

Welcome to PyACC’s documentation!

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 api	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | S
 | U
 | W

A

 	
 	acc() (in module api)

 	api (module)

 	
 	async_test() (in module api)

 	async_test_all() (in module api)

 	attach() (in module api)

C

 	
 	copyin() (in module api)

 	
 	copyout() (in module api)

 	create() (in module api)

D

 	
 	delete() (in module api)

 	
 	detach() (in module api)

 	deviceptr() (in module api)

F

 	
 	free() (in module api)

G

 	
 	get_default_async() (in module api)

 	get_device_num() (in module api)

 	
 	get_device_property() (in module api)

 	get_device_type() (in module api)

 	get_num_devices() (in module api)

H

 	
 	hostptr() (in module api)

I

 	
 	init() (in module api)

 	
 	is_present() (in module api)

L

 	
 	load_back_end() (in module api)

M

 	
 	malloc() (in module api)

 	map_data() (in module api)

 	
 	memcpy_device() (in module api)

 	memcpy_from_device() (in module api)

 	memcpy_to_device() (in module api)

O

 	
 	on_device() (in module api)

S

 	
 	set_default_async() (in module api)

 	set_device_num() (in module api)

 	
 	set_device_type() (in module api)

 	shutdown() (in module api)

U

 	
 	unmap_data() (in module api)

 	
 	update_device() (in module api)

 	update_self() (in module api)

W

 	
 	wait() (in module api)

 	wait_all() (in module api)

 	
 	wait_all_async() (in module api)

 	wait_async() (in module api)

api module

The main accelerator decorator and load_back_end function.

These two functions are the only API functions from an end-user’s perspective.

	
api.acc()

	The main accelerator decorator.

Usage:

```python
@acc()
def function_to_accelerate(data, ret):


#pragma acc parallel loop copyout=ret[0:len(data)]
for d in data:


ret.append(d ** 2)







```


	NOTE: You cannot use global variables in the function that is decorated.

	The results are undefined if you do that, but it will likely result
in a NameError. If you need to use a global, just pass it in to the
function. Python passes objects by reference anyway, so don’t worry
about the overhead.

The decorator will scan the decorated function, parse any pragmas it sees,
rewrite the function into a module, load the module, and then
run the re-written function on the fly, rather than running the decorated
function as is.

	
api.async_test(i: int) → int

	The argument must be an async-argument as defined in Section 2.16.1 async clause.
If that value did not appear in any async clauses, or if it did appear in one or more async clauses
and all such asynchronous operations have completed on the current device, the acc_async_test
routine will return with a nonzero value in C and C++, or .true. in Fortran.
If some such asynchronous operations have not completed, the acc_async_test routine will return with a zero
value in C and C++, or .false. in Fortran. If two or more threads share the same accelerator, the
acc_async_test routine will return with a nonzero value or .true. only if all matching
asynchronous operations initiated by this thread have completed; there is no guarantee that all matching
asynchronous operations initiated by other threads have completed.

	
api.async_test_all() → int

	If all outstanding asynchronous operations have completed, the acc_async_test_all
routine will return with a nonzero value in C and C++, or .true. in Fortran. If some asynchronous
operations have not completed, the acc_async_test_all routine will return with a zero value
in C and C++, or .false. in Fortran. If two or more threads share the same accelerator, the
acc_async_test_all routine will return with a nonzero value or .true. only if all
outstanding asynchronous operations initiated by this thread have completed; there is no guarantee that all
asynchronous operations initiated by other threads have completed.

	
api.attach()

	The acc_attach routines are passed the address of a host pointer. If the data is
in shared memory, or if the pointer *ptr is in shared memory or is not present in the current device
memory, or the address to which the *ptr points is not present in the current device memory, no
action is taken. Otherwise, these routines perform the attach action (Section 2.7.2).
These routines may issue a data transfer from local memory to device memory. The _async
version of this function will perform the data transfers asynchronously on the async queue associated
with the value passed in as the async argument. The function may return before the data has been
transferred; see Section 2.16 Asynchronous Behavior for more details. The synchronous version
will not return until the data has been completely transferred.

