.2.0.dev0

• is_labeled (bool) – If given dataset is labeled

• time_list (list of datetime.datetime) – Datetime of each entry in x. Used for
back annotation, and splitting dataset by weeks or days.

• feature_list (dict) – A dictionary of statistical features used in statistical feature
calculation

• routines (dict) – Function routines that needs to run every time when calculating fea-
tures. Excluded from pickling.

• num_enabled_features (int) – Number of enabled features.

• num_static_features (int) – Number of features related to window

• num_per_sensor_features (int) – Number of features that needs to be calculated
per enabled sensor

• events_in_window (int) – Number of sensor events (or statistical features of a sliding
window) grouped in a feature vector.

disable_activity(activity_label)
Disable an activity

Parameters activity_label (str) – Activity label

disable_feature(feature_name)
Disable a feature

Parameters feature_name (str) – Feature name.

disable_routine(routine)
Disable a routine

Check all enabled feature list and see if the routine is used by other features. If no feature need the routine,
disable it

Parameters routine (pyActLearn.CASAS.stat_features.
FeatureRoutineTemplate) – routine to be disabled

disable_sensor(sensor_name)
Disable a sensor

Parameters sensor_name (str) – Sensor Name

enable_activity(activity_label)
Enable an activity

Parameters activity_label (str) – Activity label

Returns The index of the enabled activity

Return type int

enable_feature(feature_name)
Enable a feature

Parameters feature_name (str) – Feature name.

enable_routine(routine)
Enable a given routine

Parameters routine (pyActLearn.CASAS.stat_features.
FeatureRoutineTemplate) – routine to be disabled

10 Chapter 2. Roadmap

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pyActLearn Documentation, Release 0.2.0.dev0

enable_sensor(sensor_name)
Enable a sensor

Parameters sensor_name (str) – Sensor Name

Returns int: The index of the enabled sensor

export_fuel(directory, break_by=’week’, comments=’‘)
Export feature and label vector into hdf5 file and store the class information in a pickle file

Parameters

• directory (str) – The directory to save hdf5 and complementary dataset information

• break_by (str) – Select the way to split the data, either by 'week' or 'day'

• comments (str) – Additional comments to add

export_hdf5(filename, comments=’‘, bg_activity=’Other_Activity’, driver=None)
Export the dataset into a hdf5 dataset file with meta-data logged in attributes.

To load the data, you can use pyActLearn.CASAS.h5py.CASASH5PY class.

Parameters

• filename (str) – The directory to save hdf5 and complementary dataset information.

• comments (str) – Additional comments to add.

• bg_activity (str) – Background activity label.

• driver (str) – h5py dataset R/W driver.

get_activities_by_indices(activity_ids)
Get a group of activities by their corresponding indices

Parameters activity_ids (list of int) – A list of activity indices

Returns A list of activity labels in the same order

Return type list of str

get_activity_by_index(activity_id)
Get Activity name by their index

Parameters activity_id (int) – Activity index

Returns Activity label

Return type str

get_activity_color(activity_label)
Find the color string for the activity.

Parameters activity_label (str) – activity label

Returns RGB color string

Return type str

get_activity_index(activity_label)
Get Index of an activity

Parameters activity_label (str) – Activity label

Returns Activity index (-1 if not found or not enabled)

Return type int

2.2. pyActLearn.CASAS 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pyActLearn Documentation, Release 0.2.0.dev0

get_enabled_activities()
Get label list of all enabled activities

Returns list of activity labels

Return type list of str

get_enabled_sensors()
Get the names of all enabled sensors

Returns List of sensor names

Return type list of str

get_feature_by_index(index)
Get Feature Name by Index

Parameters index (int) – column index of feature

Returns

(feature name, sensor name) tuple. If it is not per-sensor feature, the sensor name is None.

Return type tuple of str

get_feature_string_by_index(index)
Get the string describing the feature specified by column index

Parameters index (int) – column index of feature

Returns Feature string

Return type str

get_sensor_by_index(sensor_id)
Get the name of sensor by index

Parameters sensor_id (int) – Sensor index

Returns Sensor name

Return type str

get_sensor_index(sensor_name)
Get Sensor Index

Parameters sensor_name (str) – Sensor Name

Returns Sensor index (-1 if not found or not enabled)

Return type int

populate_feature(method=’raw’, normalized=True, per_sensor=True)
Populate the feature vector in x and activities in y

Parameters

• method (str) – The method to convert sensor events into feature vector. Available
methods are 'raw' and 'stat'.

• normalized (bool) – Will each feature be normalized between 0 and 1?

