

    
      
          
            
  
Py6S - A Python interface to 6S

Py6S is a interface to the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) atmospheric Radiative Transfer Model through the Python programming language. It allows you to run many 6S simulations using a simple Python syntax, rather than dealing with the rather cryptic 6S input and output files. As well as generally making it easier to use 6S, Py6S adds a number of new features including:


	The ability to run many simulations easily and quickly, with no manual editing of input files


	The ability to run for many wavelengths and/or angles and easily plot the results


	The ability to import real-world data to parameterise 6S, such as radiosonde measurements, AERONET sun photometer measurements and ground reflectance spectra from spectral libraries




Py6S was originally created as part of my PhD, to allow me to easily run a number of 6S simulations - to perform sensitivity analyses, for example - but has now been extended to cover the entire range of 6S functionality. Anything that can be done using the standard 6S model can be done through Py6S.

If you’ve just arrived here for the first time then you might like to read the Introduction and Intended Audience pages to see whether Py6S is suitable for your needs, and then follow the Installation instructions and then the Quick Start guide. The Py6S posts [http://blog.rtwilson.com/category/my-software/py6s/] on my blog may also be of interest to you, as these explain various features of Py6S using case studies and example code. Full documentation of every function in Py6S can be accessed from the Table of Contents below.

If you need further help, or just want to send me some comments about Py6S, then visit the Support page, where you will find details of the Py6S mailing list. If you use Py6S as part of some research you publish then you must cite the first paper listed on the Publications page.

Py6S is fully-working, but also under active development. The Release Notes give information on what has changed in recent releases, and the Roadmap describes plans for future features.

Py6S is copyright Robin Wilson and the contributors listed here [https://github.com/robintw/Py6S/blob/master/CONTRIBUTORS], and is released under the GNU Lesser General Public License [http://www.gnu.org/copyleft/lesser.html]. The code is available at GitHub [http://github.com/robintw/py6s]




Table of Contents



	Introduction

	Intended Audience

	Installation
	Prerequisites

	Compiling 6S

	Installing 6S

	Installing Py6S

	Testing Py6S





	Quick Start
	A note on IPython

	A first run

	Setting parameters

	Accessing outputs

	SixSHelpers





	The SixS class
	Attributes





	Accessing outputs

	Parameter Setting
	Atmospheric Profiles

	Aerosol Profiles

	Ground Reflectances

	Geometries

	Altitudes

	Wavelengths

	Atmospheric Corrections





	Helper methods
	Running for many wavelengths

	Running for many angles

	Importing atmospheric profiles from radiosonde data

	Importing aerosol data from AERONET data

	Importing ground reflectance spectra from spectral libraries





	Case Study: Assessing the effect of atmospheric changes during the NCAVEO Field Campaign
	Background

	Code





	Support

	Release Notes
	1.5.4 (16th July 2014)

	1.5.3 (16th July 2014)

	1.5.2 (8th July 2014)

	1.5.1 (3rd July 2014)

	1.5.0 (22nd April 2014)

	1.4.2 (20th Feb 2014)

	1.4.1 (22nd Jan 2014)

	1.4.0 (21st Jan 2014)

	1.3.1 (15th Jan 2014)

	1.3 (6th April 2013)

	1.2.4 (28th Feb 2013)

	1.2.3 (10th Feb 2013)

	1.2.2 (4th Jan 2013)

	1.2.1 (3rd Jan 2013)

	1.2 (2nd Jan 2013)

	1.1.1 (18th Oct 2012)

	1.1 (11th August 2012)

	1.0





	Roadmap
	Soon

	Medium-term

	Eventually





	Publications








Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Introduction

Py6S is a Python interface to the 6S Radiative Transfer Model. It allows you to run many 6S simulations using a
simple Python syntax, rather than dealing with the rather cryptic 6S input and output files. As well as generally
making it easier to use 6S, Py6S adds some new features:


	The ability to run many simulations easily and quickly, with no manual editing of input files


	The ability to run for many wavelengths and/or angles and easily plot the results


	The ability to import real-world data to parameterise 6S, from radiosonde measurements and AERONET sun photometer measurements




Py6S has been designed to be easy to use, and to work on the ‘principle of least surprise’. Far more details are available in the rest of
this documentation, but a quick code example should give you an idea of what Py6S can do:

# Import the Py6S module
from Py6S import *
# Create a SixS object
s = SixS()
# Set the wavelength to 0.675um
s.wavelength = Wavelength(0.675)
# Set the aerosol profile to Maritime
s.aero_profile = AeroProfile.PredefinedType(AeroProfile.Maritime)
# Run the model
s.run()
# Print some outputs
print s.outputs.pixel_reflectance, s.outputs.pixel_radiance, s.outputs.direct_solar_irradiance
# Run the model across the VNIR wavelengths, and plot the result
wavelengths, results = SixSHelpers.Wavelengths.run_vnir(s, output_name='pixel_radiance')
SixSHelpers.Wavelengths.plot_wavelengths(wavelengths, results, "Pixel radiance ($W/m^2$)")





This will produce the results shown below:

0.283 112.095 667.589





[image: _images/intro_wv_plot.png]
Py6S was described in a journal article in Computers and Geosciences which must be cited if Py6S is used for producing outputs for a scientific report/publication - see the Publications page for more information.

This project was written as part of my PhD at the University of Southampton. The code is open-source,
released under the Lesser GNU Public License, and is available at GitHub [http://github.com/robintw/py6s].

I’m very interested in receiving feedback, bug reports and feature suggestions - please see the Support page to find out how to get in touch with me.





          

      

      

    

  

    
      
          
            
  
Intended Audience

Py6S is an interface to the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer model, and therefore the use of Py6S assumes some familiarity with the 6S model and the concepts behind atmospheric Radiative Transfer Modelling for remote-sensing applications.

The best resources to gain some familiarity with these topics are:


	A basic remote sensing textbook for information on the use of Radiative Transfer Models (look in your local academic library)


	The original paper on 6S by Vermote et al [http://www2.geog.ucl.ac.uk/~mdisney/teaching/PPRS/papers/vermote_etal_IEEE_1997.pdf]


	The 6S manual, particularly the first section which introduces the conceptual basis of the model (the later parts document each function in the original Fortran code, which may be less useful), here [http://6s.ltdri.org/6S_code2_thiner_stuff/6s_ltdri_org_manual.htm].




Py6S is a Python module, so you will need to have a basic understanding of Python programming to use the model. Don’t worry too much though - you can use the model without being a Python expert! Some good tutorials for basic Python programming include LearnPython [http://www.learnpython.org/] and the Google Python class [https://developers.google.com/edu/python/].





          

      

      

    

  

    
      
          
            
  
Installation


Prerequisites

Before starting the installation process, ensure that you have a working Python installation with the following modules installed:


	numpy


	scipy


	matplotlib


	python-dateutil


	pysolar (only required for setting the geometry from a location and time)


	pandas (only required for importing AERONET data)




It will also be helpful to have the IPython [http://ipython.org/] installed for interactive testing of Py6S.

An easy way to sort all of this out is to use the Enthought Python Distribution [http://enthought.com/products/epd.php] which will install Python plus many modules which are
often used for scientific computing, along with many tools.




Compiling 6S

Py6S is an interface to 6S, not a replacement, so to use Py6S the 6S executable must already exist on your system.
6S is provided as a number of Fortran 77 source-code files from the 6S website [http://6s.ltdri.org/], and must be compiled for your specific computer system. Detailed instructions are provided in the sections below.


Windows

These instructions were written based on testing with Windows 7, but should work with any version of Windows since Windows XP.


	Download the 6S source code from http://6s.ltdri.org/. Choose Download 6S then 6SV1.1 and download the .tar file. This website seems to be down quite often at the moment, so there is a mirror of these files here [https://dl.dropboxusercontent.com/u/315580/6SV-1.1.zip].


	We need to download the make and tar tools to allow us to install 6S. The easiest way to get these is through a project called GNUWin32. Go to http://gnuwin32.sourceforge.net/packages.html and choose the setup link next to tar and make and download the files.


	Run the two executable files you just downloaded and work through the setup wizard for each, accepting the default options.


	To compile the 6S code we will need a Fortran 77 compiler. These are a little difficult to find, as most compilers are now based on the (more modern) Fortran 95 standard. However, for some reason 6S does not compile using these compilers, so we need to find a Fortran 77 compiler. The best place I’ve found to get one for Windows is http://www.cse.yorku.ca/~roumani/fortran/ftn.htm. Download the FORT99.zip file, and extract it somewhere. Copy the G77 folder to the root of the C drive (so that the folder is C:\G77).


	We now need to edit the Windows path so that we can easily call the compiler and other tools. To do this, right-click on the My Computer icon on your desktop, or the Computer item on your Start Menu and select Properties. Choose the Advanced System Settings option on the left-hand side of the resulting window and then click the Environment Variables button in the next dialog. Now scroll down in the bottom list box until you find a variable called PATH. Click Edit and add the following string to the end of its contents:

C:\Program Files\GNUWin32\bin;C:\G77\bin







	Open the command window by opening the start menu and typing cmd.


	Use the cd command to move to the folder where the .tar file you downloaded in step 1 is located, for example:

cd C:\Users\robin\Downloads







	Run the following commands, one after each other:

tar -xvf 6SV-1.1.tar
    cd 6SV1.1







	Browse to the 6SV1.1 folder in Windows Explorer (it should in your Downloads folder). Inside the folder you should find a file called Makefile. Open the file by double-clicking on it, and selecting Notepad when asked which program to open the file with. When the file has opened, find the text saying -lm (it will be near the end of the file) and delete it. Save the file.


	Switch back to the command window and run the following command:

make










	If no errors have been produced, then test the 6S executable by typing:

sixsV1.1 < ..\Examples\Example_In_1.txt







	If this is working correctly you should see several screen’s worth of output, finishing with something that looks like:

*******************************************************************************
*                        atmospheric correction result                        *
*                        -----------------------------                        *
*       input apparent reflectance            :    0.100                      *
*       measured radiance [w/m2/sr/mic]       :   38.529                      *
*       atmospherically corrected reflectance                                 *
*       Lambertian case :      0.22187                                        *
*       BRDF       case :      0.22187                                        *
*       coefficients xa xb xc                 :  0.00685  0.03870  0.06820    *
*       y=xa*(measured radiance)-xb;  acr=y/(1.+xc*y)                         *
*******************************************************************************












OS X

These instructions were written based on testing with Mac OS X 10.7 (Lion), but should work with previous (and later) versions.


	Download the 6S source code from http://6s.ltdri.org/. Choose Download 6S then 6SV1.1 and download the .tar file. This website seems to be down quite often at the moment, so there is a mirror of these files here [https://dl.dropboxusercontent.com/u/315580/6SV-1.1.zip].


	You will need to have gcc installed to compile 6S. If you already have the XCode developement environment for OS X installed then you’ve already got GCC, if not, go to https://github.com/kennethreitz/osx-gcc-installer/ and choose Option 1: Downloading Pre-Built Binaries and download the appropriate file for your version of OS X. Double-click the file to run it, and follow through the installer.


	Download the f77 compiler from http://hpc.sourceforge.net/. You should choose one of the binary download links under the g77 3.4 heading. If you’re not sure which binary you require then choose the Intel version, as that is what most modern Macs use.


	Open the Terminal (Applications->Utilities->Terminal) and type the following commands (this assumes the files you downloaded above are located in your Downloads folder, and you will need to enter your password when prompted):

cd ~/Downloads
sudo tar -xvf g77-intel-bin.tar.gz -C /







	Now run the following commands, one after each other:

tar -xvf 6SV-1.1.tar
    cd 6SV1.1
    make







	If no errors have been produced, then test the 6S executable by typing:

sixsV1.1 < ../Examples/Example_In_1.txt







	If this is working correctly you should see a number of screen’s worth of output, finishing with something that looks like:

*******************************************************************************
*                        atmospheric correction result                        *
*                        -----------------------------                        *
*       input apparent reflectance            :    0.100                      *
*       measured radiance [w/m2/sr/mic]       :   38.529                      *
*       atmospherically corrected reflectance                                 *
*       Lambertian case :      0.22187                                        *
*       BRDF       case :      0.22187                                        *
*       coefficients xa xb xc                 :  0.00685  0.03870  0.06820    *
*       y=xa*(measured radiance)-xb;  acr=y/(1.+xc*y)                         *
*******************************************************************************












Linux

Part of the problem with installation instructions for Linux is that there are so many distributions of Linux available, and they all
do things slightly differently. Therefore, the instructions below will be a bit more general than those above, but you should be able to
work out what to do.


	Download the 6S source code from http://6s.ltdri.org/. Choose Download 6S then 6SV1.1 and download the .tar file. This website seems to be down quite often at the moment, so there is a mirror of these files here [https://dl.dropboxusercontent.com/u/315580/6SV-1.1.zip].


	You need to install gfortran - the GNU Fortran compiler. This may already be installed in your system - you can check by typing gfortran -v in a terminal, if you don’t get an error, then it is installed. If not, install it using the standard installation method for your distribution. You can often do this via a GUI tool, such as Synaptic Package Manager, or via the command-line, for example:

# For Debian/Ubuntu-based distributions
sudo apt-get install gfortran
# For Gentoo
sudo emerge gfortran
# For Arch
sudo pacman -S gfortran







	Extract the source code from the .tar file you downloaded:

cd ~/Downloads (or wherever you put the file)
tar -xvf 6SV-1.1.tar
cd 6SV1.1







	The Makefile that comes with 6S expects to use the g77 compiler, so we need to instruct it to use gfortran instead. Open the file called Makefile in an editor of your choice, for example:

nano Makefile







	Change the line which contains:

FC      = g77 $(FFLAGS)







	to:

FC      = gfortran -std=legacy -ffixed-line-length-none $(FFLAGS)







	Exit the editor and return to the command line.


