
py Documentation
Release 1.11.0

holger krekel et. al.

Jun 19, 2023

Contents

1 installation info in a nutshell 3
1.1 easy install or pip py . 3
1.2 Working from version control or a tarball . 3
1.3 activating a checkout with setuptools . 4
1.4 Mailing list and issue tracker . 4

2 py.path 5
2.1 py.path.local - local file system path . 5
2.2 py.path.svnurl and py.path.svnwc . 10
2.3 Common vs. specific API, Examples . 17
2.4 Known problems / limitations . 19

3 py.code: higher level python code and introspection objects 21
3.1 Contents of the library . 21
3.2 The wrappers . 21

4 py.io 27
4.1 IO Capturing examples . 27
4.2 py.io object reference . 28

5 py.log documentation and musings 31
5.1 Foreword . 31
5.2 Logging organisation . 31
5.3 Using the py.log library . 32

6 py.xml: simple pythonic xml/html file generation 35
6.1 Motivation . 35
6.2 a pythonic object model , please . 35

7 Miscellaneous features of the py lib 39
7.1 Mapping the standard python library into py . 39
7.2 Support for interaction with system utilities/binaries . 39
7.3 Cross-Python Version compatibility helpers . 40

8 1.11.0 (2021-11-04) 41

9 1.10.0 (2020-12-12) 43

i

10 1.9.0 (2020-06-24) 45

11 1.8.2 (2020-06-15) 47

12 1.8.1 (2019-12-27) 49

13 1.8.0 (2019-02-21) 51

14 1.7.0 (2018-10-11) 53

15 1.6.0 (2018-08-27) 55

16 1.5.4 (2018-06-27) 57

17 1.5.3 59

18 1.5.2 61

19 1.5.1 63

20 1.5.0 65

21 1.4.34 67

22 1.4.33 69

23 1.4.32 71

24 1.4.31 73

25 1.4.30 75

26 1.4.29 77

27 1.4.28 79

28 1.4.27 81

29 1.4.26 83

30 1.4.25 85

31 1.4.24 87

32 1.4.23 89

33 1.4.22 91

34 1.4.21 93

35 1.4.20 95

36 Changes between 1.4.18 and 1.4.19 97

37 Changes between 1.4.17 and 1.4.18 99

38 Changes between 1.4.16 and 1.4.17 101

39 Changes between 1.4.15 and 1.4.16 103

ii

40 Changes between 1.4.14 and 1.4.15 105

41 Changes between 1.4.13 and 1.4.14 107

42 Changes between 1.4.12 and 1.4.13 109

43 Changes between 1.4.11 and 1.4.12 111

44 Changes between 1.4.10 and 1.4.11 113

45 Changes between 1.4.9 and 1.4.10 115

46 Changes between 1.4.8 and 1.4.9 117

47 Changes between 1.4.7 and 1.4.8 119

48 Changes between 1.4.6 and 1.4.7 121

49 Changes between 1.4.5 and 1.4.6 123

50 Changes between 1.4.4 and 1.4.5 125

51 Changes between 1.4.3 and 1.4.4 127

52 Changes between 1.4.2 and 1.4.3 129

53 Changes between 1.4.1 and 1.4.2 131

54 Changes between 1.4.0 and 1.4.1 133

55 Changes between 1.3.4 and 1.4.0 135

56 Changes between 1.3.3 and 1.3.4 137

57 Changes between 1.3.2 and 1.3.3 139

58 Changes between 1.3.1 and 1.3.2 141
58.1 New features . 141
58.2 Bug fixes / Maintenance . 142

59 Changes between 1.3.0 and 1.3.1 143
59.1 New features . 143
59.2 Fixes / Maintenance . 143

60 Changes between 1.2.1 and 1.3.0 145

61 Changes between 1.2.1 and 1.2.0 147

62 Changes between 1.2 and 1.1.1 149

63 Changes between 1.1.1 and 1.1.0 151

64 Changes between 1.1.0 and 1.0.2 153

65 Changes between 1.0.1 and 1.0.2 155

66 Changes between 1.0.0 and 1.0.1 157

iii

67 Changes between 1.0.0b9 and 1.0.0 159

68 Changes between 1.0.0b8 and 1.0.0b9 161

69 Changes between 1.0.0b7 and 1.0.0b8 163

70 Changes between 1.0.0b3 and 1.0.0b7 165

71 Changes between 1.0.0b1 and 1.0.0b3 167

72 Changes between 0.9.2 and 1.0.0b1 169

73 Changes between 0.9.1 and 0.9.2 171

74 Changes between 0.9.0 and 0.9.1 173

75 Indices and tables 175

Index 177

iv

py Documentation, Release 1.11.0

see CHANGELOG for latest changes.

Contents:

Contents 1

py Documentation, Release 1.11.0

2 Contents

CHAPTER 1

installation info in a nutshell

PyPI name: py

Pythons: CPython 2.7, 3.5, 3.6, 3.7, PyPy-5.4

Operating systems: Linux, Windows, OSX, Unix

Requirements: setuptools or Distribute

Installers: easy_install and pip

Code repository: https://github.com/pytest-dev/py

1.1 easy install or pip py

Both Distribute and setuptools provide the easy_install installation tool with which you can type into a command
line window:

easy_install -U py

to install the latest release of the py lib. The -U switch will trigger an upgrade if you already have an older version
installed.

Note: As of version 1.4 py does not contain py.test anymore - you need to install the new ‘pytest‘_ distribution.

1.2 Working from version control or a tarball

To follow development or start experiments, checkout the complete code and documentation source:

git clone https://github.com/pytest-dev/py

3

https://pypi.org/project/py/
https://pypi.org/project/setuptools/
https://pypi.org/project/distribute/
https://github.com/pytest-dev/py
https://pypi.org/project/distribute/
https://pypi.org/project/setuptools/

py Documentation, Release 1.11.0

Development takes place on the ‘master’ branch.

You can also go to the python package index and download and unpack a TAR file:

https://pypi.org/project/py/

1.3 activating a checkout with setuptools

With a working Distribute or setuptools installation you can type:

python setup.py develop

in order to work inline with the tools and the lib of your checkout.

1.4 Mailing list and issue tracker

• py-dev developers list and commit mailing list.

• #pytest on irc.libera.chat IRC channel for random questions (using an IRC client, via webchat, or via Matrix).

• issue tracker use the issue tracker to report bugs or request features.

4 Chapter 1. installation info in a nutshell

https://pypi.org/project/distribute/
https://pypi.org/project/setuptools/
http://codespeak.net/mailman/listinfo/py-dev
http://codespeak.net/mailman/listinfo/py-svn
ircs://irc.libera.chat:6697/#pytest
https://web.libera.chat/#pytest
https://matrix.to/#/%23pytest:libera.chat
https://github.com/pytest-dev/py/issues

CHAPTER 2

py.path

Note: The ‘py’ library is in “maintenance mode” and so is not recommended for new projects. Please
check out pathlib or pathlib2 for path operations.

The ‘py’ lib provides a uniform high-level api to deal with filesystems and filesystem-like interfaces: py.path. It
aims to offer a central object to fs-like object trees (reading from and writing to files, adding files/directories, examining
the types and structure, etc.), and out-of-the-box provides a number of implementations of this API.

2.1 py.path.local - local file system path

2.1.1 basic interactive example

The first and most obvious of the implementations is a wrapper around a local filesystem. It’s just a bit nicer in usage
than the regular Python APIs, and of course all the functionality is bundled together rather than spread over a number
of modules.

>>> import py
>>> temppath = py.path.local('py.path_documentation')
>>> foopath = temppath.join('foo') # get child 'foo' (lazily)
>>> foopath.check() # check if child 'foo' exists
False
>>> foopath.write('bar') # write some data to it
>>> foopath.check()
True
>>> foopath.read()
'bar'
>>> foofile = foopath.open() # return a 'real' file object
>>> foofile.read(1)
'b'

5

https://docs.python.org/3/library/pathlib.html
https://pypi.org/project/pathlib2/

py Documentation, Release 1.11.0

2.1.2 reference documentation

class py._path.local.LocalPath(path=None, expanduser=False)
object oriented interface to os.path and other local filesystem related information.

exception ImportMismatchError
raised on pyimport() if there is a mismatch of __file__’s

msg
exception message

name
module name

path
module path

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

samefile(other)
return True if ‘other’ references the same file as ‘self’.

remove(rec=1, ignore_errors=False)
remove a file or directory (or a directory tree if rec=1). if ignore_errors is True, errors while removing
directories will be ignored.

computehash(hashtype=’md5’, chunksize=524288)
return hexdigest of hashvalue for this file.

new(**kw)
create a modified version of this path. the following keyword arguments modify various path parts:

a:/some/path/to/a/file.ext
xx drive
xxxxxxxxxxxxxxxxx dirname

xxxxxxxx basename
xxxx purebasename

xxx ext

dirpath(*args, **kwargs)
return the directory path joined with any given path arguments.

join(*args, **kwargs)
return a new path by appending all ‘args’ as path components. if abs=1 is used restart from root if any of
the args is an absolute path.

open(mode=’r’, ensure=False, encoding=None)
return an opened file with the given mode.

If ensure is True, create parent directories if needed.

check(**kw)
check a path for existence and properties.

Without arguments, return True if the path exists, otherwise False.

valid checkers:

file=1 # is a file
file=0 # is not a file (may not even exist)
dir=1 # is a dir

(continues on next page)

6 Chapter 2. py.path

py Documentation, Release 1.11.0

(continued from previous page)

link=1 # is a link
exists=1 # exists

You can specify multiple checker definitions, for example:

path.check(file=1, link=1) # a link pointing to a file

listdir(fil=None, sort=None)
list directory contents, possibly filter by the given fil func and possibly sorted.

size()
return size of the underlying file object

mtime()
return last modification time of the path.

copy(target, mode=False, stat=False)
copy path to target.

If mode is True, will copy copy permission from path to target. If stat is True, copy permission, last
modification time, last access time, and flags from path to target.

rename(target)
rename this path to target.

dump(obj, bin=1)
pickle object into path location

mkdir(*args)
create & return the directory joined with args.

write_binary(data, ensure=False)
write binary data into path. If ensure is True create missing parent directories.

write_text(data, encoding, ensure=False)
write text data into path using the specified encoding. If ensure is True create missing parent directories.

write(data, mode=’w’, ensure=False)
write data into path. If ensure is True create missing parent directories.

ensure(*args, **kwargs)
ensure that an args-joined path exists (by default as a file). if you specify a keyword argument ‘dir=True’
then the path is forced to be a directory path.

stat(raising=True)
Return an os.stat() tuple.

lstat()
Return an os.lstat() tuple.

setmtime(mtime=None)
set modification time for the given path. if ‘mtime’ is None (the default) then the file’s mtime is set to
current time.

Note that the resolution for ‘mtime’ is platform dependent.

chdir()
change directory to self and return old current directory

as_cwd()
Return a context manager, which changes to the path’s dir during the managed “with” context. On __en-
ter__ it returns the old dir, which might be None.

2.1. py.path.local - local file system path 7

py Documentation, Release 1.11.0

realpath()
return a new path which contains no symbolic links.

atime()
return last access time of the path.

chmod(mode, rec=0)
change permissions to the given mode. If mode is an integer it directly encodes the os-specific modes. if
rec is True perform recursively.

pypkgpath()
return the Python package path by looking for the last directory upwards which still contains an
__init__.py. Return None if a pkgpath can not be determined.

pyimport(modname=None, ensuresyspath=True)
return path as an imported python module.

If modname is None, look for the containing package and construct an according module name. The mod-
ule will be put/looked up in sys.modules. if ensuresyspath is True then the root dir for importing the file
(taking __init__.py files into account) will be prepended to sys.path if it isn’t there already. If ensuresys-
path==”append” the root dir will be appended if it isn’t already contained in sys.path. if ensuresyspath is
False no modification of syspath happens.

Special value of ensuresyspath==”importlib” is intended purely for using in pytest, it is capable only of
importing separate .py files outside packages, e.g. for test suite without any __init__.py file. It effectively
allows having same-named test modules in different places and offers mild opt-in via this option. Note
that it works only in recent versions of python.

sysexec(*argv, **popen_opts)
return stdout text from executing a system child process, where the ‘self’ path points to executable. The
process is directly invoked and not through a system shell.

classmethod sysfind(name, checker=None, paths=None)
return a path object found by looking at the systems underlying PATH specification. If the checker is not
None it will be invoked to filter matching paths. If a binary cannot be found, None is returned Note: This
is probably not working on plain win32 systems but may work on cygwin.

classmethod get_temproot()
return the system’s temporary directory (where tempfiles are usually created in)

classmethod mkdtemp(rootdir=None)
return a Path object pointing to a fresh new temporary directory (which we created ourself).

basename
basename part of path.

bestrelpath(dest)
return a string which is a relative path from self (assumed to be a directory) to dest such that
self.join(bestrelpath) == dest and if not such path can be determined return dest.

chown(user, group, rec=0)
change ownership to the given user and group. user and group may be specified by a number or by a name.
if rec is True change ownership recursively.

common(other)
return the common part shared with the other path or None if there is no common part.

dirname
dirname part of path.

ensure_dir(*args)
ensure the path joined with args is a directory.

8 Chapter 2. py.path

py Documentation, Release 1.11.0

ext
extension of the path (including the ‘.’).

fnmatch(pattern)
return true if the basename/fullname matches the glob-‘pattern’.

valid pattern characters:

* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

If the pattern contains a path-separator then the full path is used for pattern matching and a ‘*’ is prepended
to the pattern.

if the pattern doesn’t contain a path-separator the pattern is only matched against the basename.

load()
(deprecated) return object unpickled from self.read()

classmethod make_numbered_dir(prefix=’session-’, rootdir=None, keep=3,
lock_timeout=172800)

return unique directory with a number greater than the current maximum one. The number is assumed
to start directly after prefix. if keep is true directories with a number less than (maxnum-keep) will be
removed. If .lock files are used (lock_timeout non-zero), algorithm is multi-process safe.

mklinkto(oldname)
posix style hard link to another name.

mksymlinkto(value, absolute=1)
create a symbolic link with the given value (pointing to another name).

move(target)
move this path to target.

parts(reverse=False)
return a root-first list of all ancestor directories plus the path itself.

purebasename
pure base name of the path.

read(mode=’r’)
read and return a bytestring from reading the path.

read_binary()
read and return a bytestring from reading the path.

read_text(encoding)
read and return a Unicode string from reading the path.

readlines(cr=1)
read and return a list of lines from the path. if cr is False, the newline will be removed from the end of
each line.

readlink()
return value of a symbolic link.

relto(relpath)
return a string which is the relative part of the path to the given ‘relpath’.

visit(fil=None, rec=None, ignore=<class ’py._path.common.NeverRaised’>, bf=False, sort=False)
yields all paths below the current one

2.1. py.path.local - local file system path 9

py Documentation, Release 1.11.0

fil is a filter (glob pattern or callable), if not matching the path will not be yielded, defaulting to None
(everything is returned)

rec is a filter (glob pattern or callable) that controls whether a node is descended, defaulting to None

ignore is an Exception class that is ignoredwhen calling dirlist() on any of the paths (by default, all excep-
tions are reported)

bf if True will cause a breadthfirst search instead of the default depthfirst. Default: False

sort if True will sort entries within each directory level.