• per_sensor (bool) – For features related with sensor ID, are they

summary()
Print summary of loaded datasets

12 Chapter 2. Roadmap

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyActLearn Documentation, Release 0.2.0.dev0

write_to_xlsx(filename, start=0, end=-1)
Write to file in xlsx format

Parameters

• filename (str) – xlsx file name.

• start (int) – start index.

• end (int) – end index.

CASAS.h5py

casas_hdf5_doc_master implements pyActLearn.CASAS.h5py.CASASHDF5.

Dataset Structure

HDF5 is a data model, library and file format for storing and managing data. h5py package is the python interface to
read and write HDF5 file. You can open and view the HDF5 file using hdfviewer.

The pre-processed feature array x is stored as dataset /features. Corresponding target labels is stored as dataset
/targets. The corresponding time for each entry is stored at /time as array of bytes (HDF5 does not support
str).

The meta-data of the smart home is stored as attributes of the root node. The table below summarizes the description
of all those attributes.

Attribute Description
bg_target Name of background activity.
comment Description of the dataset.
days List of start and stop index tuple of each segment when the dataset is splitted by days.
weeks List of start and stop index tuple of each segment when the dataset is splitted by weeks.
features Feature name corresponding to each column in /features dataset.
targets List of activity labels.
target_color List of color string for each activity for visualization.
sources List of dataset names in the file.
sensors List of sensor names

The image below gives a glimpse of the hdf5 structure in hdfviewer.

Load and Fetch Data from HDF5

pyActLearn.CASAS.h5py.CASASHDF5 provides multiple interfaces for accessing and loading the data from
hdf5 file. The dataset is usually split by weeks and days. Function pyActLearn.CASAS.h5py.CASASHDF5.
fetch_data() will load the time, features and target labels of the time frame provided via the start split and end
split names.

Here is the code snip to load the data from splits to train a support vector machine.

import sklearn.svm
from pyActLearn.CASAS.h5py import CASASHDF5
Load dataset
ds = CASASHDF5(path='twor_statNormPerSensor.hdf5')
Training
time, feature, target = ds.fetch_data(start_split='week_1', stop_split='week_4')
x = feature
y = target.flatten().astype(np.int)

2.2. pyActLearn.CASAS 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://support.hdfgroup.org/HDF5/
http://www.h5py.org/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/products/java/hdfview/
https://support.hdfgroup.org/HDF5/
https://docs.python.org/3/library/stdtypes.html#str

pyActLearn Documentation, Release 0.2.0.dev0

Fig. 2.1: Smart home pre-processed data in hdf5 format.

14 Chapter 2. Roadmap

pyActLearn Documentation, Release 0.2.0.dev0

model = sklearn.svm.SVC(kernel='rbf')
model.fit(x, y)
Testing
time, feature, target = ds.fetch_data(start_split='week_1', stop_split='week_4')
x = feature
y = model.predict(x)

API Reference

class pyActLearn.CASAS.h5py.CASASHDF5(filename, mode=’r’, driver=None)
Bases: object

CASASHDF5 Class to create and retrieve CASAS smart home data from h5df file

The data saved to or retrieved from a H5PY data file are pre-calculated features by CASASData class. The
H5PY data file also contains meta-data about the dataset, which include description for each feature, splits by
week and/or splits by days.

Variables _file (h5py.File) – h5py.File object that represents root group.

Parameters

• filename (str) – HDF5 File Name

• mode (str) – ‘r’ for load from the file, and ‘w’ for create a new h5py data

close()
Close Dataset

create_comments(comment)
Add comments to dataset

Parameters comment (str) – Comments to the dataset

create_features(feature_array, feature_description)
Create Feature Dataset

Parameters

• feature_array (numpy.ndarray) – Numpy array holding calculated feature vec-
tors

• feature_description (list of str) – List of strings that describe each column of
feature vectors.

create_sensors(sensors)
Add sensors list to attributes

If the sensor IDs in the dataset is not binary coded, there is a need to provide the sensor list to go along
with the feature vectors.

Parameters sensors (list of str) – List of sensor name corresponds to the id in the feature
array.

create_splits(days, weeks)
Create splits by days and weeks

Parameters

• days (list of int) – Start index for each day

• weeks (list of int) – Start index for week

2.2. pyActLearn.CASAS 15

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

pyActLearn Documentation, Release 0.2.0.dev0

create_targets(target_array, target_description, target_colors)
Create Target Dataset

Parameters

• target_array (numpy.ndarray) – Numpy array holding target labels

• target_description (list of str) – List of strings that describe each each target
class.