	Run make


	If no errors have been produced, then test the 6S executable by typing:

sixsV1.1 < ../Examples/Example_In_1.txt







	If this is working correctly you should see a number of screen’s worth of output, finishing with something that looks like:

*******************************************************************************
*                        atmospheric correction result                        *
*                        -----------------------------                        *
*       input apparent reflectance            :    0.100                      *
*       measured radiance [w/m2/sr/mic]       :   38.529                      *
*       atmospherically corrected reflectance                                 *
*       Lambertian case :      0.22187                                        *
*       BRDF       case :      0.22187                                        *
*       coefficients xa xb xc                 :  0.00685  0.03870  0.06820    *
*       y=xa*(measured radiance)-xb;  acr=y/(1.+xc*y)                         *
*******************************************************************************














Installing 6S

Once you have compiled 6S, you must place the executable (which is, by default, called sixsV1.1) somewhere where Py6S can find it. The best thing to do is
place it somewhere within your system path, as defined by the PATH environment variable. There are two ways to do this:


	Modify your system path to include the location of 6S: To do this, leave 6S where it is (or place it anywhere else that you want) and then edit the PATH environment variable to include that folder. The method to do this varies by platform, but a quick Google search should show you how to accomplish this.


	Move 6S to a location which is already in the path: This is fairly simple as it just involves copying a file. Sensible places to copy to include /usr/bin (on Linux or OS X) and C:\Windows\System32 on Windows.




If it is impossible (for some reason) to place the 6S executable on the PATH it is possible to specify the location manually when running Py6S (see below).




Installing Py6S


Installation from PyPI

The easiest way to install Py6S is from the Python Package Index (PyPI; http://pypi.python.org/pypi). Simply open a command prompt and type:

> pip install Py6S





If you get an error saying that pip cannot be found or is not installed, simply run:

> easy_install pip





and then perform the installation as above.




Installation from a .egg file

Py6S is also distributed as a Python Egg file, with a name like Py6S-0.51-py2.7.egg. You will need to choose the correct egg file for your version of python. To find out your Python version run:

> python -V
Python 2.7.2 -- EPD 7.1-2 (64-bit)





Then simply run the following code, which will install PySolar (required for some Py6S functions), and then Py6S itself:

> pip install PySolar
> easy_install <eggfile>





Where <eggfile> is the correct egg file for your Python version.






Testing Py6S

To check that both 6S and Py6S have been installed correctly, and that Py6S can find the 6S executable, run ipython from the command line, and then run the following commands:

from Py6S import *
SixS.test()





The output should look like this:

6S wrapper script by Robin Wilson
Using 6S located at C:\_Work\Py6S\6S\sixs.exe
Running 6S using a set of test parameters
The results are:
Expected result: 619.158000
Actual result: 619.158000
#### Results agree, Py6S is working correctly





This shows where the 6S executable that Py6S is using has been found (C:\_Work\Py6S\6S\sixs.exe in this case). If the executable cannot be found then it is possible to specify the locationmanually:

from Py6S import *
SixS.test("C:\Test\sixsV1.1")





If you choose this method then remember to include the same path whenever you instantiate the SixS class, as follows:

from Py6S import *
s = SixS("C:\Test\sixsV1.1")











          

      

      

    

  

    
      
          
            
  
Quick Start

Now that you’ve installed Py6S, this section will give you a brief guide on how to use it.


A note on IPython

IPython is an interactive Python shell that has many more features than the standard Python shell. The most useful of these is tab-completion, which will provide significant help in learning how to use Py6S. If you type part of an identifier - for example, s.a and press TAB you will see all of the possible completions. This works for all parts of Py6S, including the output values. For example:

In [3]: s.a<TAB>
s.aero_profile   s.altitudes      s.aot550         s.atmos_corr s.atmos_profile

In [4]: s.outputs.tra<TAB>
s.outputs.transmittance_aerosol_scattering   s.outputs.transmittance_oxygen
s.outputs.transmittance_ch4                  s.outputs.transmittance_ozone
s.outputs.transmittance_co                   s.outputs.transmittance_rayleigh_scattering
s.outputs.transmittance_co2                  s.outputs.transmittance_total_scattering
s.outputs.transmittance_global_gas           s.outputs.transmittance_water
s.outputs.transmittance_no2





It is also very easy to get help on individual parts of Py6S from within IPython. Simply type any name, and append a ? to it - for example AeroProfile.MultimodalLogNormal?. The documentation which is shown will describe the parameters required and give an example of usage.




A first run

The SixS class is at the heart of Py6S. It has methods and attributes that allow you to set 6S parameters, run 6S and then view the outputs.

Py6S sets every 6S parameter to a sensible default, so the simplest possible code just uses the default values. As a nice introduction, we’re going to
plot one of the 6S outputs across the whole Visible-NIR wavelength range:

# Import all of the Py6S code
from Py6S import *
# Create a SixS object called s (used as the standard name by convention)
s = SixS()
# Run the 6S simulation defined by this SixS object across the
# whole VNIR range
wavelengths, results = SixSHelpers.Wavelengths.run_vnir(s, output_name="pixel_radiance")
# Plot these results, with the y axis label set to "Pixel Radiance"
SixSHelpers.Wavelengths.plot_wavelengths(wavelengths, results, "Pixel Radiance")





This will produce a graph like the following:

[image: _images/qs_plot.png]
You will see a number of buttons in the window that is showing the graph. These allow you to zoom in to specific areas of the plot, move the plot around, adjust the margins, and save the plot to a file.

This shows the utility of Py6S very nicely - imagine how long it would have taken to produce this plot by editing and running 6S input files manually! However, the plot probably isn’t particularly helpful as the defaults I’ve chosen probably aren’t the parameters that you want to use for your simulation, and you may not be interested in the calculated pixel radiance. The sections below will explain how to alter this simple program to produce more useful results.




Setting parameters

We’ll start with an example, and then explain the details:

from Py6S import *
s = SixS()
s.atmos_profile = AtmosProfile.PredefinedType(AtmosProfile.Tropical)
s.wavelength = Wavelength(0.357)
s.run()
print s.outputs.pixel_radiance





You can see here that we have changed the atmospheric profile to a pre-defined profile called ‘Tropical’, and changed the wavelength that we are using for the simulation to 0.357 micrometres. You can also see that here we’re accessing the outputs directly, rather than running it over a specific wavelength range and plotting it. Try finding out what other outputs you can access, by typing s.outputs. and pressing TAB.

We’ll look in detail at extracting outputs later, but first, lets have a look at the parameters that we can change, summarised in the table below:








	SixS Parameter

	Description

	Possible values





	atmos_profile

	Atmospheric profile (pressure, water vapour, ozone etc)

	Any outputs from AtmosProfile



	aero_profile

	Aerosol profile (types, distributions etc)

	Any outputs from AeroProfile



	ground_reflectance

	Ground reflectance (Homogeneity, BRDF etc.)

	Any outputs from GroundReflectance



	geometry

	Viewing/Illumination geometry (manual or satellite-specific)

	A Geometry* class, for example Geometry.User



	aot550

	Aerosol Optical Thickness at 550nm

	Floating point number



	visibility

	Visibility in km

	Floating point number



	altitude

	Altitudes of the sensor and target

	An instance of the Altitudes class



	atmos_corr

	Atmospheric correction settings (yes/no, reflectances)

	Any outputs from AtmosCorr






As you can see, the parameter and class names are designed to be fairly self-explanatory. Using the details from above, a more advanced parameterisation is shown below:

from Py6S import *
s = SixS()
s.atmos_profile = AtmosProfile.UserWaterAndOzone(3.6, 0.9) # Set the atmosphere profile to be based on 3.6cm of water and 0.9cm-atm of ozone
s.wavelength = Wavelength(PredefinedWavelengths.LANDSAT_TM_B3) # Set the wavelength to be that of the Landsat TM Band 3 - includes response function
s.ground_reflectance = GroundReflectance.HomogeneousWalthall(1.08, 0.48, 4.96, 0.5) # Set the surface to have a BRDF approximated by the Walthall model
s.geometry = Geometry.Landsat_TM()
s.geometry.month = 7
s.geometry.day = 14
s.geometry.gmt_decimal_hour = 7.75
s.geometry.latitude = 51.148
s.geometry.longitude = 0.307
s.run()
print s.outputs.pixel_radiance





This is far more detailed, but should be self-explanatory given the comments and the table above. Far more details about the individual parameterisations are available in their documentation pages.

The real power of Py6S comes when you combine the paramterisation abilities of Py6S with the standard Python programming constructs. This is basically what we did above for the run_vnir example, although there we used a SixSHelpers method to make it easier for us. We can also do this manually, for example, you can easily loop over a number of parameter values and produce the outputs for each of them:

from Py6S import *
s = SixS()

for param in [AtmosProfile.Tropical, AtmosProfile.MidlatitudeSummer, AtmosProfile.MidlatitudeWinter]:
  s.atmos_profile = AtmosProfile.PredefinedType(param)
  s.run()
  print s.outputs.pixel_radiance





You can see that in this instance the change in pixel radiance over different atmospheric profiles is fairly low (< 0.8). Again, this saves a lot of time and complex input file editing.

That’s it for the quick guide to setting parameters - for more details see the rest of the documentation.




Accessing outputs

The outputs from the 6S model are available under the s.outputs attribute. The outputs are actually stored as dictionaries, and the main set of outputs can be printed (and saved) from the s.outputs.values attribute. For example:

from Py6S import *
s = SixS()
s.run()
print s.outputs.values





However, it’s normally more useful to access individual outputs. This can be done using the standard Python dictionary access methods - for example, print s.outputs.values['pixel_radiance'], but it is generally easy to do this by appending the output name to s.outputs.. For example:

from Py6S import *
s = SixS()
s.run()
print s.outputs.pixel_radiance
print s.outputs.environmental_irradiance
print s.outputs.total_gaseous_transmittance





The outputs stored under s.outputs.values are the main outputs of 6S provided on the first two ‘screenfulls’ of raw 6S output. The names of the outputs in Py6S have been kept as similar to the labels in the raw 6S output as possible, although sometimes names have been changed to improve clarity. Remember that a list of all possible outputs can be gained by typing s.outputs. and pressing TAB in IPython.

The tables showing the integrated values of various transmittances (rayleigh, water, ozone etc) are stored under the s.outputs.trans dictionary as instances of the Transmittance class. This allows the easy storage of the three different transmittances: downward, upward and total. Again, rather than dealing with the dictionary directly, courtesy methods are provided, for example:

from Py6S import *
s = SixS()
s.run()
print s.outputs.transmittance_rayleigh_scattering
print s.outputs.transmittance_rayleigh_scattering.downward
print s.outputs.transmittance_rayleigh_scattering.upward
print s.outputs.transmittance_rayleigh_scattering.total
print s.outputs.transmittance_water





Outputs from the other large grid shown in the raw 6S output, which includes outputs like spherical albedo, total optical depth and polarized reflectance, are also available:

from Py6S import *
s = SixS()
s.run()
print s.outputs.spherical_albedo
print s.outputs.optical_depth_total
print s.outputs.polarized_reflectance








SixSHelpers

A number of ‘helper’ methods have been written to make it easier to perform common operations using Py6S. These can be split into two categories:


Running for a set of parameters

It is often necessary to run a simulation across a number of wavelengths - as it is very rare that we are only interested in a single wavelength. We saw an example of this above, when we used the run_vnir method to run a simulation across the Visible-NIR wavelengths. We can do similar things for other wavelengths really easily. For example:

from Py6S import *
s = SixS()
# Run for the whole range of wavelengths that 6S supports
wv, res = SixSHelpers.Wavelengths.run_whole_range(s, output_name='pixel_radiance')
# Do the same, but at a coarser resolution, so that it's quicker
wv, res = SixSHelpers.Wavelengths.run_whole_range(s, spacing=0.030, output_name='pixel_radiance')
# Run for the Landsat TM bands
wv, res = SixSHelpers.Wavelengths.run_landsat_tm(s, output_name='pixel_radiance')





Py6S supports running across all of the bands for all of the sensors that 6S supports - see the documentation for SixSHelpers.Wavelengths for more details.

