
Shouldly Documentation
Release 2.6.0

Dave Newman, Xerxes Battiwalla, Anthony Egerton, Peter van der Woude, Jake Ginnivan

Nov 06, 2018

Contents

1 ShouldBe 3
1.1 Objects . 3
1.2 Numeric . 3
1.3 DateTime(Offset) . 3
1.4 TimeSpan . 3
1.5 Enumerables . 4
1.6 Enumerables of Numerics . 4
1.7 Bools . 4

2 ShouldNotBe 5
2.1 Objects . 5
2.2 Numeric . 5
2.3 DateTime(Offset) . 5
2.4 TimeSpan . 6

3 ShouldMatchApproved 7
3.1 Approved File does not exist . 7
3.2 Approved File does not match received . 8
3.3 Options and customisation . 8
3.4 Configuration . 10

4 ShouldBeTrue/False 13
4.1 ShouldBeTrue . 13
4.2 ShouldBeFalse . 13

5 ShouldBeNull/NotBeNull 15
5.1 ShouldBeNull . 15
5.2 ShouldNotBeNull . 15

6 ShouldHaveFlag/NotHaveFlag 17
6.1 ShouldHaveFlag . 17
6.2 ShouldNotHaveFlag . 17

7 Example Classes 19

8 Contributing 21
8.1 Style Guidelines . 21

i

9 Configuration 23
9.1 DefaultFloatingPointTolerance . 23
9.2 DefaultTaskTimeout . 23
9.3 CompareAsObjectTypes . 23

10 Indices and tables 25

ii

Shouldly Documentation, Release 2.6.0

How asserting Should be

Attention: These docs are in progress! Get involved at Learn more about on GitHub, contributions welcome!
First time contributors welcome, we are happy to help you get started.

This is the old Assert way:

Assert.That(contestant.Points, Is.EqualTo(1337));

For your troubles, you get this message, when it fails:

Expected 1337 but was 0

How it Should be:

contestant.Points.ShouldBe(1337);

Which is just syntax, so far, but check out the message when it fails:

contestant.Points should be 1337 but was 0

It might be easy to underestimate how useful this is. Another example, side by side:

Assert.That(map.IndexOfValue("boo"), Is.EqualTo(2)); // -> Expected 2 but was 1
map.IndexOfValue("boo").ShouldBe(2); // -> map.IndexOfValue("boo")
→˓should be 2 but was 1

Shouldly uses the variables within the ShouldBe statement to report on errors, which makes diagnosing easier.

Another example, if you compare two collections:

new[] { 1, 2, 3 }.ShouldBe(new[] { 1, 2, 4 });

and it fails because they’re different, it’ll show you the differences between the two collections:

should be
[1, 2, 4]

but was
[1, 2, 3]

difference
[1, 2, *3*]

Shouldly has plenty of different assertions, have a look under the assertions folder for all the options.

Contents 1

https://github.com/shouldly/shouldly/issues/308

Shouldly Documentation, Release 2.6.0

2 Contents

CHAPTER 1

ShouldBe

1.1 Objects

ShouldBeExamples works on all types and compares using .Equals.

Exception

1.2 Numeric

ShouldBe numeric overloads accept tolerances and has overloads for float, double and decimal types.

Exception

1.3 DateTime(Offset)

DateTime overloads are similar to the numeric overloads and support tolerances.

Exception

1.4 TimeSpan

TimeSpan also has tolerance overloads

Exception

Want to improve shouldy? We have an open issue at [#303](https://github.com/shouldly/shouldly/issues/303) to im-
prove this error message!

3

https://github.com/shouldly/shouldly/issues/303

Shouldly Documentation, Release 2.6.0

1.5 Enumerables

Enumerable comparison is done on the elements in the enumerable, so you can compare an array to a list and have it
pass.

Exception

1.6 Enumerables of Numerics

If you have enumerables of float, decimal or double types then you can use the tolerance overloads, similar to
the value extensions.

Exception

1.7 Bools

Exception

4 Chapter 1. ShouldBe

CHAPTER 2

ShouldNotBe

ShouldNotBe is the inverse of ShouldBe.

2.1 Objects

ShouldNotBe works on all types and compares using .Equals.