• target_colors (list of str) – List of color values corresponding to each target
class.

create_time_list(time_array)
Create Time List

Parameters time_array (list of datetime) – datetime corresponding to each feature
vector in feature dataset.

fetch_data(start_split=None, stop_split=None, pre_load=0)
Fetch data between start and stop splits

Parameters

• start_split (str) – Begin of data

• stop_split (str) – End of data

• pre_load (int) – Load extra number of data before start split.

Returns

Returns a tuple of all sources sliced by the split defined. The sources should be in the or-
der of (‘time’, ‘feature’, ‘target’)

Return type tuple of numpy.ndarray

flush()
Write To File

get_bg_target()
Get the description of the target class considered background in the dataset.

Returns Name of the class which is considered background in the dataset. Usually it is
‘Other_Activity’.

Return type str

get_bg_target_id()
Get the id of the target class considered background.

Returns The index of the target class which is considered background in the dataset.

Return type int

get_days_info()
Get splits by day.

Returns

List of (key, value) tuple, where key is the name of the split and value is number of
items in that split.

Return type List of tuple

get_feature_description_by_index(i)
Get the description of feature column 𝑖.

16 Chapter 2. Roadmap

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

pyActLearn Documentation, Release 0.2.0.dev0

Parameters i (int) – Column index.

Returns Corresponding column description.

Return type str

get_sensor_by_index(i)
Get sensor name by index

Parameters i (int) – Index to sensor

get_target_color_by_index(i)
Get the color string of target class 𝑖.

Parameters i (int) – Class index.

Returns Corresponding target class color string.

Return type str

get_target_description_by_index(i)
Get target description by class index 𝑖.

Parameters i (int) – Class index.

Returns Corresponding target class description.

Return type str

get_target_descriptions()
Get list of target descriptions

Returns List of target class description strings.

Return type list of str

get_weeks_info()
Get splits by week.

Returns

List of (key, value) tuple, where key is the name of the split and value is number of
items in that split.

Return type List of tuple

is_bg_target(i=None, label=None)
Check if the target class given by :param:‘i‘ or :param:‘label‘ is considered background

Parameters

• i (int) – Class index.

• label (str) – Class name.

Returns True if it is considered background.

Return type bool

num_between_splits(start_split=None, stop_split=None)
Get the number of item between splits

Parameters

• start_split (str) – Begin of data

• stop_split (str) – End of data

Returns The number of items between two splits.

2.2. pyActLearn.CASAS 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyActLearn Documentation, Release 0.2.0.dev0

Return type int

num_features()
Get number of features in the dataset

num_sensors()
Return the number of sensors in the sensor list

num_targets()
Total number of target classes.

Returns Total number of target classes.

Return type int

set_background_target(target_name)
Set ‘target_name’ as background target

Parameters target_name (str) – Name of background target

Statistical Features

For activity recognition based on learning algorithms like support vector machine (SVM), decision tree, random forest,
multi-layer perceptron. [Krishnan2014] investigated various sliding window approaches to generate such statistical
features.

Window Duration

class pyActLearn.CASAS.stat_features.WindowDuration(normalized=False)
Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Length of the window.

Any sliding window should have a duration of less than half a day. If it is, it is probable that there some missing
sensor events, so the statistical features calculated for such a window is invalid.

Parameters normalized (bool) – If true, the hour is normalized between 0 to 1.

get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)
Get the duration of the window in seconds. Invalid if the duration is greater than half a day.

Note: Please refer to get_feature_value() for information about parameters.

Last Sensor

class pyActLearn.CASAS.stat_features.LastSensor(per_sensor=False)
Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Sensor ID of the last sensor event.rst of the window.

For algorithms like decision trees and hidden markov model, sensor ID can be directly used as features. How-
ever, in other algorithms such as multi-layer perceptron, or support vector machine, the sensor ID needs to be
binary coded.

Parameters per_sensor (bool) – True if the sensor ID needs to be binary coded.

18 Chapter 2. Roadmap

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyActLearn Documentation, Release 0.2.0.dev0

get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)
Get the sensor which fired the last event.rst in the sliding window.

If it is configured as per-sensor feature, it returns 1 if the sensor specified triggers the last event.rst in the
window. Otherwise returns 0. If it is configured as a non-per-sensor feature, it returns the index of the
index corresponding to the dominant sensor name that triggered the last event.rst.

Note: Please refer to get_feature_value() for information about parameters.

Hour of the Event

class pyActLearn.CASAS.stat_features.EventHour(normalized=False)
Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Hour of last event.rst.