2.2 py.path.svnurl and py.path.svnwc

Two other py.path implementations that the py lib provides wrap the popular Subversion revision control system:
the first (called ‘svnurl’) by interfacing with a remote server, the second by wrapping a local checkout. Both allow you
to access relatively advanced features such as metadata and versioning, and both in a way more user-friendly manner
than existing other solutions.

Some example usage of py.path.svnurl:

.. >>> import py

.. >>> if not py.test.config.option.urlcheck: raise ValueError('skipchunk')
>>> url = py.path.svnurl('http://codespeak.net/svn/py')
>>> info = url.info()
>>> info.kind
'dir'
>>> firstentry = url.log()[-1]
>>> import time
>>> time.strftime('%Y-%m-%d', time.gmtime(firstentry.date))
'2004-10-02'

Example usage of py.path.svnwc:

.. >>> if not py.test.config.option.urlcheck: raise ValueError('skipchunk')
>>> temp = py.path.local('py.path_documentation')
>>> wc = py.path.svnwc(temp.join('svnwc'))
>>> wc.checkout('http://codespeak.net/svn/py/dist/py/path/local')
>>> wc.join('local.py').check()
True

2.2.1 svn path related API reference

class py._path.svnwc.SvnWCCommandPath
path implementation offering access/modification to svn working copies. It has methods similar to the functions
in os.path and similar to the commands of the svn client.

strpath
string path

rev
revision

url
url of this WC item

10 Chapter 2. py.path

http://subversion.tigris.org/

py Documentation, Release 1.11.0

dump(obj)
pickle object into path location

svnurl()
return current SvnPath for this WC-item.

switch(url)
switch to given URL.

checkout(url=None, rev=None)
checkout from url to local wcpath.

update(rev=’HEAD’, interactive=True)
update working copy item to given revision. (None -> HEAD).

write(content, mode=’w’)
write content into local filesystem wc.

dirpath(*args)
return the directory Path of the current Path.

ensure(*args, **kwargs)
ensure that an args-joined path exists (by default as a file). if you specify a keyword argument ‘direc-
tory=True’ then the path is forced to be a directory path.

mkdir(*args)
create & return the directory joined with args.

add()
add ourself to svn

remove(rec=1, force=1)
remove a file or a directory tree. ‘rec’ursive is ignored and considered always true (because of underlying
svn semantics.

copy(target)
copy path to target.

rename(target)
rename this path to target.

lock()
set a lock (exclusive) on the resource

unlock()
unset a previously set lock

cleanup()
remove any locks from the resource

status(updates=0, rec=0, externals=0)
return (collective) Status object for this file.

diff(rev=None)
return a diff of the current path against revision rev (defaulting to the last one).

blame()
return a list of tuples of three elements: (revision, commiter, line)

commit(msg=”, rec=1)
commit with support for non-recursive commits

propset(name, value, *args)
set property name to value on this path.

2.2. py.path.svnurl and py.path.svnwc 11

py Documentation, Release 1.11.0

propget(name)
get property name on this path.

propdel(name)
delete property name on this path.

proplist(rec=0)
return a mapping of property names to property values. If rec is True, then return a dictionary mapping
sub-paths to such mappings.

revert(rec=0)
revert the local changes of this path. if rec is True, do so recursively.

new(**kw)
create a modified version of this path. A ‘rev’ argument indicates a new revision. the following keyword
arguments modify various path parts:

http://host.com/repo/path/file.ext |———————–| dirname

|——| basename |–| purebasename

|–| ext

join(*args, **kwargs)
return a new Path (with the same revision) which is composed of the self Path followed by ‘args’ path
components.

info(usecache=1)
return an Info structure with svn-provided information.

listdir(fil=None, sort=None)
return a sequence of Paths.

listdir will return either a tuple or a list of paths depending on implementation choices.

open(mode=’r’)
return an opened file with the given mode.

log(rev_start=None, rev_end=1, verbose=False)
return a list of LogEntry instances for this path. rev_start is the starting revision (defaulting to the first
one). rev_end is the last revision (defaulting to HEAD). if verbose is True, then the LogEntry instances
also know which files changed.

size()
Return the size of the file content of the Path.

mtime()
Return the last modification time of the file.

basename
basename part of path.

bestrelpath(dest)
return a string which is a relative path from self (assumed to be a directory) to dest such that
self.join(bestrelpath) == dest and if not such path can be determined return dest.

check(**kw)
check a path for existence and properties.

Without arguments, return True if the path exists, otherwise False.

valid checkers:

12 Chapter 2. py.path

http://host.com/repo/path/file.ext

py Documentation, Release 1.11.0

file=1 # is a file
file=0 # is not a file (may not even exist)
dir=1 # is a dir
link=1 # is a link
exists=1 # exists

You can specify multiple checker definitions, for example:

path.check(file=1, link=1) # a link pointing to a file

common(other)
return the common part shared with the other path or None if there is no common part.

dirname
dirname part of path.

ensure_dir(*args)
ensure the path joined with args is a directory.

ext
extension of the path (including the ‘.’).

fnmatch(pattern)
return true if the basename/fullname matches the glob-‘pattern’.

valid pattern characters:

* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

If the pattern contains a path-separator then the full path is used for pattern matching and a ‘*’ is prepended
to the pattern.

if the pattern doesn’t contain a path-separator the pattern is only matched against the basename.

load()
(deprecated) return object unpickled from self.read()

move(target)
move this path to target.

parts(reverse=False)
return a root-first list of all ancestor directories plus the path itself.

purebasename
pure base name of the path.

read(mode=’r’)
read and return a bytestring from reading the path.

read_binary()
read and return a bytestring from reading the path.

read_text(encoding)
read and return a Unicode string from reading the path.

readlines(cr=1)
read and return a list of lines from the path. if cr is False, the newline will be removed from the end of
each line.

2.2. py.path.svnurl and py.path.svnwc 13

py Documentation, Release 1.11.0

relto(relpath)
return a string which is the relative part of the path to the given ‘relpath’.

samefile(other)
return True if other refers to the same stat object as self.

visit(fil=None, rec=None, ignore=<class ’py._path.common.NeverRaised’>, bf=False, sort=False)
yields all paths below the current one

fil is a filter (glob pattern or callable), if not matching the path will not be yielded, defaulting to None
(everything is returned)

rec is a filter (glob pattern or callable) that controls whether a node is descended, defaulting to None

ignore is an Exception class that is ignoredwhen calling dirlist() on any of the paths (by default, all excep-
tions are reported)

bf if True will cause a breadthfirst search instead of the default depthfirst. Default: False

sort if True will sort entries within each directory level.

class py._path.svnurl.SvnCommandPath
path implementation that offers access to (possibly remote) subversion repositories.

open(mode=’r’)
return an opened file with the given mode.

dirpath(*args, **kwargs)
return the directory path of the current path joined with any given path arguments.

mkdir(*args, **kwargs)
create & return the directory joined with args. pass a ‘msg’ keyword argument to set the commit message.

copy(target, msg=’copied by py lib invocation’)
copy path to target with checkin message msg.

rename(target, msg=’renamed by py lib invocation’)
rename this path to target with checkin message msg.

remove(rec=1, msg=’removed by py lib invocation’)
remove a file or directory (or a directory tree if rec=1) with checkin message msg.

export(topath)
export to a local path

topath should not exist prior to calling this, returns a py.path.local instance

ensure(*args, **kwargs)
ensure that an args-joined path exists (by default as a file). If you specify a keyword argument ‘dir=True’
then the path is forced to be a directory path.

info()
return an Info structure with svn-provided information.

listdir(fil=None, sort=None)
list directory contents, possibly filter by the given fil func and possibly sorted.

log(rev_start=None, rev_end=1, verbose=False)
return a list of LogEntry instances for this path. rev_start is the starting revision (defaulting to the first
one). rev_end is the last revision (defaulting to HEAD). if verbose is True, then the LogEntry instances
also know which files changed.

basename
basename part of path.

14 Chapter 2. py.path

py Documentation, Release 1.11.0

bestrelpath(dest)
return a string which is a relative path from self (assumed to be a directory) to dest such that
self.join(bestrelpath) == dest and if not such path can be determined return dest.

check(**kw)
check a path for existence and properties.

Without arguments, return True if the path exists, otherwise False.

valid checkers:

file=1 # is a file
file=0 # is not a file (may not even exist)
dir=1 # is a dir
link=1 # is a link
exists=1 # exists

You can specify multiple checker definitions, for example:

path.check(file=1, link=1) # a link pointing to a file

common(other)
return the common part shared with the other path or None if there is no common part.

dirname
dirname part of path.

ensure_dir(*args)
ensure the path joined with args is a directory.

ext
extension of the path (including the ‘.’).

fnmatch(pattern)
return true if the basename/fullname matches the glob-‘pattern’.

valid pattern characters:

* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

If the pattern contains a path-separator then the full path is used for pattern matching and a ‘*’ is prepended
to the pattern.

if the pattern doesn’t contain a path-separator the pattern is only matched against the basename.

join(*args)
return a new Path (with the same revision) which is composed of the self Path followed by ‘args’ path
components.

load()
(deprecated) return object unpickled from self.read()

move(target)
move this path to target.

mtime()
Return the last modification time of the file.

2.2. py.path.svnurl and py.path.svnwc 15

py Documentation, Release 1.11.0

new(**kw)
create a modified version of this path. A ‘rev’ argument indicates a new revision. the following keyword
arguments modify various path parts:

http://host.com/repo/path/file.ext
|-----------------------| dirname

|------| basename
|--| purebasename

|--| ext

parts(reverse=False)
return a root-first list of all ancestor directories plus the path itself.

propget(name)
return the content of the given property.

proplist()
list all property names.

purebasename
pure base name of the path.

read(mode=’r’)
read and return a bytestring from reading the path.

read_binary()
read and return a bytestring from reading the path.

read_text(encoding)
read and return a Unicode string from reading the path.

readlines(cr=1)
read and return a list of lines from the path. if cr is False, the newline will be removed from the end of
each line.

relto(relpath)
return a string which is the relative part of the path to the given ‘relpath’.

samefile(other)
return True if other refers to the same stat object as self.

size()
Return the size of the file content of the Path.

url
url of this svn-path.

visit(fil=None, rec=None, ignore=<class ’py._path.common.NeverRaised’>, bf=False, sort=False)
yields all paths below the current one

fil is a filter (glob pattern or callable), if not matching the path will not be yielded, defaulting to None
(everything is returned)

rec is a filter (glob pattern or callable) that controls whether a node is descended, defaulting to None

ignore is an Exception class that is ignoredwhen calling dirlist() on any of the paths (by default, all excep-
tions are reported)

bf if True will cause a breadthfirst search instead of the default depthfirst. Default: False

sort if True will sort entries within each directory level.

class py._path.svnwc.SvnAuth(username, password, cache_auth=True, interactive=True)
container for auth information for Subversion

16 Chapter 2. py.path

py Documentation, Release 1.11.0

2.3 Common vs. specific API, Examples

All Path objects support a common set of operations, suitable for many use cases and allowing to transparently switch
the path object within an application (e.g. from “local” to “svnwc”). The common set includes functions such as
path.read() to read all data from a file, path.write() to write data, path.listdir() to get a list of directory entries,
path.check() to check if a node exists and is of a particular type, path.join() to get to a (grand)child, path.visit() to
recursively walk through a node’s children, etc. Only things that are not common on ‘normal’ filesystems (yet), such
as handling metadata (e.g. the Subversion “properties”) require using specific APIs.

A quick ‘cookbook’ of small examples that will be useful ‘in real life’, which also presents parts of the ‘common’
API, and shows some non-common methods:

2.3.1 Searching .txt files

Search for a particular string inside all files with a .txt extension in a specific directory.

>>> dirpath = temppath.ensure('testdir', dir=True)
>>> dirpath.join('textfile1.txt').write('foo bar baz')
>>> dirpath.join('textfile2.txt').write('frob bar spam eggs')
>>> subdir = dirpath.ensure('subdir', dir=True)
>>> subdir.join('textfile1.txt').write('foo baz')
>>> subdir.join('textfile2.txt').write('spam eggs spam foo bar spam')
>>> results = []
>>> for fpath in dirpath.visit('*.txt'):
... if 'bar' in fpath.read():
... results.append(fpath.basename)
>>> results.sort()
>>> results
['textfile1.txt', 'textfile2.txt', 'textfile2.txt']

2.3.2 Working with Paths

This example shows the py.path features to deal with filesystem paths Note that the filesystem is never touched, all
operations are performed on a string level (so the paths don’t have to exist, either):

>>> p1 = py.path.local('/foo/bar')
>>> p2 = p1.join('baz/qux')
>>> p2 == py.path.local('/foo/bar/baz/qux')
True
>>> sep = py.path.local.sep
>>> p2.relto(p1).replace(sep, '/') # os-specific path sep in the string
'baz/qux'
>>> p2.bestrelpath(p1).replace(sep, '/')
'../..'
>>> p2.join(p2.bestrelpath(p1)) == p1
True
>>> p3 = p1 / 'baz/qux' # the / operator allows joining, too
>>> p2 == p3
True
>>> p4 = p1 + ".py"
>>> p4.basename == "bar.py"
True
>>> p4.ext == ".py"
True

(continues on next page)

2.3. Common vs. specific API, Examples 17

py Documentation, Release 1.11.0

(continued from previous page)

>>> p4.purebasename == "bar"
True

This should be possible on every implementation of py.path, so regardless of whether the implementation wraps
a UNIX filesystem, a Windows one, or a database or object tree, these functions should be available (each with their
own notion of path seperators and dealing with conversions, etc.).