Exception

2.2 Numeric

ShouldNotBe also allows you to compare numeric values, regardless of their value type.

2.2.1 Integer

Exception

2.2.2 Long

Exception

2.3 DateTime(Offset)

ShouldNotBe DateTime overloads are similar to the numeric overloads and also support tolerances.

Exception

5

Shouldly Documentation, Release 2.6.0

2.4 TimeSpan

TimeSpan also has tolerance overloads

Exception

Want to contribute to Shouldly? #303 makes this error message better!

6 Chapter 2. ShouldNotBe

https://github.com/shouldly/shouldly/issues/303

CHAPTER 3

ShouldMatchApproved

Based on the awesome ApprovalTest.Net, Shouldly has ShouldMatchApproved() to do approval based testing.
The main goal of Shouldly’s approval testing is for it to be simple, intuative and give great error messages.

3.1 Approved File does not exist

When you first run a ShouldMatchApproved test, you will be presented with a diff viewer and a failing test.

Exception

Screenshot

7

https://github.com/approvals/ApprovalTests.Net

Shouldly Documentation, Release 2.6.0

3.2 Approved File does not match received

After you have approved the text, when it changes you get a different experience.

Exception

Screenshot

3.3 Options and customisation

While the defaults should work fine, often you need to customise things easily. ApprovalTests is highly configurable
but the configuration is not always discoverable. Shouldly wants to make configuration simple and discoverable. This
section covers the local customisations availble for a single ShouldMatchApproved call.

3.3.1 Defaults

The first thing to note is that by default Shouldly ignores line endings. This saves painful failures on the build server
when git checks out the approved files with n rather than rn which the received file has. You can opt out of this
behaviour for a single call, or globally. For global defaults see the Configuration section.

3.3.2 Usage

toVerify.ShouldMatchApproved(configurationBuilder => configurationBuilder.
OPTION()) where OPTION can be one of the following methods.

3.3.3 DoNotIgnoreLineEndings

Tells shouldly to use a line ending sensitive comparison.

toVerify.ShouldMatchApproved(c => c.DoNotIgnoreLineEndings())

8 Chapter 3. ShouldMatchApproved

Shouldly Documentation, Release 2.6.0

3.3.4 WithStringCompareOptions

Sets the string comparison options

var options = StringCompareShould.IgnoreCase | StringCompareShould.IgnoreLineEndings;
toVerify.ShouldMatchApproved(c => c.WithStringCompareOptions(options))

3.3.5 WithDescriminator

By default the approved and received files are named ${MethodName}.approved.txt,
WithDescriminator allows you to descriminate multiple files, useful for data driven tests which can have
multiple executions of a single method. For example

[Fact] void Simpsons() { toVerify.ShouldMatchApproved(c => c.
WithDescriminator("Bart")) }

Will result in a approved file with the name Simpsons.Bart.approved.txt

3.3.6 NoDiff

Prevents the diff viewer from opening up. Doing this you can use Shouldly’s error messages to verify the changes then
run the command in the exception message to approve the changes.

toVerify.ShouldMatchApproved(c => c.NoDiff())

3.3.7 WithFileExtension

Override the file exension of the approved/received files. The default is .txt.

toVerify.ShouldMatchApproved(c => c.WithFileExtension(".cs"))

3.3.8 SubFolder

Put the approved/received files into a sub-directory

toVerify.ShouldMatchApproved(c => c.SubFolder("Approvals"))

3.3.9 UseCallerLocation

By default shouldly will walk the stacktrace to find the first non-shouldly method (not including anonymous methods
and compiler generated stuff like the async state machine) and use that method for the approval filename. I.e a test
named MyTest will result in a received filename of MyTest.received.txt.

This setting tells shouldly to walk one more frame, this is really handy when you have created a utility function which
calls ShouldMatchApproved.

[Fact]
public void MyTest()
{

SomeUtilityMethod("Foo");
}

(continues on next page)

3.3. Options and customisation 9

Shouldly Documentation, Release 2.6.0

(continued from previous page)

void SomeUtilityMethod(string toApprove)
{

toApprove.ShouldMatchApproved(c => c.UseCallerLocation());
}

// -> MyTest.received.txt - without UseCallerLocation() the file would be called
→˓SomeUtilityMethod.received.txt

3.3.10 LocateTestMethodUsingAttribute

If you want to locate your test method using an attribute that is easy too!

