

    
      
          
            
  
Welcome to pyActLearn’s documentation!

pyActLearn is an activity recognition platform designed to recognize ADL
(Activities of Daily Living) in smart homes equipped with less intrusive
passive monitoring sensors, such as motion detectors, door sensors,
thermometers, light switches, etc.


Components


pyActLearn.CASAS

pyActLearn.CASAS contains classes and functions that load and pre-process smart home sensor
event data. The pre-processed data are stored in an hdf5 data format with smart home information
stored as attributes of the dataset. The processed data are splitted into weeks and days.
Class pyActLearn.CASAS.hdf5.CASASHDF5 can load the hdf5 dataset and use as a feeder for
activity recognition learning algorithm.




pyActLearn.learning

pyActLearn.learning contains classes and functions that implement supervised and unsupervised
learning algorithms for activity recognition. Some of the classes refers to models provided by other
python packages such as hmmlearn (for multinomial hidden markov models) and sklearn (for support
vector machine, decision tree, and random forest).




pyActLearn.performance

pyActLearn.performance contains classes and functions that implement multiple performance
metrics for activity recognition, including confusion matrix, multi-class classification metrics,
event-based scoring, and activity timeliness.






Roadmap


	Data Loading
	[X] Load event list from legacy raw text files

	[X] Load event list from csv event files

	[X] Load sensor information from JSON meta-data file

	[X] Divide event list by days or weeks





	Pre-processing
	[X] Statistical feature extraction using sliding window approach

	[X] Raw interpretation





	Algorithm implementations
	Supervised Learning
	[X] Decision Tree

	[X] HMM

	[X] SVM

	[X] Multi-layer Perceptron

	[X] Stacked De-noising Auto-encoder with fine tuning

	[X] Recurrent Neural Network with LSTM Cell

	[ ] Recurrent Neural Network with GRU





	Un-supervised Learning
	[X] Stacked De-noising Auto-encoder

	[X] k-skip-2-gram with Negative Sampling (word2vec)





	Transfer Learning





	Evaluation
	[ ] n-Fold Cross-validation

	[X] Traditional Multi-class Classification Metrics

	[X] Event-based Continuous Evaluation Metrics

	[X] Event-based Activity Diagram





	Annotation
	[X] Back annotate dataset with predicted results

	[X] Back annotate with probability





	Visualization
	[X] Sensor distance on floor plan
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Installation


Install using pip

You can install pyActLearn package using Python package manager pip.
The package source codes are avaialble on github.

$ pip3 install git+git://github.com/TinghuiWang/pyActLearn.git \
  -r https://raw.githubusercontent.com/TinghuiWang/pyActLearn/master/requirements.txt






Note

At the moment, pyActLearn package only supports Python 3.
In most Linux distributions, the Python 3 package manager is named as pip3.



You can also add --user switch to the command to install the package in your home folder,
and --upgrade switch to pull the latest version from github.


Warning

pip may try to install or update packages such as Numpy, Scipy and Theano if they are
not present or outdated. If you want to use your system package manager such as apt or
yum, you can add --no-deps switch and install all the requirements manually.






Install in Develop Mode

To install the package in developer mode, first fork your own copy of pyActLearn on github.
Then, you can clone and edit your repository and install with setup.py script using
the following command (replace user with your own github user name).

$ git clone https://github.com/USER/pyActLearn.git
$ python3 setup.py develop











          

      

      

    

  

    
      
          
            
  
pyActLearn.CASAS



	CASAS.data
	Sensor Event File Format
	Legacy format

	CSV format
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	API Reference





	CASAS.h5py
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	Seconds of the Event
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CASAS.data

CASAS.data implements pyActLearn.CASAS.data.CASASData.


Sensor Event File Format

pyActLearn.CASAS.data.CASASData can load the smart home raw sensor event logs in raw text (legacy) format,
and comma separated (.csv) files.


Legacy format

Here is a snip of sensor event logs of a smart home in raw text format:

2009-06-01 17:51:20.055202   M046    ON
2009-06-01 17:51:22.036689   M046    OFF
2009-06-01 17:51:28.053264   M046    ON
2009-06-01 17:51:30.072223   M046    OFF
2009-06-01 17:51:35.046958   M045    OFF
2009-06-01 17:51:41.096098   M045    ON
2009-06-01 17:51:44.096236   M046    ON
2009-06-01 17:51:45.053722   M045    OFF
2009-06-01 17:51:46.015612   M045    ON
2009-06-01 17:51:47.005712   M046    OFF
2009-06-01 17:51:48.004619   M046    ON
2009-06-01 17:51:49.076356   M046    OFF
2009-06-01 17:51:50.035392   M046    ON





The following is an example to load the sensor event logs in legacy text format into class
pyActLearn.CASAS.data.CASASData.

from pyActLearn.CASAS.data import CASASData
data = CASASData(path='twor.summer.2009/annotate')








CSV format

Some of the smart home data set are updated to CSV format. Those datasets usually come with meta-data about the smart
home including floorplan, sensor location, activities annotated, and other information.