It returns the hour of last sensor event.rst in the sliding window. If normalized is set to True, the hour is
divided by 24, so that the value is bounded between 0 to 1.

Parameters normalized (bool) – If true, the hour is normalized between 0 to 1.

get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)
Get the hour when the last sensor event.rst in the window occurred

Note: Please refer to get_feature_value() for information about parameters.

Seconds of the Event

class pyActLearn.CASAS.stat_features.EventSeconds(normalized=False)
Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Seconds of last event.rst.

The time of the hour (in seconds) of the last sensor event.rst in the window. If normalized is True, the
seconds is divided by 3600.

Parameters normalized (bool) – If true, the hour is normalized between 0 to 1.

get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)
Get the time within an hour when the last sensor event.rst in the window occurred (in seconds)

Note: Please refer to get_feature_value() for information about parameters.

Sensor Count

class pyActLearn.CASAS.stat_features.SensorCount(normalized=False)
Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Counts the occurrence of each sensor within the sliding window.

The count of occurrence of each sensor is normalized to the length (total number of events) of the window if the
normalized is set to True.

2.2. pyActLearn.CASAS 19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyActLearn Documentation, Release 0.2.0.dev0

Parameters normalized (bool) – If true, the count of each sensor is normalized between 0 to 1.

get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)
Counts the number of occurrence of the sensor specified in current window.

Sensor Elapse Time

class pyActLearn.CASAS.stat_features.SensorElapseTime(normalized=False)
Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

The time elapsed since last firing (in seconds)

get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)
Get elapse time of specified sensor in seconds

Dominant Sensor

class pyActLearn.CASAS.stat_features.DominantSensor(per_sensor=False)
Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Dominant Sensor of current window.

The sensor that fires the most amount of sensor event.rst in the current window.

Parameters per_sensor (bool) – True if the sensor ID needs to be binary coded.

get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)
If per_sensor is True, returns 1 with corresponding sensor Id. otherwise, return the index of last sensor in
the window

Feature Template

class pyActLearn.CASAS.stat_features.FeatureTemplate(name, description, en-
abled=True, normalized=True,
per_sensor=False, routine=None)

Bases: object

Statistical Feature Template

Parameters

• name (str) – Feature name.

• description (str) – Feature description.

• per_sensor (bool) – If the feature is calculated for each sensor.

• enabled (bool) – If the feature is enabled.

• routine (FeatureRoutineTemplate) – Routine structure.

• normalized (bool) – If the value of feature needs to be normalized.

Variables

• name (str) – Feature name.

• description (str) – Feature description.

• index (int) – Feature index.

• normalized (bool) – If the value of feature needs to be normalized.

20 Chapter 2. Roadmap

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pyActLearn Documentation, Release 0.2.0.dev0

• per_sensor (bool) – If the feature is calculated for each sensor.

• enabled (bool) – If the feature is enabled.

• routine (FeatureRoutineTemplate) – Routine structure.

• _is_value_valid (bool) – If the value calculated is valid

get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)
Abstract method to get feature value

Parameters

• data_list (list) – List of sensor data.

• cur_index (int) – Index of current data record.

• window_size (int) – Sliding window size.

• sensor_info (dict) – Dictionary containing sensor index information.

• sensor_name (str) – Sensor Name.

Returns feature value

Return type double

is_value_valid
Statistical feature value valid check

Due to errors and failures of sensors, the statistical feature calculated may go out of bound. This abstract
method is used to check if the value calculated is valid. If not, it will not be inserted into feature vectors.

Returns True if the result is valid.

Return type bool

Feature Update Routine Template

class pyActLearn.CASAS.stat_features.FeatureRoutineTemplate(name, description, en-
abled=True)

Bases: object

Feature Routine Class

A routine that calculate statistical features every time the window slides.

Variables

• name (str) – Feature routine name.

• description (str) – Feature routine description.

• enabled (str) – Feature routine enable flag.

clear()
Clear Internal Data Structures if recalculation is needed

update(data_list, cur_index, window_size, sensor_info)
Abstract update method

For some features, we will update some statistical data every time we move forward a data record, instead
of going back through the whole window and try to find the answer. This function will be called every
time we advance in data record.

Parameters

2.2. pyActLearn.CASAS 21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pyActLearn Documentation, Release 0.2.0.dev0

• data_list (list) – List of sensor data.

• cur_index (int) – Index of current data record.

• window_size (int) – Sliding window size.