2.3.3 Checking path types

Now we will show a bit about the powerful ‘check()’ method on paths, which allows you to check whether a file exists,
what type it is, etc.:

>>> file1 = temppath.join('file1')
>>> file1.check() # does it exist?
False
>>> file1 = file1.ensure(file=True) # 'touch' the file
>>> file1.check()
True
>>> file1.check(dir=True) # is it a dir?
False
>>> file1.check(file=True) # or a file?
True
>>> file1.check(ext='.txt') # check the extension
False
>>> textfile = temppath.ensure('text.txt', file=True)
>>> textfile.check(ext='.txt')
True
>>> file1.check(basename='file1') # we can use all the path's properties here
True

2.3.4 Setting svn-properties

As an example of ‘uncommon’ methods, we’ll show how to read and write properties in an py.path.svnwc in-
stance:

.. >>> if not py.test.config.option.urlcheck: raise ValueError('skipchunk')
>>> wc.propget('foo')
''
>>> wc.propset('foo', 'bar')
>>> wc.propget('foo')
'bar'
>>> len(wc.status().prop_modified) # our own props
1
>>> msg = wc.revert() # roll back our changes
>>> len(wc.status().prop_modified)
0

2.3.5 SVN authentication

Some uncommon functionality can also be provided as extensions, such as SVN authentication:

18 Chapter 2. py.path

py Documentation, Release 1.11.0

.. >>> if not py.test.config.option.urlcheck: raise ValueError('skipchunk')
>>> auth = py.path.SvnAuth('anonymous', 'user', cache_auth=False,
... interactive=False)
>>> wc.auth = auth
>>> wc.update() # this should work
>>> path = wc.ensure('thisshouldnotexist.txt')
>>> try:
... path.commit('testing')
... except py.process.cmdexec.Error, e:
... pass
>>> 'authorization failed' in str(e)
True

2.4 Known problems / limitations

• The SVN path objects require the “svn” command line, there is currently no support for python bindings. Parsing
the svn output can lead to problems, particularly regarding if you have a non-english “locales” setting.

• While the path objects basically work on windows, there is no attention yet on making unicode paths work or
deal with the famous “8.3” filename issues.

2.4. Known problems / limitations 19

py Documentation, Release 1.11.0

20 Chapter 2. py.path

CHAPTER 3

py.code: higher level python code and introspection objects

py.code provides higher level APIs and objects for Code, Frame, Traceback, ExceptionInfo and source code con-
struction. The py.code library tries to simplify accessing the code objects as well as creating them. There is a small
set of interfaces a user needs to deal with, all nicely bundled together, and with a rich set of ‘Pythonic’ functionality.

3.1 Contents of the library

Every object in the py.code library wraps a code Python object related to code objects, source code, frames
and tracebacks: the py.code.Code class wraps code objects, py.code.Source source snippets, py.code.
Traceback` exception tracebacks, ``py.code.Frame frame objects (as found in e.g. tracebacks)
and py.code.ExceptionInfo the tuple provided by sys.exc_info() (containing exception and traceback infor-
mation when an exception occurs). Also in the library is a helper function py.code.compile() that provides the
same functionality as Python’s built-in ‘compile()’ function, but returns a wrapped code object.

3.2 The wrappers

3.2.1 py.code.Code

Code objects are instantiated with a code object or a callable as argument, and provide functionality to compare
themselves with other Code objects, get to the source file or its contents, create new Code objects from scratch, etc.

A quick example:

>>> import py
>>> c = py.code.Code(py.path.local.read)
>>> c.path.basename
'common.py'
>>> isinstance(c.source(), py.code.Source)
True
>>> str(c.source()).split('\n')[0]
"def read(self, mode='r'):"

21

py Documentation, Release 1.11.0

class py.code.Code(rawcode)
wrapper around Python code objects

path
return a path object pointing to source code (note that it might not point to an actually existing file).

fullsource
return a py.code.Source object for the full source file of the code

source()
return a py.code.Source object for the code object’s source only

getargs(var=False)
return a tuple with the argument names for the code object

if ‘var’ is set True also return the names of the variable and keyword arguments when present

3.2.2 py.code.Source

Source objects wrap snippets of Python source code, providing a simple yet powerful interface to read, deindent, slice,
compare, compile and manipulate them, things that are not so easy in core Python.

Example:

>>> s = py.code.Source("""\
... def foo():
... print "foo"
... """)
>>> str(s).startswith('def') # automatic de-indentation!
True
>>> s.isparseable()
True
>>> sub = s.getstatement(1) # get the statement starting at line 1
>>> str(sub).strip() # XXX why is the strip() required?!?
'print "foo"'

class py.code.Source(*parts, **kwargs)
a immutable object holding a source code fragment, possibly deindenting it.

strip()
return new source object with trailing and leading blank lines removed.

putaround(before=”, after=”, indent=’ ’)
return a copy of the source object with ‘before’ and ‘after’ wrapped around it.

indent(indent=’ ’)
return a copy of the source object with all lines indented by the given indent-string.

getstatement(lineno, assertion=False)
return Source statement which contains the given linenumber (counted from 0).

getstatementrange(lineno, assertion=False)
return (start, end) tuple which spans the minimal statement region which containing the given lineno.

deindent(offset=None)
return a new source object deindented by offset. If offset is None then guess an indentation offset from
the first non-blank line. Subsequent lines which have a lower indentation offset will be copied verbatim as
they are assumed to be part of multilines.

isparseable(deindent=True)
return True if source is parseable, heuristically deindenting it by default.

22 Chapter 3. py.code: higher level python code and introspection objects

py Documentation, Release 1.11.0

compile(filename=None, mode=’exec’, flag=0, dont_inherit=0, _genframe=None)
return compiled code object. if filename is None invent an artificial filename which displays the source/line
position of the caller frame.

3.2.3 py.code.Traceback

Tracebacks are usually not very easy to examine, you need to access certain somewhat hidden attributes of the trace-
back’s items (resulting in expressions such as ‘fname = tb.tb_next.tb_frame.f_code.co_filename’). The Traceback
interface (and its TracebackItem children) tries to improve this.

Example:

>>> import sys
>>> try:
... py.path.local(100) # illegal argument
... except:
... exc, e, tb = sys.exc_info()
>>> t = py.code.Traceback(tb)
>>> first = t[1] # get the second entry (first is in this doc)
>>> first.path.basename # second is in py/path/local.py
'local.py'
>>> isinstance(first.statement, py.code.Source)
True
>>> str(first.statement).strip().startswith('raise ValueError')
True

class py.code.Traceback(tb)
Traceback objects encapsulate and offer higher level access to Traceback entries.

Entry
alias of TracebackEntry

cut(path=None, lineno=None, firstlineno=None, excludepath=None)
return a Traceback instance wrapping part of this Traceback

by provding any combination of path, lineno and firstlineno, the first frame to start the to-be-returned
traceback is determined

this allows cutting the first part of a Traceback instance e.g. for formatting reasons (removing some
uninteresting bits that deal with handling of the exception/traceback)

filter(fn=<function Traceback.<lambda>>)
return a Traceback instance with certain items removed

fn is a function that gets a single argument, a TracebackItem instance, and should return True when the
item should be added to the Traceback, False when not

by default this removes all the TracebackItems which are hidden (see ishidden() above)

getcrashentry()
return last non-hidden traceback entry that lead to the exception of a traceback.

recursionindex()
return the index of the frame/TracebackItem where recursion originates if appropriate, None if no recursion
occurred

3.2. The wrappers 23

py Documentation, Release 1.11.0

3.2.4 py.code.Frame

Frame wrappers are used in py.code.Traceback items, and will usually not directly be instantiated. They provide
some nice methods to evaluate code ‘inside’ the frame (using the frame’s local variables), get to the underlying code
(frames have a code attribute that points to a py.code.Code object) and examine the arguments.

Example (using the ‘first’ TracebackItem instance created above):

>>> frame = first.frame
>>> isinstance(frame.code, py.code.Code)
True
>>> isinstance(frame.eval('self'), py.path.local)
True
>>> [namevalue[0] for namevalue in frame.getargs()]
['cls', 'path']

class py.code.Frame(frame)
Wrapper around a Python frame holding f_locals and f_globals in which expressions can be evaluated.

statement
statement this frame is at

eval(code, **vars)
evaluate ‘code’ in the frame

‘vars’ are optional additional local variables

returns the result of the evaluation

exec_(code, **vars)
exec ‘code’ in the frame

‘vars’ are optiona; additional local variables

repr(object)
return a ‘safe’ (non-recursive, one-line) string repr for ‘object’

getargs(var=False)
return a list of tuples (name, value) for all arguments

if ‘var’ is set True also include the variable and keyword arguments when present

3.2.5 py.code.ExceptionInfo

A wrapper around the tuple returned by sys.exc_info() (will call sys.exc_info() itself if the tuple is not provided as an
argument), provides some handy attributes to easily access the traceback and exception string.

Example:

>>> import sys
>>> try:
... foobar()
... except:
... excinfo = py.code.ExceptionInfo()
>>> excinfo.typename
'NameError'
>>> isinstance(excinfo.traceback, py.code.Traceback)
True
>>> excinfo.exconly()
"NameError: name 'foobar' is not defined"

24 Chapter 3. py.code: higher level python code and introspection objects

py Documentation, Release 1.11.0

class py.code.ExceptionInfo(tup=None, exprinfo=None)
wraps sys.exc_info() objects and offers help for navigating the traceback.

type = None
the exception class

value = None
the exception instance

tb = None
the exception raw traceback

typename = None
the exception type name

traceback = None
the exception traceback (py.code.Traceback instance)

exconly(tryshort=False)
return the exception as a string

when ‘tryshort’ resolves to True, and the exception is a py.code._AssertionError, only the actual exception
part of the exception representation is returned (so ‘AssertionError: ‘ is removed from the beginning)

errisinstance(exc)
return True if the exception is an instance of exc

getrepr(showlocals=False, style=’long’, abspath=False, tbfilter=True, funcargs=False)
return str()able representation of this exception info. showlocals: show locals per traceback entry style:
long|short|no|native traceback style tbfilter: hide entries (where __tracebackhide__ is true)

in case of style==native, tbfilter and showlocals is ignored.

class py.code.Traceback(tb)
Traceback objects encapsulate and offer higher level access to Traceback entries.

Entry
alias of TracebackEntry

cut(path=None, lineno=None, firstlineno=None, excludepath=None)
return a Traceback instance wrapping part of this Traceback

by provding any combination of path, lineno and firstlineno, the first frame to start the to-be-returned
traceback is determined

this allows cutting the first part of a Traceback instance e.g. for formatting reasons (removing some
uninteresting bits that deal with handling of the exception/traceback)

filter(fn=<function Traceback.<lambda>>)
return a Traceback instance with certain items removed

fn is a function that gets a single argument, a TracebackItem instance, and should return True when the
item should be added to the Traceback, False when not

by default this removes all the TracebackItems which are hidden (see ishidden() above)

getcrashentry()
return last non-hidden traceback entry that lead to the exception of a traceback.

recursionindex()
return the index of the frame/TracebackItem where recursion originates if appropriate, None if no recursion
occurred

3.2. The wrappers 25

py Documentation, Release 1.11.0

26 Chapter 3. py.code: higher level python code and introspection objects

CHAPTER 4

py.io

The ‘py’ lib provides helper classes for capturing IO during execution of a program.

4.1 IO Capturing examples

4.1.1 py.io.StdCapture

Basic Example:

>>> import py
>>> capture = py.io.StdCapture()
>>> print "hello"
>>> out,err = capture.reset()
>>> out.strip() == "hello"
True

For calling functions you may use a shortcut:

>>> import py
>>> def f(): print "hello"
>>> res, out, err = py.io.StdCapture.call(f)
>>> out.strip() == "hello"
True

4.1.2 py.io.StdCaptureFD

If you also want to capture writes to the stdout/stderr filedescriptors you may invoke:

>>> import py, sys
>>> capture = py.io.StdCaptureFD(out=False, in_=False)
>>> sys.stderr.write("world")

(continues on next page)

27

py Documentation, Release 1.11.0

(continued from previous page)

>>> out,err = capture.reset()
>>> err
'world'

4.2 py.io object reference

class py.io.StdCaptureFD(out=True, err=True, mixed=False, in_=True, patchsys=True,
now=True)

This class allows to capture writes to FD1 and FD2 and may connect a NULL file to FD0 (and prevent reads
from sys.stdin). If any of the 0,1,2 file descriptors is invalid it will not be captured.

resume()
resume capturing with original temp files.

done(save=True)
return (outfile, errfile) and stop capturing.

readouterr()
return snapshot value of stdout/stderr capturings.

classmethod call(func, *args, **kwargs)
return a (res, out, err) tuple where out and err represent the output/error output during function execution.
call the given function with args/kwargs and capture output/error during its execution.

reset()
reset sys.stdout/stderr and return captured output as strings.

suspend()
return current snapshot captures, memorize tempfiles.

class py.io.StdCapture(out=True, err=True, in_=True, mixed=False, now=True)
This class allows to capture writes to sys.stdout|stderr “in-memory” and will raise errors on tries to read from
sys.stdin. It only modifies sys.stdout|stderr|stdin attributes and does not touch underlying File Descriptors (use
StdCaptureFD for that).

done(save=True)
return (outfile, errfile) and stop capturing.

resume()
resume capturing with original temp files.

readouterr()
return snapshot value of stdout/stderr capturings.

classmethod call(func, *args, **kwargs)
return a (res, out, err) tuple where out and err represent the output/error output during function execution.
call the given function with args/kwargs and capture output/error during its execution.

reset()
reset sys.stdout/stderr and return captured output as strings.

suspend()
return current snapshot captures, memorize tempfiles.

class py.io.TerminalWriter(file=None, stringio=False, encoding=None)

28 Chapter 4. py.io

py Documentation, Release 1.11.0

chars_on_current_line
Return the number of characters written so far in the current line.

Please note that this count does not produce correct results after a reline() call, see #164.

New in version 1.5.0.

Return type int

width_of_current_line
Return an estimate of the width so far in the current line.

New in version 1.6.0.

Return type int

4.2. py.io object reference 29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

py Documentation, Release 1.11.0

30 Chapter 4. py.io

CHAPTER 5

py.log documentation and musings

5.1 Foreword

This document is an attempt to briefly state the actual specification of the py.log module. It was written by Francois
Pinard and also contains some ideas for enhancing the py.log facilities.

NOTE that py.log is subject to refactorings, it may change with the next release.

This document is meant to trigger or facilitate discussions. It shamelessly steals from the Agile Testing comments,
and from other sources as well, without really trying to sort them out.

5.2 Logging organisation

The py.log module aims a niche comparable to the one of the logging module found within the standard Python
distributions, yet with much simpler paradigms for configuration and usage.

Holger Krekel, the main py library developer, introduced the idea of keyword-based logging and the idea of logging
producers and consumers. A log producer is an object used by the application code to send messages to various log
consumers. When you create a log producer, you define a set of keywords that are then used to both route the logging
messages to consumers, and to prefix those messages.

In fact, each log producer has a few keywords associated with it for identification purposes. These keywords form a
tuple of strings, and may be used to later retrieve a particular log producer.

A log producer may (or may not) be associated with a log consumer, meant to handle log messages in particular ways.
The log consumers can be STDOUT, STDERR, log files, syslog, the Windows Event Log, user defined functions, etc.
(Yet, logging to syslog or to the Windows Event Log is only future plans for now). A log producer has never more
than one consumer at a given time, but it is possible to dynamically switch a producer to use another consumer. On
the other hand, a single log consumer may be associated with many producers.

