
PureDarwin Documentation
Release 0.5

Benoit Allard

September 29, 2015

Contents

1 Introduction 3
1.1 Darwin ??? . 3
1.2 CoreWar ? . 3
1.3 pure Hardware Implementation ? . 3

2 Darwin 5

3 RedCode 7
3.1 Instruction Set . 7
3.2 Address Mode . 7
3.3 Examples . 8

4 RedCode Instruction Set 9

5 IMP 11

6 Dwarf 13

7 Gemini 15
7.1 Code . 15
7.2 Simulation . 15

8 Modules 17

9 The Core 19
9.1 Ports . 20
9.2 Sub-processes . 20
9.3 internal Signals . 20
9.4 Submodules . 20

10 The RAM 23
10.1 Ports . 23
10.2 sub-process . 24

11 Fold 25
11.1 Ports . 25
11.2 Sub-processes . 25
11.3 Internal Signals . 26

i

12 Task-Queue 27
12.1 Sub-process . 27
12.2 Sub-modules . 27

13 The Proc 29
13.1 Ports . 30
13.2 State-machine . 31
13.3 Sub-processes . 31
13.4 Sub-modules . 31

14 pSpace 33

15 ToDo 35
15.1 Loader . 35

16 Status 37
16.1 Tue Mar 20 20:31:35 CET 2012 . 37
16.2 Wed Dec 2 00:48:03 CET 2009 . 37

17 Indices and tables 39

ii

PureDarwin Documentation, Release 0.5

Contents:

Contents 1

PureDarwin Documentation, Release 0.5

2 Contents

CHAPTER 1

Introduction

puredarwin is a pure Hardware Implementation of CoreWar.

1.1 Darwin ???

Darwin is the predecessor of the CoreWar game.

1.2 CoreWar ?

(corewar.co.uk | corewar.info | corewars.org)

In Corewar, programs are fighting each other in the same memory space, the goal is to kill the other programs by
making them execute illegal instructions.

Programs are written in assembly, RedCode is the name of the assembly used.

1.3 pure Hardware Implementation ?

Our world is made of two kind of people, the one that write software, and the one that design hardware. In the past,
the former were slaved by the later, this is less and less true. Anyway, I made my study in the hardware field, and I’m
now spending my day at $paying_job writing software.

Our goal here is to achieve a silicon running CoreWar game engine.

Actually, when I speak about an implementation of CoreWar, I am truly speaking about an implementation of MARS
(Memory Array Redcode Simulator) ... even if my implementation is everything but a simulator !

This implementation is split into Modules.

The code is written in an unexpected language when in comes to Hardware Design, I choose Python to help me with
that task. Bare Python is of course not able to describe Hardware Modules, that’s where MyHDL comes into the scene.
MyHDL advertise itself as being able to output VHDL as well as Verilog, I’m curious of the result. Anyway, I don’t
own any FPGA, ASIC or even Lattice right now, so gtkwave will be my best guess when it comes to simulation for
some time.

3

http://corewar.co.uk/
http://www.corewar.info/
http://www.corewars.org

PureDarwin Documentation, Release 0.5

4 Chapter 1. Introduction

CHAPTER 2

Darwin

From Wikipedia:

Darwin was a programming game invented in August 1961 by Victor A. Vyssotsky, Robert Morris Sr.,
and M. Douglas McIlroy. The game was developed at Bell Labs, and played on an IBM 7090 mainframe
there. The game was only played for a few weeks before Morris developed an “ultimate” program that
eventually brought the game to an end, as no-one managed to produce anything that could defeat it.

5

http://en.wikipedia.org/wiki/Darwin_%28programming_game%29

PureDarwin Documentation, Release 0.5

6 Chapter 2. Darwin

CHAPTER 3

RedCode

RedCode is the assembly language used to program the MARS Virtual Machine.

We will regard here only the the details we need to look at as hardware designer. The rest is left to the dozen of good
tutorials you will find on the Internet. If you don’t know where to start, Google might be your friend that time. That
said, don’t expect any easy talk in there.