• sensor_info (dict) – Dictionary containing sensor index information.

pyActLearn.learning

pyActLearn.performance

Multi-Class Performance Metrics

In most literature, standard multi-class performance metrics are used to evaluate an activity recognition algorithm.
In module pyActLearn.performace, the following functions get the confusion matrix and calculate per-class
performance and overall micro and macro performance.

pyActLearn.performance.get_confusion_matrix(num_classes, label, predicted)
Calculate confusion matrix based on ground truth and predicted result

Parameters

• num_classes (int) – Number of classes

• label (list of int) – ground truth labels

• predicted (list of int) – predicted labels

Returns Confusion matrix (numpy_class by numpy_class)

Return type numpy.array

pyActLearn.performance.get_performance_array(confusion_matrix)
Calculate performance matrix based on the given confusion matrix

[Sokolova2009] provides a detailed analysis for multi-class performance metrics.

Per-class performance metrics:

0.True_Positive: number of samples that belong to class and classified correctly

1.True_Negative: number of samples that correctly classified as not belonging to class

2.False_Positive: number of samples that belong to class and not classified correctMeasure:

3.False_Negative: number of samples that do not belong to class but classified as class

4.Accuracy: Overall, how often is the classifier correct? (TP + TN) / (TP + TN + FP + FN)

5.Misclassification: Overall, how often is it wrong? (FP + FN) / (TP + TN + FP + FN)

6.Recall: When it’s actually yes, how often does it predict yes? TP / (TP + FN)

7.False Positive Rate: When it’s actually no, how often does it predict yes? FP / (FP + TN)

8.Specificity: When it’s actually no, how often does it predict no? TN / (FP + TN)

9.Precision: When it predicts yes, how often is it correct? TP / (TP + FP)

10.Prevalence: How often does the yes condition actually occur in our sample? Total(class) / Total(samples)

11.F(1) Measure: 2 * (precision * recall) / (precision + recall)

22 Chapter 2. Roadmap

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

pyActLearn Documentation, Release 0.2.0.dev0

12.G Measure: sqrt(precision * recall)

Gets Overall Performance for the classifier

0.Average Accuracy: The average per-class effectiveness of a classifier

1.Weighed Accuracy: The average effectiveness of a classifier weighed by prevalence of each class

2.Precision (micro): Agreement of the class labels with those of a classifiers if calculated from sums of
per-text decision

3.Recall (micro): Effectiveness of a classifier to identify class labels if calculated from sums of per-text
decisions

4.F-Score (micro): Relationship between data’s positive labels and those given by a classifier based on a
sums of per-text decisions

5.Precision (macro): An average per-class agreement of the data class labels with those of a classifiers

6.Recall (macro): An average per-class effectiveness of a classifier to identify class labels

7.F-Score (micro): Relations between data’s positive labels and those given by a classifier based on a per-
class average

8.Exact Matching Ratio: The average per-text exact classification

Note: In Multi-class classification, Micro-Precision == Micro-Recall == Micro-FScore == Exact Matching
Ratio (Multi-class classification: each input is to be classified into one and only one class)

Parameters

• num_classes (int) – Number of classes

• confusion_matrix (numpy.array) – Confusion Matrix (numpy array of num_class
by num_class)

Returns tuple of overall performance and per class performance

Return type tuple of numpy.array

Event-based Scoring

[Minnen2006] and [Ward2011] proposed a set of performance metrics and visualizations for continuous activity recog-
nition. In both papers, the authors examine the issues in continuous activity recognition and argued that the traditional
standard multi-class evaluation methods fail to capture common artefacts found in continuous AR.

In both papers, the false positives and false negatives are further divided into six categories to faithfully capture the
nature of those errors in the context of continuous AR.

Whenever an error occurs, it is both a false positive with respect to the prediction label and a false negative with respect
to the ground truth label.

False positive errors are divided into the following three categories:

• Insertion (I): A FP that corresponds exactly to an inserted return.

• Merge (M): A FP that occurs between two TP segments within a merge return.

• Overfill (O): A FP that occurs at the start or end of a partially matched return.

False negatives errors are divided into the following three categories:

• Deletion (D): A FN that corresponds exactly to a deleted event.

2.4. pyActLearn.performance 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

pyActLearn Documentation, Release 0.2.0.dev0

• Fragmenting (F): A FN that corresponds exactly to a deleted event.

• Underfill (U): A FN that occurs at the start or end of a detected event.

API Reference

pyActLearn.performance.event.score_segment(truth, prediction, bg_label=-1)
Score Segments

According to [Minnen2006] and [Ward2011], a segment is defined as the largest part of an event on which the
comparison between the ground truth and the output of recognition system can be made in an unambiguous way.
However, in this piece of code, we remove the limit where the segment is the largest part of an event. As long
as there is a match between prediction and ground truth, it is recognized as a segment.