You can plot the results really easily too, just by passing the resulting wavelengths and results to the SixSHelpers.Wavelengths.plot_wavelengths() function:

wv, res = SixSHelpers.Wavelengths.run_landsat_tm(s, output_name='pixel_radiance')
# Plot the results, setting the y-axis label appropriately
SixSHelpers.Wavelengths.plot_wavelengths(wv, res, 'Pixel radiance ($W/m^2$)')





You’ll note that all of the run_xxx methods require a SixS instance as the first argument, and then an optional output_name argument. This specifies the output that you want to return from the function, and should whatever you would put after s.outputs. to print the output. For example, the output name could be any of the following:

pixel_reflectance
background_reflectance
transmittance_co2.downward





If you don’t set the output_name argument then the function will return lots of Outputs instances rather than actual values. This can be handy if you want to work with lots of the outputs from a simulation, as it saves you having to run the whole simulation many times. For example:

s = SixS()
# Run for the whole range (takes a long time!)
wv, res = SixSHelpers.Wavelengths.run_landsat_tm(s)
# Look at what is in the results list - it should be an outputs instance
print res[0]
# We can't do anything with the outputs instances directly, but lets
# extract some outputs - we can do all of this without having to run
# the whole simulation again, as the res variable is storing all of the
# outputs
refl = SixSHelpers.Wavelengths.extract_output(res, "pixel_reflectance")
rad = SixSHelpers.Wavelengths.extract_output(res, "pixel_radiance")
SixSHelpers.Wavelengths.plot_wavelengths(wv, refl, "Pixel reflectance")
SixSHelpers.Wavelengths.plot_wavelengths(wv, rad, "Pixel radiance")





Another common use is to simulate a number of different view or solar angles, to examine the changes in the reflectance of a target due to its Bi-Directional Reflectance Distribution Factor. Doing this manually can be very tricky, as many simulations must be run, and then the results must be put into the right format to be plotted. Py6S makes this nice and easy by reducing it to one function call:

from Py6S import *
s = SixS()
# Set the ground reflectance to have some sort of BRDF, or the plot will
# be really boring! In this case, we're using the Roujean model
s.ground_reflectance = GroundReflectance.HomogeneousRoujean(0.037, 0.0, 0.133)
# Run the model and plot the results, varying the view angle (the other
#  option is to vary the solar angle) and plotting the pixel reflectance.
SixSHelpers.Angles.run_and_plot_360(s, 'view', 'pixel_reflectance')





This will produce a plot like the following:

[image: _images/roujean_plot.png]



Using real-world measurements to parameterise Py6S

Another common task is to parameterise 6S with some values collected from real-world measurements, so that the results of 6S simulations can be directly related to measurements in the field.

Py6S provides two ways to parameterise 6S from real-world measurements:


	By importing radiosonde data to set the atmospheric profile, using the import_uow_radiosonde_data() function


	By importing AERONET data to set the aerosol profile, using the import_aeronet_data() function




Detailed descriptions of these functions are given on their respective pages.









          

      

      

    

  

    
      
          
            
  
The SixS class

The SixS class is the heart of Py6S. It has attributes and methods that allow you to set parameters, run 6S and access the outputs. These are described in detail below, but the basic usage pattern is:

from Py6S import *
s = SixS() # Instantiate the class
s.aero_profile = AeroProfile.PredefinedType(AeroProfile.Maritime) # Set various parameters
s.run() # Run the model
print s.outputs.pixel_irradiance # Access the outputs






	
class Py6S.SixS(path=None)

	Wrapper for the 6S Radiative Transfer Model.

This is the main class which can be used to instantiate an object which has the key methods for running 6S.

The most import method in this class is the run() method which writes the 6S input file,
runs the model and processes the output.

The parameters of the model are set as the attributes of this class, and the outputs are available as attributes under
the output attribute.

For a simple test to ensure that Py6S has found the correct executable for 6S simply
run the test() method of this class:

SixS.Test()





Attributes:


	atmos_profile – The atmospheric profile to use. Should be set to the output of an AtmosProfile method. For example:

s.atmos_profile = AtmosProfile.PredefinedType(AtmosProfile.MidlatitudeSummer)







	aero_profile – The aerosol profile to use. Should be set to the output of an AeroProfile method. For example:

s.aero_profile = AeroProfile.PredefinedType(AeroProfile.Urban)







	ground_reflectance – The ground reflectance to use. Should be set to the output of a GroundReflectance method. For example:

s.ground_reflectance = GroundReflectance.HomogeneousLambertian(0.3)







	geometry – The geometrical settings, including solar and viewing angles. Should be set to an instance of a Geometry class, which can then have various attributes set. For example:

s.geometry = GeometryUser()
s.geometry.solar_z = 35
s.geometry.solar_a = 190







	altitudes – The settings for the sensor and target altitudes. This should be set to an instance of the Altitudes() class, which can then have various attributes set. For example:

s.altitudes = Altitudes()
s.altitudes.set_target_custom_altitude(2.3)
s.altitudes.set_sensor_sea_level()







	wavelength – The wavelength settings. Should be set to the output of the Wavelength() method. For example:

s.wavelength = Wavelength(0.550)







	atmos_corr – The settings for whether to perform atmospheric correction or not, and the parameters for this correction. Should be set to the output of a AtmosCorr method. For example:

s.atmos_corr = AtmosCorr.AtmosCorrLambertianFromReflectance(0.23)










	
produce_debug_report()

	Prints out information about the configuration of Py6S generally, and the current
SixS object specifically, which will be useful when debugging problems.






	
run()

	Runs the 6S model and stores the outputs in the output variable.

May raise an ExecutionError if the 6S executable cannot be found.






	
classmethod test()

	Runs a simple test to ensure that 6S and Py6S are installed correctly.






	
write_input_file(filename=None)

	Generates a 6S input file from the parameters stored in the object
and writes it to the given filename.

The input file is guaranteed to be a valid 6S input file which can be run manually if required










Attributes


	
sixs_path

	The sixs path











          

      

      

    

  

    
      
          
            
  
Accessing outputs

The Outputs class stores the outputs produced by a 6S run and allows easy access to them.


	
class Py6S.Outputs(stdout, stderr)

	Stores the output from a 6S run.

Attributes:



	fulltext – The full output of the 6S executable. This can be written to a file with the write_output_file method.


	values – The main outputs from the 6S run, stored in a dictionary. Accessible either via standard dictionary notation (s.outputs.values['pixel_radiance']) or as attributes (s.outputs.pixel_radiance)







Methods:



	__init__() – Constructor which takes the stdout and stderr from the model and processes it into the numerical outputs.


	extract_results() – Function called by the constructor to parse the output into individual variables


	to_int() – Convert a string to an int, so that it works even if passed a float.


	write_output_file() – Write the full textual output of the 6S model to a file.








	
extract_aot(data)

	Extracts the AOT from the visibility and AOT line in the output.






	
extract_results()

	Extract the results from the text output of the model and place them in the values dictionary.






	
extract_vis(data)

	Extracts the visibility from the visibility and AOT line in the output






	
to_int(str)

	Converts a string to an integer.

Does this by converting to float and then converting that to int, meaning that
converting “5.00” to an integer will actually work.


	Arguments:

	
	str – The string containing the number to convert to an integer













	
write_output_file(filename)

	Writes the full textual output of the 6S model run to the specified filename.


	Arguments:

	
	filename – The filename to write the output to




















          

      

      

    

  

    
      
          
            
  
Parameter Setting

Parameters for 6S can be set using the classes and methods described below.


Atmospheric Profiles


	
class Py6S.AtmosProfile

	Stores a enumeration for the pre-specified atmospheric model types


	
classmethod PredefinedType(type)

	Set 6S to use a predefined atmosphere type.

Arguments:


	type – the predefined atmosphere type, one of the constants defined in this class




Example usage:

s.atmosprofile = AtmosProfile.PredefinedType(AtmosProfile.MidlatitudeSummer)










	
classmethod RadiosondeProfile(data)

	Set 6S to use an atmosphere defined by a profile from a radiosonde measurements.

Arguments:


	
	data – A dictionary containing five iterables (eg. lists) with the radiosonde measurements in them. The dictionary must have the following keys:

	
	altitude – in km


	pressure – in mb


	temperature – in k


	water – in g/m^3


	ozone – in g/m^3












There must be 34 items in each iterable, or a ParameterExeception will be thrown.






	
classmethod UserWaterAndOzone(water, ozone)

	Set 6S to use an atmosphere defined by an amount of water vapour and ozone.

Arguments:


	water – The total amount of water in a vertical path through the atmosphere (in g/cm^2)


	ozone – The total amount of ozone in a vertical path through the atmosphere (in cm-atm)




Example usage:

s.atmosprofile = AtmosProfile.UserWaterAndOzone(3.6, 0.9)
















Aerosol Profiles


	
class Py6S.AeroProfile

	Class representing options for Aerosol Profiles


	
class AerosolDistribution(rmin, rmax, numtype)

	Stores data regarding a specific Aerosol Distribution.

Used by the following methods:


	MultimodalLogNormalDistribution()


	ModifiedGammaDistribution()


	JungePowerLawDistribution()





	
add_component(rmean, sigma, percentage_density, refr_real, refr_imag)

	Adds a component to the aerosol distribution.

Wavelength dependent values must be input at the following wavelengths (given in micrometers):
0.350, 0.400, 0.412, 0.443, 0.470, 0.488, 0.515, 0.550, 0.590, 0.633, 0.670, 0.694, 0.760,
0.860, 1.240, 1.536, 1.650, 1.950, 2.250, 3.750

Arguments:


	rmean – The mean radius of the aerosols


	sigma – Sigma, as defined by the distribution (Log Normal etc)


	percentage_density – The percentage density of the aerosol


	refr_real – A 20-element iterable giving the real part of the refractive indices at the specified wavelengths (see above)


	refr_imag – A 20-element iterable giving the imaginary part of the refractive indices at the specified wavelengths (see above)













	
classmethod JungePowerLawDistribution(rmin, rmax)

	Set 6S to use a Junge Power Law distribution.

Arguments:


	rmin – The minimum aerosol radius


	rmax – The maximum aerosol radius




This returns an AerosolDistribution object. Components can then be added to this distribution using the add_component()
method of the returned class.

Example usage:

s.aeroprofile = AeroProfile.JungePowerLawDistribution(0.1, 0.3)
s.aeroprofile.add_component(...)










	
classmethod ModifiedGammaDistribution(rmin, rmax)

	Set 6S to use a Modified Gamma distribution.

Arguments:


	rmin – The minimum aerosol radius


	rmax – The maximum aerosol radius




This returns an AerosolDistribution object. Components can then be added to this distribution using the add_component()
method of the returned class.

Example usage:

s.aeroprofile = AeroProfile.ModifiedGammaDistribution(0.3, 0.1)
s.aeroprofile.add_component(...)










	
classmethod MultimodalLogNormalDistribution(rmin, rmax)

	Set 6S to use a Multimodal Log-Normal distribution.

Arguments:


	rmin – The minimum aerosol radius


	rmax – The maximum aerosol radius




This returns an AerosolDistribution object. Components can then be added to this distribution using the add_component()
method of the returned class.

Example usage:

s.aeroprofile = AeroProfile.MultimodalLogNormalDistribution(0.3, 0.1)
s.aeroprofile.add_component(...)










	
classmethod PredefinedType(type)

	Set 6S to use a predefined aerosol type, one of the constants defined in this class.

Arguments:


	type – the predefined aerosol type, one of the constants defined in this class




Example usage:

s.aeroprofile = AeroProfile.PredefinedType(AeroProfile.Urban)










	
classmethod SunPhotometerDistribution(r, dvdlogr, refr_real, refr_imag)

	Set 6S to use an aerosol parameterisation from Sun Photometer measurements.

The real and imaginary parts of the refractive indices must be input at the following wavelengths
(given in micrometers):
0.350, 0.400, 0.412, 0.443, 0.470, 0.488, 0.515, 0.550, 0.590, 0.633, 0.670, 0.694, 0.760,
0.860, 1.240, 1.536, 1.650, 1.950, 2.250, 3.750

Arguments:


	r – A list of radius measurements from a sun photometer (microns)


	dvdlogr – A list of dV/d(logr) measurements from a sun photometer, for the radiuses as above (cm^3/cm^2/micron)


	refr_real – A list containing the real part of the refractive indices for each of the 20 wavelengths (above). If a single
float value is given then the value is treated as constant for all wavelengths.


	refr_imag – A list containing the imaginary part of the refractive indices for each of the 20 wavelengths (above). If a single
float value is given then the value is treated as constant for all wavelengths.









	
classmethod User(**kwargs)

	Set 6S to use a user-defined aerosol profile based on proportions of standard aerosol components.

The profile is set as a mixture of pre-defined components, each given as an optional keyword.
Not all keywords need to be given, but the values for the keywords given must sum to 1, or a
ParameterError will be raised.

Optional keywords:


	dust – The proportion of dust-like aerosols


	water – The proportion of water-like aerosols


	oceanic – The proportion of oceanic aerosols


	soot – The proportion of soot-like aerosols




Example usage:

s.aeroprofile = AeroProfile.User(dust=0.3, oceanic=0.7)
s.aeroprofile = AeroProfile.User(soot = 0.1, water = 0.3, oceanic = 0.05, dust = 0.55)










	
class UserProfile(atype)

	Set 6S to use a user-defined aerosol profile, with differing AOTs over the height of the profile.

Arguments:


	atype –  Aerosol type to be used for all layers. Must be one of the pre-defined types defined in this class.




Methods:


	add_layer() – Adds a layer to the user-defined aerosol profile, with the specified height and aerosol optical thickness.




Example usage:

s.aeroprofile = AeroProfile.UserProfile(AeroProfile.Maritime)
s.aeroprofile.add_layer(5, 0.34) # Add a 5km-thick layer with an AOT of 0.34
s.aeroprofile.add_layer(10, 0.7) # Add a 10km-thick layer with an AOT of 0.7
s.aeroprofile.add_layer(100, 0.01) # Add a 100km-thick layer with an AOT of 0.01






	
add_layer(height, optical_thickness)

	Adds a layer to the user-defined profile.

Arguments:


	height – Height of the layer (in km)


	optical_thickness – Optical thickness of the layer




Example usage:

s.aeroprofile.add_layer(5, 0.34) # Add a 5km-thick layer with an AOT of 0.34




















Ground Reflectances


	
class Py6S.GroundReflectance

	Produces strings for the input file for a number of different ground reflectance scenarios.