They are different version of the standard defining the RedCode language, ranging from ‘86, ‘88 and extended (‘94
has never been confirmed as a standard). We will try to implement most of the extended feature, while keeping
compatibility with the previous standards.

3.1 Instruction Set

See RedCode Instruction Set.

3.2 Address Mode

First thing to kno. Is that memory access inside the MARS are relative to the current instruction pointer (noted IP here
below). As seen from a program, all addresses are relative to the one of the currently executed instruction.

To keep a low memory footprint, RedCode has 5 address mode:

Table 3.1: RedCode address modes

Name Relative
operation

Absolute
operation

A-
Notation

B-
Notation

Immediate Memory Addressing 0 IP # #
Direct Memory Addressing x IP + x $ $
Indirect Memory Adressing [IP + x] IP + x + [IP + x] * @
Post Increment Indirect Memory
Addressing

[IP + x]++ IP + x + [IP + x]++ { <

Pre Decrement Indirect Memory
Addressing

–[IP + x] IP + x + –[IP + x/] } >

The last three one actually count double as we can address the first operand or the second operand on those addresses
in Memory.

Out of those one, the last two one are pretty unusual, even for an experienced assembly programmer, just because of
the fact that those Memory addressing modes modify the memory content instead of just pointing to it.

7

http://www.google.com/search?q=redcode+tutorial+corewar+mars+assembly+core

PureDarwin Documentation, Release 0.5

3.3 Examples

• IMP

• Dwarf

• Gemini

8 Chapter 3. RedCode

CHAPTER 4

RedCode Instruction Set

One feature of a processor running RedCode is that it has to implement some OS functionnalities at the silicon level.
I’m mainly speacking here of the SPL instruction, and derivated ones. That instruction queue a new task in the task
queue. For an unix developer, it is a fork(2) at the silicon level.

The typical example is:

SPL 0 ; execution starts here
MOV 0, 1

Since the SPL points to itself, after one cycle the processes will be like this:

SPL 0 ; second process is here
MOV 0, 1 ; first process is here

After both of the processes have executed, the core will now look like:

SPL 0 ; third process is here
MOV 0, 1 ; second process is here
MOV 0, 1 ; first process is here

So this code evidently launches a series of imps, one after another. It will keep on doing this until the imps have circled
the whole core and overwrite the SPL.

9

PureDarwin Documentation, Release 0.5

10 Chapter 4. RedCode Instruction Set

CHAPTER 5

IMP

;redcode
;name Imp
;author A. K. Dewdney
;assert 1

MOV 0, 1

11

PureDarwin Documentation, Release 0.5

12 Chapter 5. IMP

CHAPTER 6

Dwarf

;redcode
;name Dwarf
;author A. K. Dewdney
;assert CORESIZE % 5 == 0

DAT -1
ADD #5, -1 ; start address
MOV #0, @-2
JMP -2

Another version put the Bomb after itself

;redcode
ADD #4, 3
MOV #2, @2
JMP -2

Here is the result of a simulation on my MARS:

Fig. 6.1: Dwarf simulation

13

PureDarwin Documentation, Release 0.5

14 Chapter 6. Dwarf

CHAPTER 7

Gemini

7.1 Code

;redcode
;name Gemini
;author A. K. Dewdney
;assert 1

DAT 0
DAT 99
MOV @-2, @-1 ; start address
SNE -3, #9
JMP 4
ADD #1, -5
ADD #1, -5
JMP -5
MOV #99, 93
JMP 93

7.2 Simulation

Fig. 7.1: Waveforms

15

PureDarwin Documentation, Release 0.5

16 Chapter 7. Gemini

CHAPTER 8

Modules

We have to split the design into modules

Fig. 8.1: Architecture

• The The Core alias the Memory

• The Task-Queue alias the Scheduler unit

• The The Proc alias the Processing unit

• The pSpace or the Process private Storage space

17

PureDarwin Documentation, Release 0.5

18 Chapter 8. Modules

CHAPTER 9

The Core

The Core is the main Memory were the programs fight themselves. (As opposed to each-others, as nothing prevent
you to hurt yourself.)