Note that creating and associating a producer and a consumer is done automatically when not otherwise overriden, so
using py logging is quite comfortable even in the smallest programs. More typically, the application programmer will
likely design a hierarchy of producers, and will select keywords appropriately for marking the hierarchy tree. If a node
of the hierarchical tree of producers has to be divided in sub-trees, all producers in the sub-trees share, as a common

31

http://agiletesting.blogspot.com/2005/06/keyword-based-logging-with-py-library.html
http://www.python.org/doc/2.4.2/lib/module-logging.html

py Documentation, Release 1.11.0

prefix, the keywords of the node being divided. In other words, we go further down in the hierarchy of producers
merely by adding keywords.

5.3 Using the py.log library

To use the py.log library, the user must import it into a Python application, create at least one log producer and one
log consumer, have producers and consumers associated, and finally call the log producers as needed, giving them log
messages.

5.3.1 Importing

Once the py library is installed on your system, a mere:

import py

holds enough magic for lazily importing the various facilities of the py library when they are first needed. This is
really how py.log is made available to the application. For example, after the above import py, one may directly
write py.log.Producer(...) and everything should work fine, the user does not have to worry about specifically
importing more modules.

5.3.2 Creating a producer

There are three ways for creating a log producer instance:

• As soon as py.log is first evaluated within an application program, a default log producer is created, and made
available under the name py.log.default. The keyword default is associated with that producer.

• The py.log.Producer() constructor may be explicitly called for creating a new instance of a log producer.
That constructor accepts, as an argument, the keywords that should be associated with that producer. Keywords
may be given either as a tuple of keyword strings, or as a single space-separated string of keywords.

• Whenever an attribute is taken out of a log producer instance, for the first time that attribute is taken, a new log
producer is created. The keywords associated with that new producer are those of the initial producer instance,
to which is appended the name of the attribute being taken.

The last point is especially useful, as it allows using log producers without further declarations, merely creating them
on-the-fly.

5.3.3 Creating a consumer

There are many ways for creating or denoting a log consumer:

• A default consumer exists within the py.log facilities, which has the effect of writing log messages on the
Python standard output stream. That consumer is associated at the very top of the producer hierarchy, and as
such, is called whenever no other consumer is found.

• The notation py.log.STDOUT accesses a log consumer which writes log messages on the Python standard
output stream.

• The notation py.log.STDERR accesses a log consumer which writes log messages on the Python standard
error stream.

• The py.log.File() constructor accepts, as argument, either a file already opened in write mode or any
similar file-like object, and creates a log consumer able to write log messages onto that file.

32 Chapter 5. py.log documentation and musings

py Documentation, Release 1.11.0

• The py.log.Path() constructor accepts a file name for its first argument, and creates a log consumer able
to write log messages into that file. The constructor call accepts a few keyword parameters:

– append, which is False by default, may be used for opening the file in append mode instead of write
mode.

– delayed_create, which is False by default, maybe be used for opening the file at the latest possible
time. Consequently, the file will not be created if it did not exist, and no actual log message gets written to
it.

– buffering, which is 1 by default, is used when opening the file. Buffering can be turned off by speci-
fying a 0 value. The buffer size may also be selected through this argument.

• Any user defined function may be used for a log consumer. Such a function should accept a single argument,
which is the message to write, and do whatever is deemed appropriate by the programmer. When the need arises,
this may be an especially useful and flexible feature.

• The special value None means no consumer at all. This acts just like if there was a consumer which would
silently discard all log messages sent to it.

5.3.4 Associating producers and consumers

Each log producer may have at most one log consumer associated with it. A log producer gets associated with a log
consumer through a py.log.setconsumer() call. That function accepts two arguments, the first identifying a
producer (a tuple of keyword strings or a single space-separated string of keywords), the second specifying the precise
consumer to use for that producer. Until this function is called for a producer, that producer does not have any explicit
consumer associated with it.

Now, the hierarchy of log producers establishes which consumer gets used whenever a producer has no explicit con-
sumer. When a log producer has no consumer explicitly associated with it, it dynamically and recursively inherits
the consumer of its parent node, that is, that node being a bit closer to the root of the hierarchy. In other words, the
rightmost keywords of that producer are dropped until another producer is found which has an explicit consumer. A
nice side-effect is that, by explicitly associating a consumer with a producer, all consumer-less producers which appear
under that producer, in the hierarchy tree, automatically inherits that consumer.

5.3.5 Writing log messages

All log producer instances are also functions, and this is by calling them that log messages are generated. Each call to
a producer object produces the text for one log entry, which in turn, is sent to the log consumer for that producer.

The log entry displays, after a prefix identifying the log producer being used, all arguments given in the call, converted
to strings and space-separated. (This is meant by design to be fairly similar to what the print statement does in
Python). The prefix itself is made up of a colon-separated list of keywords associated with the producer, the whole
being set within square brackets.

Note that the consumer is responsible for adding the newline at the end of the log entry. That final newline is not part
of the text for the log entry.

5.3. Using the py.log library 33

py Documentation, Release 1.11.0

34 Chapter 5. py.log documentation and musings

CHAPTER 6

py.xml: simple pythonic xml/html file generation

6.1 Motivation

There are a plethora of frameworks and libraries to generate xml and html trees. However, many of them are large,
have a steep learning curve and are often hard to debug. Not to speak of the fact that they are frameworks to begin
with.

6.2 a pythonic object model , please

The py lib offers a pythonic way to generate xml/html, based on ideas from xist which uses python class objects to build
xml trees. However, xist’s implementation is somewhat heavy because it has additional goals like transformations and
supporting many namespaces. But its basic idea is very easy.

6.2.1 generating arbitrary xml structures

With py.xml.Namespace you have the basis to generate custom xml-fragments on the fly:

class ns(py.xml.Namespace):
"my custom xml namespace"

doc = ns.books(
ns.book(

ns.author("May Day"),
ns.title("python for java programmers"),),

ns.book(
ns.author("why"),
ns.title("Java for Python programmers"),),

publisher="N.N",
)

print doc.unicode(indent=2).encode('utf8')

will give you this representation:

35

http://www.livinglogic.de/Python/xist/index.html
http://www.livinglogic.de/Python/xist/Howto.html
http://www.livinglogic.de/Python/xist/index.html

py Documentation, Release 1.11.0

<books publisher="N.N">
<book>
<author>May Day</author>
<title>python for java programmers</title></book>

<book>
<author>why</author>
<title>Java for Python programmers</title></book></books>

In a sentence: positional arguments are child-tags and keyword-arguments are attributes.

On a side note, you’ll see that the unicode-serializer supports a nice indentation style which keeps your generated html
readable, basically through emulating python’s white space significance by putting closing-tags rightmost and almost
invisible at first glance :-)

6.2.2 basic example for generating html

Consider this example:

from py.xml import html # html namespace

paras = "First Para", "Second para"

doc = html.html(
html.head(

html.meta(name="Content-Type", value="text/html; charset=latin1")),
html.body(

[html.p(p) for p in paras]))

print unicode(doc).encode('latin1')

Again, tags are objects which contain tags and have attributes. More exactly, Tags inherit from the list type and thus
can be manipulated as list objects. They additionally support a default way to represent themselves as a serialized
unicode object.

If you happen to look at the py.xml implementation you’ll note that the tag/namespace implementation consumes some
50 lines with another 50 lines for the unicode serialization code.

6.2.3 CSS-styling your html Tags

One aspect where many of the huge python xml/html generation frameworks utterly fail is a clean and convenient
integration of CSS styling. Often, developers are left alone with keeping CSS style definitions in sync with some style
files represented as strings (often in a separate .css file). Not only is this hard to debug but the missing abstractions
make it hard to modify the styling of your tags or to choose custom style representations (inline, html.head or external).
Add the Browers usual tolerance of messyness and errors in Style references and welcome to hell, known as the domain
of developing web applications :-)

By contrast, consider this CSS styling example:

class my(html):
"my initial custom style"
class body(html.body):

style = html.Style(font_size = "120%")

class h2(html.h2):
style = html.Style(background = "grey")

(continues on next page)

36 Chapter 6. py.xml: simple pythonic xml/html file generation

py Documentation, Release 1.11.0

(continued from previous page)

class p(html.p):
style = html.Style(font_weight="bold")

doc = my.html(
my.head(),
my.body(

my.h2("hello world"),
my.p("bold as bold can")

)
)

print doc.unicode(indent=2)

This will give you a small’n mean self contained represenation by default:

<html>
<head/>
<body style="font-size: 120%">
<h2 style="background: grey">hello world</h2>
<p style="font-weight: bold">bold as bold can</p></body></html>

Most importantly, note that the inline-styling is just an implementation detail of the unicode serialization code. You
can easily modify the serialization to put your styling into the html.head or in a separate file and autogenerate
CSS-class names or ids.

Hey, you could even write tests that you are using correct styles suitable for specific browser requirements. Did i
mention that the ability to easily write tests for your generated html and its serialization could help to develop _stable_
user interfaces?

6.2.4 More to come . . .

For now, i don’t think we should strive to offer much more than the above. However, it is probably not hard to offer
partial serialization to allow generating maybe hundreds of complex html documents per second. Basically we would
allow putting callables both as Tag content and as values of attributes. A slightly more advanced Serialization would
then produce a list of unicode objects intermingled with callables. At HTTP-Request time the callables would get
called to complete the probably request-specific serialization of your Tags. Hum, it’s probably harder to explain this
than to actually code it :-)

6.2. a pythonic object model , please 37

py Documentation, Release 1.11.0

38 Chapter 6. py.xml: simple pythonic xml/html file generation

CHAPTER 7

Miscellaneous features of the py lib

7.1 Mapping the standard python library into py

The py.std object allows lazy access to standard library modules. For example, to get to the print-exception func-
tionality of the standard library you can write:

py.std.traceback.print_exc()

without having to do anything else than the usual import py at the beginning. You can access any other top-level
standard library module this way. This means that you will only trigger imports of modules that are actually needed.
Note that no attempt is made to import submodules.

7.2 Support for interaction with system utilities/binaries

Currently, the py lib offers two ways to interact with system executables. py.process.cmdexec() invokes the
shell in order to execute a string. The other one, py.path.local’s ‘sysexec()’ method lets you directly execute a
binary.

Both approaches will raise an exception in case of a return- code other than 0 and otherwise return the stdout-output
of the child process.

7.2.1 The shell based approach

You can execute a command via your system shell by doing something like:

out = py.process.cmdexec('ls -v')

However, the cmdexec approach has a few shortcomings:

• it relies on the underlying system shell

• it neccessitates shell-escaping for expressing arguments

39

py Documentation, Release 1.11.0

• it does not easily allow to “fix” the binary you want to run.

• it only allows to execute executables from the local filesystem

7.2.2 local paths have sysexec

In order to synchronously execute an executable file you can use sysexec:

binsvn.sysexec('ls', 'http://codespeak.net/svn')

where binsvn is a path that points to the svn commandline binary. Note that this function does not offer any
shell-escaping so you have to pass in already separated arguments.

7.2.3 finding an executable local path

Finding an executable is quite different on multiple platforms. Currently, the PATH environment variable based search
on unix platforms is supported:

py.path.local.sysfind('svn')

which returns the first path whose basename matches svn. In principle, sysfind deploys platform specific algorithms
to perform the search. On Windows, for example, it may look at the registry (XXX).

To make the story complete, we allow to pass in a second checker argument that is called for each found executable.
For example, if you have multiple binaries available you may want to select the right version:

def mysvn(p):
""" check that the given svn binary has version 1.1. """
line = p.execute('--version'').readlines()[0]
if line.find('version 1.1'):

return p
binsvn = py.path.local.sysfind('svn', checker=mysvn)

7.3 Cross-Python Version compatibility helpers

The py.builtin namespace provides a number of helpers that help to write python code compatible across Python
interpreters, mainly Python2 and Python3. Type help(py.builtin) on a Python prompt for the selection of
builtins.

40 Chapter 7. Miscellaneous features of the py lib

CHAPTER 8

1.11.0 (2021-11-04)

• Support Python 3.11

• Support NO_COLOR environment variable

• Update vendored apipkg: 1.5 => 2.0

41

py Documentation, Release 1.11.0

42 Chapter 8. 1.11.0 (2021-11-04)

CHAPTER 9

1.10.0 (2020-12-12)

• Fix a regular expression DoS vulnerability in the py.path.svnwc SVN blame functionality (CVE-2020-29651)

• Update vendored apipkg: 1.4 => 1.5

• Update vendored iniconfig: 1.0.0 => 1.1.1

43

py Documentation, Release 1.11.0

44 Chapter 9. 1.10.0 (2020-12-12)

CHAPTER 10

1.9.0 (2020-06-24)

• Add type annotation stubs for the following modules:

– py.error

– py.iniconfig

– py.path (not including SVN paths)

– py.io

– py.xml

There are no plans to type other modules at this time.

The type annotations are provided in external .pyi files, not inline in the code, and may therefore contain small
errors or omissions. If you use py in conjunction with a type checker, and encounter any type errors you believe
should be accepted, please report it in an issue.

45

py Documentation, Release 1.11.0

46 Chapter 10. 1.9.0 (2020-06-24)

CHAPTER 11

1.8.2 (2020-06-15)

• On Windows, ‘‘py.path.local‘‘s which differ only in case now have the same Python hash value. Previously,
such paths were considered equal but had different hashes, which is not allowed and breaks the assumptions
made by dicts, sets and other users of hashes.

47

py Documentation, Release 1.11.0

48 Chapter 11. 1.8.2 (2020-06-15)

CHAPTER 12

1.8.1 (2019-12-27)

• Handle FileNotFoundError when trying to import pathlib in path.common on Python 3.4 (#207).

• py.path.local.samefile now works correctly in Python 3 on Windows when dealing with symlinks.

49

py Documentation, Release 1.11.0

50 Chapter 12. 1.8.1 (2019-12-27)

CHAPTER 13

1.8.0 (2019-02-21)

• add "importlib" pyimport mode for python3.5+, allowing unimportable test suites to contain identically
named modules.

• fix LocalPath.as_cwd() not calling os.chdir() with None, when being invoked from a non-existing
directory.

51

py Documentation, Release 1.11.0

52 Chapter 13. 1.8.0 (2019-02-21)

CHAPTER 14

1.7.0 (2018-10-11)

• fix #174: use shutil.get_terminal_size() in Python 3.3+ to determine the size of the terminal, which
produces more accurate results than the previous method.

• fix pytest-dev/pytest#2042: introduce new PY_IGNORE_IMPORTMISMATCH environment variable that sup-
presses ImportMismatchError exceptions when set to 1.

53

py Documentation, Release 1.11.0

54 Chapter 14. 1.7.0 (2018-10-11)

CHAPTER 15

1.6.0 (2018-08-27)

• add TerminalWriter.width_of_current_line (i18n version of TerminalWriter.
chars_on_current_line), a read-only property that tracks how wide the current line is, attempting to
take into account international characters in the calculation.

55

py Documentation, Release 1.11.0

56 Chapter 15. 1.6.0 (2018-08-27)

CHAPTER 16

1.5.4 (2018-06-27)

• fix pytest-dev/pytest#3451: don’t make assumptions about fs case sensitivity in make_numbered_dir.