There are four possible outcomes to be scored: TP, TN, FP and FN. In event-based performance scoring, the FP
and FN are further divided to the following cases:

•Insertion (I): A FP that corresponds exactly to an inserted return.

•Merge (M): A FP that occurs between two TP segments within a merge return.

•Overfill (O): A FP that occurs at the start or end of a partially matched return.

•Deletion (D): A FN that corresponds exactly to a deleted evjmk, ent.

•Fragmenting (F): A FN that corresponds exactly to a deleted event.

•Underfill (U): A FN that occurs at the start or end of a detected event.

Parameters

• truth (numpy.ndarray) – Ground truth

• prediction (numpy.ndarray) – prediction

• bg_label (numpy.ndarray) – Background label

Returns An array with truth and event-based scoring labels

Return type numpy.ndarray

pyActLearn.performance.event.per_class_event_scoring(num_classes, truth, predic-
tion, truth_scoring, predic-
tion_scoring)

Create per-class event scoring to identify the contribution of event-based errors to the traditional recall and
false-positive rate.

Instead of doing an EAD as proposed in previous two papers, we look at Recall and FPR separately.

Recall is defined as TP/(TP + FN). In another word, how often does it predict yes when it’s actually yes? The
errors in the false negatives, such as Deletion, Fragmenting, and Underfill, adds up to the FP. A Deletion means
a total miss of an activity. Underfill represents an error on the begin and end boundary of the event. Fragmenting
represents a glitch in the prediction.

Precision is defined as TP/(TP + FP). In another word, how often is it a yes when it is predicted yes? The
error in the false positives, such as Insertion, Merge and Overfill, adds up to the FP. In the task of ADL recog-
nition, insertion may be caused by human error in labeling. Overfill represents a disagreement of the begin/end
boundary of an activity, but the merge is a glitch in the prediction.

The function goes through the scoring of prediction and ground truth - and returns two dictionary that summaries
the contribution of all those errors to Recall and False Positive Rate scores.

Parameters

24 Chapter 2. Roadmap

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

pyActLearn Documentation, Release 0.2.0.dev0

• num_classes (int) – Total number of target classes

• truth (numpy.ndarray) – Ground truth array, shape (num_samples,)

• prediction (numpy.ndarray) – Prediction array, shape (num_samples,)

• truth_scoring (numpy.ndarray) – Event scoring with respect to ground truth labels
(i.e. false negatives are further divided into Deletion, Fragmenting, and Underfill). The
information in this array is used to fill Recall measurement.

• prediction_scoring (numpy.ndarray) – Event scoring with respect to prediction
labels (i.e. false positives are further divided into Insertion, Merging and Overfill). The
information in this array is used to fill Precision measurement.

Returns Tuple of event-based scoring summarie for recall and precision. Each summary array has
a shape of (num_classes,).

Return type tuple of numpy.ndarray

pyActLearn.performance.event.per_class_segment_scoring(num_classes, truth, predic-
tion, truth_scoring, predic-
tion_scoring)

Create per-class event scoring to identify the contribution of event-based errors to the traditional recall and
false-positive rate. The count is based on each event segment instead of each sensor event.

Parameters

• num_classes (int) – Total number of target classes

• truth (numpy.ndarray) – Ground truth array, shape (num_samples,)

• prediction (numpy.ndarray) – Prediction array, shape (num_samples,)

• truth_scoring (numpy.ndarray) – Event scoring with respect to ground truth labels
(i.e. false negatives are further divided into Deletion, Fragmenting, and Underfill). The
information in this array is used to fill Recall measurement.

• prediction_scoring (numpy.ndarray) – Event scoring with respect to prediction
labels (i.e. false positives are further divided into Insertion, Merging and Overfill). The
information in this array is used to fill Precision measurement.

Returns Tuple of event-based scoring summarie for recall and precision. Each summary array has
a shape of (num_classes,).

Return type tuple of numpy.ndarray

Reference

Activity Recognition

Performance Metrics

2.5. Reference 25

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

pyActLearn Documentation, Release 0.2.0.dev0

26 Chapter 2. Roadmap

CHAPTER 3

Indices and tables

• genindex

• modindex

27

pyActLearn Documentation, Release 0.2.0.dev0

28 Chapter 3. Indices and tables

Bibliography

[Cook2009] Cook, D.J. and Schmitter-Edgecombe, M., 2009. Assessing the quality of activities in a smart environ-
ment. Methods of information in medicine, 48(5), p.480.