Options are:


	Homogeneous


	Lambertian


	BRDF



	Walthall et al. model


	Rahman et al. model


	etc













	Heterogeneous


	Lambertian








These are combined to give function names like:

HomogeneousLambertian() or HomogeneousWalthall()

The standard functions (HomogeneousLambertian() and HeterogeneousLambertian()) will decide what to do based on the types of inputs they are given:

model.ground_reflectance = GroundReflectance.HomogeneousLambertian(0.7) # A spectrally-constant reflectance of 0.7
model.ground_reflectance = GroundReflectance.HomogeneousLambertian(GroundReflectance.GreenVegetation) # A built-in green vegetation spectrum
model.ground_reflectance = GroundReflectance.HomogeneousLambertian([0.6, 0.8, 0.34, 0.453]) # A user-defined spectrum given in micrometers with steps of 2.5nm
# A 2D ndarray, such as that returned by any of the Spectra.import_* functions
model.ground_reflectance = GroundReflectance.HomogeneousLambertian(Spectra.import_from_usgs("http://speclab.cr.usgs.gov/spectral.lib06/ds231/ASCII/V/russianolive.dw92-4.30728.asc"))






	
classmethod HeterogeneousLambertian(radius, ro_target, ro_env)

	Provides parameterisation for heterogeneous Lambertian (ie. uniform BRDF) surfaces.

These surfaces are modelled in 6S as a circular target surrounded by an environment of a different reflectance.

Arguments:


	radius – The radius of the target (in km)


	ro_target – The reflectance of the target


	ro_env – The reflectance of the environment




Both of the reflectances can be set to any of the following:


	A single float value (for example, 0.634), in which case it is interpreted as a spectrally-constant reflectance value.


	A constant defined by this class (one of GroundReflectance.GreenVegetation, GroundReflectance.ClearWater, GroundReflectance.Sand or GroundReflectance.LakeWater) in which case a built-in spectrum of the specified material is used.


	An array of values (for example, [0.67, 0.85, 0.34, 0.65]) in which case the values are taken to be reflectances across the whole wavelength range at a spacing of 2.5nm. In this case, if the start wavelength is s and the end wavelength is e, the values must be given for the wavelengths: s, s+2.5, s+5.0, s+7.5, ..., e-2.5, e


	A multidimensional ndarray giving wavelength (column 0) and reflectance (column 1) values









	
classmethod HomogeneousHapke(albedo, assymetry, amplitude, width)

	Parameterisation for a surface BRDF based on the Hapke model.

The parameters are:


	albedo


	assymetry parameter for the phase function


	amplitude of hot spot


	width of the hot spot









	
classmethod HomogeneousIaquintaPinty(leaf_dist, hot_spot, lai, hot_spot_param, leaf_reflec, leaf_trans, soil_albedo)

	Parameterisation for a surface BRDF based on the Iaquinta and Pinty model.

The parameters are:


	Leaf distribution (one of the GroundReflectance.LeafDistXXX constants)


	Hot spot setting (GroundReflectance.HotSpot or GroundReflectance.NoHotSpot)


	Leaf Area Index (1-15)


	Hot spot parameter 2*r*lambda (0-2)


	Leaf reflectance (0-0.99)


	Leaf transmittance (0-0.99)


	Soil albedo (0-0.99)




Leaf reflectance + Leaf transmittance must be less than 0.99. If this is not the case, a ParameterException is raised.






	
classmethod HomogeneousKuuskMultispectralCR(lai, lad_eps, lad_thm, relative_leaf_size, chlorophyll_content, leaf_water_equiv_thickness, effective_num_layers, ratio_refractive_indices, weight_first_price_function)

	Parameterisation for a surface BRDF based on Kuusk’s multispectral CR model.

The Parameters are:


	Leaf Area Index (0.1-10)


	LAD eps (0.0-0.9)


	LAD thm (0.0-90.0)


	Relative leaf size (0.01-1.0)


	Chlorophyll content (ug/cm^2, 0-30)


	Leaf water equivalent thickness (0.01-0.03)


	Effective number of elementary layers inside a leaf (1-225)


	Ratio of refractive indices of the leaf surface wax and internal material (0-1.0)


	Weight of the 1st Price function for the soil reflectance (0.1-0.8)









	
classmethod HomogeneousLambertian(ro)

	Provides parameterisation for homogeneous Lambertian (ie. uniform BRDF) surfaces.

The single argument can be either:


	A single float value (for example, 0.634), in which case it is interpreted as a spectrally-constant reflectance value.


	A constant defined by this class (one of GroundReflectance.GreenVegetation, GroundReflectance.ClearWater, GroundReflectance.Sand or GroundReflectance.LakeWater) in which case a built-in spectrum of the specified material is used.


	An array of values (for example, [0.67, 0.85, 0.34, 0.65]) in which case the values are taken to be reflectances across the whole wavelength range at a spacing of 2.5nm. In this case, if the start wavelength is s and the end wavelength is e, the values must be given for the wavelengths: s, s+2.5, s+5.0, s+7.5, ..., e-2.5, e


	A multidimensional ndarray giving wavelength (column 0) and reflectance (column 1) values









	
classmethod HomogeneousMODISBRDF(par1, par2, par3)

	Parameterisation for a surface BRDF based on the MODIS Operational BRDF model.

The parameters are:


	Weight for lambertian kernel


	Weight for Ross Thick kernel


	Weight for Li Spare kernel









	
classmethod HomogeneousMinnaert(k, alb)

	Parameterisation for a surface BRDF based on the Minnaert BRDF model.

The parameters are:
- K surface parameter
- Surface albedo






	
classmethod HomogeneousOcean(wind_speed, wind_azimuth, salinity, pigment_concentration)

	Parameterisation for a surface BRDF based on the Ocean BRDF model.

The parameters are:


	wind speed (in m/s)


	azimuth of the wind (in degrees)


	salinity (in ppt) (set to 34.3ppt if < 0)


	pigment concentration (in mg/m3)









	
classmethod HomogeneousRahman(intensity, asymmetry_factor, structural_parameter)

	Parameterisation for a surface BRDF based on the Rahman BRDF model.

The parameters are:


	Intensity of the reflectance of the surface (N/D value >= 0)


	Asymmetry factor, N/D value between -1.0 and 1.0


	Structural parameter of the medium









	
classmethod HomogeneousRoujean(albedo, k1, k2)

	Parameterisation for a surface BRDF based on the Roujean et al. model.

The parameters are:


	albedo


	geometric parameter for hot spot effect


	geometric parameter for hot spot effect









	
HomogeneousUserDefined(albedo, ro_sun_at_thetas, ro_sun_at_thetav)

	Parameterisation for a user-defined surface BRDF.

The parameters are:


	observed_reflectance – Observed reflectance in the geometry specified in the Geometry parameterisation


	albedo – Surface spherical albedo


	ro_sun_at_thetas – A reflectance table (described below) for the scenario when the sun is at theta_s
(the solar zenith angle specified in the Geometry parameterisation)


	ro_sun_at_thetav – A reflectance table (described below) for the scenario when the sun is at theta_v
(the view zenith angle specified in the Geometry parameterisation)




The reflectance tables mentioned above must be NumPy arrays (that is, instances of ndarray) with a shape of (10, 14) where the table headers are as below,
and each cell contains the reflectance of the surface in the specified geometry:

      zenith
      0   10    20    30    40    50    60    70    80    85
a 0
z 30
i 60
m 90
u 120
t 150
h .
  .
  .










	
classmethod HomogeneousVerstaeteEtAl(kappa_param, phase_funct, scattering_type, leaf_area_density, sun_flecks_radius, ssa, legendre_first, legendre_second, k1, k2, asym_factor, chil)

	Parameterisation for a surface BRDF based on the Verstraete, Pinty and Dickinson model.

The parameters are:


	The type of Kappa parameterisation (one of the GroundReflectance.KappaXXX constants)


	The phase function to use (one of the GroundReflectance.PhaseXXX constants)


	The scattering type to use (either GroundReflectance.SingleScatteringOnly or GroundReflectance.DickinsonMultipleScattering)


	Leaf area density (m^2/m^-3)


	Radius of the sun flecks on the scatterer (m)


	Single Scattering Albedo (0-1)


	First coefficient of Legendre polynomial (Only used if phase function is not GroundReflectance.PhaseIsotropic, set to None otherwise)


	Second coefficient of Legendre polynomial (Only used if phase function is not GroundReflectance.PhaseIsotropic, set to None otherwise)


	Kappa value k1 (Only used if Kappa parameterisation was GroundReflectance.KappaGivenValues, set to None otherwise)


	Kappa value k2 (Only used if Kappa parameterisation was GroundReflectance.KappaGivenValues, set to None otherwise)


	Asymmetry factor for Heyney-Greenstein parameterisation (Only used if Phase function is set to GroundReflectance.PhaseHeyneyGreenstein, set to None otherwise)


	Goudriaan’s chil parameter (Only used if Kappa parameterisation was NOT GroundReflectance.KappaGivenValues, set to None otherwise)









	
classmethod HomogeneousWalthall(param1, param2, param3, albedo)

	Parameterisation for a surface BRDF based on the Walthall et al. model.

The parameters are:


	term in square ts*tv


	term in square ts*ts+tv*tv


	term in ts*tv*cos(phi) (limacon de pascal)


	albedo















Geometries


	
class Py6S.Geometry

	
	
class AVHRR_AM

	Stores parameters for a AVHRR morning pass geometry for 6S.

Attributes:



	month – The month the image was acquired in (0-12)


	day – The day the image was acquired in (1-31)


	column – The AVHRR column of the image


	ascendant_node_longitude – The longitude of the ascendant node of the image


	ascendant_node_hour – The hour of the ascendant node of the image












	
class AVHRR_PM

	Stores parameters for a AVHRR afternoon pass geometry for 6S.

Attributes:



	month – The month the image was acquired in (0-12)


	day – The day the image was acquired in (1-31)


	column – The AVHRR column of the image


	ascendant_node_longitude – The longitude of the ascendant node of the image


	ascendant_node_hour – The hour of the ascendant node of the image












	
class GoesEast

	Stores parameters for a GOES East geometry for 6S.

Attributes:



	month – The month the image was acquired in (0-12)


	day – The day the image was acquired in (1-31)


	gmt_decimal_hour – The time in GMT, as a decimal, in hours (eg. 7.5 for 7:30am)


	column – The GOES East column of the image


	line – The GOES East line of the image












	
class GoesWest

	Stores parameters for a GOES West geometry for 6S.

Attributes:



	month – The month the image was acquired in (0-12)


	day – The day the image was acquired in (1-31)


	gmt_decimal_hour – The time in GMT, as a decimal, in hours (eg. 7.5 for 7:30am)


	column – The GOES West column of the image


	line – The GOES West line of the image












	
class Landsat_TM

	Stores parameters for a Landsat TM geometry for 6S.

Attributes:



	month – The month the image was acquired in (0-12)


	day – The day the image was acquired in (1-31)


	gmt_decimal_hour – The time in GMT, as a decimal, in hours (eg. 7.5 for 7:30am)


	latitude – The latitude of the centre of the image


	longitude – The longitude of the centre of the image












	
class Meteosat

	Stores parameters for a Meteosat geometry for 6S.

Attributes:



	month – The month the image was acquired in (0-12)


	day – The day the image was acquired in (1-31)


	gmt_decimal_hour – The time in GMT, as a decimal, in hours (eg. 7.5 for 7:30am)


	column – The Meteosat column of the image


	line – The Meteosat line of the image












	
class SPOT_HRV

	Stores parameters for a SPOT HRV geometry for 6S.

Attributes:



	month – The month the image was acquired in (0-12)


	day – The day the image was acquired in (1-31)


	gmt_decimal_hour – The time in GMT, as a decimal, in hours (eg. 7.5 for 7:30am)


	latitude – The latitude of the centre of the image


	longitude – The longitude of the centre of the image












	
class User

	Stores parameters for a user-defined geometry for 6S.

Attributes:



	solar_z – Solar zenith angle


	solar_a – Solar azimuth angle


	view_z – View zenith angle


	view_a – View azimuth angle


	day – The day the image was acquired in (1-31)


	month – The month the image was acquired in (0-12)








	
from_time_and_location(lat, long, datetimestring, view_z, view_a)

	Sets the user-defined geometry to a given view zenith and azimuth, and a solar zenith and azimuth calculated from the lat, long and date given.

Uses the PySolar module for the calculations.

Arguments:


	lat – The latitude of the location (0-90 degrees)


	long – The longitude of the location


	datetimestring – Any string that can be parsed to produce a date/time object. All that is really needed is a time - eg. “14:53”


	view_z – The view zenith angle


	view_a – The view azimuth angle



















Altitudes


	
class Py6S.Altitudes

	Allows the specification of target and sensor altitudes.


	
set_sensor_custom_altitude(altitude, aot=-1, water=-1, ozone=-1)

	Set the altitude of the sensor, along with other variables required for the parameterisation
of the sensor.

Takes optional arguments of aot, water and ozone to specify atmospheric contents underneath
the sensor. If these aren’t specified then the water and ozone contents will be interpolated from
the US-1962 standard atmosphere, and the AOT will be interpolated from a 2km exponential aerosol
profile.


	Arguments:

	
	altitude – The altitude of the sensor, in km.


	aot – (Optional, keyword argument) The AOT at 550nm at the sensor


	water – (Optional, keyword argument) The water vapour content (in g/cm^2) at the sensor


	ozone – (Optional, keyword argument) The ozone content (in cm-atm) at the sensor








Example usage:

s.altitudes.set_sensor_custom_altitude(8, 0.35, 1.6, 0.4) # Altitude of 8km, AOT of 0.35, Water content of 1.6g/cm^2 and Ozone of 0.4cm-atm










	
set_sensor_satellite_level()

	Set the sensor altitude to be satellite level.






	
set_sensor_sea_level()

	Set the sensor altitude to be sea level.






	
set_target_custom_altitude(altitude)

	Set the altitude of the target.