As we can see, the Core is split into RAM modules that each of them store a logical part of the Instructions. there are
exactly 6 of them. One for each part:

1. OpCode

2. Modifier

3. AMode

4. ANumber

5. BMode

6. BNumber

19

PureDarwin Documentation, Release 0.5

9.1 Ports

9.1.1 input

Control Signals

• pc

• Wofs

• din

• ROfs

• we

Synchronous signals

• clk

• rst_n

Parameters

• maxSize: the depth of each internal RAM

9.1.2 output

As every good memory, we only have one output port being the data at the ROfs address.

• dout

9.2 Sub-processes

The Core has one main combinatorial subprocess that just split the incoming Instruction in chuncks for the RAM
modules, and join back the chunks from the RAM modules into one Instruction for the others Modules.

9.3 internal Signals

Internal signals are only intercommunication signals between the sub-modules.

9.4 Submodules

9.4.1 RAM

See The RAM.

The basic component of the Core is a RAM with both a read and a write address bus. This will allow us to make
asynchronous read, while making synchronous write.

20 Chapter 9. The Core

PureDarwin Documentation, Release 0.5

9.4.2 Fold

See Fold.

The Fold module just care about the fact that all our Read/Write are relative to the current Instruction Pointer. The
Core itself, through this module takes offset as Input and translate those Offset as Absolute Addresses.

9.4. Submodules 21

PureDarwin Documentation, Release 0.5

22 Chapter 9. The Core

CHAPTER 10

The RAM

10.1 Ports

10.1.1 input

Control Signals

• raddr

• waddr

• din

• we

Synchronisation Signals

• clk

• rst_n (not taken into account in the current implementation)

23

PureDarwin Documentation, Release 0.5

Parameters

• width: the width (in bits) of the RAM

• depth: the depth (in number of cell) of the RAM

10.1.2 output

Control Signals

• dout

10.2 sub-process

10.2.1 read

Read is completely combinatorial and simply return on dout the value of the RAM @ raddr.

10.2.2 write

Write is triggered by the clock, and write din to the RAM if we is set.

24 Chapter 10. The RAM

CHAPTER 11

Fold

11.1 Ports

11.1.1 input

Control ports

• PC: The current Program Counter

• Offset

parameters

• limit: Folding limit

• maxSize: Size of the The Core

11.1.2 output

• Address

11.2 Sub-processes

This module is composed of three sub-modules:

25

PureDarwin Documentation, Release 0.5

• Modulo is used to calculate a temporary value

• Folding to Fold the Address into its Read (or Write) boundary.

• Addition to make the Address Absolute. (This step also includes a Modulo)

For the two first steps, the Cref provides the following listing:

/* There is one support function used to limit the range of */
/* reading from Core and writing to Core relative to the */
/* current instruction. Behaviour is as expected (a small */
/* core within Core) only if the limits are factors of the */
/* size of Core. */

static Address Fold(
Address pointer, /* The pointer to fold into the desired range. */
Address limit, /* The range limit. */
Address M /* The size of Core. */

) {
Address result;

result = pointer % limit;
if (result > (limit/2)) {

result += M - limit;
};
return(result);

}

11.3 Internal Signals

We have two internal signals to interconnect our three sub-process. Each one of them representing our output at its
different stage of processing.

26 Chapter 11. Fold

CHAPTER 12

Task-Queue

The task queue is a collection of FiFos. One for each Warrior keeping track of the current tasks running for each
Warrior.

12.1 Sub-process

12.1.1 MUXs

One to direct the input to the right FIFO, another one to read the right task from the right FIFO.

12.2 Sub-modules

12.2.1 FIFO

It is a FIFO that can queue two tasks in the same cycle.

One synchronous sub-process that reacts on clk and rst_n.

27

PureDarwin Documentation, Release 0.5

28 Chapter 12. Task-Queue

CHAPTER 13

The Proc

This is the Processing unit. Its main characteristic is that is has to be a state-less Module, as no state should subsist
between processes. This same processing unit will be called by each of the Programs to try destroy each other. Every
time, with a new instruction, and at the end of the processing, everything is done.

