

Welcome to pyaardvark’s documentation!

Contents:

	Introduction
	Simple Example

	Tutorial

	FAQ

	API
	Module Interface

	Constants

	Aardvark Object

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The pyaardvark module tries to provide a very simple API to use the
Total Phase [http://www.totalphase.com] Aardvark I2C/SPI Host adatper within your python program.

Simple Example

In this example we access an I2C-EEPROM on address 0x50 and read the
first five bytes of its content:

import pyaardvark

a = pyaardvark.open()
data = a.i2c_master_write_read(0x50, '\x00', 5)
data = b'\x00\x01\x02\x03\x04'
a.close()

Easy, huh?

For those, who are not familiar with I2C-EEPROM accesses: You first write
the offset to read from to the device (0x00 in the example above) and
then you read the desired amount of bytes from the device. The offset
counter will automatically be incremened. Therefore, in the example above
you read the bytes at the offsets 0, 1, 2, 3 and 4. Please note, that there
are byte- and word-addressable EEPROMs. In this example we assumed a
byte-addressable one, because our offset is only one byte.

Tutorial

Opening an Aardvark device

You have three choices to open your Aardvark device. The first is the one
you saw in the simple example above:

a = pyaardvark.open()

If you have only one device connected to your machine, this is all you have
to do. pyaardvark.open() automatically uses the first device it finds.

If you have multiple devices connected, you can either use the port
parameter:

a = pyaardvark.open(1)

or the serial number, which you can find on the device itself or
in your USB properties of your machine:

a = pyaardvark.open(serial_number='1111-222222')

In all cases pyaardvark.open() returns an
pyaardvark.Aardvark object, which then can be used to access the
host adapter.

Using the context manager protocol to open an Aardvark device

All methods of the pyaardvark.Aardvark object can raise an
IOError. Instead of using try .. except .. finally .. you can use
the with statement to open the device. Closing the device will then
happen automatically after the block:

with pyaardvark.open() as a:
 print a.api_version
no need for a.close() here

Accessing your I2C and SPI devices

To issue I2C or SPI transactions you have to first configure the adapter
in the corresponding output mode. Each interface, I2C or SPI, can either
be GPIOs or the actual interface. So if, for example you want to use both
I2C and SPI at the same time and none of them as GPIOs:

a.enable_i2c = True
a.enable_spi = True

After you enabled the I2C interface you can issue transactions on the bus:

a.i2c_master_write(0x50, b'\x00\x02\0x00\x00')

This will write adress device 0x50 and sends the byte sequence 0x00,
0x02, 0x00, 0x00 to it. To read from a device use
pyaardvark.Aardvark.i2c_master_read(). Eventually, both can be combined
and issued in one transaction:
pyaardvark.Aardvark.i2c_master_write_read().

Closing the device

Releasing the device can be done with pyaardvark.Aardvark.close():

a.close()

FAQ

On pyaardvark datatypes

Most parameters of the API take bytes (eg.
pyaardvark.Aardvark.i2c_master_write_read()). Former versions of
pyaardvark used strings, which where handled differently in Python 2
and Python 3. For this reason, pyaardvark now uses the bytes object
to encapsulate data. For Python 2 compatibility, the bytes backport is used
(newbytes). This simplifies the data handling because you don’t
have to explicitly convert the individual characters of the string to
integers (using ord()) anymore.

Warning

Therefore the following is only valid for older pyaardvark
versions (=< 0.5).

Iterables to strings using the built-in chr function:

data = (0x01, 0xaf, 0xff)
data = ''.join(chr(c) for c in data) # data is '\x01\xaf\xff'
a.i2c_master_write(0x50, data) # writes 1h, AFh, FFh to address 50h

To convert a character/string to a number you can use the build-in ord
function:

data_str = a.i2c_master_read(0x50, 3) # data_str is '\xc0\x01\xff'
data = [ord(b) for b in data_str] # data is [192, 1, 255]

API

Module Interface

Constants

Aardvark Object

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to pyaardvark’s documentation!

 		
 Introduction

 		
 Simple Example

 		
 Tutorial

 		
 Opening an Aardvark device

 		
 Using the context manager protocol to open an Aardvark device

 		
 Accessing your I2C and SPI devices

 		
 Closing the device

 		
 FAQ

 		
 On pyaardvark datatypes

 		
 API

 		
 Module Interface

 		
 Constants

 		
 Aardvark Object

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