	Arguments:

	
	altitude – The altitude of the target, in km













	
set_target_pressure(pressure)

	Set the pressure of the target (a proxy for the height of the target).


	Arguments:

	
	pressure – The pressure at the target, in mb













	
set_target_sea_level()

	Set the altitude of the target to be at sea level (0km)












Wavelengths


	
class Py6S.Wavelength

	Select one or more wavelengths for the 6S simulation.

There are a number of ways to do this:


	Pass a single value of a wavelength in micrometres. The simulation will be performed for just this wavelength:

Wavelength(0.43)







	Pass a start and end wavelength in micrometres. The simulation will be performed across this wavelength range with a constant filter function (spectral response function) of 1.0:

Wavelength(0.43, 0.50)







	Pass a start and end wavelength, and a filter given at 2.5nm intervals. The simulation will be performed across this wavelength range using the given filter function:

Wavelength(0.400, 0.410, [0.7, 0.9, 1.0, 0.3])







	Pass a constant (as defined in this class) for a pre-defined wavelength range:

Wavelength(PredefinedWavelengths.LANDSAT_TM_B1)











	METEOSAT_VISIBLE


	GOES_EAST_VISIBLE


	GOES_WEST_VISIBLE


	AVHRR_NOAA6_B1


	AVHRR_NOAA6_B2


	AVHRR_NOAA7_B1


	AVHRR_NOAA7_B2


	AVHRR_NOAA8_B1


	AVHRR_NOAA8_B2


	AVHRR_NOAA9_B1


	AVHRR_NOAA9_B2


	AVHRR_NOAA10_B1


	AVHRR_NOAA10_B2


	AVHRR_NOAA11_B1


	AVHRR_NOAA11_B2


	SPOT_HRV1_B1


	SPOT_HRV1_B2


	SPOT_HRV1_B3


	SPOT_HRV1_PAN


	SPOT_HRV2_B1


	SPOT_HRV2_B2


	SPOT_HRV2_B3


	SPOT_HRV2_PAN


	LANDSAT_TM_B1


	LANDSAT_TM_B2


	LANDSAT_TM_B3


	LANDSAT_TM_B4


	LANDSAT_TM_B5


	LANDSAT_TM_B7


	LANDSAT_MSS_B1


	LANDSAT_MSS_B2


	LANDSAT_MSS_B3


	LANDSAT_MSS_B4


	ER2_MAS_B1


	ER2_MAS_B2


	ER2_MAS_B3


	ER2_MAS_B4


	ER2_MAS_B5


	ER2_MAS_B6


	ER2_MAS_B7


	MODIS_B1


	MODIS_B2


	MODIS_B3


	MODIS_B4


	MODIS_B5


	MODIS_B6


	MODIS_B7


	MODIS_B8


	AVHRR_NOAA12_B1


	AVHRR_NOAA12_B2


	AVHRR_NOAA14_B1


	AVHRR_NOAA14_B2


	POLDER_B1


	POLDER_B2


	POLDER_B3


	POLDER_B4


	POLDER_B5


	POLDER_B6


	POLDER_B7


	POLDER_B8


	SEAWIFS_B1


	SEAWIFS_B2


	SEAWIFS_B3


	SEAWIFS_B4


	SEAWIFS_B5


	SEAWIFS_B6


	SEAWIFS_B7


	SEAWIFS_B8


	AATSR_B1


	AATSR_B2


	AATSR_B3


	AATSR_B4


	MERIS_B1


	MERIS_B2


	MERIS_B3


	MERIS_B4


	MERIS_B5


	MERIS_B6


	MERIS_B7


	MERIS_B8


	MERIS_B9


	MERIS_B10


	MERIS_B11


	MERIS_B12


	MERIS_B13


	MERIS_B14


	MERIS_B15


	GLI_B1


	GLI_B2


	GLI_B3


	GLI_B4


	GLI_B5


	GLI_B6


	GLI_B7


	GLI_B8


	GLI_B9


	GLI_B10


	GLI_B11


	GLI_B12


	GLI_B13


	GLI_B14


	GLI_B15


	GLI_B16


	GLI_B17


	GLI_B18


	GLI_B19


	GLI_B20


	GLI_B21


	GLI_B22


	GLI_B23


	GLI_B24


	GLI_B25


	GLI_B26


	GLI_B27


	GLI_B28


	GLI_B29


	GLI_B30


	ALI_B1P


	ALI_B1


	ALI_B2


	ALI_B3


	ALI_B4


	ALI_B4P


	ALI_B5P


	ALI_B5


	ALI_B7


	ASTER_B1


	ASTER_B2


	ASTER_B3N


	ASTER_B3B


	ASTER_B4


	ASTER_B5


	ASTER_B6


	ASTER_B7


	ASTER_B8


	ASTER_B9


	ETM_B1


	ETM_B2


	ETM_B3


	ETM_B4


	ETM_B5


	ETM_B7


	HYPBLUE_B1


	HYPBLUE_B2


	SPOT_VGT_B1


	SPOT_VGT_B2


	SPOT_VGT_B3


	SPOT_VGT_B4


	VIIRS_BM1


	VIIRS_BM2


	VIIRS_BM3


	VIIRS_BM4


	VIIRS_BM5


	VIIRS_BM6


	VIIRS_BM7


	VIIRS_BM8


	VIIRS_BM9


	VIIRS_BM10


	VIIRS_BM11


	VIIRS_BM12


	VIIRS_BI1


	VIIRS_BI2


	VIIRS_BI3


	VIIRS_BI4














Atmospheric Corrections


	
class Py6S.AtmosCorr

	Class representing options for selecting atmospheric correction settings for 6S.


	
classmethod AtmosCorrBRDFFromRadiance(radiance)

	Set 6S to perform atmospheric correction using a fully BRDF-represented surface, using a given radiance value.

Arguments:
* radiance – Radiance of the surface






	
classmethod AtmosCorrBRDFFromReflectance(reflectance)

	Set 6S to perform atmospheric correction using a fully BRDF-represented surface, using a given reflectance value.

Arguments:
* reflectance – Reflectance of the surface.






	
classmethod AtmosCorrLambertianFromRadiance(radiance)

	Set 6S to perform atmospheric correction assuming a Lambertian surface, using a given radiance value.

Arguments:
* radiance – Radiance of the surface.






	
classmethod AtmosCorrLambertianFromReflectance(reflectance)

	Set 6S to perform atmospheric correction assuming a Lambertian surface, using a given reflectance value.

Arguments:
* reflectance – Reflectance of the surface.






	
classmethod NoAtmosCorr()

	Set 6S not to perform any atmospheric correction















          

      

      

    

  

    
      
          
            
  
Helper methods

The SixSHelpers module contains a number of helper functions that improve the ease-of-use of Py6S. These include functions to set 6S parameters from various external data sources, as well as functions to make it easy to produce wavelength and BRDF plots from 6S runs.


Running for many wavelengths

The Wavelengths class contains functions to run 6S over a number of wavelength ranges.

For example, the following code runs 6S simulations across the Visible-Near Infrared wavelength range and plots the results, producing the output shown below:

from Py6S import *
s = SixS()
s.aero_profile = AeroProfile.PredefinedType(AeroProfile.Maritime)
wavelengths, values = SixSHelpers.Wavelengths.run_vnir(s, output_name='pixel_radiance')
SixSHelpers.Wavelengths.plot_wavelengths(wavelengths, values, 'Pixel Radiance (W/m^2)')





[image: _images/wv_plot.png]
A similar function exist to run across the whole 6S wavelength range (run_whole_range()), and arbritary lists of wavelengths can be run using the run_wavelengths() function. For example, you can manually specify a number of wavelengths to run for:

wv, res = SixSHelpers.Wavelengths.run_wavelengths(s, [0.46, 0.67, 0.98], output_name='apparent_radiance')





If you want to run user-specific ranges of wavelengths then you can use the handy numpy functions arange [http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html] and linspace [http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html] to generate the lists of wavelengths for you. For example:

# Run the model between 0.5 and 0.7um with a step of 0.001um (1nm)
wv, res = SixSHelpers.Wavelengths.run_wavelengths(s, np.arange(0.5, 0.7, 0.001), output_name='apparent_radiance')

# Run the model at 50 equally-spaced wavelengths in the range 0.9-1.5um
wv, res = SixSHelpers.Wavelengths.run_wavelengths(s, np.linspace(0.9, 1.5, 50), output_name='apparent_radiance')





Functions also exist to run for all bands of the various sensors supported in 6S (for example, run_landsat_tm(), run_modis() and run_aatsr()). It should be noted that for these functions, bands which are outside of the 6S wavelength range (0.2-4.0um), such as the Landsat thermal band, will not be simulated. The example below shows the creation of a plot for the Landsat ETM bands:

from Py6S import *
s = SixS()
s.aero_profile = AeroProfile.PredefinedType(AeroProfile.Maritime)
wavelengths, values = SixSHelpers.Wavelengths.run_landsat_etm(s, output_name='pixel_reflectance')
SixSHelpers.Wavelengths.plot_wavelengths(wavelengths, values, 'Pixel Reflectance')





[image: _images/landsat_etm_plot.png]
The supported sensors are:



	Landsat MSS, TM and ETM


	SPOT HRV1, HRV2 and Vegetation


	MERIS


	MODIS


	POLDER


	SeaWiFS


	AATSR


	ASTER


	VIIRS


	ER2 MODIS Airborne Simulator (MAS)


	ALI


	GLI








	
class Py6S.SixSHelpers.Wavelengths

	Helper functions for running the 6S model for a range of wavelengths, and plotting the result


	
classmethod extract_output(results, output_name)

	Extracts data for one particular SixS output from a list of SixS.Outputs instances.

Basically just a wrapper around a list comprehension.

Arguments:


	results – A list of SixS.Outputs instances


	output_name – The name of the output to extract. This should be a string containing whatever is put after the s.outputs when printing the output, for example ‘pixel_reflectance’.









	
classmethod plot_wavelengths(wavelengths, values, y_axis_label)

	Plot the given wavelengths and values, such as those produced by the other functions in this class.

Arguments:


	wavelengths – A list of wavelengths (in um)


	values – A corresponding list of values at the wavelengths above


	y_axis_label – A string containing tha axis label to use for the Y axis




Example usage:

SixSHelpers.PredefinedWavelengths.plot_wavelengths(wavelengths, values, 'Pixel Radiance ($W/m^2$)')










	
classmethod run_aatsr(s, **kwargs)

	Runs the given SixS parameterisation for all of the AATSR bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_ali(s, **kwargs)

	Runs the given SixS parameterisation for all of the ALI bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_aster(s, **kwargs)

	Runs the given SixS parameterisation for all of the ASTER bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_er2_mas(s, **kwargs)

	Runs the given SixS parameterisation for all of the ER2 MODIS Airborne Simulator (MAS) bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_gli(s, **kwargs)

	Runs the given SixS parameterisation for all of the GLI bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_landsat_etm(s, **kwargs)

	Runs the given SixS parameterisation for all of the Landsat ETM bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_landsat_mss(s, **kwargs)

	Runs the given SixS parameterisation for all of the Landsat MSS bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_landsat_oli(s, **kwargs)

	Runs the given SixS parameterisation for all of the Landsat TM bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_landsat_tm(s, **kwargs)

	Runs the given SixS parameterisation for all of the Landsat TM bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_meris(s, **kwargs)

	Runs the given SixS parameterisation for all of the MERIS bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_modis(s, **kwargs)

	Runs the given SixS parameterisation for all of the MODIS bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_polder(s, **kwargs)

	Runs the given SixS parameterisation for all of the POLDER bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_seawifs(s, **kwargs)

	Runs the given SixS parameterisation for all of the SeaWiFS bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_spot_hrv(s, **kwargs)

	Runs the given SixS parameterisation for all of the SPOT HRV (both 1 and 2, as the only bands specified are the same for both) bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_spot_vgt(s, **kwargs)

	Runs the given SixS parameterisation for all of the SPOT Vegetation bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_viirs(s, **kwargs)

	Runs the given SixS parameterisation for all of the VIIRS bands within the 6S band range, optionally extracting a specific output.

Arguments:


	s – A SixS instance with the parameters set as required


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the centre wavlengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.






	
classmethod run_vnir(s, spacing=0.005, **kwargs)

	Runs the given SixS parameterisation for wavelengths over the Visible-Near Infrared range, optionally extracting a specific output.

By default, the given model is run for wavelengths from 0.4-1.4um, with a spacing of 5nm.

Arguments:


	s – A SixS instance with the parameters set as required


	spacing – (Optional) The spacing to use between each wavelength, in um. Eg. a spacing of 0.001 is a spacing of 1nm.


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the wavelengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.

Example usage:

# Run for the VNIR wavelengths, with the default spacing (5nm), returning SixS.Outputs instances
wavelengths, results = SixSHelpers.PredefinedWavelengths.run_vnir(s)
# Run for the VNIR wavelengths, with a spacing of 10nm, returning pixel reflectance values
wavelengths, results = SixSHelpers.PredefinedWavelengths.run_vnir(s, spacing=0.010, output_name='pixel_reflectance')










	
classmethod run_wavelengths(s, wavelengths, output_name=None, n=None)

	Runs the given SixS parameterisation for each of the wavelengths given, optionally extracting a specific output.