The binary sensor events are logged inside file event.csv. Here is a snip of it:

2/1/2009,8:00:38 AM,M048,OFF,,,
2/1/2009,8:00:38 AM,M049,OFF,,,
2/1/2009,8:00:39 AM,M028,ON,,,
2/1/2009,8:00:39 AM,M042,ON,,,
2/1/2009,8:00:40 AM,M029,ON,,,
2/1/2009,8:00:40 AM,M042,OFF,,,
2/1/2009,8:00:40 AM,L003,OFF,,,
2/1/2009,8:00:42 AM,M043,OFF,,,
2/1/2009,8:00:42 AM,M037,ON,,,
2/1/2009,8:00:42 AM,M050,OFF,,,
2/1/2009,8:00:42 AM,M044,OFF,,,
2/1/2009,8:00:42 AM,M028,OFF,,,
2/1/2009,8:00:43 AM,M029,OFF,,,





The metadata about the smart home is in a json file format. Here is a snip of the metadata for twor dataset:

{
"name": "TWOR_2009_test",
"floorplan": "TWOR_2009.png",
"sensors": [
   {
      "name": "M004",
      "type": "Motion",
      "locX": 0.5605087077755726,
      "locY": 0.061440840882448416,
      "sizeX": 0.0222007722007722,
      "sizeY": 0.018656716417910446,
      "description": ""
   },
],
"activities": [
   {
      "name": "Meal Preparation",
      "color": "#FF8A2BE2",
      "is_noise": false,
      "is_ignored": false
   },
]}





To load such a dataset, provide the directory path to the constructor of pyActLearn.CASAS.data.CASASData.

from pyActLearn.CASAS.data import CASASData
data = CASASData(path='twor.summer.2009/')






Note

The constructor of pyActLearn.CASAS.data.CASASData differentiates the format of sensor log by
determining whether the path is a directory or file. If it is a file, it assumes that it is in legacy raw
text format. If it is a directory, the constructor looks for event.csv file within the directory for
binary sensor events, and dataset.json for mete-data about the smart home.








Event Pre-processing

Raw sensor event data may need to be pre-processed before the learning algorithm can consume them. For algorithms
like Hidden Markov Model, only raw sensor series are needed. For algorithms like decision tree, random forest,
multi-layer perceptron, etc., statistic features within a sliding window of fixed length or variable length are
calculated. For data used in stacked auto-encoder, the input needs to be normalized between 0 to 1.

pyActLearn.CASAS.data.CASASData.populate_feature() function handles the pre-processing of all binary sensor
events. The statistical features implemented in this function includes


	Window Duration

	Last Sensor

	Hour of the Event

	Seconds of the Event

	Sensor Count

	Sensor Elapse Time

	Dominant Sensor



Methods to enable and disable specific features or activities are provided as well.
Please refer to pyActLearn.CASAS.data.CASASData API reference for more information.




Export Data

After the data are pre-processed, the features and labels can be exported to excel file (.xlsx) via function
pyActLearn.CASAS.data.CASASData.write_to_xlsx().

pyActLearn.CASAS.data.CASASData.export_hdf5() will save the pre-processed features and target labels in
hdf5 format. The meta-data is saved as attributes of the root node of hdf5 dataset.
The hdf5 file can be viewed using hdfviewer [https://support.hdfgroup.org/products/java/hdfview/].

Here is an example loading raw sensor events and save to hdf5 dataset file.

from pyActLearn.CASAS.data import CASASData
data = CASASData(path='datasets/twor.2009/')
data.populate_feature(method='stat', normalized=True, per_sensor=True)
data..export_hdf5(filename='hdf5/twor_2009_stat.hdf5', comments='')








API Reference


	
class pyActLearn.CASAS.data.CASASData(path)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class to load activity data from CASAS smart home datasets.

The class load raw activity sensor events from CASAS smart home datasets. The class provides methods to
pre-process the data for future learning algorithms for activity recognition. The pre-processed data can
be exported to xlsx files for verification, and hdf5 file for faster read and search when evaluating a
activity recognition algorithm.





	Parameters:	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a dataset directory, the dataset event.rst file for dataset in legacy format.




	Variables:	
	sensor_list (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing sensor information.

	activity_list (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing activity information.

	event_list (list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict]) – List of data used to store raw events.