57

py Documentation, Release 1.11.0

58 Chapter 16. 1.5.4 (2018-06-27)

CHAPTER 17

1.5.3

• fix #179: ensure we can support ‘from py.error import . . . ’

59

py Documentation, Release 1.11.0

60 Chapter 17. 1.5.3

CHAPTER 18

1.5.2

• fix #169, #170: error importing py.log on Windows: no module named syslog.

61

py Documentation, Release 1.11.0

62 Chapter 18. 1.5.2

CHAPTER 19

1.5.1

• fix #167 - prevent pip from installing py in unsupported Python versions.

63

py Documentation, Release 1.11.0

64 Chapter 19. 1.5.1

CHAPTER 20

1.5.0

NOTE: this release has been removed from PyPI due to missing package metadata which caused a number of
problems to py26 and py33 users. This issue was fixed in the 1.5.1 release.

• python 2.6 and 3.3 are no longer supported

• deprecate py.std and remove all internal uses

• fix #73 turn py.error into an actual module

• path join to / no longer produces leading double slashes

• fix #82 - remove unsupportable aliases

• fix python37 compatibility of path.sysfind on windows by correctly replacing vars

• turn iniconfig and apipkg into vendored packages and ease de-vendoring for distributions

• fix #68 remove invalid py.test.ensuretemp references

• fix #25 - deprecate path.listdir(sort=callable)

• add TerminalWriter.chars_on_current_line read-only property that tracks how many characters
have been written to the current line.

65

py Documentation, Release 1.11.0

66 Chapter 20. 1.5.0

CHAPTER 21

1.4.34

• fix issue119 / pytest issue708 where tmpdir may fail to make numbered directories when the filesystem is case-
insensitive.

67

py Documentation, Release 1.11.0

68 Chapter 21. 1.4.34

CHAPTER 22

1.4.33

• avoid imports in calls to py.path.local().fnmatch(). Thanks Andreas Pelme for the PR.

• fix issue106: Naive unicode encoding when calling fspath() in python2. Thanks Tiago Nobrega for the PR.

• fix issue110: unittest.TestCase.assertWarns fails with py imported.

69

py Documentation, Release 1.11.0

70 Chapter 22. 1.4.33

CHAPTER 23

1.4.32

• fix issue70: added ability to copy all stat info in py.path.local.copy.

• make TerminalWriter.fullwidth a property. This results in the correct value when the terminal gets resized.

• update supported html tags to include recent additions. Thanks Denis Afonso for the PR.

• Remove internal code in Source.compile meant to support earlier Python 3 versions that produced the side
effect of leaving None in sys.modules when called (see pytest-dev/pytest#2103). Thanks Bruno Oliveira
for the PR.

71

py Documentation, Release 1.11.0

72 Chapter 23. 1.4.32

CHAPTER 24

1.4.31

• fix local().copy(dest, mode=True) to also work with unicode.

• pass better error message with svn EEXIST paths

73

py Documentation, Release 1.11.0

74 Chapter 24. 1.4.31

CHAPTER 25

1.4.30

• fix issue68 an assert with a multiline list comprehension was not reported correctly. Thanks Henrik Heibuerger.

75

py Documentation, Release 1.11.0

76 Chapter 25. 1.4.30

CHAPTER 26

1.4.29

• fix issue55: revert a change to the statement finding algorithm which is used by pytest for generating tracebacks.
Thanks Daniel Hahler for initial analysis.

• fix pytest issue254 for when traceback rendering can’t find valid source code. Thanks Ionel Cristian Maries.

77

py Documentation, Release 1.11.0

78 Chapter 26. 1.4.29

CHAPTER 27

1.4.28

• fix issue64 – dirpath regression when “abs=True” is passed. Thanks Gilles Dartiguelongue.

79

py Documentation, Release 1.11.0

80 Chapter 27. 1.4.28

CHAPTER 28

1.4.27

• fix issue59: point to new repo site

• allow a new ensuresyspath=”append” mode for py.path.local.pyimport() so that a neccessary import path is
appended instead of prepended to sys.path

• strike undocumented, untested argument to py.path.local.pypkgpath

• speed up py.path.local.dirpath by a factor of 10

81

py Documentation, Release 1.11.0

82 Chapter 28. 1.4.27

CHAPTER 29

1.4.26

• avoid calling normpath twice in py.path.local

• py.builtin._reraise properly reraises under Python3 now.

• fix issue53 - remove module index, thanks jenisys.

• allow posix path separators when “fnmatch” is called. Thanks Christian Long for the complete PR.

83

py Documentation, Release 1.11.0

84 Chapter 29. 1.4.26

CHAPTER 30

1.4.25

• fix issue52: vaguely fix py25 compat of py.path.local (it’s not officially supported), also fix docs

• fix pytest issue 589: when checking if we have a recursion error check for the specific “maximum recursion
depth” text of the exception.

85

py Documentation, Release 1.11.0

86 Chapter 30. 1.4.25

CHAPTER 31

1.4.24

• Fix retrieving source when an else: line has an other statement on the same line.

• add localpath read_text/write_text/read_bytes/write_bytes methods as shortcuts and clearer bytes/text interfaces
for read/write. Adapted from a PR from Paul Moore.

87

py Documentation, Release 1.11.0

88 Chapter 31. 1.4.24

CHAPTER 32

1.4.23

• use newer apipkg version which makes attribute access on alias modules resolve to None rather than an Im-
portError. This helps with code that uses inspect.getframeinfo() on py34 which causes a complete walk on
sys.modules thus triggering the alias module to resolve and blowing up with ImportError. The negative side is
that something like “py.test.X” will now result in None instead of “importerror: pytest” if pytest is not installed.
But you shouldn’t import “py.test” anyway anymore.

• adapt one svn test to only check for any exception instead of specific ones because different svn versions cause
different errors and we don’t care.

89

py Documentation, Release 1.11.0

90 Chapter 32. 1.4.23

CHAPTER 33

1.4.22

• refactor class-level registry on ForkedFunc child start/finish event to become instance based (i.e. passed into the
constructor)

91

py Documentation, Release 1.11.0

92 Chapter 33. 1.4.22

CHAPTER 34

1.4.21

• ForkedFunc now has class-level register_on_start/on_exit() methods to allow adding information in the boxed
process. Thanks Marc Schlaich.

• ForkedFunc in the child opens in “auto-flush” mode for stdout/stderr so that when a subprocess dies you can see
its output even if it didn’t flush itself.

• refactor traceback generation in light of pytest issue 364 (shortening tracebacks). you can now set a new trace-
back style on a per-entry basis such that a caller can force entries to be isplayed as short or long entries.

• win32: py.path.local.sysfind(name) will preferrably return files with extensions so that if “X” and “X.bat” or
“X.exe” is on the PATH, one of the latter two will be returned.

93

py Documentation, Release 1.11.0

94 Chapter 34. 1.4.21

CHAPTER 35

1.4.20

• ignore unicode decode errors in xmlescape. Thanks Anatoly Bubenkoff.

• on python2 modify traceback.format_exception_only to match python3 behaviour, namely trying to print uni-
code for Exception instances

• use a safer way for serializing exception reports (helps to fix pytest issue413)

95

py Documentation, Release 1.11.0

96 Chapter 35. 1.4.20

CHAPTER 36

Changes between 1.4.18 and 1.4.19

• merge in apipkg fixes

• some micro-optimizations in py/_code/code.py for speeding up pytest runs. Thanks Alex Gaynor for initiative.

• check PY_COLORS=1 or PY_COLORS=0 to force coloring/not-coloring for py.io.TerminalWriter() indepen-
dently from capabilities of the output file. Thanks Marc Abramowitz for the PR.

• some fixes to unicode handling in assertion handling. Thanks for the PR to Floris Bruynooghe. (This helps to
fix pytest issue 319).

• depend on setuptools presence, remove distribute_setup

97

py Documentation, Release 1.11.0

98 Chapter 36. Changes between 1.4.18 and 1.4.19

CHAPTER 37

Changes between 1.4.17 and 1.4.18

• introduce path.ensure_dir() as a synonym for ensure(. . . , dir=1)

• some unicode/python3 related fixes wrt to path manipulations (if you start passing unicode particular in py2 you
might still get problems, though)

99

py Documentation, Release 1.11.0

100 Chapter 37. Changes between 1.4.17 and 1.4.18

CHAPTER 38

Changes between 1.4.16 and 1.4.17

• make py.io.TerminalWriter() prefer colorama if it is available and avoid empty lines when separator-lines are
printed by being defensive and reducing the working terminalwidth by 1

• introduce optional “expanduser” argument to py.path.local to that local(“~”, expanduser=True) gives the home
directory of “user”.

101

py Documentation, Release 1.11.0

102 Chapter 38. Changes between 1.4.16 and 1.4.17

CHAPTER 39

Changes between 1.4.15 and 1.4.16

• fix issue35 - define __gt__ ordering between a local path and strings

• fix issue36 - make chdir() work even if os.getcwd() fails.

• add path.exists/isdir/isfile/islink shortcuts

• introduce local path.as_cwd() context manager.

• introduce p.write(ensure=1) and p.open(ensure=1) where ensure triggers creation of neccessary parent dirs.

103

py Documentation, Release 1.11.0

104 Chapter 39. Changes between 1.4.15 and 1.4.16

CHAPTER 40

Changes between 1.4.14 and 1.4.15

• majorly speed up some common calling patterns with LocalPath.listdir()/join/check/stat functions considerably.

• fix an edge case with fnmatch where a glob style pattern appeared in an absolute path.

105

py Documentation, Release 1.11.0

106 Chapter 40. Changes between 1.4.14 and 1.4.15

CHAPTER 41

Changes between 1.4.13 and 1.4.14

• fix dupfile to work with files that don’t carry a mode. Thanks Jason R. Coombs.

107

py Documentation, Release 1.11.0

108 Chapter 41. Changes between 1.4.13 and 1.4.14

CHAPTER 42

Changes between 1.4.12 and 1.4.13

• fix getting statementrange/compiling a file ending in a comment line without newline (on python2.5)

• for local paths you can pass “mode=True” to a copy() in order to copy permission bits (underlying mechanism
is using shutil.copymode)

• add paths arguments to py.path.local.sysfind to restrict search to the diretories in the path.

• add isdir/isfile/islink to path.stat() objects allowing to perform multiple checks without calling out multiple times

• drop py.path.local.__new__ in favour of a simpler __init__

• iniconfig: allow “name:value” settings in config files, no space after “name” required

• fix issue 27 - NameError in unlikely untested case of saferepr

109

py Documentation, Release 1.11.0

110 Chapter 42. Changes between 1.4.12 and 1.4.13

CHAPTER 43

Changes between 1.4.11 and 1.4.12

• fix python2.4 support - for pre-AST interpreters re-introduce old way to find statements in exceptions (closes
pytest issue 209)

• add tox.ini to distribution

• fix issue23 - print ,* args information in tracebacks, thanks Manuel Jacob

111

py Documentation, Release 1.11.0

112 Chapter 43. Changes between 1.4.11 and 1.4.12

CHAPTER 44

Changes between 1.4.10 and 1.4.11

• use _ast to determine statement ranges when printing tracebacks - avoiding multi-second delays on some large
test modules

• fix an internal test to not use class-denoted pytest_funcarg__

• fix a doc link to bug tracker

• try to make terminal.write() printing more robust against unicodeencode/decode problems, amend according test

• introduce py.builtin.text and py.builtin.bytes to point to respective str/unicode (py2) and bytes/str (py3) types

• fix error handling on win32/py33 for ENODIR

113

py Documentation, Release 1.11.0

114 Chapter 44. Changes between 1.4.10 and 1.4.11

CHAPTER 45

Changes between 1.4.9 and 1.4.10

• terminalwriter: default to encode to UTF8 if no encoding is defined on the output stream

• issue22: improve heuristic for finding the statementrange in exceptions

115

py Documentation, Release 1.11.0

116 Chapter 45. Changes between 1.4.9 and 1.4.10

CHAPTER 46

Changes between 1.4.8 and 1.4.9

• fix bug of path.visit() which would not recognize glob-style patterns for the “rec” recursion argument

• changed iniconfig parsing to better conform, now the chars “;” and “#” only mark a comment at the stripped
start of a line

• include recent apipkg-1.2

• change internal terminalwriter.line/reline logic to more nicely support file spinners

117

py Documentation, Release 1.11.0

118 Chapter 46. Changes between 1.4.8 and 1.4.9

CHAPTER 47

Changes between 1.4.7 and 1.4.8

• fix issue 13 - correct handling of the tag name object in xmlgen

• fix issue 14 - support raw attribute values in xmlgen

• fix windows terminalwriter printing/re-line problem

• update distribute_setup.py to 0.6.27

119

py Documentation, Release 1.11.0

120 Chapter 47. Changes between 1.4.7 and 1.4.8

CHAPTER 48

Changes between 1.4.6 and 1.4.7

• fix issue11 - own test failure with python3.3 / Thanks Benjamin Peterson

• help fix pytest issue 102

121

py Documentation, Release 1.11.0

122 Chapter 48. Changes between 1.4.6 and 1.4.7

CHAPTER 49

Changes between 1.4.5 and 1.4.6

• help to fix pytest issue99: unify output of ExceptionInfo.getrepr(style=”native”) with . . . (style=”long”)

• fix issue7: source.getstatementrange() now raises proper error if no valid statement can be found

• fix issue8: fix code and tests of svnurl/svnwc to work on subversion 1.7 - note that path.status(updates=1) will
not properly work svn-17’s status –xml output is broken.

• make source.getstatementrange() more resilent about non-python code frames (as seen from jnja2)

• make trackeback recursion detection more resilent about the eval magic of a decorator library

• iniconfig: add support for ; as comment starter

• properly handle lists in xmlgen on python3

• normalize py.code.getfslineno(obj) to always return a (string, int) tuple defaulting to (“”, -1) respectively if no
source code can be found for obj.

123

py Documentation, Release 1.11.0

124 Chapter 49. Changes between 1.4.5 and 1.4.6

CHAPTER 50

Changes between 1.4.4 and 1.4.5

• improve some unicode handling in terminalwriter and capturing (used by pytest)

125

py Documentation, Release 1.11.0

126 Chapter 50. Changes between 1.4.4 and 1.4.5

CHAPTER 51

Changes between 1.4.3 and 1.4.4

• a few fixes and assertion related refinements for pytest-2.1

• guard py.code.Code and getfslineno against bogus input and make py.code.Code objects for object instance by
looking up their __call__ function.