[Kim2010] Kim, E., Helal, S. and Cook, D., 2010. Human activity recognition and pattern discovery. IEEE Pervasive
Computing, 9(1).

[Cook2012] Cook, D.J., 2012. Learning setting-generalized activity models for smart spaces. IEEE intelligent sys-
tems, 27(1), pp.32-38.

[Krishnan2014] Krishnan, N.C. and Cook, D.J., 2014. Activity recognition on streaming sensor data. Pervasive and
mobile computing, 10, pp.138-154.

[Minnen2006] Minnen, D., Westeyn, T., Starner, T., Ward, J. and Lukowicz, P., 2006. Performance metrics and
evaluation issues for continuous activity recognition. Performance Metrics for Intelligent Systems, 4.

[Sokolova2009] Sokolova, M. and Lapalme, G., 2009. A systematic analysis of performance measures for classifica-
tion tasks. Information Processing & Management, 45(4), pp.427-437.

[Ward2011] Ward, J.A., Lukowicz, P. and Gellersen, H.W., 2011. Performance metrics for activity recognition. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(1), p.6.

[Hammerla2015] Hammerla, N.Y. and Plötz, T., 2015, September. Let’s (not) stick together: pairwise similarity bi-
ases cross-validation in activity recognition. In Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (pp. 1041-1051). ACM.

29

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759863/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759863/
http://ieeexplore.ieee.org/abstract/document/5370804/
http://ieeexplore.ieee.org/document/5567086/
http://www.sciencedirect.com/science/article/pii/S1574119212000776
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.5025&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.5025&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S0306457309000259
http://www.sciencedirect.com/science/article/pii/S0306457309000259
http://dl.acm.org/citation.cfm?id=1889687
http://dl.acm.org/citation.cfm?id=2807551
http://dl.acm.org/citation.cfm?id=2807551

pyActLearn Documentation, Release 0.2.0.dev0

30 Bibliography

Python Module Index

p
pyActLearn.CASAS.data, 9
pyActLearn.CASAS.h5py, 15

31

pyActLearn Documentation, Release 0.2.0.dev0

32 Python Module Index

Index

C
CASASData (class in pyActLearn.CASAS.data), 9
CASASHDF5 (class in pyActLearn.CASAS.h5py), 15
clear() (pyActLearn.CASAS.stat_features.FeatureRoutineTemplate