	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 2D numpy array that contains calculated feature data.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 2D numpy array that contains activity label corresponding to feature array

	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to data file.

	home (pyActLearn.CASAS.home.CASASHome) – CASAS.home.CASASHome object that stores
the home information associated with the dataset.

	is_legacy (bool [https://docs.python.org/3/library/functions.html#bool]) – Defaults to False. If the dataset loaded is in legacy format or not.

	is_stat_feature (bool [https://docs.python.org/3/library/functions.html#bool]) – Calculate statistical features or use raw data in x

	is_labeled (bool [https://docs.python.org/3/library/functions.html#bool]) – If given dataset is labeled

	time_list (list [https://docs.python.org/3/library/stdtypes.html#list] of datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – Datetime of each entry in x. Used for back
annotation, and splitting dataset by weeks or days.

	feature_list (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of statistical features used in statistical feature calculation

	routines (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Function routines that needs to run every time when calculating features.
Excluded from pickling.

	num_enabled_features (int [https://docs.python.org/3/library/functions.html#int]) – Number of enabled features.

	num_static_features (int [https://docs.python.org/3/library/functions.html#int]) – Number of features related to window

	num_per_sensor_features (int [https://docs.python.org/3/library/functions.html#int]) – Number of features that needs to be calculated per enabled sensor

	events_in_window (int [https://docs.python.org/3/library/functions.html#int]) – Number of sensor events (or statistical features of a sliding window)
grouped in a feature vector.










	
disable_activity(activity_label)

	Disable an activity





	Parameters:	activity_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Activity label










	
disable_feature(feature_name)

	Disable a feature





	Parameters:	feature_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature name.










	
disable_routine(routine)

	Disable a routine

Check all enabled feature list and see if the routine is used by other features.
If no feature need the routine, disable it





	Parameters:	routine (pyActLearn.CASAS.stat_features.FeatureRoutineTemplate) – routine to be disabled










	
disable_sensor(sensor_name)

	Disable a sensor





	Parameters:	sensor_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Sensor Name










	
enable_activity(activity_label)

	Enable an activity





	Parameters:	activity_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Activity label


	Returns:	The index of the enabled activity


	Return type:	int [https://docs.python.org/3/library/functions.html#int]










	
enable_feature(feature_name)

	Enable a feature





	Parameters:	feature_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature name.










	
enable_routine(routine)

	Enable a given routine





	Parameters:	routine (pyActLearn.CASAS.stat_features.FeatureRoutineTemplate) – routine to be disabled










	
enable_sensor(sensor_name)

	Enable a sensor





	Parameters:	sensor_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Sensor Name






	Returns

	int [https://docs.python.org/3/library/functions.html#int]: The index of the enabled sensor








	
export_fuel(directory, break_by='week', comments='')

	Export feature and label vector into hdf5 file and store the class information in a pickle file





	Parameters:	
	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to save hdf5 and complementary dataset information

	break_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – Select the way to split the data, either by 'week' or 'day'

	comments (str [https://docs.python.org/3/library/stdtypes.html#str]) – Additional comments to add














	
export_hdf5(filename, comments='', bg_activity='Other_Activity', driver=None)

	Export the dataset into a hdf5 dataset file with meta-data logged in attributes.

To load the data, you can use pyActLearn.CASAS.h5py.CASASH5PY class.





	Parameters:	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to save hdf5 and complementary dataset information.

	comments (str [https://docs.python.org/3/library/stdtypes.html#str]) – Additional comments to add.

	bg_activity (str [https://docs.python.org/3/library/stdtypes.html#str]) – Background activity label.

	driver (str [https://docs.python.org/3/library/stdtypes.html#str]) – h5py dataset R/W driver.














	
get_activities_by_indices(activity_ids)

	Get a group of activities by their corresponding indices





	Parameters:	activity_ids (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – A list of activity indices


	Returns:	A list of activity labels in the same order


	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_activity_by_index(activity_id)

	Get Activity name by their index





	Parameters:	activity_id (int [https://docs.python.org/3/library/functions.html#int]) – Activity index


	Returns:	Activity label


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_activity_color(activity_label)

	Find the color string for the activity.





	Parameters:	activity_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – activity label


	Returns:	RGB color string


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_activity_index(activity_label)

	Get Index of an activity





	Parameters:	activity_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Activity label


	Returns:	Activity index (-1 if not found or not enabled)


	Return type:	int [https://docs.python.org/3/library/functions.html#int]










	
get_enabled_activities()

	Get label list of all enabled activities





	Returns:	list of activity labels


	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_enabled_sensors()

	Get the names of all enabled sensors





	Returns:	List of sensor names


	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_feature_by_index(index)

	Get Feature Name by Index





	Parameters:	index (int [https://docs.python.org/3/library/functions.html#int]) – column index of feature


	Returns:	
	(feature name, sensor name) tuple.