• make exception presentation robust against invalid current cwd

127

py Documentation, Release 1.11.0

128 Chapter 51. Changes between 1.4.3 and 1.4.4

CHAPTER 52

Changes between 1.4.2 and 1.4.3

• fix terminal coloring issue for skipped tests (thanks Amaury)

• fix issue4 - large calls to ansi_print (thanks Amaury)

129

py Documentation, Release 1.11.0

130 Chapter 52. Changes between 1.4.2 and 1.4.3

CHAPTER 53

Changes between 1.4.1 and 1.4.2

• fix (pytest) issue23 - tmpdir argument now works on Python3.2 and WindowsXP (which apparently starts to
offer os.symlink now)

• better error message for syntax errors from compiled code

• small fix to better deal with (un-)colored terminal output on windows

131

py Documentation, Release 1.11.0

132 Chapter 53. Changes between 1.4.1 and 1.4.2

CHAPTER 54

Changes between 1.4.0 and 1.4.1

• fix issue1 - py.error.* classes to be pickleable

• fix issue2 - on windows32 use PATHEXT as the list of potential extensions to find find binaries with
py.path.local.sysfind(commandname)

• fix (pytest-) issue10 and refine assertion reinterpretation to avoid breaking if the __nonzero__ of an object fails

• fix (pytest-) issue17 where python3 does not like “import *” leading to misrepresentation of import-errors in test
modules

• fix py.error.* attribute pypy access issue

• allow path.samefile(arg) to succeed when arg is a relative filename

• fix (pytest-) issue20 path.samefile(relpath) works as expected now

• fix (pytest-) issue8 len(long_list) now shows the lenght of the list

133

py Documentation, Release 1.11.0

134 Chapter 54. Changes between 1.4.0 and 1.4.1

CHAPTER 55

Changes between 1.3.4 and 1.4.0

• py.test was moved to a separate “pytest” package. What remains is a stub hook which will proxy import
py.test to pytest.

• all command line tools (“py.cleanup/lookup/countloc/. . . ” moved to “pycmd” package)

• removed the old and deprecated “py.magic” namespace

• use apipkg-1.1 and make py.apipkg.initpkg|ApiModule available

• add py.iniconfig module for brain-dead easy ini-config file parsing

• introduce py.builtin.any()

• path objects have a .dirname attribute now (equivalent to os.path.dirname(path))

• path.visit() accepts breadthfirst (bf) and sort options

• remove deprecated py.compat namespace

135

py Documentation, Release 1.11.0

136 Chapter 55. Changes between 1.3.4 and 1.4.0

CHAPTER 56

Changes between 1.3.3 and 1.3.4

• fix issue111: improve install documentation for windows

• fix issue119: fix custom collectability of __init__.py as a module

• fix issue116: –doctestmodules work with __init__.py files as well

• fix issue115: unify internal exception passthrough/catching/GeneratorExit

• fix issue118: new –tb=native for presenting cpython-standard exceptions

137

py Documentation, Release 1.11.0

138 Chapter 56. Changes between 1.3.3 and 1.3.4

CHAPTER 57

Changes between 1.3.2 and 1.3.3

• fix issue113: assertion representation problem with triple-quoted strings (and possibly other cases)

• make conftest loading detect that a conftest file with the same content was already loaded, avoids surprises
in nested directory structures which can be produced e.g. by Hudson. It probably removes the need to use
–confcutdir in most cases.

• fix terminal coloring for win32 (thanks Michael Foord for reporting)

• fix weirdness: make terminal width detection work on stdout instead of stdin (thanks Armin Ronacher for
reporting)

• remove trailing whitespace in all py/text distribution files

139

py Documentation, Release 1.11.0

140 Chapter 57. Changes between 1.3.2 and 1.3.3

CHAPTER 58

Changes between 1.3.1 and 1.3.2

58.1 New features

• fix issue103: introduce py.test.raises as context manager, examples:

with py.test.raises(ZeroDivisionError):
x = 0
1 / x

with py.test.raises(RuntimeError) as excinfo:
call_something()

you may do extra checks on excinfo.value|type|traceback here

(thanks Ronny Pfannschmidt)

• Funcarg factories can now dynamically apply a marker to a test invocation. This is for example useful if a
factory provides parameters to a test which are expected-to-fail:

def pytest_funcarg__arg(request):
request.applymarker(py.test.mark.xfail(reason="flaky config"))
...

def test_function(arg):
...

• improved error reporting on collection and import errors. This makes use of a more general mechanism, namely
that for custom test item/collect nodes node.repr_failure(excinfo) is now uniformly called so that
you can override it to return a string error representation of your choice which is going to be reported as a (red)
string.

• introduce ‘–junitprefix=STR’ option to prepend a prefix to all reports in the junitxml file.

141

py Documentation, Release 1.11.0

58.2 Bug fixes / Maintenance

• make tests and the pytest_recwarn plugin in particular fully compatible to Python2.7 (if you use the
recwarn funcarg warnings will be enabled so that you can properly check for their existence in a cross-python
manner).

• refine –pdb: ignore xfailed tests, unify its TB-reporting and don’t display failures again at the end.

• fix assertion interpretation with the ** operator (thanks Benjamin Peterson)

• fix issue105 assignment on the same line as a failing assertion (thanks Benjamin Peterson)

• fix issue104 proper escaping for test names in junitxml plugin (thanks anonymous)

• fix issue57 -f|–looponfail to work with xpassing tests (thanks Ronny)

• fix issue92 collectonly reporter and –pastebin (thanks Benjamin Peterson)

• fix py.code.compile(source) to generate unique filenames

• fix assertion re-interp problems on PyPy, by defering code compilation to the (overridable) Frame.eval class.
(thanks Amaury Forgeot)

• fix py.path.local.pyimport() to work with directories

• streamline py.path.local.mkdtemp implementation and usage

• don’t print empty lines when showing junitxml-filename

• add optional boolean ignore_errors parameter to py.path.local.remove

• fix terminal writing on win32/python2.4

• py.process.cmdexec() now tries harder to return properly encoded unicode objects on all python versions

• install plain py.test/py.which scripts also for Jython, this helps to get canonical script paths in virtualenv situa-
tions

• make path.bestrelpath(path) return “.”, note that when calling X.bestrelpath the assumption is that X is a direc-
tory.

• make initial conftest discovery ignore “–” prefixed arguments

• fix resultlog plugin when used in an multicpu/multihost xdist situation (thanks Jakub Gustak)

• perform distributed testing related reporting in the xdist-plugin rather than having dist-related code in the generic
py.test distribution

• fix homedir detection on Windows

• ship distribute_setup.py version 0.6.13

142 Chapter 58. Changes between 1.3.1 and 1.3.2

CHAPTER 59

Changes between 1.3.0 and 1.3.1

59.1 New features

• issue91: introduce new py.test.xfail(reason) helper to imperatively mark a test as expected to fail. Can be used
from within setup and test functions. This is useful especially for parametrized tests when certain configurations
are expected-to-fail. In this case the declarative approach with the @py.test.mark.xfail cannot be used as it
would mark all configurations as xfail.

• issue102: introduce new –maxfail=NUM option to stop test runs after NUM failures. This is a generalization of
the ‘-x’ or ‘–exitfirst’ option which is now equivalent to ‘–maxfail=1’. Both ‘-x’ and ‘–maxfail’ will now also
print a line near the end indicating the Interruption.

• issue89: allow py.test.mark decorators to be used on classes (class decorators were introduced with python2.6)
and also allow to have multiple markers applied at class/module level by specifying a list.

• improve and refine letter reporting in the progress bar: . pass f failed test s skipped tests (reminder: use for
dependency/platform mismatch only) x xfailed test (test that was expected to fail) X xpassed test (test that was
expected to fail but passed)

You can use any combination of ‘fsxX’ with the ‘-r’ extended reporting option. The xfail/xpass results will show
up as skipped tests in the junitxml output - which also fixes issue99.

• make py.test.cmdline.main() return the exitstatus instead of raising SystemExit and also allow it to be called
multiple times. This of course requires that your application and tests are properly teared down and don’t have
global state.

59.2 Fixes / Maintenance

• improved traceback presentation: - improved and unified reporting for “–tb=short” option - Errors during test
module imports are much shorter, (using –tb=short style) - raises shows shorter more relevant tracebacks -
–fulltrace now more systematically makes traces longer / inhibits cutting

143

py Documentation, Release 1.11.0

• improve support for raises and other dynamically compiled code by manipulating python’s linecache.cache
instead of the previous rather hacky way of creating custom code objects. This makes it seemlessly work on
Jython and PyPy where it previously didn’t.

• fix issue96: make capturing more resilient against Control-C interruptions (involved somewhat substantial refac-
toring to the underlying capturing functionality to avoid race conditions).

• fix chaining of conditional skipif/xfail decorators - so it works now as expected to use multiple
@py.test.mark.skipif(condition) decorators, including specific reporting which of the conditions lead to skip-
ping.

• fix issue95: late-import zlib so that it’s not required for general py.test startup.

• fix issue94: make reporting more robust against bogus source code (and internally be more careful when pre-
senting unexpected byte sequences)

144 Chapter 59. Changes between 1.3.0 and 1.3.1

CHAPTER 60

Changes between 1.2.1 and 1.3.0

• deprecate –report option in favour of a new shorter and easier to remember -r option: it takes a string argument
consisting of any combination of ‘xfsX’ characters. They relate to the single chars you see during the dotted
progress printing and will print an extra line per test at the end of the test run. This extra line indicates the exact
position or test ID that you directly paste to the py.test cmdline in order to re-run a particular test.

• allow external plugins to register new hooks via the new pytest_addhooks(pluginmanager) hook. The new
release of the pytest-xdist plugin for distributed and looponfailing testing requires this feature.

• add a new pytest_ignore_collect(path, config) hook to allow projects and plugins to define exclusion behaviour
for their directory structure - for example you may define in a conftest.py this method:

def pytest_ignore_collect(path):
return path.check(link=1)

to prevent even a collection try of any tests in symlinked dirs.

• new pytest_pycollect_makemodule(path, parent) hook for allowing customization of the Module collection ob-
ject for a matching test module.

• extend and refine xfail mechanism: @py.test.mark.xfail(run=False) do not run the decorated
test @py.test.mark.xfail(reason="...") prints the reason string in xfail summaries specifiying
--runxfail on command line virtually ignores xfail markers

• expose (previously internal) commonly useful methods: py.io.get_terminal_with() -> return terminal width
py.io.ansi_print(. . .) -> print colored/bold text on linux/win32 py.io.saferepr(obj) -> return limited represen-
tation string

• expose test outcome related exceptions as py.test.skip.Exception, py.test.raises.Exception etc., useful mostly for
plugins doing special outcome interpretation/tweaking

• (issue85) fix junitxml plugin to handle tests with non-ascii output

• fix/refine python3 compatibility (thanks Benjamin Peterson)

• fixes for making the jython/win32 combination work, note however: jython2.5.1/win32 does not provide a
command line launcher, see http://bugs.jython.org/issue1491 . See pylib install documentation for how to work
around.

145

http://bugs.jython.org/issue1491

py Documentation, Release 1.11.0

• fixes for handling of unicode exception values and unprintable objects

• (issue87) fix unboundlocal error in assertionold code

• (issue86) improve documentation for looponfailing

• refine IO capturing: stdin-redirect pseudo-file now has a NOP close() method

• ship distribute_setup.py version 0.6.10

• added links to the new capturelog and coverage plugins

146 Chapter 60. Changes between 1.2.1 and 1.3.0

CHAPTER 61

Changes between 1.2.1 and 1.2.0

• refined usage and options for “py.cleanup”:

py.cleanup # remove "*.pyc" and "*$py.class" (jython) files
py.cleanup -e .swp -e .cache # also remove files with these extensions
py.cleanup -s # remove "build" and "dist" directory next to setup.py files
py.cleanup -d # also remove empty directories
py.cleanup -a # synonym for "-s -d -e 'pip-log.txt'"
py.cleanup -n # dry run, only show what would be removed

• add a new option “py.test –funcargs” which shows available funcargs and their help strings (docstrings on their
respective factory function) for a given test path

• display a short and concise traceback if a funcarg lookup fails

• early-load “conftest.py” files in non-dot first-level sub directories. allows to conveniently keep and access test-
related options in a test subdir and still add command line options.

• fix issue67: new super-short traceback-printing option: “–tb=line” will print a single line for each failing
(python) test indicating its filename, lineno and the failure value

• fix issue78: always call python-level teardown functions even if the according setup failed. This includes
refinements for calling setup_module/class functions which will now only be called once instead of the previous
behaviour where they’d be called multiple times if they raise an exception (including a Skipped exception). Any
exception will be re-corded and associated with all tests in the according module/class scope.

• fix issue63: assume <40 columns to be a bogus terminal width, default to 80

• fix pdb debugging to be in the correct frame on raises-related errors

• update apipkg.py to fix an issue where recursive imports might unnecessarily break importing

• fix plugin links

147

py Documentation, Release 1.11.0

148 Chapter 61. Changes between 1.2.1 and 1.2.0

CHAPTER 62

Changes between 1.2 and 1.1.1

• moved dist/looponfailing from py.test core into a new separately released pytest-xdist plugin.

• new junitxml plugin: –junitxml=path will generate a junit style xml file which is processable e.g. by the Hudson
CI system.

• new option: –genscript=path will generate a standalone py.test script which will not need any libraries installed.
thanks to Ralf Schmitt.

• new option: –ignore will prevent specified path from collection. Can be specified multiple times.

• new option: –confcutdir=dir will make py.test only consider conftest files that are relative to the specified dir.

• new funcarg: “pytestconfig” is the pytest config object for access to command line args and can now be easily
used in a test.

• install ‘py.test’ and py.which with a -$VERSION suffix to disambiguate between Python3, python2.X, Jython
and PyPy installed versions.

• new “pytestconfig” funcarg allows access to test config object

• new “pytest_report_header” hook can return additional lines to be displayed at the header of a test run.

• (experimental) allow “py.test path::name1::name2::. . . ” for pointing to a test within a test collection directly.
This might eventually evolve as a full substitute to “-k” specifications.

• streamlined plugin loading: order is now as documented in customize.html: setuptools, ENV, commandline,
conftest. also setuptools entry point names are turned to canonical namees (“pytest_*”)

• automatically skip tests that need ‘capfd’ but have no os.dup

• allow pytest_generate_tests to be defined in classes as well

• deprecate usage of ‘disabled’ attribute in favour of pytestmark

• deprecate definition of Directory, Module, Class and Function nodes in conftest.py files. Use pytest collect
hooks instead.

• collection/item node specific runtest/collect hooks are only called exactly on matching conftest.py files, i.e. ones
which are exactly below the filesystem path of an item

149

py Documentation, Release 1.11.0

• change: the first pytest_collect_directory hook to return something will now prevent further hooks to be called.

• change: figleaf plugin now requires –figleaf to run. Also change its long command line options to be a bit
shorter (see py.test -h).

• change: pytest doctest plugin is now enabled by default and has a new option –doctest-glob to set a pattern for
file matches.

• change: remove internal py._* helper vars, only keep py._pydir

• robustify capturing to survive if custom pytest_runtest_setup code failed and prevented the capturing setup code
from running.

