

punx

Python Utilities for NeXus HDF5 files: validation, structure, hierarchy

	Validation of NeXus NXDL files

	Validation of NeXus HDF5 data files

	Display of NeXus HDF5 data file tree structure

	Display of NeXus base class hierarchy (stretch goal, graphical output)

NOTE: project is under initial construction

	author

	Pete R. Jemian

	email

	prjemian@gmail.com

	copyright

	2017-2018, Pete R. Jemian

	license

	Creative Commons Attribution 4.0 International Public License (see LICENSE.txt)

	URL

	http://punx.readthedocs.io

	git

	https://github.com/prjemian/punx

	PyPI

	https://pypi.python.org/pypi/punx

	TODO list

	https://github.com/prjemian/punx/issues

	version

	0.2.5

	release

	130.gf0e707d.dirty

	published

	Nov 16, 2021

Use these steps to install and try the demo:

1 pip install punx
2 punx demo

Contents

	Project Overview
	command line help

	Subcommands

	Installation
	Updating

	Required Packages

	Optional Packages

	Change History
	Production

	Development

	License

	Cache : cache_manager
	source code documentation

	Findings : finding
	source code documentation

	GitHub : github_handler
	source code documentation

	HDF5 Data File Tree Structure : h5tree
	How to use h5tree

	Example

	source code documentation

	User interface : main
	source code settings

	NXDL Manager : nxdl_manager
	source code documentation

	NXDL Rules: The XML Schema files : nxdl_schema
	source code documentation

	NXDL Definition File Tree Structure : nxdltree
	source code documentation

	Manage the XML Schema files : schema_manager
	source code documentation

	Validation : validate
	NeXus HDF5 Data Files

	NeXus NXDL Definition Language Files

Source Code

	main

	Python Utilities for NeXus HDF5 files

	validate

	validate files against the NeXus/HDF5 standard

	h5tree

	Describe the tree structure of any HDF5 file

	nxdltree

	Describe the tree structure of a NXDL XML file

	nxdl_manager

	Load and/or document the structure of a NeXus NXDL class specification

	nxdl_schema

	Read the NeXus XML Schema

	schema_manager

	manages the XML Schema of this project

	cache_manager

	manages the NXDL cache directories of this project

	github_handler

	manages the communications with GitHub

Indices and tables

	Index

	Module Index

	Search Page

Project Overview

The punx program package is easy to use and has several useful modules.
The first module to try is demo, which validates
and prints the structure of a NeXus HDF5 data file from the NeXus documentation.

command line help

console> punx -h
usage: punx [-h] [-v]
 {configuration,demonstrate,structure,tree,update,validate} ...

Python Utilities for NeXus HDF5 files version: 0.2.0+9.g31fd4b4.dirty URL:
http://punx.readthedocs.io

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit

subcommand:
 valid subcommands

 {configuration,demonstrate,structure,tree,update,validate}
 configuration show configuration details of punx
 demonstrate demonstrate HDF5 file validation
 structure (deprecated) use ``tree``
 tree show tree structure of HDF5 or NXDL file
 update update the local cache of NeXus definitions
 validate validate a NeXus file

Note: It is only necessary to use the first two (or more) characters of any
subcommand, enough that the abbreviation is unique. Such as: ``demonstrate``
can be abbreviated to ``demo`` or even ``de``.

Subcommands

punx uses a subcommand structure to provide several different modules under one
identifiable program. These are invoked using commands of the form:

punx <subcommand> <other parameters>

where <subcommand> is chosen from this table:

	subcommand

	brief description

	configuration

	show internal punx configuration

	demonstrate

	demonstrate HDF5 file validation

	hierarchy

	show NeXus base class hierarchy (not implemented yet)

	structure

	(deprecated) use User interface: subcommand: tree

	tree

	show tree structure of HDF5 or NXDL file

	update

	update the local cache of NeXus definitions

	validate

	validate a NeXus file

and the <other parameters> are desribed by the help for each subcommand:

punx <subcommand> -h

Example 1

console> punx val -h
usage: punx validate [-h] [--report REPORT] infile

positional arguments:
 infile HDF5 or NXDL file name

optional arguments:
 -h, --help show this help message and exit
 --report REPORT select which validation findings to report, choices:
 COMMENT,ERROR,NOTE,OK,OPTIONAL,TODO,UNUSED,WARN

	1

	tip: Subcommands may be shortened.