	If it is not per-sensor feature, the sensor name is None.






	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_feature_string_by_index(index)

	Get the string describing the feature specified by column index





	Parameters:	index (int [https://docs.python.org/3/library/functions.html#int]) – column index of feature


	Returns:	Feature string


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_sensor_by_index(sensor_id)

	Get the name of sensor by index





	Parameters:	sensor_id (int [https://docs.python.org/3/library/functions.html#int]) – Sensor index


	Returns:	Sensor name


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_sensor_index(sensor_name)

	Get Sensor Index





	Parameters:	sensor_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Sensor Name


	Returns:	Sensor index (-1 if not found or not enabled)


	Return type:	int [https://docs.python.org/3/library/functions.html#int]










	
populate_feature(method='raw', normalized=True, per_sensor=True)

	Populate the feature vector in x and activities in y





	Parameters:	
	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method to convert sensor events into feature vector.
Available methods are 'raw' and 'stat'.

	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – Will each feature be normalized between 0 and 1?

	per_sensor (bool [https://docs.python.org/3/library/functions.html#bool]) – For features related with sensor ID, are they














	
summary()

	Print summary of loaded datasets






	
write_to_xlsx(filename, start=0, end=-1)

	Write to file in xlsx format





	Parameters:	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – xlsx file name.

	start (int [https://docs.python.org/3/library/functions.html#int]) – start index.

	end (int [https://docs.python.org/3/library/functions.html#int]) – end index.























          

      

      

    

  

    
      
          
            
  
CASAS.h5py

casas_hdf5_doc_master implements pyActLearn.CASAS.h5py.CASASHDF5.


Dataset Structure

HDF5 [https://support.hdfgroup.org/HDF5/] is a data model, library and file format for storing and managing data.
h5py [http://www.h5py.org/] package is the python interface to read and write HDF5 [https://support.hdfgroup.org/HDF5/] file.
You can open and view the HDF5 [https://support.hdfgroup.org/HDF5/] file using hdfviewer [https://support.hdfgroup.org/products/java/hdfview/].

The pre-processed feature array x is stored as dataset /features.
Corresponding target labels is stored as dataset /targets.
The corresponding time for each entry is stored at /time as array of bytes (HDF5 [https://support.hdfgroup.org/HDF5/] does not support str [https://docs.python.org/3/library/stdtypes.html#str]).

The meta-data of the smart home is stored as attributes of the root node.
The table below summarizes the description of all those attributes.







	Attribute
	Description




	bg_target
	Name of background activity.


	comment
	Description of the dataset.


	days
	List of start and stop index tuple of each segment when the dataset is splitted by days.


	weeks
	List of start and stop index tuple of each segment when the dataset is splitted by weeks.


	features
	Feature name corresponding to each column in /features dataset.


	targets
	List of activity labels.


	target_color
	List of color string for each activity for visualization.


	sources
	List of dataset names in the file.


	sensors
	List of sensor names





The image below gives a glimpse of the hdf5 structure in hdfviewer.


[image: ../_images/CASASHDF5_HDFView.png]
Smart home pre-processed data in hdf5 format.






Load and Fetch Data from HDF5

pyActLearn.CASAS.h5py.CASASHDF5 provides multiple interfaces for accessing and loading the data
from hdf5 file. The dataset is usually split by weeks and days. Function
pyActLearn.CASAS.h5py.CASASHDF5.fetch_data() will load the time, features and target labels of the
time frame provided via the start split and end split names.

Here is the code snip to load the data from splits to train a support vector machine.

import sklearn.svm
from pyActLearn.CASAS.h5py import CASASHDF5
# Load dataset
ds = CASASHDF5(path='twor_statNormPerSensor.hdf5')
# Training
time, feature, target = ds.fetch_data(start_split='week_1', stop_split='week_4')
x = feature
y = target.flatten().astype(np.int)
model = sklearn.svm.SVC(kernel='rbf')
model.fit(x, y)
# Testing
time, feature, target = ds.fetch_data(start_split='week_1', stop_split='week_4')
x = feature
y = model.predict(x)








API Reference


	
class pyActLearn.CASAS.h5py.CASASHDF5(filename, mode='r', driver=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

CASASHDF5 Class to create and retrieve CASAS smart home data from h5df file

The data saved to or retrieved from a H5PY data file are pre-calculated features by
CASASData class. The H5PY data file also contains meta-data about the
dataset, which include description for each feature, splits by week and/or splits
by days.





	Variables:	_file (h5py.File) – h5py.File object that represents root group.