• make py.test.* helpers provided by default plugins visible early - works transparently both for pydoc and for
interactive sessions which will regularly see e.g. py.test.mark and py.test.importorskip.

• simplify internal plugin manager machinery

• simplify internal collection tree by introducing a RootCollector node

• fix assert reinterpreation that sees a call containing “keyword=. . . ”

• fix issue66: invoke pytest_sessionstart and pytest_sessionfinish hooks on slaves during dist-testing, report mod-
ule/session teardown hooks correctly.

• fix issue65: properly handle dist-testing if no execnet/py lib installed remotely.

• skip some install-tests if no execnet is available

• fix docs, fix internal bin/ script generation

150 Chapter 62. Changes between 1.2 and 1.1.1

CHAPTER 63

Changes between 1.1.1 and 1.1.0

• introduce automatic plugin registration via ‘pytest11’ entrypoints via setuptools’
pkg_resources.iter_entry_points

• fix py.test dist-testing to work with execnet >= 1.0.0b4

• re-introduce py.test.cmdline.main() for better backward compatibility

• svn paths: fix a bug with path.check(versioned=True) for svn paths, allow ‘%’ in svn paths, make svnwc.update()
default to interactive mode like in 1.0.x and add svnwc.update(interactive=False) to inhibit interaction.

• refine distributed tarball to contain test and no pyc files

• try harder to have deprecation warnings for py.compat.* accesses report a correct location

151

py Documentation, Release 1.11.0

152 Chapter 63. Changes between 1.1.1 and 1.1.0

CHAPTER 64

Changes between 1.1.0 and 1.0.2

• adjust and improve docs

• remove py.rest tool and internal namespace - it was never really advertised and can still be used with the old
release if needed. If there is interest it could be revived into its own tool i guess.

• fix issue48 and issue59: raise an Error if the module from an imported test file does not seem to come from the
filepath - avoids “same-name” confusion that has been reported repeatedly

• merged Ronny’s nose-compatibility hacks: now nose-style setup_module() and setup() functions are supported

• introduce generalized py.test.mark function marking

• reshuffle / refine command line grouping

• deprecate parser.addgroup in favour of getgroup which creates option group

• add –report command line option that allows to control showing of skipped/xfailed sections

• generalized skipping: a new way to mark python functions with skipif or xfail at function, class and modules
level based on platform or sys-module attributes.

• extend py.test.mark decorator to allow for positional args

• introduce and test “py.cleanup -d” to remove empty directories

• fix issue #59 - robustify unittest test collection

• make bpython/help interaction work by adding an __all__ attribute to ApiModule, cleanup initpkg

• use MIT license for pylib, add some contributors

• remove py.execnet code and substitute all usages with ‘execnet’ proper

• fix issue50 - cached_setup now caches more to expectations for test functions with multiple arguments.

• merge Jarko’s fixes, issue #45 and #46

• add the ability to specify a path for py.lookup to search in

• fix a funcarg cached_setup bug probably only occuring in distributed testing and “module” scope with teardown.

153

py Documentation, Release 1.11.0

• many fixes and changes for making the code base python3 compatible, many thanks to Benjamin Peterson for
helping with this.

• consolidate builtins implementation to be compatible with >=2.3, add helpers to ease keeping 2 and 3k compat-
ible code

• deprecate py.compat.doctest|subprocess|textwrap|optparse

• deprecate py.magic.autopath, remove py/magic directory

• move pytest assertion handling to py/code and a pytest_assertion plugin, add “–no-assert” option, deprecate
py.magic namespaces in favour of (less) py.code ones.

• consolidate and cleanup py/code classes and files

• cleanup py/misc, move tests to bin-for-dist

• introduce delattr/delitem/delenv methods to py.test’s monkeypatch funcarg

• consolidate py.log implementation, remove old approach.

• introduce py.io.TextIO and py.io.BytesIO for distinguishing between text/unicode and byte-streams (uses under-
lying standard lib io.* if available)

• make py.unittest_convert helper script available which converts “unittest.py” style files into the simpler
assert/direct-test-classes py.test/nosetests style. The script was written by Laura Creighton.

• simplified internal localpath implementation

154 Chapter 64. Changes between 1.1.0 and 1.0.2

CHAPTER 65

Changes between 1.0.1 and 1.0.2

• fixing packaging issues, triggered by fedora redhat packaging, also added doc, examples and contrib dirs to the
tarball.

• added a documentation link to the new django plugin.

155

py Documentation, Release 1.11.0

156 Chapter 65. Changes between 1.0.1 and 1.0.2

CHAPTER 66

Changes between 1.0.0 and 1.0.1

• added a ‘pytest_nose’ plugin which handles nose.SkipTest, nose-style function/method/generator
setup/teardown and tries to report functions correctly.

• capturing of unicode writes or encoded strings to sys.stdout/err work better, also terminalwriting was adapted
and somewhat unified between windows and linux.

• improved documentation layout and content a lot

• added a “–help-config” option to show conftest.py / ENV-var names for all longopt cmdline options, and some
special conftest.py variables. renamed ‘conf_capture’ conftest setting to ‘option_capture’ accordingly.

• fix issue #27: better reporting on non-collectable items given on commandline (e.g. pyc files)

• fix issue #33: added –version flag (thanks Benjamin Peterson)

• fix issue #32: adding support for “incomplete” paths to wcpath.status()

• “Test” prefixed classes are not collected by default anymore if they have an __init__ method

• monkeypatch setenv() now accepts a “prepend” parameter

• improved reporting of collection error tracebacks

• simplified multicall mechanism and plugin architecture, renamed some internal methods and argnames

157

py Documentation, Release 1.11.0

158 Chapter 66. Changes between 1.0.0 and 1.0.1

CHAPTER 67

Changes between 1.0.0b9 and 1.0.0

• more terse reporting try to show filesystem path relatively to current dir

• improve xfail output a bit

159

py Documentation, Release 1.11.0

160 Chapter 67. Changes between 1.0.0b9 and 1.0.0

CHAPTER 68

Changes between 1.0.0b8 and 1.0.0b9

• cleanly handle and report final teardown of test setup

• fix svn-1.6 compat issue with py.path.svnwc().versioned() (thanks Wouter Vanden Hove)

• setup/teardown or collection problems now show as ERRORs or with big “E“‘s in the progress lines. they are
reported and counted separately.

• dist-testing: properly handle test items that get locally collected but cannot be collected on the remote side -
often due to platform/dependency reasons

• simplified py.test.mark API - see keyword plugin documentation

• integrate better with logging: capturing now by default captures test functions and their immediate
setup/teardown in a single stream

• capsys and capfd funcargs now have a readouterr() and a close() method (underlyingly py.io.StdCapture/FD
objects are used which grew a readouterr() method as well to return snapshots of captured out/err)

• make assert-reinterpretation work better with comparisons not returning bools (reported with numpy from thanks
maciej fijalkowski)

• reworked per-test output capturing into the pytest_iocapture.py plugin and thus removed capturing code from
config object

• item.repr_failure(excinfo) instead of item.repr_failure(excinfo, outerr)

161

py Documentation, Release 1.11.0

162 Chapter 68. Changes between 1.0.0b8 and 1.0.0b9

CHAPTER 69

Changes between 1.0.0b7 and 1.0.0b8

• pytest_unittest-plugin is now enabled by default

• introduced pytest_keyboardinterrupt hook and refined pytest_sessionfinish hooked, added tests.

• workaround a buggy logging module interaction (“closing already closed files”). Thanks to Sridhar Ratnakumar
for triggering.

• if plugins use “py.test.importorskip” for importing a dependency only a warning will be issued instead of exiting
the testing process.

• many improvements to docs: - refined funcargs doc , use the term “factory” instead of “provider” - added a new
talk/tutorial doc page - better download page - better plugin docstrings - added new plugins page and automatic
doc generation script

• fixed teardown problem related to partially failing funcarg setups (thanks MrTopf for reporting),
“pytest_runtest_teardown” is now always invoked even if the “pytest_runtest_setup” failed.

• tweaked doctest output for docstrings in py modules, thanks Radomir.

163

py Documentation, Release 1.11.0

164 Chapter 69. Changes between 1.0.0b7 and 1.0.0b8

CHAPTER 70

Changes between 1.0.0b3 and 1.0.0b7

• renamed py.test.xfail back to py.test.mark.xfail to avoid two ways to decorate for xfail

• re-added py.test.mark decorator for setting keywords on functions (it was actually documented so removing it
was not nice)

• remove scope-argument from request.addfinalizer() because request.cached_setup has the scope arg.
TOOWTDI.

• perform setup finalization before reporting failures

• apply modified patches from Andreas Kloeckner to allow test functions to have no func_code (#22) and to make
“-k” and function keywords work (#20)

• apply patch from Daniel Peolzleithner (issue #23)

• resolve issue #18, multiprocessing.Manager() and redirection clash

• make __name__ == “__channelexec__” for remote_exec code

165

py Documentation, Release 1.11.0

166 Chapter 70. Changes between 1.0.0b3 and 1.0.0b7

CHAPTER 71

Changes between 1.0.0b1 and 1.0.0b3

• plugin classes are removed: one now defines hooks directly in conftest.py or global pytest_*.py files.

• added new pytest_namespace(config) hook that allows to inject helpers directly to the py.test.* namespace.

• documented and refined many hooks

• added new style of generative tests via pytest_generate_tests hook that integrates well with function arguments.

167

py Documentation, Release 1.11.0

168 Chapter 71. Changes between 1.0.0b1 and 1.0.0b3

CHAPTER 72

Changes between 0.9.2 and 1.0.0b1

• introduced new “funcarg” setup method, see doc/test/funcarg.txt

• introduced plugin architecuture and many new py.test plugins, see doc/test/plugins.txt

• teardown_method is now guaranteed to get called after a test method has run.

• new method: py.test.importorskip(mod,minversion) will either import or call py.test.skip()

• completely revised internal py.test architecture

• new py.process.ForkedFunc object allowing to fork execution of a function to a sub process and getting a result
back.

XXX lots of things missing here XXX

169

py Documentation, Release 1.11.0

170 Chapter 72. Changes between 0.9.2 and 1.0.0b1

CHAPTER 73

Changes between 0.9.1 and 0.9.2

• refined installation and metadata, created new setup.py, now based on setuptools/ez_setup (thanks to Ralf
Schmitt for his support).

• improved the way of making py.* scripts available in windows environments, they are now added to the Scripts
directory as “.cmd” files.

• py.path.svnwc.status() now is more complete and uses xml output from the ‘svn’ command if available (Guido
Wesdorp)

• fix for py.path.svn* to work with svn 1.5 (Chris Lamb)

• fix path.relto(otherpath) method on windows to use normcase for checking if a path is relative.

• py.test’s traceback is better parseable from editors (follows the filenames:LINENO: MSG convention) (thanks
to Osmo Salomaa)

• fix to javascript-generation, “py.test –runbrowser” should work more reliably now

• removed previously accidentally added py.test.broken and py.test.notimplemented helpers.

• there now is a py.__version__ attribute

171

py Documentation, Release 1.11.0

172 Chapter 73. Changes between 0.9.1 and 0.9.2

CHAPTER 74

Changes between 0.9.0 and 0.9.1

This is a fairly complete list of changes between 0.9 and 0.9.1, which can serve as a reference for developers.

• allowing + signs in py.path.svn urls [39106]

• fixed support for Failed exceptions without excinfo in py.test [39340]

• added support for killing processes for Windows (as well as platforms that support os.kill) in py.misc.killproc
[39655]

• added setup/teardown for generative tests to py.test [40702]

• added detection of FAILED TO LOAD MODULE to py.test [40703, 40738, 40739]

• fixed problem with calling .remove() on wcpaths of non-versioned files in py.path [44248]

• fixed some import and inheritance issues in py.test [41480, 44648, 44655]

• fail to run greenlet tests when pypy is available, but without stackless [45294]

• small fixes in rsession tests [45295]

• fixed issue with 2.5 type representations in py.test [45483, 45484]

• made that internal reporting issues displaying is done atomically in py.test [45518]

• made that non-existing files are igored by the py.lookup script [45519]

• improved exception name creation in py.test [45535]

• made that less threads are used in execnet [merge in 45539]

• removed lock required for atomical reporting issue displaying in py.test [45545]

• removed globals from execnet [45541, 45547]

• refactored cleanup mechanics, made that setDaemon is set to 1 to make atexit get called in 2.5 (py.execnet)
[45548]

• fixed bug in joining threads in py.execnet’s servemain [45549]

• refactored py.test.rsession tests to not rely on exact output format anymore [45646]

173

py Documentation, Release 1.11.0

• using repr() on test outcome [45647]

• added ‘Reason’ classes for py.test.skip() [45648, 45649]

• killed some unnecessary sanity check in py.test.collect [45655]

• avoid using os.tmpfile() in py.io.fdcapture because on Windows it’s only usable by Administrators [45901]

• added support for locking and non-recursive commits to py.path.svnwc [45994]

• locking files in py.execnet to prevent CPython from segfaulting [46010]

• added export() method to py.path.svnurl

• fixed -d -x in py.test [47277]

• fixed argument concatenation problem in py.path.svnwc [49423]

• restore py.test behaviour that it exits with code 1 when there are failures [49974]

• don’t fail on html files that don’t have an accompanying .txt file [50606]

• fixed ‘utestconvert.py < input’ [50645]

• small fix for code indentation in py.code.source [50755]

• fix _docgen.py documentation building [51285]

• improved checks for source representation of code blocks in py.test [51292]

• added support for passing authentication to py.path.svn* objects [52000, 52001]

• removed sorted() call for py.apigen tests in favour of [].sort() to support Python 2.3 [52481]

174 Chapter 74. Changes between 0.9.0 and 0.9.1

CHAPTER 75

Indices and tables

• genindex

• search

175

py Documentation, Release 1.11.0

176 Chapter 75. Indices and tables

Index

A
add() (py._path.svnwc.SvnWCCommandPath method),

11
as_cwd() (py._path.local.LocalPath method), 7
atime() (py._path.local.LocalPath method), 8

B
basename (py._path.local.LocalPath attribute), 8
basename (py._path.svnurl.SvnCommandPath at-

tribute), 14
basename (py._path.svnwc.SvnWCCommandPath at-

tribute), 12
bestrelpath() (py._path.local.LocalPath method), 8
bestrelpath() (py._path.svnurl.SvnCommandPath

method), 14
bestrelpath() (py._path.svnwc.SvnWCCommandPath

method), 12
blame() (py._path.svnwc.SvnWCCommandPath

method), 11

C
call() (py.io.StdCapture class method), 28
call() (py.io.StdCaptureFD class method), 28
chars_on_current_line (py.io.TerminalWriter at-

tribute), 28
chdir() (py._path.local.LocalPath method), 7
check() (py._path.local.LocalPath method), 6
check() (py._path.svnurl.SvnCommandPath method),