This function is used by all of the other wavelengths running functions, such as :method:`run_vnir`, and thus
any arguments that are passed to this function can also be passed to these other functions.

The calls to 6S for each wavelength will be run in parallel, making this function far faster than simply
running a for loop over each wavelength.

Arguments:


	s – A SixS instance with the parameters set as required


	wavelengths – An iterable containing the wavelengths to iterate over


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance


	n – (Optional) The number of threads to run in parallel. This defaults to the number of CPU cores in your system, and is unlikely to need changing.




Return value:

A tuple containing the wavelengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.

Example usage:

# Run for all wavelengths from 0.4 to 0.5 micrometers, with a spacing of 1nm, returns SixS.Outputs instances
wavelengths, results = SixSHelpers.PredefinedWavelengths.run_wavelengths(s, np.arange(0.400, 0.500, 0.001))
# Run for all wavelengths from 0.4 to 0.5 micrometers, with a spacing of 1nm, returns a list of pixel radiance values
wavelengths, results = SixSHelpers.PredefinedWavelengths.run_wavelengths(s, np.arange(0.400, 0.500, 0.001), output_name='pixel_radiance')
# Run for the first three Landsat TM bands
wavelengths, results = SixSHelpers.PredefinedWavelengths.run_wavelengths(s, [PredefinedWavelengths.LANDSAT_TM_B1, PredefinedWavelengths.LANDSAT_TM_B2, PredefinedWavelengths.LANDSAT_TM_B3)










	
classmethod run_whole_range(s, spacing=0.01, **kwargs)

	Runs the given SixS parameterisation for the entire wavelength range of the 6S model, optionally extracting a specific output.

By default, the given model is run for wavelengths from 0.2-4.0um, with a spacing of 10nm.

Arguments:


	s – A SixS instance with the parameters set as required


	spacing – (Optional) The spacing to use between each wavelength, in um. Eg. a spacing of 0.001 is a spacing of 1nm.


	output_name – (Optional) The output to extract from s.outputs, as a string that could be placed after s.outputs., for example pixel_reflectance




Return value:

A tuple containing the wavelengths used for the run and the results of the simulations. The results will be a list of SixS.Outputs instances if output_name is not set,
or a list of values of the selected output if output_name is set.

Example usage:

# Run for the VNIR wavelengths, with the default spacing (5nm), returning SixS.Outputs instances
wavelengths, results = SixSHelpers.PredefinedWavelengths.run_vnir(s)
# Run for the VNIR wavelengths, with a spacing of 10nm, returning pixel reflectance values
wavelengths, results = SixSHelpers.PredefinedWavelengths.run_vnir(s, spacing=0.010, output_name='pixel_reflectance')










	
classmethod to_centre_wavelengths(item)

	Get centre wavelengths for a sensor from a list of the wavelength tuples.

This is calculated simple as minwv+((maxwv-minwv)/2) and is the CENTER wavelength
(that is the wavelength in the middle of the range) not necessarily the peak wavelength.












Running for many angles

The Angles class contains functions to run 6S over a number of different angles, which are particularly useful when dealing with surfaces with a modelled-BRDF.

For example, the following code runs 6S simulations for many view zenith and azimuth angles and plots a polar contour plot of the resulting reflectance distribution. The output is shown below:

s = SixS()
s.ground_reflectance = GroundReflectance.HomogeneousRoujean(0.037, 0.0, 0.133)
s.geometry.solar_z = 30
s.geometry.solar_a = 0
SixSHelpers.Angles.run_and_plot_360(s, 'view', 'pixel_reflectance')





[image: _images/roujean_plot.png]

	
class Py6S.SixSHelpers.Angles

	
	
classmethod extract_output(results, output_name)

	Extracts data for one particular SixS output from a list of SixS.Outputs instances.

Basically just a wrapper around a list comprehension.

Arguments:


	results – A list of SixS.Outputs instances


	output_name – The name of the output to extract. This should be a string containing whatever is put after the s.outputs when printing the output, for example ‘pixel_reflectance’.









	
classmethod plot360(data, output_name=None, show_sun=True, colorbarlabel=None)

	Plot the data returned from run360() as a polar contour plot, selecting an output if required.

Arguments:


	data – The return value from run360()


	output_name – (Optional) The output name to extract (eg. “pixel_reflectance”) if the given data is provided as instances of the Outputs class


	show_sun – (Optional) Whether to show the location of the sun on the resulting polar plot.


	colorbarlabel – (Optional) The label to use on the color bar shown with the plot









	
classmethod plot_polar_contour(values, azimuths, zeniths, filled=True, colorbarlabel='')

	Plot a polar contour plot, with 0 degrees at the North.

Arguments:


	values – A list (or other iterable - eg. a NumPy array) of the values to plot on the contour plot (the z values)


	azimuths – A list of azimuths (in degrees)


	zeniths – A list of zeniths (that is, radii)


	filled – (Optional) Whether to plot a filled contour plot, or just the contours (defaults to filled)


	yaxislabel – (Optional) The label to use for the colorbar


	colorbarlabel – (Optional) The label to use on the color bar shown with the plot




The shapes of these lists are important, and are designed for a particular use case (but should be more generally useful).
The values list should be len(azimuths) * len(zeniths) long with data for the first azimuth for all the zeniths, then
the second azimuth for all the zeniths etc.

This is designed to work nicely with data that is produced using a loop as follows:

values = []
for azimuth in azimuths:
  for zenith in zeniths:
    # Do something and get a result
    values.append(result)





After that code the azimuths, zeniths and values lists will be ready to be passed into this function.






	
plot_principal_plane(values, y_axis_label)

	Plot the results from a principal plane simulation (eg. a run of run_principal_plane()).

Arguments:


	zeniths – A list of view zenith angles in degrees


	values – A list of simulated values for each of these angles


	y_axis_label – A string to use as the label for the y axis









	
classmethod run360(s, solar_or_view, na=36, nz=10, output_name=None, n=None)

	Runs Py6S for lots of angles to produce a polar contour plot.

The calls to 6S for each angle will be run in parallel, making this function far faster than simply
running a for loop over all of the angles.

Arguments:


	s – A SixS instance configured with all of the parameters you want to run the simulation with


	solar_or_view – Set to 'solar' if you want to iterate over the solar zenith/azimuth angles or 'view' if you want to iterate over the view zenith/azimuth angles


	output_name – (Optional) The name of the output from the 6S simulation to plot. This should be a string containing exactly what you would put after s.outputs to print the output. For example pixel_reflectance.


	na – (Optional) The number of azimuth angles to iterate over to generate the data for the plot (defaults to 36, giving data every 10 degrees)


	nz – (Optional) The number of zenith angles to iterate over to generate the data for the plot (defaults to 10, giving data every 10 degrees)


	n – (Optional) The number of threads to run in parallel. This defaults to the number of CPU cores in your system, and is unlikely to need changing.




For example:

s = SixS()
s.ground_reflectance = GroundReflectance.HomogeneousWalthall(0.48, 0.50, 2.95, 0.6)
s.geometry.solar_z = 30
s.geometry.solar_a = 0
data = SixSHelpers.Angles.run360(s, 'view', output_name='pixel_reflectance')










	
classmethod run_and_plot_360(s, solar_or_view, output_name, show_sun=True, na=36, nz=10, colorbarlabel=None)

	Runs Py6S for lots of angles to produce a polar contour plot.

Arguments:


	s – A SixS instance configured with all of the parameters you want to run the simulation with


	solar_or_view – Set to 'solar' if you want to iterate over the solar zenith/azimuth angles or 'view' if you want to iterate over the view zenith/azimuth angles


	output_name – The name of the output from SixS to plot. This should be a string containing exactly what you would put after s.outputs to print the output. For example pixel_reflectance.


	show_sun – (Optional) Whether to place a marker showing the location of the sun on the contour plot (defaults to True, has no effect when solar_or_view set to 'solar'.)


	na – (Optional) The number of azimuth angles to iterate over to generate the data for the plot (defaults to 36, giving data every 10 degrees)


	nz – (Optional) The number of zenith angles to iterate over to generate the data for the plot (defaults to 10, giving data every 10 degrees)


	colorbarlabel – (Optional) The label to use on the color bar shown with the plot




For example:

s = SixS()
s.ground_reflectance = GroundReflectance.HomogeneousWalthall(0.48, 0.50, 2.95, 0.6)
s.geometry.solar_z = 30
s.geometry.solar_a = 0
SixSHelpers.Angles.run_and_plot_360(s, 'view', 'pixel_reflectance')










	
classmethod run_principal_plane(s, output_name=None, n=None)

	Runs the given 6S simulation to get the outputs for the solar principal plane.

This function runs the simulation for all zenith angles in the azimuthal line of the sun. For example,
if the solar azimuth is 90 degrees, this function will run simulations for:

Azimuth   Zenith
90        85
90        80
90        75
90        70
90        65
90        60
90        55
...       ..
90        0
270       5
270       10
270       15
...       ..
270       80
270       85





The calls to 6S for each angle will be run in parallel, making this function far faster than simply
running a for loop over each angle.

Arguments:


	s – A SixS instance configured with all of the parameters you want to run the simulation with


	output_name – (Optional) The output name to extract (eg. “pixel_reflectance”) if the given data is provided as instances of the Outputs class


	n – (Optional) The number of threads to run in parallel. This defaults to the number of CPU cores in your system, and is unlikely to need changing.




Return values:

A tuple containing zenith angles and the corresponding values or Outputs instances (depending on the arguments given).
The zenith angles returned have been modified so that the zenith angles on the ‘sun-side’ are positive, and those
on the other side (ie. past the vertical) are negative, for ease of plotting.












Importing atmospheric profiles from radiosonde data

6S is provided with a number of pre-defined atmospheric profiles, such as Midlatitude Summer, Tropical and Subarctic Winter. However, it also possible to parameterise 6S using data acquired from radiosonde (weather balloon) measurements.

The main function in this class (import_uow_radiosonde_data()) imports radiosonde data from the University of Wyoming’s radiosonde data website to 6S, allowing accurate parameterisation based on real-world measurements.


	
class Py6S.SixSHelpers.Radiosonde

	
	
classmethod import_bas_radiosonde_data(filename, base_profile)

	Imports a radiosonde profile from the British Antarctic Survey radiosonde format.

TODO: More details here after checking with Martin






	
classmethod import_uow_radiosonde_data(url, base_profile)

	Imports radiosonde data from the University of Wyoming website (http://weather.uwyo.edu/upperair/sounding.html) for use in Py6S.

Arguments:


	url – The URL of the sounding results page on the UoW website


	base_profile – One of the predefined Atmospheric Profiles to use for any parts of the profile which the radiosonde data does not cover (>40km normally)




Return value:

A value suitable for assigning to s.atmos_profile, where s is a SixS instance.

How to use:


	Go to http://weather.uwyo.edu/upperair/sounding.html and use the interface to select the sounding that you want. Ensure that the From and To date/times are the same, so that only one sounding is retrieved.


	Copy the URL of the page displaying the sounding. It will look something like http://weather.uwyo.edu/cgi-bin/sounding?region=europe&TYPE=TEXT%3ALIST&YEAR=2012&MONTH=02&FROM=2712&TO=2712&STNM=03808


	Call this function with the URL as the first argument, and one of the predefined atmospheric profiles (eg. AtmosProfile.MidlatitudeSummer or AtmosProfile.Tropical) as the second argument, and store the result in the atmos_profile attribute of a SixS instance. For example:

s.atmos_profile = SixSHelpers.Radiosonde.import_uow_radiosonde_data("http://weather.uwyo.edu/cgi-bin/sounding?region=europe&TYPE=TEXT%3ALIST&YEAR=2012&MONTH=02&FROM=2712&TO=2712&STNM=03808", AtmosProfile.MidlatitudeWinter)









The water density, pressure and temperature values from the radiosonde sounding will be interpolated to the 6S atmospheric grid and used for the 6S parameterisation. As radiosonde data tends to end at an altitude of around 30-40km, the data from the selected base profile is used above that height. Ozone data is not imported from the radiosonde data, as most radiosondes do not collect ozone density measurements, so the entire profile is taken from the base profile selected.












Importing aerosol data from AERONET data

6S also has a number of pre-defined aerosol profiles, such as Maritime and Urban, as well as a number of methods for setting aerosol particle distributions based on theoretical distributions. However, the AERONET network (http://aeronet.gsfc.nasa.gov/) stores and processes sun photometer data from many stations around the world which allow the more accurate parameterisation of aerosols in 6S.

The main function in this class (import_aeronet_data()) imports data from an AERONET CSV file and sets the aero_profile and aot550 parameters of the 6S model accordingly.


	
class Py6S.SixSHelpers.Aeronet

	Contains functions for importing AERONET measurements to set the 6S aerosol profile.


	
classmethod import_aeronet_data(s, filename, time)

	Imports data from an AERONET data file to a given SixS object.

This requires a valid AERONET data file and the pandas package (see http://pandas.pydata.org/ for
installation instructions).

The type of AERONET file required is a Combined file for All Points (Level
1.5 or 2.0)

To download a file like this:


	Go to http://aeronet.gsfc.nasa.gov/cgi-bin/webtool_opera_v2_inv


	Choose the site you want to get data from


	Tick the box near the bottom labelled as “Combined file (all products without phase functions)”


	Choose either Level 1.5 or Level 2.0 data. Level 1.5 data is unscreened, so contains far more data meaning it is more likely for you to find data near your specified time.