	Parameters:	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – HDF5 File Name

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘r’ for load from the file, and ‘w’ for create a new h5py data










	
close()

	Close Dataset






	
create_comments(comment)

	Add comments to dataset





	Parameters:	comment (str [https://docs.python.org/3/library/stdtypes.html#str]) – Comments to the dataset










	
create_features(feature_array, feature_description)

	Create Feature Dataset





	Parameters:	
	feature_array (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Numpy array holding calculated feature vectors

	feature_description (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – List of strings that describe each column of
feature vectors.














	
create_sensors(sensors)

	Add sensors list to attributes

If the sensor IDs in the dataset is not binary coded, there is a need to provide the sensor list to go along
with the feature vectors.





	Parameters:	sensors (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – List of sensor name corresponds to the id in the feature array.










	
create_splits(days, weeks)

	Create splits by days and weeks





	Parameters:	
	days (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – Start index for each day

	weeks (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – Start index for week














	
create_targets(target_array, target_description, target_colors)

	Create Target Dataset





	Parameters:	
	target_array (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Numpy array holding target labels

	target_description (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – List of strings that describe each each target class.

	target_colors (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – List of color values corresponding to each target class.














	
create_time_list(time_array)

	Create Time List





	Parameters:	time_array (list [https://docs.python.org/3/library/stdtypes.html#list] of datetime [https://docs.python.org/3/library/datetime.html#module-datetime]) – datetime corresponding to each feature vector in feature
dataset.










	
fetch_data(start_split=None, stop_split=None, pre_load=0)

	Fetch data between start and stop splits





	Parameters:	
	start_split (str [https://docs.python.org/3/library/stdtypes.html#str]) – Begin of data

	stop_split (str [https://docs.python.org/3/library/stdtypes.html#str]) – End of data

	pre_load (int [https://docs.python.org/3/library/functions.html#int]) – Load extra number of data before start split.






	Returns:	
	Returns a tuple of all sources sliced by the split defined.

	The sources should be in the order of (‘time’, ‘feature’, ‘target’)










	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]












	
flush()

	Write To File






	
get_bg_target()

	Get the description of the target class considered background in the dataset.





	Returns:	Name of the class which is considered background in the dataset. Usually it is ‘Other_Activity’.


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_bg_target_id()

	Get the id of the target class considered background.





	Returns:	The index of the target class which is considered background in the dataset.


	Return type:	int [https://docs.python.org/3/library/functions.html#int]










	
get_days_info()

	Get splits by day.





	Returns:	
	List of (key, value) tuple, where key is the name of the split and value is

	number of items in that split.






	Return type:	List of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
get_feature_description_by_index(i)

	Get the description of feature column \(i\).





	Parameters:	i (int [https://docs.python.org/3/library/functions.html#int]) – Column index.


	Returns:	Corresponding column description.


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_sensor_by_index(i)

	Get sensor name by index





	Parameters:	i (int [https://docs.python.org/3/library/functions.html#int]) – Index to sensor










	
get_target_color_by_index(i)

	Get the color string of target class \(i\).





	Parameters:	i (int [https://docs.python.org/3/library/functions.html#int]) – Class index.


	Returns:	Corresponding target class color string.


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_target_description_by_index(i)

	Get target description by class index \(i\).





	Parameters:	i (int [https://docs.python.org/3/library/functions.html#int]) – Class index.


	Returns:	Corresponding target class description.


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_target_descriptions()

	Get list of target descriptions





	Returns:	List of target class description strings.


	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_weeks_info()

	Get splits by week.





	Returns:	
	List of (key, value) tuple, where key is the name of the split and value is

	number of items in that split.






	Return type:	List of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
is_bg_target(i=None, label=None)

	Check if the target class given by :param:`i` or :param:`label` is considered background





	Parameters:	
	i (int [https://docs.python.org/3/library/functions.html#int]) – Class index.

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Class name.






	Returns:	True if it is considered background.




	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]












	
num_between_splits(start_split=None, stop_split=None)

	Get the number of item between splits





	Parameters:	
	start_split (str [https://docs.python.org/3/library/stdtypes.html#str]) – Begin of data

	stop_split (str [https://docs.python.org/3/library/stdtypes.html#str]) – End of data






	Returns:	The number of items between two splits.




	Return type:	int [https://docs.python.org/3/library/functions.html#int]












	
num_features()

	Get number of features in the dataset






	
num_sensors()

	Return the number of sensors in the sensor list






	
num_targets()

	Total number of target classes.





	Returns:	Total number of target classes.


	Return type:	int [https://docs.python.org/3/library/functions.html#int]










	
set_background_target(target_name)

	Set ‘target_name’ as background target





	Parameters:	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of background target



















          

      

      

    

  

    
      
          
            
  
Statistical Features

For activity recognition based on learning algorithms like support vector machine (SVM), decision tree, random forest,
multi-layer perceptron. [Krishnan2014] investigated various sliding window approaches to generate such statistical
features.