// XUnit
"testAttributes".ShouldMatchApproved(b => b.LocateTestMethodUsingAttribute
→˓<FactAttribute>());
// NUnit
"testAttributes".ShouldMatchApproved(b => b.LocateTestMethodUsingAttribute
→˓<TestAttribute>());

3.3.11 WithScrubber

Scrubbers allow you to remove dynamic content, such as the current date

toVerify.ShouldMatchApproved(c => c.WithScrubber(s => Regex.Replace(s, "\d{1,
2}/\d{1,2}/\d{2,4}", "<date>"))

Will turn Today is 01/01/2016 into Today is <date> in the received file.

3.4 Configuration

Because this feature is quite new shouldly doesn’t have many Diff tools or know all the places it shouldn’t open the
diff tool. The global configuration of Shouldly is very easy to change and extend. If you do add a difftool or a should
not open difftool strategy then please submit a pull request so everyone gets the benefits!

3.4.1 Changing default options

All of the instance based configuration can be changed globally through ShouldlyConfiguration.
ShouldMatchApprovedDefaults. For example to make the default behaviour be line ending sensitive you
can just run this before any tests execute ShouldlyConfiguration.ShouldMatchApprovedDefaults.
DoNotIgnoreLineEndings()

3.4.2 Adding a difftool

So Shouldly doesn’t support your favorite difftool yet. No worries, it’s easy to add your own.

var diffomatic3000 = new DiffTool(
"Diffomatic3000",
@"diffomatic3000\diffomatic3000.exe",

(continues on next page)

10 Chapter 3. ShouldMatchApproved

Shouldly Documentation, Release 2.6.0

(continued from previous page)

(received, approved, approvedExists) => $"\{received}\" \"{approved}\"")
ShouldlyConfiguration.DiffTools.RegisterDiffTool(diffomatic3000);

This will discover diffomatic3000.exe if it’s in your PATH or if it exists in any Program Files directory under diffo-
matic3000diffomatic3000.exe

If you do this, please submit a PR to add it to the KnownDiffTools, you can also test how it works by running the
Shouldly.TestsTestDiffTools project!

3.4.3 Adding a do not launch difftool strategy

We don’t really want to be opening difftools in nCrunch, or on the build server and a number of other scenarios. So
ShouldlyConfiguration.DiffTools.KnownDoNotLaunchStrategies allows you to add in scenarios
which Shouldly doesn’t know about yet. Once again, please submit PR’s if you need to do this :)

Currently the only strategy is to check for environmental variables, but you can implement
IShouldNotLaunchDiffTool to implement any logic you want. Assuming it’s just an environmental
variable:

ShouldlyConfiguration.DiffTools.AddDoNotLaunchStrategy(new
DoNotLaunchWhenEnvVariableIsPresent("NCRUNCH"));

3.4.4 Setting Diff tool priority

Shouldly launches the first found difftool, if you want to give priority to another difftool you can do that.

ShouldlyConfiguration.DiffTools.SetDiffToolPriorities(
KnownDiffTools.Instance.BeyondCompare4,
KnownDiffTools.Instance.KDiff3);

The priority tools will be checked before falling back to the entire known difftool list.

3.4. Configuration 11

Shouldly Documentation, Release 2.6.0

12 Chapter 3. ShouldMatchApproved

CHAPTER 4

ShouldBeTrue/False

ShouldBeTrue and ShouldBeFalse work on boolean values.

4.1 ShouldBeTrue

Exception

4.2 ShouldBeFalse

Exception

13

Shouldly Documentation, Release 2.6.0

14 Chapter 4. ShouldBeTrue/False

CHAPTER 5

ShouldBeNull/NotBeNull

ShouldBeNull and ShouldNotBeNull allow you to check whether or not a type’s reference is null.

5.1 ShouldBeNull

Exception

5.2 ShouldNotBeNull

Exception

15

Shouldly Documentation, Release 2.6.0

16 Chapter 5. ShouldBeNull/NotBeNull

CHAPTER 6

ShouldHaveFlag/NotHaveFlag

ShouldHaveFlag allows you to assert whether an object is an enum and has a flag specified.