29

PureDarwin Documentation, Release 0.5

13.1 Ports

13.1.1 input

Control Signals

• Instr

• PC

• RData

Synchronous signals

• clk

• rst_n

Synchronisation signals

• req

13.1.2 output

Control Signals

• IPOut1

• we1

• IPOut2

• we2

• WOfs

• WData

• we

• ROfs

Synchronisation signals

• ack

30 Chapter 13. The Proc

PureDarwin Documentation, Release 0.5

13.2 State-machine

13.3 Sub-processes

• link is actually just a splitter à la VHDL aliases.

• fsm is our FSM.

13.3.1 MUXs

the following process are just MUX that dispatch the info acording to the FSM state.

• fsmcore

• updateROfs

• updateIRX

• updatewe

• updatewdata

13.4 Sub-modules

13.4.1 EvalOp

Evaluate the operand part of the Instruction (Mode + Number). This one is instanciated twice, once for each of the
Operands.

13.2. State-machine 31

PureDarwin Documentation, Release 0.5

13.4.2 OutQueue

Make the Instruction readable for the Task-Queue.

13.4.3 OutCore

Make the Instruction readable for the The Core.

32 Chapter 13. The Proc

CHAPTER 14

pSpace

Not implemented

33

PureDarwin Documentation, Release 0.5

34 Chapter 14. pSpace

CHAPTER 15

ToDo

15.1 Loader

15.1.1 Description of the trouble

My main trouble at the moment is to find a way to Load the programms inside the Virtual Machine. The MARS had
been designed as a closed system, with absolutely no input, and one output, namely the result of the fight.

That means that my current question doesn’t get answered by design:

How to get the programs in the Core of puredarwin MARS ?

I made a first try with an RS232 Module (self-designed) where the goal would be to load the Programs via a serial line
... I’m not entirely satisfied with that solution. Actually, I’m not sure that it would be practical.

15.1.2 Solution

Do not use any loader

For the moment, I would advice using rev 548b16a67881 and traceProc.py as a main to simulate. This testModule
also has a correct simulation implementation for the Queue and the Core. This shouldn’t be a trouble to test a program
on this MARS.

Quality of this solution

This solution makes some sense as the MyHDL module are actually not directly intended for synthesis. So, using
simulation tricks in order to simulate is not seen as a betrayal.

35

http://bitbucket.org/benallard/puredarwin/src/tip/traceProc.py

PureDarwin Documentation, Release 0.5

36 Chapter 15. ToDo

CHAPTER 16

Status

hg log is your friend ...

16.1 Tue Mar 20 20:31:35 CET 2012

Reorganizing everything ...

16.2 Wed Dec 2 00:48:03 CET 2009

16.2.1 A good simulation basis

I realized the incapacity of MyHDL to synthesize anything. That’s not bad in itself, Actually, I did not ordered my
ALTERA yet, so, I’m not able to check any synthesis. And better yet, till now, even If I tried to keep to a synthetizable
MyHDL, I never used it. I used MyHDL, (I have to admit it, without realizing it), as a prototyping tool, and thanks to
it, I got results !

The current repository also has a good base for simulation, lots of components are there, pSpace is still missing, and
some function implementation might also be missing, but a good basis is there.

Try it if you feel you can, and don’t forget to report Issues !

37

PureDarwin Documentation, Release 0.5

38 Chapter 16. Status

CHAPTER 17

Indices and tables

• genindex

• modindex

• search

39

	Introduction
	Darwin ???
	CoreWar ?
	pure Hardware Implementation ?

	Darwin
	RedCode
	Instruction Set
	Address Mode
	Examples

	RedCode Instruction Set
	IMP
	Dwarf
	Gemini
	Code
	Simulation

	Modules
	The Core
	Ports
	Sub-processes
	internal Signals
	Submodules

	The RAM
	Ports
	sub-process

	Fold
	Ports
	Sub-processes
	Internal Signals

	Task-Queue
	Sub-process
	Sub-modules

	The Proc
	Ports
	State-machine
	Sub-processes
	Sub-modules

	pSpace
	ToDo
	Loader

	Status
	Tue Mar 20 20:31:35 CET 2012
	Wed Dec 2 00:48:03 CET 2009

	Indices and tables