method), 21
close() (pyActLearn.CASAS.h5py.CASASHDF5

method), 15
create_comments() (py-

ActLearn.CASAS.h5py.CASASHDF5
method), 15

create_features() (pyActLearn.CASAS.h5py.CASASHDF5
method), 15

create_sensors() (pyActLearn.CASAS.h5py.CASASHDF5
method), 15

create_splits() (pyActLearn.CASAS.h5py.CASASHDF5
method), 15

create_targets() (pyActLearn.CASAS.h5py.CASASHDF5
method), 15

create_time_list() (pyActLearn.CASAS.h5py.CASASHDF5
method), 16

D
disable_activity() (pyActLearn.CASAS.data.CASASData

method), 10
disable_feature() (pyActLearn.CASAS.data.CASASData

method), 10
disable_routine() (pyActLearn.CASAS.data.CASASData

method), 10
disable_sensor() (pyActLearn.CASAS.data.CASASData

method), 10
DominantSensor (class in py-

ActLearn.CASAS.stat_features), 20

E
enable_activity() (pyActLearn.CASAS.data.CASASData

method), 10
enable_feature() (pyActLearn.CASAS.data.CASASData

method), 10

enable_routine() (pyActLearn.CASAS.data.CASASData
method), 10

enable_sensor() (pyActLearn.CASAS.data.CASASData
method), 10

EventHour (class in pyActLearn.CASAS.stat_features),
19

EventSeconds (class in py-
ActLearn.CASAS.stat_features), 19

export_fuel() (pyActLearn.CASAS.data.CASASData
method), 11

export_hdf5() (pyActLearn.CASAS.data.CASASData
method), 11

F
FeatureRoutineTemplate (class in py-

ActLearn.CASAS.stat_features), 21
FeatureTemplate (class in py-

ActLearn.CASAS.stat_features), 20
fetch_data() (pyActLearn.CASAS.h5py.CASASHDF5

method), 16
flush() (pyActLearn.CASAS.h5py.CASASHDF5

method), 16

G
get_activities_by_indices() (py-

ActLearn.CASAS.data.CASASData method),
11

get_activity_by_index() (py-
ActLearn.CASAS.data.CASASData method),
11

get_activity_color() (py-
ActLearn.CASAS.data.CASASData method),
11

get_activity_index() (py-
ActLearn.CASAS.data.CASASData method),
11

get_bg_target() (pyActLearn.CASAS.h5py.CASASHDF5
method), 16

get_bg_target_id() (py-
ActLearn.CASAS.h5py.CASASHDF5

33

pyActLearn Documentation, Release 0.2.0.dev0

method), 16
get_confusion_matrix() (in module py-

ActLearn.performance), 22
get_days_info() (pyActLearn.CASAS.h5py.CASASHDF5

method), 16
get_enabled_activities() (py-

ActLearn.CASAS.data.CASASData method),
11

get_enabled_sensors() (py-
ActLearn.CASAS.data.CASASData method),
12

get_feature_by_index() (py-
ActLearn.CASAS.data.CASASData method),
12

get_feature_description_by_index() (py-
ActLearn.CASAS.h5py.CASASHDF5
method), 16

get_feature_string_by_index() (py-
ActLearn.CASAS.data.CASASData method),
12

get_feature_value() (py-
ActLearn.CASAS.stat_features.DominantSensor
method), 20

get_feature_value() (py-
ActLearn.CASAS.stat_features.EventHour
method), 19

get_feature_value() (py-
ActLearn.CASAS.stat_features.EventSeconds
method), 19

get_feature_value() (py-
ActLearn.CASAS.stat_features.FeatureTemplate
method), 21

get_feature_value() (py-
ActLearn.CASAS.stat_features.LastSensor
method), 18

get_feature_value() (py-
ActLearn.CASAS.stat_features.SensorCount
method), 20

get_feature_value() (py-
ActLearn.CASAS.stat_features.SensorElapseTime
method), 20

get_feature_value() (py-
ActLearn.CASAS.stat_features.WindowDuration
method), 18

get_performance_array() (in module py-
ActLearn.performance), 22

get_sensor_by_index() (py-
ActLearn.CASAS.data.CASASData method),
12

get_sensor_by_index() (py-
ActLearn.CASAS.h5py.CASASHDF5
method), 17

get_sensor_index() (py-
ActLearn.CASAS.data.CASASData method),

12
get_target_color_by_index() (py-

ActLearn.CASAS.h5py.CASASHDF5
method), 17

get_target_description_by_index() (py-
ActLearn.CASAS.h5py.CASASHDF5
method), 17

get_target_descriptions() (py-
ActLearn.CASAS.h5py.CASASHDF5
method), 17

get_weeks_info() (pyActLearn.CASAS.h5py.CASASHDF5
method), 17

I
is_bg_target() (pyActLearn.CASAS.h5py.CASASHDF5

method), 17
is_value_valid (pyActLearn.CASAS.stat_features.FeatureTemplate

attribute), 21

L
LastSensor (class in pyActLearn.CASAS.stat_features),

18

N
num_between_splits() (py-

ActLearn.CASAS.h5py.CASASHDF5
method), 17

num_features() (pyActLearn.CASAS.h5py.CASASHDF5
method), 18

num_sensors() (pyActLearn.CASAS.h5py.CASASHDF5
method), 18

num_targets() (pyActLearn.CASAS.h5py.CASASHDF5
method), 18

P
per_class_event_scoring() (in module py-

ActLearn.performance.event), 24
per_class_segment_scoring() (in module py-

ActLearn.performance.event), 25
populate_feature() (pyActLearn.CASAS.data.CASASData

method), 12
pyActLearn.CASAS.data (module), 9
pyActLearn.CASAS.h5py (module), 15

S
score_segment() (in module py-

ActLearn.performance.event), 24
SensorCount (class in pyActLearn.CASAS.stat_features),

19
SensorElapseTime (class in py-

ActLearn.CASAS.stat_features), 20
set_background_target() (py-

ActLearn.CASAS.h5py.CASASHDF5
method), 18

34 Index

pyActLearn Documentation, Release 0.2.0.dev0

summary() (pyActLearn.CASAS.data.CASASData
method), 12

U
update() (pyActLearn.CASAS.stat_features.FeatureRoutineTemplate

method), 21

W
WindowDuration (class in py-

ActLearn.CASAS.stat_features), 18
write_to_xlsx() (pyActLearn.CASAS.data.CASASData

method), 12

Index 35

	Components
	pyActLearn.CASAS
	pyActLearn.learning
	pyActLearn.performance

	Roadmap
	Installation
	pyActLearn.CASAS
	pyActLearn.learning
	pyActLearn.performance
	Reference

	Indices and tables
	Bibliography
	Python Module Index