Window Duration


	
class pyActLearn.CASAS.stat_features.WindowDuration(normalized=False)

	Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Length of the window.

Any sliding window should have a duration of less than half a day. If it is, it is probable that there
some missing sensor events, so the statistical features calculated for such a window is invalid.





	Parameters:	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, the hour is normalized between 0 to 1.






	
get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)

	Get the duration of the window in seconds. Invalid if the duration is greater than half a day.


Note

Please refer to get_feature_value() for information about
parameters.














Last Sensor


	
class pyActLearn.CASAS.stat_features.LastSensor(per_sensor=False)

	Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Sensor ID of the last sensor event.rst of the window.

For algorithms like decision trees and hidden markov model, sensor ID can be directly used as features.
However, in other algorithms such as multi-layer perceptron, or support vector machine, the sensor ID
needs to be binary coded.





	Parameters:	per_sensor (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the sensor ID needs to be binary coded.






	
get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)

	Get the sensor which fired the last event.rst in the sliding window.

If it is configured as per-sensor feature, it returns 1 if the sensor specified
triggers the last event.rst in the window. Otherwise returns 0.
If it is configured as a non-per-sensor feature, it returns the index of the
index corresponding to the dominant sensor name that triggered the last event.rst.


Note

Please refer to get_feature_value() for information about
parameters.














Hour of the Event


	
class pyActLearn.CASAS.stat_features.EventHour(normalized=False)

	Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Hour of last event.rst.

It returns the hour of last sensor event.rst in the sliding window. If normalized is set to True,
the hour is divided by 24, so that the value is bounded between 0 to 1.





	Parameters:	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, the hour is normalized between 0 to 1.






	
get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)

	Get the hour when the last sensor event.rst in the window occurred


Note

Please refer to get_feature_value() for information about
parameters.














Seconds of the Event


	
class pyActLearn.CASAS.stat_features.EventSeconds(normalized=False)

	Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Seconds of last event.rst.

The time of the hour (in seconds) of the last sensor event.rst in the window. If normalized is True,
the seconds is divided by 3600.





	Parameters:	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, the hour is normalized between 0 to 1.






	
get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)

	Get the time within an hour when the last sensor event.rst in the window occurred (in seconds)


Note

Please refer to get_feature_value() for information about
parameters.














Sensor Count


	
class pyActLearn.CASAS.stat_features.SensorCount(normalized=False)

	Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Counts the occurrence of each sensor within the sliding window.

The count of occurrence of each sensor is normalized to the length (total number of events) of the window if the
normalized is set to True.





	Parameters:	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, the count of each sensor is normalized between 0 to 1.






	
get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)

	Counts the number of occurrence of the sensor specified in current window.












Sensor Elapse Time


	
class pyActLearn.CASAS.stat_features.SensorElapseTime(normalized=False)

	Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

The time elapsed since last firing (in seconds)


	
get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)

	Get elapse time of specified sensor in seconds












Dominant Sensor


	
class pyActLearn.CASAS.stat_features.DominantSensor(per_sensor=False)

	Bases: pyActLearn.CASAS.stat_features.FeatureTemplate

Dominant Sensor of current window.

The sensor that fires the most amount of sensor event.rst in the current window.





	Parameters:	per_sensor (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the sensor ID needs to be binary coded.






	
get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)

	If per_sensor is True, returns 1 with corresponding sensor Id.
otherwise, return the index of last sensor in the window












Feature Template


	
class pyActLearn.CASAS.stat_features.FeatureTemplate(name, description, enabled=True, normalized=True, per_sensor=False, routine=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Statistical Feature Template





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature name.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature description.

	per_sensor (bool [https://docs.python.org/3/library/functions.html#bool]) – If the feature is calculated for each sensor.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) – If the feature is enabled.

	routine (FeatureRoutineTemplate) – Routine structure.

	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If the value of feature needs to be normalized.






	Variables:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature name.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature description.

	index (int [https://docs.python.org/3/library/functions.html#int]) – Feature index.

	normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If the value of feature needs to be normalized.

	per_sensor (bool [https://docs.python.org/3/library/functions.html#bool]) – If the feature is calculated for each sensor.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) – If the feature is enabled.

	routine (FeatureRoutineTemplate) – Routine structure.

	_is_value_valid (bool [https://docs.python.org/3/library/functions.html#bool]) – If the value calculated is valid










	
get_feature_value(data_list, cur_index, window_size, sensor_info, sensor_name=None)

	Abstract method to get feature value





	Parameters:	
	data_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of sensor data.

	cur_index (int [https://docs.python.org/3/library/functions.html#int]) – Index of current data record.

	window_size (int [https://docs.python.org/3/library/functions.html#int]) – Sliding window size.

	sensor_info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing sensor index information.

	sensor_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Sensor Name.