	
api.copyin(buf, size)

	The acc_copyin routines are equivalent to the enter data directive with a
copyin clause, as described in Section 2.7.6. In C, the arguments are a pointer to the data and
length in bytes; the synchronous function returns a pointer to the allocated device memory, as with
acc_malloc. In Fortran, two forms are supported. In the first, the argument is a contiguous array
section of intrinsic type. In the second, the first argument is a variable or array element and the
second is the length in bytes.
The behavior of the acc_copyin routines is:
• If the data is in shared memory, no action is taken. The C acc_copyin returns the incoming
pointer.
• If the data is present in the current device memory, a present increment action with the
dynamic reference counter is performed. The C acc_copyin returns a pointer to the existing
device memory.
• Otherwise, a copyin action with the appropriate reference counter is performed. The C
acc_copyin returns the device address of the newly allocated memory.
This data may be accessed using the present data clause. Pointers assigned from the C acc_copyin
function may be used in deviceptr clauses to tell the compiler that the pointer target is resident
on the device.
The _async versions of this function will perform any data transfers asynchronously on the async
queue associated with the value passed in as the async argument. The function may return
before the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The
synchronous versions will not return until the data has been completely transferred.
For compatibility with OpenACC 2.0, acc_present_or_copyin and acc_pcopyin are
alternate names for acc_copyin.

	
api.copyout()

	The acc_copyout routines are equivalent to the exit data directive with a
copyout clause, and the acc_copyout_finalize routines are equivalent to the exit data
directive with both copyout and finalize clauses, as described in Section 2.7.7. In C, the
arguments are a pointer to the data and length in bytes. In Fortran, two forms are supported. In the
first, the argument is a contiguous array section of intrinsic type. In the second, the first argument
is a variable or array element and the second is the length in bytes.

The behavior of the acc_copyout routines is:
• If the data is in shared memory, no action is taken.
• Otherwise, if the data is not present in the current device memory, a runtime error is issued.
• Otherwise, a present decrement action with the dynamic reference counter is performed (acc_copyout),
or the dynamic reference counter is set to zero (acc_copyout_finalize). If both
reference counters are then zero, a copyout action is performed.

The _async versions of these functions will perform any associated data transfers asynchronously
on the async queue associated with the value passed in as the async argument. The function may
return before the data has been transferred or deallocated; see Section 2.16 Asynchronous Behavior
for more details. The synchronous versions will not return until the data has been completely
transferred. Even if the data has not been transferred or deallocated before the function returns, the data
will be treated as not present in the current device memory.

	
api.create()

	The acc_create routines are equivalent to the enter data directive with a
create clause, as described in Section 2.7.8. In C, the arguments are a pointer to the data and
length in bytes; the synchronous function returns a pointer to the allocated device memory, as with
acc_malloc. In Fortran, two forms are supported. In the first, the argument is a contiguous array
section of intrinsic type. In the second, the first argument is a variable or array element and the
second is the length in bytes.

The behavior of the acc_create routines is:
• If the data is in shared memory, no action is taken. The C acc_create returns the incoming
pointer.
• If the data is present in the current device memory, a present increment action with the
dynamic reference counter is performed. The C acc_create returns a pointer to the existing
device memory.
• Otherwise, a create action with the appropriate reference counter is performed. The C acc_create
returns the device address of the newly allocated memory.
This data may be accessed using the present data clause. Pointers assigned from the C acc_copyin
function may be used in deviceptr clauses to tell the compiler that the pointer target is resident
on the device.
The _async versions of these function may perform the data allocation asynchronously on the
async queue associated with the value passed in as the async argument. The synchronous versions
will not return until the data has been allocated.
For compatibility with OpenACC 2.0, acc_present_or_create and acc_pcreate are
alternate names for acc_create.

	
api.delete()

	The acc_delete routines are equivalent to the exit data directive with a
delete clause,
and the acc_delete_finalize routines are equivalent to the exit data directive with both
delete clause and finalize clauses, as described in Section 2.7.10. The arguments are as for
acc_copyout.

