

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/py-zipkin/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/py-zipkin/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

0.7.0 (2017-03-06)

	Simplify update_binary_annotations for both root and non-root spans

0.6.0 (2017-02-03)

	Added support for forcing zipkin_span to report timestamp/duration.
Changes API of zipkin_span, but defaults back to existing behavior.

0.5.0 (2017-02-01)

	Properly set timestamp/duration on server and local spans

	Updated thrift spec to include these new fields

	The zipkin_span entrypoint should be backwards compatible

0.4.4 (2016-11-29)

	Add optional annotation for when Zipkin logging starts

0.4.3 (2016-11-04)

	Fix bug in zipkin_span decorator

0.4.2 (2016-11-01)

	Be defensive about transport_handler when logging spans.

0.4.1 (2016-10-24)

	Add ability to override span_id when creating new ZipkinAttrs.

0.4.0 (2016-10-20)

	Added start and stop functions as friendlier versions of the
__enter__ and __exit__ functions.

0.3.1 (2016-09-30)

	Adds new param to thrift.create_endpoint allowing creation of
thrift Endpoint objects on a proxy machine representing another
host.

0.2.1 (2016-09-30)

	Officially “release” v0.2.0. Accidentally pushed a v0.2.0 without
the proper version bump, so v0.2.1 is the new real version. Please
use this instead of v0.2.0.

0.2.0 (2016-09-30)

	Fix problem where if zipkin_attrs and sample_rate were passed, but
zipkin_attrs.is_sampled=True, new zipkin_attrs were being generated.

0.1.2 (2016-09-29)

	Fix sampling algorithm that always sampled for rates > 50%

0.1.1 (2016-07-05)

	First py_zipkin version with context manager/decorator functionality.

 [image: Travis] [https://travis-ci.org/Yelp/py_zipkin?branch=master]
[image: Coverage Status] [https://coveralls.io/r/Yelp/py_zipkin]
[image: PyPi version] [https://pypi.python.org/pypi/py_zipkin/]
[image: Supported Python versions] [https://pypi.python.org/pypi/py_zipkin/]

py_zipkin

py_zipkin provides a context manager/decorator along with some utilities to
facilitate the usage of Zipkin in Python applications.

Install

pip install py_zipkin

Usage

py_zipkin requires a transport_handler function that handles logging zipkin
messages to a central logging service such as kafka or scribe.

py_zipkin.zipkin.zipkin_span is the main tool for starting zipkin traces or
logging spans inside an ongoing trace. zipkin_span can be used as a context
manager or a decorator.

Usage #1: Start a trace with a given sampling rate

from py_zipkin.zipkin import zipkin_span

def some_function(a, b):
 with zipkin_span(
 service_name='my_service',
 span_name='my_span_name',
 transport_handler=some_handler,
 port=42,
 sample_rate=0.05, # Value between 0.0 and 100.0
):
 do_stuff(a, b)

Usage #2: Trace a service call

The difference between this and Usage #1 is that the zipkin_attrs are calculated
separately and passed in, thus negating the need of the sample_rate param.

Define a pyramid tween
def tween(request):
 zipkin_attrs = some_zipkin_attr_creator(request)
 with zipkin_span(
 service_name='my_service',
 span_name='my_span_name',
 zipkin_attrs=zipkin_attrs,
 transport_handler=some_handler,
 port=22,
) as zipkin_context:
 response = handler(request)
 zipkin_context.update_binary_annotations(
 some_binary_annotations)
 return response

Usage #3: Log a span inside an ongoing trace

This can be also be used inside itself to produce continuously nested spans.

@zipkin_span(service_name='my_service', span_name='some_function')
def some_function(a, b):
 return do_stuff(a, b)

Other utilities

zipkin_span.update_binary_annotations() can be used inside a zipkin trace
to add to the existing set of binary annotations.

def some_function(a, b):
 with zipkin_span(
 service_name='my_service',
 span_name='some_function',
 transport_handler=some_handler,
 port=42,
 sample_rate=0.05,
) as zipkin_context:
 result = do_stuff(a, b)
 zipkin_context.update_binary_annotations({'result': result})

create_http_headers_for_new_span() creates a set of HTTP headers that can be forwarded
in a request to another service.

headers = {}
headers.update(create_http_headers_for_new_span())
http_client.get(
 path='some_url',
 headers=headers,
)

Transport

py_zipkin (for the moment) thrift-encodes spans. The actual transport layer is
pluggable, though. The transport_handler is a function that takes a single
argument - the thrift-encoded bytes.

The simplest way to get spans to the collector is via HTTP POST. Here’s an
example of a simple HTTP transport using the requests library. This assumes
your Zipkin collector is running at localhost:9411.

import requests

def http_transport(encoded_span):
 # The collector expects a thrift-encoded list of spans. Instead of
 # decoding and re-encoding the already thrift-encoded message, we can just
 # add header bytes that specify that what follows is a list of length 1.
 body = '\x0c\x00\x00\x00\x01' + encoded_span
 requests.post(
 'http://localhost:9411/api/v1/spans',
 data=body,
 headers={'Content-Type': 'application/x-thrift'},
)

If you have the ability to send spans over Kafka (more like what you might do
in production), you’d do something like the following, using the
kafka-python [https://pypi.python.org/pypi/kafka-python] package:

from kafka import SimpleProducer, KafkaClient

def transport_handler(message):
 kafka_client = KafkaClient('{}:{}'.format('localhost', 9092))
 producer = SimpleProducer(kafka_client)
 producer.send_messages('kafka_topic_name', message)

License

Copyright (c) 2016, Yelp, Inc. All Rights reserved. Apache v2

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