	Returns:	feature value




	Return type:	double












	
is_value_valid

	Statistical feature value valid check

Due to errors and failures of sensors, the statistical feature calculated
may go out of bound. This abstract method is used to check if the value
calculated is valid. If not, it will not be inserted into feature vectors.





	Returns:	True if the result is valid.


	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]
















Feature Update Routine Template


	
class pyActLearn.CASAS.stat_features.FeatureRoutineTemplate(name, description, enabled=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Feature Routine Class

A routine that calculate statistical features every time the window slides.





	Variables:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature routine name.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature routine description.

	enabled (str [https://docs.python.org/3/library/stdtypes.html#str]) – Feature routine enable flag.










	
clear()

	Clear Internal Data Structures if recalculation is needed






	
update(data_list, cur_index, window_size, sensor_info)

	Abstract update method

For some features, we will update some statistical data every time
we move forward a data record, instead of going back through the whole
window and try to find the answer. This function will be called every time
we advance in data record.





	Parameters:	
	data_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of sensor data.

	cur_index (int [https://docs.python.org/3/library/functions.html#int]) – Index of current data record.

	window_size (int [https://docs.python.org/3/library/functions.html#int]) – Sliding window size.

	sensor_info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing sensor index information.
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Multi-Class Performance Metrics

In most literature, standard multi-class performance metrics are used to evaluate an activity recognition algorithm.
In module pyActLearn.performace, the following functions get the confusion matrix and calculate per-class
performance and overall micro and macro performance.


	
pyActLearn.performance.get_confusion_matrix(num_classes, label, predicted)

	Calculate confusion matrix based on ground truth and predicted result





	Parameters:	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes

	label (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – ground truth labels

	predicted (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – predicted labels






	Returns:	Confusion matrix (numpy_class by numpy_class)




	Return type:	numpy.array












	
pyActLearn.performance.get_performance_array(confusion_matrix)

	Calculate performance matrix based on the given confusion matrix

[Sokolova2009] provides a detailed analysis for multi-class performance metrics.

Per-class performance metrics:


	True_Positive: number of samples that belong to class and classified correctly

	True_Negative: number of samples that correctly classified as not belonging to class

	False_Positive: number of samples that belong to class and not classified correctMeasure:

	False_Negative: number of samples that do not belong to class but classified as class

	Accuracy: Overall, how often is the classifier correct? (TP + TN) / (TP + TN + FP + FN)

	Misclassification: Overall, how often is it wrong? (FP + FN) / (TP + TN + FP + FN)

	Recall: When it’s actually yes, how often does it predict yes? TP / (TP + FN)

	False Positive Rate: When it’s actually no, how often does it predict yes? FP / (FP + TN)

	Specificity: When it’s actually no, how often does it predict no? TN / (FP + TN)

	Precision: When it predicts yes, how often is it correct? TP / (TP + FP)

	Prevalence: How often does the yes condition actually occur in our sample? Total(class) / Total(samples)

	F(1) Measure: 2 * (precision * recall) / (precision + recall)

	G Measure:  sqrt(precision * recall)



Gets Overall Performance for the classifier


	Average Accuracy: The average per-class effectiveness of a classifier

	Weighed Accuracy: The average effectiveness of a classifier weighed by prevalence of each class

	Precision (micro): Agreement of the class labels with those of a classifiers if calculated from sums of per-text
decision

	Recall (micro): Effectiveness of a classifier to identify class labels if calculated from sums of per-text
decisions

	F-Score (micro): Relationship between data’s positive labels and those given by a classifier based on a sums of
per-text decisions

	Precision (macro): An average per-class agreement of the data class labels with those of a classifiers

	Recall (macro): An average per-class effectiveness of a classifier to identify class labels

	F-Score (micro): Relations between data’s positive labels and those given by a classifier based on a per-class
average

	Exact Matching Ratio: The average per-text exact classification




Note

In Multi-class classification, Micro-Precision == Micro-Recall == Micro-FScore == Exact Matching Ratio
(Multi-class classification: each input is to be classified into one and only one class)







	Parameters:	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes

	confusion_matrix (numpy.array) – Confusion Matrix (numpy array of num_class by num_class)






	Returns:	tuple of overall performance and per class performance




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of numpy.array















          

      

      

    

  

    
      
          
            
  
Event-based Scoring

[Minnen2006] and [Ward2011] proposed a set of performance metrics and visualizations for continuous activity
recognition. In both papers, the authors examine the issues in continuous activity recognition and argued that the
traditional standard multi-class evaluation methods fail to capture common artefacts found in continuous AR.