The behavior of the acc_delete routines is:
• If the data is in shared memory, no action is taken.
• Otherwise, if the data is not present in the current device memory, a runtime error is issued.
• Otherwise, a present decrement action with the dynamic reference counter is performed (acc_delete),
or the dynamic reference counter is set to zero (acc_delete_finalize). If both
reference counters are then zero, a delete action is performed.

The _async versions of these function may perform the data deallocation asynchronously on the
async queue associated with the value passed in as the async argument. The synchronous versions
will not return until the data has been deallocated. Even if the data has not been deallocated before
the function returns, the data will be treated as not present in the current device memory.

	
api.detach()

	The acc_detach routines are passed the address of a host pointer. If the data is
in shared memory, or if the pointer *ptr is in shared memory or is not present in the current device
memory, if the attachment counter for the pointer *ptr is zero, no action is taken. Otherwise, these
routines perform the detach action (Section 2.7.2).

The acc_detach_finalize routines are equivalent to an exit data directive with detach
and finalize clauses, as described in Section 2.7.12 detach clause. If the data is in shared
memory,or if the pointer *ptr is not present in the current device memory, or if the attachment
counter for the pointer *ptr is zero, no action is taken. Otherwise, these routines perform the
immediate detach action (Section 2.7.2).

These routines may issue a data transfer from local memory to device memory. The _async
versions of these functions will perform the data transfers asynchronously on the async queue
associated with the value passed in as the async argument. These functions may return before the data
has been transferred; see Section 2.16 Asynchronous Behavior for more details. The synchronous
versions will not return until the data has been completely transferred.

	
api.deviceptr()

	The acc_deviceptr routine returns the device pointer associated with a host
address. The argument is the address of a host variable or array that has an active lifetime on the
current device. If the data is not present in the current device memory, the routine returns a NULL
value.

	
api.free()

	The acc_free routine will free previously allocated space in the current device
memory; the argument should be a pointer value that was returned by a call to acc_malloc. If
the argument is a NULL pointer, no operation is performed.

	
api.get_default_async() → int

	The acc_get_default_async routine returns the value of
acc-default-async-var for the current thread, which is the asynchronous queue used when an async clause appears
without an async-argument or with the value acc_async_noval.

	
api.get_device_num(devtype: str) → int

	The acc_get_device_num routine returns the value of acc-current-device-num-var for the current thread.

	
api.get_device_property(devnum: int, devtype: str, property: str)

	The acc_get_property routine returns
the value of the specified property. devicenum and devicetype specify the device being
queried. If devicetype has the value acc_device_current, then devicenum is ignored
and the value of the property for the current device is returned. property is an enumeration
constant, defined in openacc.h, for C or C++, or an integer parameter, defined in the openacc
module, for Fortran. Integer-valued properties are returned by acc_get_property, and
string-valued properties are returned by acc_get_property_string. In Fortran, acc_get_property_string
returns the result into the character variable passed as the last argument.

The supported values of property are given in the following table.

property return type return value
“memory” int size of device memory in bytes
“free_memory” int free device memory in bytes
“shared_memory_support” int nonzero if the specified device

supports sharing memory with the local
thread

“name” str device name
“vendor” str device vendor
“driver” str device driver version

An implementation may support additional properties for some devices.

	These routines may not be called within an compute region.

	If the value of property is not one of the known values for that query routine, or that

property has no value for the specified device, acc_get_property will return 0 and
acc_get_property_string will return NULL (in C or C++) or an blank string (in
Fortran).

	
api.get_device_type() → str

	The acc_get_device_type routine returns the value of acc-current-device-type-var
for the current thread to tell the program what type of device will be used to run the next
compute region, if one has been selected. The device type may have been selected by the program
with an acc_set_device_type call, with an environment variable, or by the default behavior
of the program.