	Choose All Points under Data Format


	Download the file


	Unzip


	Pass the filename to this function




Arguments:


	s – A SixS instance whose parameters you would like to set with AERONET data


	filename – The filename of the AERONET file described above


	time – The date and time of the simulation you want to run, used to choose the AERONET data which is closest
in time. Provide this as a string in almost any format, and Python will interpret it. For example, "12/03/2010 15:39". When dates are ambiguous, the parsing routine will favour DD/MM/YY rather than MM/DD/YY.




Return value:

The function will return s with the aero_profile and aot550 fields filled in from the AERONET data.

Notes:

Beware, this function makes a number of assumptions and performs a number of possibly-inaccurate steps.

1. The refractive indices for aerosols are only provided in AERONET data at a few wavelengths, but 6S requires
them at 20 wavelengths. Thus, the refractive indices are extrapolated outside of their original range, to provide
the necessary data. This is generally not a wonderful idea, but it is the only way to be able to use the data
within 6S. In many cases the refractive indices seem to change very little - but please do check this yourself!

2. The AERONET AOT measurement at the wavelength closest to 550nm (the wavelength required for the AOT
specification in 6S) is used. This varies depending on the AERONET site, but may be 50-100nm (or more) away
from 550nm. In future versions this code will interpolate the AOT at 550nm using the Angstrom coefficent.












Importing ground reflectance spectra from spectral libraries

These functions allow you to import spectra from two widely-used spectral libraries: the USGS Spectral Library [http://speclab.cr.usgs.gov/spectral.lib06/] and the ASTER Spectral Library [http://speclib.jpl.nasa.gov/] and use the spectra to define the ground reflectance of a 6S model run.


	
class Py6S.SixSHelpers.Spectra

	Class allowing the import of spectral libraries from various sources


	
classmethod import_from_aster(loc)

	Imports a spectral library from the ASTER Spectral Library (http://speclib.jpl.nasa.gov/)

Arguments:



	loc – Location of the data to import. Can either be a URL (eg. http://speclib.jpl.nasa.gov/speclibdata/jhu.becknic.vegetation.trees.conifers.solid.conifer.spectrum.txt) or a file path.







Returns:

An ndarray with two columns: wavelength (um) and reflectance (fraction)

Example usage:

from Py6S import *
s = SixS()
s.ground_reflectance = GroundReflectance.HomogeneousLambertian(Spectra.import_from_aster("http://speclib.jpl.nasa.gov/speclibdata/jhu.becknic.vegetation.trees.conifers.solid.conifer.spectrum.txt"))
s.run()
# Bear in mind this will produce a result for a single Wavelength
# To see what the whole spectrum will look like after atmospheric
# radiative transfer has taken place you must run for multiple wavelengths
# For example
wavelengths, reflectances = SixSHelpers.Wavelengths.run_vnir(s, output_name="apparent_radiance")










	
classmethod import_from_usgs(loc)

	Imports a spectral library from the USGS Spectral Library (available at http://speclab.cr.usgs.gov/spectral.lib06/).

Arguments:



	loc – Location of the data to import. Can either be a URL (eg. http://speclab.cr.usgs.gov/spectral.lib06/ds231/ASCII/V/russianolive.dw92-4.30728.asc) or a file path.







Returns:

An ndarray with two columns: wavelength (um) and reflectance (fraction)

Example usage:

from Py6S import *
s = SixS()
s.wavelength = Wavelength(0.500)
s.ground_reflectance = GroundReflectance.HomogeneousLambertian(Spectra.import_from_usgs("http://speclab.cr.usgs.gov/spectral.lib06/ds231/ASCII/V/russianolive.dw92-4.30728.asc"))
s.run()
# Bear in mind this will produce a result for a single Wavelength
# To see what the whole spectrum will look like after atmospheric
# radiative transfer has taken place you must run for multiple wavelengths
# For example
wavelengths, reflectances = SixSHelpers.Wavelengths.run_vnir(s, output_name="apparent_radiance")



















          

      

      

    

  

    
      
          
            
  
Case Study: Assessing the effect of atmospheric changes during the NCAVEO Field Campaign

This page describes an example use of some of the more advanced features of Py6S which should allow you to get a sense of how Py6S can be used as part of real-world scientific research.


Background

The NCAVEO Field Campaign took place in June 2006 and involved the collection of a large number of ground, airborne and spaceborne measurements of the area around Chilbolton, Hampshire, UK with the aim to produce a large dataset of many observations which could be used for model testing and validation (REF HERE). On the main day of data collection (17th June) the atmospheric conditions worsened as the day progressed, thus leading to issues in comparing the data taken at different periods during the day. This issue was a particular problem when attempting to mosaic a number of flightlines obtained from airborne data over a period of around 2 hours. The aim of this example is to show how simulations can easily be performed with Py6S to assess the significance of these atmospheric changes, and the possible influence on uses of this data.

The AERONET site at Chilbolton provides automatic regular sun photometry measurements, with AOT data available approximately every 15 minutes. However, only cloud-screened (level 1.5) data is processed through an inversion algorithm to retrieve more detailed data on the aerosol properties. During the morning of the 17th June, full inverted data is only available at 08:02 and 11:08. However, as these two times are likely to be close to the two extremes of atmospheric conditions, analysis at only these times will still provide a useful test of the significance of the changes.




Code

Py6S code has been written to import this AERONET data, set suitable other parameters, and run simulations for both times with the ground reflectance set to a standard green vegetation spectral reflectance profile. The resulting at sensor radiances and the percentage difference between them are shown below the code.

The code is included below and in the casestudy folder in the Github repository [https://github.com/robintw/Py6S]. The code requires the CHL file to exist, this is also available in this folder:

# Import Py6S1#
from Py6S import *
# Import the Matplotlib plotting environment
from matplotlib.pyplot import *
# Import the functions for copying objects
import copy

# Define a function to easily calculate NDVI
def ndvi(red, nir):
  return ((nir - red) / (nir + red))

# Create a SixS object for the 'early' time (~08:00)
early = SixS()
# Set the altitudes
early.altitudes.set_target_sea_level()
early.altitudes.set_sensor_satellite_level()
# Set the ground reflectance to be a typical green veg spectrum
early.ground_reflectance = GroundReflectance.HomogeneousLambertian(GroundReflectance.GreenVegetation)
early.geometry = Geometry.User()

# Make a copy of the SixS object to use for the 'late' time (~11:30)
late = copy.deepcopy(early)

# Import the AERONET data into each SixS object
SixSHelpers.Aeronet.import_aeronet_data(early, "CHL", "17/06/2006 08:00:00")
SixSHelpers.Aeronet.import_aeronet_data(late, "CHL", "17/06/2006 11:30:00")

# Set the geometry for each SixS object
# With solar angles from location and time and
# with view from nadir
early.geometry.from_time_and_location(51.14510, -1.43861, "17/06/2006 08:00:00", 0, 0)
late.geometry.from_time_and_location(51.14510, -1.43861, "17/06/2006 11:30:00", 0, 0)

# Run each simulation for the VNIR wavelengths - using a wider spacing than default
# to make the simulation faster
wv, early_res = SixSHelpers.Wavelengths.run_vnir(early, spacing=0.01, output_name='pixel_radiance')
wv, late_res = SixSHelpers.Wavelengths.run_vnir(late, spacing=0.01, output_name='pixel_radiance')

# Plot the two radiance curves
clf()
plot(wv, early_res, 'b-', label="08:00")
plot(wv, late_res, 'r-', label="11:30")
xlabel("Wavelength ($\mu m$)")
ylabel("Radiance ($W/m^2$)")
legend()
savefig("ncaveo_radiances.png")

# Calculate the percentage difference and plot it
clf()
perc_diff = ((early_res - late_res) / early_res) * 100
plot(wv, perc_diff)
xlabel("Wavelength ($\mu m$)")
ylabel("Percentage difference from 08:10 measurement (%)")
savefig("ncaveo_perc_diff.png")

# Run simulations again for the SPOT HRV sensor
# to then calculate the NDVI difference
wv, early_spot = SixSHelpers.Wavelengths.run_spot_hrv(early, output_name='pixel_radiance')
wv, late_spot = SixSHelpers.Wavelengths.run_spot_hrv(late, output_name='pixel_radiance')

print early_spot
print late_spot

# Calculate NDVIs
early_ndvi = ndvi(early_spot[1], early_spot[2])
late_ndvi = ndvi(late_spot[1], late_spot[2])

print "Early NDVI:\t%f" % early_ndvi
print "Late NDVI:\t%f" % late_ndvi
print "Percentage Difference:\t%f" % (((early_ndvi - late_ndvi) / early_ndvi) * 100)





Text output:

Early NDVI:     0.660894
Late NDVI:      0.678239
Percentage Difference:  -2.624595





[image: _images/ncaveo_radiances.png]
[image: _images/ncaveo_perc_diff.png]
It seems that the change in radiance is high, with an average change of 50%, which suggests that there are likely to be issues with using raw radiance data collected over the course of the morning. However, when assessing the significance of this change it is often helpful to look at standard remote sensing outputs like NDVI, rather than radiance. NDVI calculations show a reduction of 2.62% between 08:00 and 11:30, suggesting that although the deteriorating atmospheric conditions did have a spectrally-varying effect, and thus changed the NDVI values, this change is unlikely to be significant.







          

      

      

    

  

    
      
          
            
  
Support

Py6S was developed by the author as part of his PhD (which is still in progress).

Support is primarily available through the Py6S mailing list [https://groups.google.com/forum/?fromgroups#!forum/py6s] - please join the list and send a message if you want help with Py6S, or have bugs or feature requests to report. The mailing list is also where release announcements will be made and the future direction of Py6S discussed.





          

      

      

    

  

    
      
          
            
  
Release Notes

Details on the changes in recent versions of Py6S can be found below. More detailed information is available by examining the commit history [https://github.com/robintw/Py6S/commits/master/] via Github.


1.5.4 (16th July 2014)

Fixed minor error on install (didn’t affect any functionality)




1.5.3 (16th July 2014)


	Added RapidEye bands to PredefinedWavelengths







1.5.2 (8th July 2014)


	Added extraction of two outputs that had been missed out before: the integrated filter function, and the integrated solar spectrum.







1.5.1 (3rd July 2014)


	Added an option to write_input_file to allow a filename to be given - allowing users to easily export standard 6S input files from Py6S.







1.5.0 (22nd April 2014)


	First release compatible with Python 3. All Py6S functionality should work fine on Python 3 - please contact me if there are any problems.


	Added Landsat 8 spectral response functions, and a run_landsat_oli function.







1.4.2 (20th Feb 2014)


	Fixed bug in the AERONET import routine which meant that ambiguous dates would be imported as MM/DD/YYYY rather than DD/MM/YYYY as specified in the documentation (thanks Marcin)







1.4.1 (22nd Jan 2014)


	Fixed a minor bug which means that running for multiple wavelengths/angles after having already run the SixS object manually would crash







1.4.0 (21st Jan 2014)


	Added parallel processing support for the methods in SixSHelpers that run for multiple wavelengths and multiple angles. This will significantly speed up these runs: on a dual-core machine they should take approximately half the time, and the speedup will be even better on quad-core or eight-core computers. The parallelisation abilities (including the speedup) may be improved in the future, but this should be a significant improvement for now.


	Added produce_debug_report() function to the SixS object. This gives all of the debugging information that I would need when helping to fix a problem - so please run this and send me the output whenever problems occur.







1.3.1 (15th Jan 2014)


	Added proper error handling for dealing with erroneous 6S output, now things shouldn’t crash if 6S produces strange results


	Bugfix for error when setting custom altitudes in certain situations


	Added more detailed error messages for failure to import AERONET data


	Bugfix for the specification of geometry parameters within the 6S input file - now more accurate


	Improvements to documentation (typos, clearer explanations etc)


	Added CITATION file to explain how to cite Py6S







1.3 (6th April 2013)


	Fixed a number of bugs relating to geometry specification (thanks Matthew Hanson).


	Significantly improved the code for importing AERONET data - this is now far less likely to go wrong, and more intelligent about what measurements it takes.







1.2.4 (28th Feb 2013)

Bugfix release to fix issue with importing AERONET data from instruments which don’t take measurements at 500nm. Importing should now work for any AERONET data, with a warning raised if the instrument doesn’t have a band within 70nm of 550nm.




1.2.3 (10th Feb 2013)

Bugfix release to fix issue with importing geometry details from time and location, due to issues with importing PySolar.




1.2.2 (4th Jan 2013)

Bugfix release to fix issue with installation not finding README.rst on some systems.




1.2.1 (3rd Jan 2013)

Bugfix release to fix an issue with the BRDF options in Py6S.GroundReflectance, as none of them worked any more due to an issue with the features that were added in v1.2.




1.2 (2nd Jan 2013)

Added ability to import a spectrum from a spectral library (USGS or ASTER spectral libraries are currently supported) and then specify it as the ground reflectance. See Py6S.SixSHelpers.Spectra and Py6S.GroundReflectance.

This also means that anything that can produce a 2D array with wavelengths (column 0, in micrometres) and reflectances (column 1) can be used to set the ground reflectance. For example, the Python interface to the ProSAIL model (PyProSAIL [https://pyprosail.readthedocs.org/en/latest/]) can do this, and thus outputs from PyProSAIL can easily be used with 6S (see here [https://pyprosail.readthedocs.org/en/latest/#using-with-py6s] for more detailed instructions).




1.1.1 (18th Oct 2012)

Fixed bug which caused Py6S to crash when performing atmospheric correction on Linux (Thanks Vincent!)