Conversely ShouldNotHaveFlag allows you to assert the opposite; that an object is an enum but does not have a
flag specified.

6.1 ShouldHaveFlag

Exception

6.2 ShouldNotHaveFlag

Exception

17

Shouldly Documentation, Release 2.6.0

18 Chapter 6. ShouldHaveFlag/NotHaveFlag

CHAPTER 7

Example Classes

The classes used in these samples are:

using System;

namespace Simpsons
{

public abstract class Pet
{

public abstract string Name { get; set; }

public override string ToString()
{

return Name;
}

}

public class Cat : Pet
{

public override string Name { get; set; }
}

public class Dog : Pet
{

public override string Name { get; set; }
}

public class Person
{

public Person()
{
}

public Person(string name)
{

(continues on next page)

19

Shouldly Documentation, Release 2.6.0

(continued from previous page)

Name = name ?? throw new ArgumentNullException(nameof(name));
}

public string Name { get; set; }
public int Salary { get; set; }

public override string ToString()
{

return Name;
}

}
}

20 Chapter 7. Example Classes

CHAPTER 8

Contributing

Once you have cloned Shouldly to your local machine, the following instructions will walk you through installing the
tools necessary to build and test the documentation.

1. Download python version 2.7.10 or higher.

2. If you are installing on Windows, add both the Python install directory and the Python scripts directory to your
PATH environment variable. For example, if you install Python into the c:\python34 directory, you would
add c:\python34;c:\python34\scripts to your PATH environment variable.

3. Install Sphinx by opening a command prompt and running the following Python command. (Note that this
operation might take a few minutes to complete.):

pip install sphinx

4. By default, when you install Sphinx, it will install the ReadTheDocs custom theme automatically. If you need
to update the installed version of this theme, you should run:

pip install -U sphinx_rtd_theme

5. Run the make.bat file using html argument to build the stand-alone version of the project in question:

make html

6. Once make completes, the generated docs will be in the _build/html directory. Simply open the index.
html file in your browser to see the built docs for that project.

8.1 Style Guidelines

Please review the following style guides:

• Sphinx Style Guide

• ASP.NET Docs Style Guide

21

https://www.python.org/downloads/
http://documentation-style-guide-sphinx.readthedocs.org/en/latest/style-guide.html
http://docs.asp.net/en/latest/contribute/style-guide.html

Shouldly Documentation, Release 2.6.0

22 Chapter 8. Contributing

CHAPTER 9

Configuration

Shouldly has a few configuration options:

9.1 DefaultFloatingPointTolerance

Allows specifying a floating point tolerance for all assertions

Default value: 0.0d

9.2 DefaultTaskTimeout

Should.Throw(Func<Task>) blocks, the timeout is a safeguard for deadlocks.

Shouldly runs the lambda without a synchronisation context, but deadlocks are still possible. Use Should.
ThrowAsync to be safe then await the returned task to prevent possible deadlocks.

Default value: 10 seconds

9.3 CompareAsObjectTypes

Types which also are IEnumerable of themselves.

An example is Newtonsoft.Json.Linq.JToken which looks like this class JToken :
IEnumerable<JToken>.

Default value: Newtonsoft.Json.Linq.JToken

23

Shouldly Documentation, Release 2.6.0

24 Chapter 9. Configuration

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

25

	ShouldBe
	Objects
	Numeric
	DateTime(Offset)
	TimeSpan
	Enumerables
	Enumerables of Numerics
	Bools

	ShouldNotBe
	Objects
	Numeric
	DateTime(Offset)
	TimeSpan

	ShouldMatchApproved
	Approved File does not exist
	Approved File does not match received
	Options and customisation
	Configuration

	ShouldBeTrue/False
	ShouldBeTrue
	ShouldBeFalse

	ShouldBeNull/NotBeNull
	ShouldBeNull
	ShouldNotBeNull

	ShouldHaveFlag/NotHaveFlag
	ShouldHaveFlag
	ShouldNotHaveFlag

	Example Classes
	Contributing
	Style Guidelines

	Configuration
	DefaultFloatingPointTolerance
	DefaultTaskTimeout
	CompareAsObjectTypes

	Indices and tables