	If the device type has not yet been selected, the value acc_device_none may be returned.

	
api.get_num_devices(devtype: str) → int

	Returns the number of devices of the given type.

	
api.hostptr()

	The acc_hostptr routine returns the host pointer associated with a device
address. The argument is the address of a device variable or array, such as that returned from acc_deviceptr,
acc_create or acc_copyin. If the device address is NULL, or does not correspond to any host
address, the routine returns a NULL value

	
api.init(devtype: str) → None

	The acc_init routine also implicitly calls acc_set_device_type. A call to
acc_init is functionally equivalent to a init directive with the matching device type argument,
as described in Section 2.14.1.

	This routine may not be called within a compute region.

	If the device type specified is not available, the behavior is implementation-defined;

in particular, the program may abort.
• If the routine is called more than once without an intervening acc_shutdown call, with a
different value for the device type argument, the behavior is implementation-defined.
• If some accelerator regions are compiled to only use one device type, calling this routine with
a different device type may produce undefined behavior.

	
api.is_present()

	The acc_is_present routine tests whether the specified host data is accessible
from the current device. In C, the arguments are a pointer to the data and length in bytes; the
function returns nonzero if the specified data is fully present, and zero otherwise. In Fortran, two
forms are supported. In the first, the argument is a contiguous array section of intrinsic type. In the
second, the first argument is a variable or array element and the second is the length in bytes. The
function returns .true. if the specified data is in shared memory or is fully present, and .false.
otherwise. If the byte length is zero, the function returns nonzero in C or .true. in Fortran if the
given address is in shared memory or is present at all in the current device memory.

	
api.load_back_end(back_end='host')

	Call this function and pass in a module name as a string.
This will load the given back end. If “default” is passed in,
it will use the default back end.

	
api.malloc(nbytes: int)

	The acc_malloc routine may be used to allocate space in the current device
memory. Pointers assigned from this function may be used in deviceptr clauses to tell the
compiler that the pointer target is resident on the device. In case of an error, acc_malloc returns
a NULL pointer.

	
api.map_data()

	The acc_map_data routine is similar to an enter data directive with a create
clause, except instead of allocating new device memory to start a data lifetime, the device address
to use for the data lifetime is specified as an argument. The first argument is a host address,
followed by the corresponding device address and the data length in bytes. After this call, when the
host data appears in a data clause, the specified device memory will be used. It is an error to call
acc_map_data for host data that is already present in the current device memory. It is undefined
to call acc_map_data with a device address that is already mapped to host data. The device
address may be the result of a call to acc_malloc, or may come from some other device-specific
API routine. After mapping the device memory, the dynamic reference count for the host data is set
to one, but no data movement will occur. Memory mapped by acc_map_data may not have the
associated dynamic reference count decremented to zero, except by a call to acc_unmap_data.
See Section 2.6.6 Reference Counters.

	
api.memcpy_device()

	The acc_memcpy_device routine copies bytes data from the device address
in src to the device address in dest. Both addresses must be addresses in the current device
memory, such as would be returned from acc_malloc or acc_deviceptr. If dest and src
overlap, the behavior is undefined.

The _async version of this function will perform the data transfers asynchronously on the async
queue associated with the value passed in as the async argument. The function may return
before the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The
synchronous versions will not return until the data has been completely transferred.

	
api.memcpy_from_device()

	The acc_memcpy_from_device routine copies bytes data from the device
address in src to the local address in dest. The source address must be an address accessible
from the current device, such as an addressed returned from acc_malloc or acc_deviceptr,
or an address in shared memory.