15
check() (py._path.svnwc.SvnWCCommandPath

method), 12
checkout() (py._path.svnwc.SvnWCCommandPath

method), 11
chmod() (py._path.local.LocalPath method), 8
chown() (py._path.local.LocalPath method), 8
cleanup() (py._path.svnwc.SvnWCCommandPath

method), 11
Code (class in py.code), 21

commit() (py._path.svnwc.SvnWCCommandPath
method), 11

common() (py._path.local.LocalPath method), 8
common() (py._path.svnurl.SvnCommandPath method),

15
common() (py._path.svnwc.SvnWCCommandPath

method), 13
compile() (py.code.Source method), 23
computehash() (py._path.local.LocalPath method), 6
copy() (py._path.local.LocalPath method), 7
copy() (py._path.svnurl.SvnCommandPath method), 14
copy() (py._path.svnwc.SvnWCCommandPath

method), 11
cut() (py.code.Traceback method), 23, 25

D
deindent() (py.code.Source method), 22
diff() (py._path.svnwc.SvnWCCommandPath

method), 11
dirname (py._path.local.LocalPath attribute), 8
dirname (py._path.svnurl.SvnCommandPath attribute),

15
dirname (py._path.svnwc.SvnWCCommandPath at-

tribute), 13
dirpath() (py._path.local.LocalPath method), 6
dirpath() (py._path.svnurl.SvnCommandPath

method), 14
dirpath() (py._path.svnwc.SvnWCCommandPath

method), 11
done() (py.io.StdCapture method), 28
done() (py.io.StdCaptureFD method), 28
dump() (py._path.local.LocalPath method), 7
dump() (py._path.svnwc.SvnWCCommandPath

method), 10

E
ensure() (py._path.local.LocalPath method), 7
ensure() (py._path.svnurl.SvnCommandPath method),

14

177

py Documentation, Release 1.11.0

ensure() (py._path.svnwc.SvnWCCommandPath
method), 11

ensure_dir() (py._path.local.LocalPath method), 8
ensure_dir() (py._path.svnurl.SvnCommandPath

method), 15
ensure_dir() (py._path.svnwc.SvnWCCommandPath

method), 13
Entry (py.code.Traceback attribute), 23, 25
errisinstance() (py.code.ExceptionInfo method),

25
eval() (py.code.Frame method), 24
ExceptionInfo (class in py.code), 24
exconly() (py.code.ExceptionInfo method), 25
exec_() (py.code.Frame method), 24
export() (py._path.svnurl.SvnCommandPath method),

14
ext (py._path.local.LocalPath attribute), 8
ext (py._path.svnurl.SvnCommandPath attribute), 15
ext (py._path.svnwc.SvnWCCommandPath attribute), 13

F
filter() (py.code.Traceback method), 23, 25
fnmatch() (py._path.local.LocalPath method), 9
fnmatch() (py._path.svnurl.SvnCommandPath

method), 15
fnmatch() (py._path.svnwc.SvnWCCommandPath

method), 13
Frame (class in py.code), 24
fullsource (py.code.Code attribute), 22

G
get_temproot() (py._path.local.LocalPath class

method), 8
getargs() (py.code.Code method), 22
getargs() (py.code.Frame method), 24
getcrashentry() (py.code.Traceback method), 23,

25
getrepr() (py.code.ExceptionInfo method), 25
getstatement() (py.code.Source method), 22
getstatementrange() (py.code.Source method), 22

I
indent() (py.code.Source method), 22
info() (py._path.svnurl.SvnCommandPath method), 14
info() (py._path.svnwc.SvnWCCommandPath

method), 12
isparseable() (py.code.Source method), 22

J
join() (py._path.local.LocalPath method), 6
join() (py._path.svnurl.SvnCommandPath method), 15
join() (py._path.svnwc.SvnWCCommandPath

method), 12

L
listdir() (py._path.local.LocalPath method), 7
listdir() (py._path.svnurl.SvnCommandPath

method), 14
listdir() (py._path.svnwc.SvnWCCommandPath

method), 12
load() (py._path.local.LocalPath method), 9
load() (py._path.svnurl.SvnCommandPath method), 15
load() (py._path.svnwc.SvnWCCommandPath

method), 13
LocalPath (class in py._path.local), 6
LocalPath.ImportMismatchError, 6
lock() (py._path.svnwc.SvnWCCommandPath

method), 11
log() (py._path.svnurl.SvnCommandPath method), 14
log() (py._path.svnwc.SvnWCCommandPath method),

12
lstat() (py._path.local.LocalPath method), 7

M
make_numbered_dir() (py._path.local.LocalPath

class method), 9
mkdir() (py._path.local.LocalPath method), 7
mkdir() (py._path.svnurl.SvnCommandPath method),

14
mkdir() (py._path.svnwc.SvnWCCommandPath

method), 11
mkdtemp() (py._path.local.LocalPath class method), 8
mklinkto() (py._path.local.LocalPath method), 9
mksymlinkto() (py._path.local.LocalPath method), 9
move() (py._path.local.LocalPath method), 9
move() (py._path.svnurl.SvnCommandPath method), 15
move() (py._path.svnwc.SvnWCCommandPath

method), 13
msg (py._path.local.LocalPath.ImportMismatchError at-

tribute), 6
mtime() (py._path.local.LocalPath method), 7
mtime() (py._path.svnurl.SvnCommandPath method),

15
mtime() (py._path.svnwc.SvnWCCommandPath

method), 12

N
name (py._path.local.LocalPath.ImportMismatchError

attribute), 6
new() (py._path.local.LocalPath method), 6
new() (py._path.svnurl.SvnCommandPath method), 15
new() (py._path.svnwc.SvnWCCommandPath method),

12

O
open() (py._path.local.LocalPath method), 6
open() (py._path.svnurl.SvnCommandPath method), 14

178 Index

py Documentation, Release 1.11.0

open() (py._path.svnwc.SvnWCCommandPath
method), 12

P
parts() (py._path.local.LocalPath method), 9
parts() (py._path.svnurl.SvnCommandPath method),

16
parts() (py._path.svnwc.SvnWCCommandPath

method), 13
path (py._path.local.LocalPath.ImportMismatchError

attribute), 6
path (py.code.Code attribute), 22
propdel() (py._path.svnwc.SvnWCCommandPath

method), 12
propget() (py._path.svnurl.SvnCommandPath

method), 16
propget() (py._path.svnwc.SvnWCCommandPath

method), 11
proplist() (py._path.svnurl.SvnCommandPath

method), 16
proplist() (py._path.svnwc.SvnWCCommandPath

method), 12
propset() (py._path.svnwc.SvnWCCommandPath

method), 11
purebasename (py._path.local.LocalPath attribute), 9
purebasename (py._path.svnurl.SvnCommandPath at-

tribute), 16
purebasename (py._path.svnwc.SvnWCCommandPath

attribute), 13
putaround() (py.code.Source method), 22
pyimport() (py._path.local.LocalPath method), 8
pypkgpath() (py._path.local.LocalPath method), 8

R
read() (py._path.local.LocalPath method), 9
read() (py._path.svnurl.SvnCommandPath method), 16
read() (py._path.svnwc.SvnWCCommandPath

method), 13
read_binary() (py._path.local.LocalPath method), 9
read_binary() (py._path.svnurl.SvnCommandPath

method), 16
read_binary() (py._path.svnwc.SvnWCCommandPath

method), 13
read_text() (py._path.local.LocalPath method), 9
read_text() (py._path.svnurl.SvnCommandPath

method), 16
read_text() (py._path.svnwc.SvnWCCommandPath

method), 13
readlines() (py._path.local.LocalPath method), 9
readlines() (py._path.svnurl.SvnCommandPath

method), 16
readlines() (py._path.svnwc.SvnWCCommandPath

method), 13
readlink() (py._path.local.LocalPath method), 9

readouterr() (py.io.StdCapture method), 28
readouterr() (py.io.StdCaptureFD method), 28
realpath() (py._path.local.LocalPath method), 8
recursionindex() (py.code.Traceback method), 23,

25
relto() (py._path.local.LocalPath method), 9
relto() (py._path.svnurl.SvnCommandPath method),

16
relto() (py._path.svnwc.SvnWCCommandPath

method), 13
remove() (py._path.local.LocalPath method), 6
remove() (py._path.svnurl.SvnCommandPath method),

14
remove() (py._path.svnwc.SvnWCCommandPath

method), 11
rename() (py._path.local.LocalPath method), 7
rename() (py._path.svnurl.SvnCommandPath method),

14
rename() (py._path.svnwc.SvnWCCommandPath

method), 11
repr() (py.code.Frame method), 24
reset() (py.io.StdCapture method), 28
reset() (py.io.StdCaptureFD method), 28
resume() (py.io.StdCapture method), 28
resume() (py.io.StdCaptureFD method), 28
rev (py._path.svnwc.SvnWCCommandPath attribute), 10
revert() (py._path.svnwc.SvnWCCommandPath

method), 12

S
samefile() (py._path.local.LocalPath method), 6
samefile() (py._path.svnurl.SvnCommandPath

method), 16
samefile() (py._path.svnwc.SvnWCCommandPath

method), 14
setmtime() (py._path.local.LocalPath method), 7
size() (py._path.local.LocalPath method), 7
size() (py._path.svnurl.SvnCommandPath method), 16
size() (py._path.svnwc.SvnWCCommandPath

method), 12
Source (class in py.code), 22
source() (py.code.Code method), 22
stat() (py._path.local.LocalPath method), 7
statement (py.code.Frame attribute), 24
status() (py._path.svnwc.SvnWCCommandPath

method), 11
StdCapture (class in py.io), 28
StdCaptureFD (class in py.io), 28
strip() (py.code.Source method), 22
strpath (py._path.svnwc.SvnWCCommandPath at-

tribute), 10
suspend() (py.io.StdCapture method), 28
suspend() (py.io.StdCaptureFD method), 28
SvnAuth (class in py._path.svnwc), 16

Index 179

py Documentation, Release 1.11.0

SvnCommandPath (class in py._path.svnurl), 14
svnurl() (py._path.svnwc.SvnWCCommandPath

method), 11
SvnWCCommandPath (class in py._path.svnwc), 10
switch() (py._path.svnwc.SvnWCCommandPath

method), 11
sysexec() (py._path.local.LocalPath method), 8
sysfind() (py._path.local.LocalPath class method), 8

T
tb (py.code.ExceptionInfo attribute), 25
TerminalWriter (class in py.io), 28
Traceback (class in py.code), 23, 25
traceback (py.code.ExceptionInfo attribute), 25
type (py.code.ExceptionInfo attribute), 25
typename (py.code.ExceptionInfo attribute), 25

U
unlock() (py._path.svnwc.SvnWCCommandPath

method), 11
update() (py._path.svnwc.SvnWCCommandPath

method), 11
url (py._path.svnurl.SvnCommandPath attribute), 16
url (py._path.svnwc.SvnWCCommandPath attribute), 10

V
value (py.code.ExceptionInfo attribute), 25
visit() (py._path.local.LocalPath method), 9
visit() (py._path.svnurl.SvnCommandPath method),

16
visit() (py._path.svnwc.SvnWCCommandPath

method), 14

W
width_of_current_line (py.io.TerminalWriter at-

tribute), 29
with_traceback() (py._path.local.LocalPath.ImportMismatchError

method), 6
write() (py._path.local.LocalPath method), 7
write() (py._path.svnwc.SvnWCCommandPath

method), 11
write_binary() (py._path.local.LocalPath method),

7
write_text() (py._path.local.LocalPath method), 7

180 Index

	installation info in a nutshell
	easy install or pip py
	Working from version control or a tarball
	activating a checkout with setuptools
	Mailing list and issue tracker

	py.path
	py.path.local - local file system path
	py.path.svnurl and py.path.svnwc
	Common vs. specific API, Examples
	Known problems / limitations

	py.code: higher level python code and introspection objects
	Contents of the library
	The wrappers

	py.io
	IO Capturing examples
	py.io object reference

	py.log documentation and musings
	Foreword
	Logging organisation
	Using the py.log library

	py.xml: simple pythonic xml/html file generation
	Motivation
	a pythonic object model , please

	Miscellaneous features of the py lib
	Mapping the standard python library into py
	Support for interaction with system utilities/binaries
	Cross-Python Version compatibility helpers

	1.11.0 (2021-11-04)
	1.10.0 (2020-12-12)
	1.9.0 (2020-06-24)
	1.8.2 (2020-06-15)
	1.8.1 (2019-12-27)
	1.8.0 (2019-02-21)
	1.7.0 (2018-10-11)
	1.6.0 (2018-08-27)
	1.5.4 (2018-06-27)
	1.5.3
	1.5.2
	1.5.1
	1.5.0
	1.4.34
	1.4.33
	1.4.32
	1.4.31
	1.4.30
	1.4.29
	1.4.28
	1.4.27
	1.4.26
	1.4.25
	1.4.24
	1.4.23
	1.4.22
	1.4.21
	1.4.20
	Changes between 1.4.18 and 1.4.19
	Changes between 1.4.17 and 1.4.18
	Changes between 1.4.16 and 1.4.17
	Changes between 1.4.15 and 1.4.16
	Changes between 1.4.14 and 1.4.15
	Changes between 1.4.13 and 1.4.14
	Changes between 1.4.12 and 1.4.13
	Changes between 1.4.11 and 1.4.12
	Changes between 1.4.10 and 1.4.11
	Changes between 1.4.9 and 1.4.10
	Changes between 1.4.8 and 1.4.9
	Changes between 1.4.7 and 1.4.8
	Changes between 1.4.6 and 1.4.7
	Changes between 1.4.5 and 1.4.6
	Changes between 1.4.4 and 1.4.5
	Changes between 1.4.3 and 1.4.4
	Changes between 1.4.2 and 1.4.3
	Changes between 1.4.1 and 1.4.2
	Changes between 1.4.0 and 1.4.1
	Changes between 1.3.4 and 1.4.0
	Changes between 1.3.3 and 1.3.4
	Changes between 1.3.2 and 1.3.3
	Changes between 1.3.1 and 1.3.2
	New features
	Bug fixes / Maintenance

	Changes between 1.3.0 and 1.3.1
	New features
	Fixes / Maintenance

	Changes between 1.2.1 and 1.3.0
	Changes between 1.2.1 and 1.2.0
	Changes between 1.2 and 1.1.1
	Changes between 1.1.1 and 1.1.0
	Changes between 1.1.0 and 1.0.2
	Changes between 1.0.1 and 1.0.2
	Changes between 1.0.0 and 1.0.1
	Changes between 1.0.0b9 and 1.0.0
	Changes between 1.0.0b8 and 1.0.0b9
	Changes between 1.0.0b7 and 1.0.0b8
	Changes between 1.0.0b3 and 1.0.0b7
	Changes between 1.0.0b1 and 1.0.0b3
	Changes between 0.9.2 and 1.0.0b1
	Changes between 0.9.1 and 0.9.2
	Changes between 0.9.0 and 0.9.1
	Indices and tables
	Index