1.1 (11th August 2012)


	Updated code for running for multiple wavelengths to make it far easier to maintain


	Fixed bug with user-defined aerosol profile







1.0

This is the first public release of Py6S, which includes all of the functionality detailed in the documentation.







          

      

      

    

  

    
      
          
            
  
Roadmap

The current release of Py6S has achieved the original aim of producing a Python interface to the 6S model, and it appears to be relatively stable. However, there are many plans for the future, as listed below. If you have any comments on these plans - or want to suggest features that you’d really love to be included in Py6S - then contact me using the details on the Support page.


Soon


	Ability to import spectra from ENVI Spectral Library files


	Ability to import radiosonde data from a wider range of formats


	Add spectral response functions for other modern sensors (eg. Sentinel-2, IKONOS and many others)


	Developments in the API for atmospheric correction, making it easier to atmospherically-correct multiple wavelengths using the same settings







Medium-term


	(Possibly) A restructuring of the Py6S API to make it ‘more pythonic’ and better suited for future development.


	Ability to use Py6S (probably with a lookup-table) to perform atmospheric correction of satellite images.







Eventually


	A GUI interface allowing easier (but obviously far less flexible) use by those with no Python knowledge (particularly useful for teaching)










          

      

      

    

  

    
      
          
            
  
Publications

Py6S v1.0 was described in Wilson (2012). You must cite this paper if you use Py6S as part of any research which you then publish.

Wilson, R. T., 2012, Py6S: A Python interface to the 6S radiative transfer model, Computers and Geosciences, 51, p166-171, PDF [http://rtwilson.com/academic/Wilson_2012_Py6S_Paper.pdf]

A list of papers citing Py6S is available here [http://scholar.google.co.uk/scholar?cites=14343117612429497164&as_sdt=2005&sciodt=1,5&hl=en].





          

      

      

    

  

    
      
          
            

Index



 A
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 


A


  	
      	add_component() (Py6S.AeroProfile.AerosolDistribution method)


      	add_layer() (Py6S.AeroProfile.UserProfile method)


      	Aeronet (class in Py6S.SixSHelpers)


      	AeroProfile (class in Py6S)


      	AeroProfile.AerosolDistribution (class in Py6S)


      	AeroProfile.UserProfile (class in Py6S)


      	Altitudes (class in Py6S)


  

  	
      	Angles (class in Py6S.SixSHelpers)


      	AtmosCorr (class in Py6S)


      	AtmosCorrBRDFFromRadiance() (Py6S.AtmosCorr class method)


      	AtmosCorrBRDFFromReflectance() (Py6S.AtmosCorr class method)


      	AtmosCorrLambertianFromRadiance() (Py6S.AtmosCorr class method)


      	AtmosCorrLambertianFromReflectance() (Py6S.AtmosCorr class method)


      	AtmosProfile (class in Py6S)


  





E


  	
      	extract_aot() (Py6S.Outputs method)


      	extract_output() (Py6S.SixSHelpers.Angles class method)

      
        	(Py6S.SixSHelpers.Wavelengths class method)


      


  

  	
      	extract_results() (Py6S.Outputs method)


      	extract_vis() (Py6S.Outputs method)


  





F


  	
      	from_time_and_location() (Py6S.Geometry.User method)


  





G


  	
      	Geometry (class in Py6S)


      	Geometry.AVHRR_AM (class in Py6S)


      	Geometry.AVHRR_PM (class in Py6S)


      	Geometry.GoesEast (class in Py6S)


      	Geometry.GoesWest (class in Py6S)


  

  	
      	Geometry.Landsat_TM (class in Py6S)


      	Geometry.Meteosat (class in Py6S)


      	Geometry.SPOT_HRV (class in Py6S)


      	Geometry.User (class in Py6S)


      	GroundReflectance (class in Py6S)


  





H


  	
      	HeterogeneousLambertian() (Py6S.GroundReflectance class method)


      	HomogeneousHapke() (Py6S.GroundReflectance class method)


      	HomogeneousIaquintaPinty() (Py6S.GroundReflectance class method)


      	HomogeneousKuuskMultispectralCR() (Py6S.GroundReflectance class method)


      	HomogeneousLambertian() (Py6S.GroundReflectance class method)


      	HomogeneousMinnaert() (Py6S.GroundReflectance class method)


  

  	
      	HomogeneousMODISBRDF() (Py6S.GroundReflectance class method)


      	HomogeneousOcean() (Py6S.GroundReflectance class method)


      	HomogeneousRahman() (Py6S.GroundReflectance class method)


      	HomogeneousRoujean() (Py6S.GroundReflectance class method)


      	HomogeneousUserDefined() (Py6S.GroundReflectance method)


      	HomogeneousVerstaeteEtAl() (Py6S.GroundReflectance class method)


      	HomogeneousWalthall() (Py6S.GroundReflectance class method)


  





I


  	
      	import_aeronet_data() (Py6S.SixSHelpers.Aeronet class method)


      	import_bas_radiosonde_data() (Py6S.SixSHelpers.Radiosonde class method)


  

  	
      	import_from_aster() (Py6S.SixSHelpers.Spectra class method)


      	import_from_usgs() (Py6S.SixSHelpers.Spectra class method)


      	import_uow_radiosonde_data() (Py6S.SixSHelpers.Radiosonde class method)


  





J


  	
      	JungePowerLawDistribution() (Py6S.AeroProfile class method)


  





M


  	
      	ModifiedGammaDistribution() (Py6S.AeroProfile class method)


  

  	
      	MultimodalLogNormalDistribution() (Py6S.AeroProfile class method)


  





N


  	
      	NoAtmosCorr() (Py6S.AtmosCorr class method)


  





O


  	
      	Outputs (class in Py6S)


  





P


  	
      	plot360() (Py6S.SixSHelpers.Angles class method)


      	plot_polar_contour() (Py6S.SixSHelpers.Angles class method)


      	plot_principal_plane() (Py6S.SixSHelpers.Angles method)


  

  	
      	plot_wavelengths() (Py6S.SixSHelpers.Wavelengths class method)


      	PredefinedType() (Py6S.AeroProfile class method)

      
        	(Py6S.AtmosProfile class method)


      


      	produce_debug_report() (Py6S.SixS method)


  





R


  	
      	Radiosonde (class in Py6S.SixSHelpers)


      	RadiosondeProfile() (Py6S.AtmosProfile class method)


      	run() (Py6S.SixS method)


      	run360() (Py6S.SixSHelpers.Angles class method)


      	run_aatsr() (Py6S.SixSHelpers.Wavelengths class method)


      	run_ali() (Py6S.SixSHelpers.Wavelengths class method)


      	run_and_plot_360() (Py6S.SixSHelpers.Angles class method)


      	run_aster() (Py6S.SixSHelpers.Wavelengths class method)


      	run_er2_mas() (Py6S.SixSHelpers.Wavelengths class method)


      	run_gli() (Py6S.SixSHelpers.Wavelengths class method)


      	run_landsat_etm() (Py6S.SixSHelpers.Wavelengths class method)


      	run_landsat_mss() (Py6S.SixSHelpers.Wavelengths class method)


  

  	
      	run_landsat_oli() (Py6S.SixSHelpers.Wavelengths class method)


      	run_landsat_tm() (Py6S.SixSHelpers.Wavelengths class method)


      	run_meris() (Py6S.SixSHelpers.Wavelengths class method)


      	run_modis() (Py6S.SixSHelpers.Wavelengths class method)


      	run_polder() (Py6S.SixSHelpers.Wavelengths class method)


      	run_principal_plane() (Py6S.SixSHelpers.Angles class method)


      	run_seawifs() (Py6S.SixSHelpers.Wavelengths class method)


      	run_spot_hrv() (Py6S.SixSHelpers.Wavelengths class method)


      	run_spot_vgt() (Py6S.SixSHelpers.Wavelengths class method)


      	run_viirs() (Py6S.SixSHelpers.Wavelengths class method)


      	run_vnir() (Py6S.SixSHelpers.Wavelengths class method)


      	run_wavelengths() (Py6S.SixSHelpers.Wavelengths class method)


      	run_whole_range() (Py6S.SixSHelpers.Wavelengths class method)


  





S


  	
      	set_sensor_custom_altitude() (Py6S.Altitudes method)


      	set_sensor_satellite_level() (Py6S.Altitudes method)


      	set_sensor_sea_level() (Py6S.Altitudes method)


      	set_target_custom_altitude() (Py6S.Altitudes method)


      	set_target_pressure() (Py6S.Altitudes method)


  

  	
      	set_target_sea_level() (Py6S.Altitudes method)


      	SixS (class in Py6S)


      	sixs_path


      	Spectra (class in Py6S.SixSHelpers)


      	SunPhotometerDistribution() (Py6S.AeroProfile class method)


  





T


  	
      	test() (Py6S.SixS class method)


  

  	
      	to_centre_wavelengths() (Py6S.SixSHelpers.Wavelengths class method)


      	to_int() (Py6S.Outputs method)


  





U


  	
      	User() (Py6S.AeroProfile class method)


  

  	
      	UserWaterAndOzone() (Py6S.AtmosProfile class method)


  





W


  	
      	Wavelength (class in Py6S)


      	Wavelengths (class in Py6S.SixSHelpers)


  

  	
      	write_input_file() (Py6S.SixS method)


      	write_output_file() (Py6S.Outputs method)


  







          

      

      

    

  _static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/plus.png





_images/landsat_etm_plot.png
Pixel Reflectance

0.285

0.280

0.275

0.270

0.265

0.260

0.25%

0.5

1.0 15
Wavelength (um)

2.0

25





_images/ncaveo_perc_diff.png
14

12

1.0

0.8

0.6

=) o o =) =)
=3 < R 8 A

100

(%) JUSWaINSE3W OT:80 WOI) 3dUBIaYIP 96RIUdIad

<
o
I

Wavelength (um)





_images/intro_wv_plot.png
Pixel radiance (W/m? )

160

140

120

"
S
S

@
3

60

40

20

0.6

0.8 1.0
Wavelength (um)

12

14





_images/ncaveo_radiances.png
Radiance (W/m?)

140

120

100

@
3

o
3

40

20

0.6

0.8 1.0
Wavelength (um)

12

14





_images/qs_plot.png
160

140

120

Pixel Radiance
i
o @ S
3 3 3

IS
S

20

0.6

0.8 1.0
Wavelength (um)

12

14





_images/roujean_plot.png
180°

0.053

0.049

0.045

0.041

0.037

0.033

0.029

0.025





nav.xhtml

    
      Table of Contents


      
        		
          Py6S - A Python interface to 6S
        


        		
          Introduction
        


        		
          Intended Audience
        


        		
          Installation
          
            		
              Prerequisites
            


            		
              Compiling 6S
              
                		
                  Windows
                


                		
                  OS X
                


                		
                  Linux
                


              


            


            		
              Installing 6S
            


            		
              Installing Py6S
              
                		
                  Installation from PyPI
                


                		
                  Installation from a .egg file
                


              


            


            		
              Testing Py6S
            


          


        


        		
          Quick Start
          
            		
              A note on IPython
            


            		
              A first run
            


            		
              Setting parameters
            


            		
              Accessing outputs
            


            		
              SixSHelpers
              
                		
                  Running for a set of parameters
                


                		
                  Using real-world measurements to parameterise Py6S
                


              


            


          


        


        		
          The SixS class
          
            		
              Attributes
            


          


        


        		
          Accessing outputs
        


        		
          Parameter Setting
          
            		
              Atmospheric Profiles
            


            		
              Aerosol Profiles
            


            		
              Ground Reflectances
            


            		
              Geometries
            


            		
              Altitudes
            


            		
              Wavelengths
            


            		
              Atmospheric Corrections
            


          


        


        		
          Helper methods
          
            		
              Running for many wavelengths
            


            		
              Running for many angles
            


            		
              Importing atmospheric profiles from radiosonde data
            


            		
              Importing aerosol data from AERONET data
            


            		
              Importing ground reflectance spectra from spectral libraries
            


          


        


        		
          Case Study: Assessing the effect of atmospheric changes during the NCAVEO Field Campaign
          
            		
              Background
            


            		
              Code
            


          


        


        		
          Support
        


        		
          Release Notes
          
            		
              1.5.4 (16th July 2014)
            


            		
              1.5.3 (16th July 2014)
            


            		
              1.5.2 (8th July 2014)
            


            		
              1.5.1 (3rd July 2014)
            


            		
              1.5.0 (22nd April 2014)
            


            		
              1.4.2 (20th Feb 2014)
            


            		
              1.4.1 (22nd Jan 2014)
            


            		
              1.4.0 (21st Jan 2014)
            


            		
              1.3.1 (15th Jan 2014)
            


            		
              1.3 (6th April 2013)
            


            		
              1.2.4 (28th Feb 2013)
            


            		
              1.2.3 (10th Feb 2013)
            


            		
              1.2.2 (4th Jan 2013)
            


            		
              1.2.1 (3rd Jan 2013)
            


            		
              1.2 (2nd Jan 2013)
            


            		
              1.1.1 (18th Oct 2012)
            


            		
              1.1 (11th August 2012)
            


            		
              1.0
            


          


        


        		
          Roadmap
          
            		
              Soon
            


            		
              Medium-term
            


            		
              Eventually
            


          


        


        		
          Publications
        


      


    
  

_static/comment-bright.png





_images/wv_plot.png
14

12

1.0

0.8

0.6

160

140

120

o o =)
S < 8
]

(2o Ww/m) @>ueipey [#xid

20

82

Wavelength (um)





_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