The _async version of this function will perform the data transfers asynchronously on the async
queue associated with the value passed in as the async argument. The function may return
before the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The
synchronous versions will not return until the data has been completely transferred.

	
api.memcpy_to_device()

	The acc_memcpy_to_device routine copies bytes of data from the local
address in src to the device address in dest. The destination address must be an address accessible
from the current device, such as an address returned from acc_malloc or acc_deviceptr, or
an address in shared memory.

The _async version of this function will perform the data transfers asynchronously on the async
queue associated with the value passed in as the async argument. The function may return
before the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The
synchronous versions will not return until the data has been completely transferred.

	
api.on_device(devtype: str) → int

	The acc_on_device routine may be used to execute different paths
depending on whether the code is running on the host or on some accelerator. If the acc_on_device
routine has a compile-time constant argument, it evaluates at compile time to a constant. The
argument must be one of the defined accelerator types. If the argument is acc_device_host,
then outside of a compute region or accelerator routine, or in a compute region or accelerator
routine that is executed on the host CPU, this routine will evaluate to nonzero for C or C++, and
.true. for Fortran; otherwise, it will evaluate to zero for C or C++, and .false. for Fortran.
If the argument is acc_device_not_host, the result is the negation of the result with
argument acc_device_host. If the argument is an accelerator device type, then in a compute region
or routine that is executed on a device of that type, this routine will evaluate to nonzero for C or
C++, and .true. for Fortran; otherwise, it will evaluate to zero for C or C++, and .false. for
Fortran. The result with argument acc_device_default is undefined.

	
api.set_default_async(i: int) → None

	The acc_set_default_async routine tells the runtime to place any directives
with an async clause that does not have an async-argument or with the special acc_async_noval
value into the specified asynchronous activity queue instead of the default asynchronous activity
queue for that device by setting the value of acc-default-async-var for the current thread. The
special argument acc_async_default will reset the default asynchronous activity queue to the
initial value, which is implementation-defined. A call to acc_set_default_async is
functionally equivalent to a set default_async directive with a matching argument in int-expr, as
described in Section 2.14.3.

	
api.set_device_num(n: int, devtype: str) → None

	The acc_set_device_num routine tells the runtime which device to use among
those available of the given type for compute or data regions in the current thread and sets the value
of acc-current-device-num-var. If the value of devicenum is negative, the runtime will revert to
its default behavior, which is implementation-defined. If the value of the second argument is zero,
the selected device number will be used for all device types. A call to acc_set_device_num
is functionally equivalent to a set device_num directive with the matching device number
argument, as described in Section 2.14.3.

	If the value of devicenum is greater than or equal to the value returned by acc_get_num_devices
for that device type, the behavior is implementation-defined.

	Calling acc_set_device_num implies a call to acc_set_device_type with that
device type argument.

	
api.set_device_type(devtype: str) → None

	The acc_set_device_type routine tells the runtime which type of device to
use among those available and sets the value of acc-current-device-type-var for the current thread.

A call to acc_set_device_type is functionally equivalent to a set device_type directive
with the matching device type argument, as described in Section 2.14.3.

	If the device type specified is not available, the behavior is implementation-defined; in
particular, the program may abort.

	If some compute regions are compiled to only use one device type, calling this routine with a
different device type may produce undefined behavior.

	
api.shutdown(devtype: str) → None

	The acc_shutdown routine disconnects the program from any device of the
specified device type. Any data that is present in the memory of any such device is immediately deallo2331 cated.

	This routine may not be called during execution of a compute region.