In both papers, the false positives and false negatives are further divided into six categories to faithfully capture
the nature of those errors in the context of continuous AR.

Whenever an error occurs, it is both a false positive with respect to the prediction label and a false negative with
respect to the ground truth label.

False positive errors are divided into the following three categories:


	Insertion (I): A FP that corresponds exactly to an inserted return.

	Merge (M): A FP that occurs between two TP segments within a merge return.

	Overfill (O): A FP that occurs at the start or end of a partially matched return.



False negatives errors are divided into the following three categories:


	Deletion (D): A FN that corresponds exactly to a deleted event.

	Fragmenting (F): A FN that corresponds exactly to a deleted event.

	Underfill (U): A FN that occurs at the start or end of a detected event.




API Reference


	
pyActLearn.performance.event.score_segment(truth, prediction, bg_label=-1)

	Score Segments

According to [Minnen2006] and [Ward2011], a segment is defined as the largest part of an event on which
the comparison between the ground truth and the output of recognition system can be made in an unambiguous
way. However, in this piece of code, we remove the limit where the segment is the largest part of an event.
As long as there is a match between prediction and ground truth, it is recognized as a segment.

There are four possible outcomes to be scored: TP, TN, FP and FN. In event-based performance scoring, the FP and
FN are further divided to the following cases:


	Insertion (I): A FP that corresponds exactly to an inserted return.

	Merge (M): A FP that occurs between two TP segments within a merge return.

	Overfill (O): A FP that occurs at the start or end of a partially matched return.

	Deletion (D): A FN that corresponds exactly to a deleted evjmk, ent.

	Fragmenting (F): A FN that corresponds exactly to a deleted event.

	Underfill (U): A FN that occurs at the start or end of a detected event.







	Parameters:	
	truth (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Ground truth

	prediction (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – prediction

	bg_label (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Background label






	Returns:	An array with truth and event-based scoring labels




	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]












	
pyActLearn.performance.event.per_class_event_scoring(num_classes, truth, prediction, truth_scoring, prediction_scoring)

	Create per-class event scoring to identify the contribution of event-based errors to the traditional recall
and false-positive rate.

Instead of doing an EAD as proposed in previous two papers, we look at Recall and FPR separately.

Recall is defined as TP/(TP + FN). In another word, how often does it predict yes when it’s actually yes?
The errors in the false negatives, such as Deletion, Fragmenting, and Underfill, adds up to the FP. A Deletion
means a total miss of an activity. Underfill represents an error on the begin and end boundary of the event.
Fragmenting represents a glitch in the prediction.

Precision is defined as TP/(TP + FP). In another word, how often is it a yes when it is predicted yes?
The error in the false positives, such as Insertion, Merge and Overfill, adds up to the
FP. In the task of ADL recognition, insertion may be caused by human error in labeling. Overfill represents a
disagreement of the begin/end boundary of an activity, but the merge is a glitch in the prediction.

The function goes through the scoring of prediction and ground truth - and returns two dictionary that summaries
the contribution of all those errors to Recall and False Positive Rate scores.





	Parameters:	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Total number of target classes

	truth (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Ground truth array, shape (num_samples, )

	prediction (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Prediction array, shape (num_samples, )

	truth_scoring (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Event scoring with respect to ground truth labels (i.e. false negatives
are further divided into Deletion, Fragmenting, and Underfill). The information in this array is used to
fill Recall measurement.

	prediction_scoring (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Event scoring with respect to prediction labels (i.e. false positives
are further divided into Insertion, Merging and Overfill). The information in this array is used to fill
Precision measurement.






	Returns:	Tuple of event-based scoring summarie for recall and precision.
Each summary array has a shape of (num_classes, ).




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]












	
pyActLearn.performance.event.per_class_segment_scoring(num_classes, truth, prediction, truth_scoring, prediction_scoring)

	Create per-class event scoring to identify the contribution of event-based errors to the traditional recall
and false-positive rate. The count is based on each event segment instead of each sensor event.





	Parameters:	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Total number of target classes

	truth (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Ground truth array, shape (num_samples, )

	prediction (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Prediction array, shape (num_samples, )

	truth_scoring (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Event scoring with respect to ground truth labels (i.e. false negatives
are further divided into Deletion, Fragmenting, and Underfill). The information in this array is used to
fill Recall measurement.

	prediction_scoring (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Event scoring with respect to prediction labels (i.e. false positives
are further divided into Insertion, Merging and Overfill). The information in this array is used to fill
Precision measurement.






	Returns:	Tuple of event-based scoring summarie for recall and precision.
Each summary array has a shape of (num_classes, ).




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
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This API reference is currently nothing but a dump of docstrings, ordered
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