	If the program attempts to execute a compute region on a device or to access any data in

the memory of a device after a call to acc_shutdown for that device type, the behavior is
undefined.
• If the program attempts to shut down the acc_device_host device type, the behavior is
undefined.

	
api.unmap_data()

	The acc_unmap_data routine is similar to an exit data directive with a
delete clause, except the device memory is not deallocated. The argument is pointer to the host
data. A call to this routine ends the data lifetime for the specified host data. The device memory is
not deallocated. It is undefined behavior to call acc_unmap_data with a host address unless that
host address was mapped to device memory using acc_map_data. After unmapping memory the
dynamic reference count for the pointer is set to zero, but no data movement will occur. It is an
error to call acc_unmap_data if the structured reference count for the pointer is not zero. See
Section 2.6.6 Reference Counters.

	
api.update_device()

	The acc_update_device routine is equivalent to the update directive with a
device clause, as described in Section 2.14.4. In C, the arguments are a pointer to the data and
length in bytes. In Fortran, two forms are supported. In the first, the argument is a contiguous array
section of intrinsic type. In the second, the first argument is a variable or array element and the
second is the length in bytes. For data not in shared memory, the data in the local memory is copied
to the corresponding device memory. It is a runtime error to call this routine if the data is not present
in the current device memory.

The _async versions of this function will perform the data transfers asynchronously on the async
queue associated with the value passed in as the async argument. The function may return
before the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The
synchronous versions will not return until the data has been completely transferred.

	
api.update_self()

	The acc_update_self routine is equivalent to the update directive with a
self clause, as described in Section 2.14.4. In C, the arguments are a pointer to the data and
length in bytes. In Fortran, two forms are supported. In the first, the argument is a contiguous array
section of intrinsic type. In the second, the first argument is a variable or array element and the
second is the length in bytes. For data not in shared memory, the data in the local memory is copied
to the corresponding device memory. There must be a device copy of the data on the device when
calling this routine, otherwise no action is taken by the routine. It is a runtime error to call this
routine if the data is not present in the current device memory.

The _async versions of this function will perform the data transfers asynchronously on the async
queue associated with the value passed in as the async argument. The function may return
before the data has been transferred; see Section 2.16 Asynchronous Behavior for more details. The
synchronous versions will not return until the data has been completely transferred.

	
api.wait(i: int) → None

	The argument must be an async-argument as defined in Section 2.16.1 async clause.
If that value appeared in one or more async clauses, the acc_wait routine will not return until
the latest such asynchronous operation has completed on the current device. If two or more threads
share the same accelerator, the acc_wait routine will return only if all matching asynchronous
operations initiated by this thread have completed; there is no guarantee that all matching
asynchronous operations initiated by other threads have completed. For compatibility with version 1.0,
this routine may also be spelled acc_async_wait. A call to acc_wait is functionally
equivalent to a wait directive with a matching wait argument and no async clause, as described in
Section 2.16.3.

	
api.wait_all() → None

	The acc_wait_all routine will not return until all the asynchronous operations
have completed. If two or more threads share the same accelerator, the acc_wait_all routine
will return only if all asynchronous operations initiated by this thread have completed; there is no
guarantee that all asynchronous operations initiated by other threads have completed. For com2393 patibility with version 1.0, this routine may also be spelled acc_async_wait_all. A call to
acc_wait_all is functionally equivalent to a wait directive with no wait argument list and no
async argument, as described in Section 2.16.3.

	
api.wait_all_async(i: int) → None

	The argument must be an async-argument as defined in Section 2.16.1 async clause.
The routine will enqueue a wait operation on the appropriate device queue for each other device
queue. See Section 2.16 Asynchronous Behavior for more information. A call to acc_wait_all_async
is functionally equivalent to a wait directive with no wait argument list and a matching async
argument, as described in Section 2.16.3.

	
api.wait_async(w: int, a: int) → None

	The arguments must be async-arguments, as defined in Section 2.16.1 async clause.
The routine will enqueue a wait operation on the appropriate device queue associated with the
second argument, which will wait for operations enqueued on the device queue associated with
the first argument. See Section 2.16 Asynchronous Behavior for more information. A call to
acc_wait_async is functionally equivalent to a wait directive with a matching wait argument
and a matching async argument, as described in Section 2.16.3.

acc

	api module

 nav.xhtml

 Table of Contents

 		
 Welcome to PyACC’s documentation!

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