It is only necessary to use the first two (or more) characters of any
subcommand, enough that the short version remains unique and could not be
misinterpreted as another subcommand. The program imposes a minimum limit
of at least 2-characters.

Such as: demonstrate can be abbreviated to demo or even de.

User interface: subcommand: configuration

The configuration subcommand shows the internal configuration
of the punx program. It shows a table with the available
NXDL file sets.

console> punx configuration
Locally-available versions of NeXus definitions (NXDL files)
============= ======= ====== =================== ======= ==
NXDL file set type cache date & time commit path
============= ======= ====== =================== ======= ==
a4fd52d commit source 2016-11-19 01:07:45 a4fd52d C:\source_path\punx\cache\a4fd52d
v2018.5 release source 2018-05-15 16:34:19 a3045fd C:\source_path\punx\src\punx\cache\v2018.5
v3.3 release source 2017-07-12 17:41:13 9285af9 C:\source_path\punx\src\punx\cache\v3.3
9eab commit user 2016-10-19 17:58:51 9eab281 C:\user_path\AppData\Roaming\punx\9eab
master branch user 2018-05-16 02:07:48 2dc081e C:\user_path\AppData\Roaming\punx\master
============= ======= ====== =================== ======= ==

default NXDL file set: master

An NXDL file set is the complete set of NXDL (XML) files that
provide a version of the NeXus standard, including the XML Schema
files that provide all the default and basic structures of the NXDL
files.

Above, the user cache has a version of the GitHub master branch (
the master branch contains the latest
revisions by the developers on that date).

An NXDL file set is referenced by one of the GitHub identifiers:

	identifier

	example

	description

	commit

	9eab

	SHA-1 hash tag 1 that identifies a specific commit to the repository

	branch

	master

	name of a branch 2 in the repository

	tag

	Schema-3.4

	name of a tag 3 in the repository

	release

	v2018.5

	name of a repository release 4

	1

	commit (hash): A commit is a snapshot of the GitHub repository.
A SHA-1 hash code is the unique identifier of a commit.
It is a 40-character sequence of hexadecimals.
It may be shortened to just the first characters which identify
it uniquely in the repository. Three or four characters may be
unique (1:16^3 or 1:16^4) while
seven characters are almost certain (1:16^7) to be a unique reference.

For example. the commit 9eab may also be identified
as 9eab281, or by its full SHA-1 has
9eab2816e19440f8601fdf81ee972e330319c28f
(https://github.com/nexusformat/definitions/commit/9eab281).
All point to the same commit on 2016-10-19 17:58:51.

	2

	branch: https://help.github.com/articles/about-branches/

	3

	tag: a user-provided text name for a commit

	4

	release: https://help.github.com/articles/about-releases/

When a ref (a reference to a specific NXDL file set identifier)
is not provided, the default NXDL file set will be chosen as the one
with the most recent date & time. That date & time is provided by
GitHub as the time the changes were to committed to the repository.

NXDL file sets may be found in the source cache (as distributed
with the program) or in the user cache as maintained by the punx
User interface: subcommand: update subcommand. The full path to the file set is provided.

User interface: subcommand: demo

The demo subcommand is useful to
demonstrate HDF5 file validation
and to verify correct program operation.
It uses an example NeXus HDF5 data file supplied
with the punx software, the writer_1_3.hdf5
example from the NeXus manual.

command line help

console> punx demo -h
punx demo -h
usage: punx demo [-h]

optional arguments:
 -h, --help show this help message and exit

Examples

One example of how to use punx is shown in the demo mode.
This can be used directly after installing the python package.

Type this command …:

punx demo

… and this output will appear on the console,
showing a validation of writer_1_3.hdf5, an example
NeXus HDF5 data file from the NeXus documentation.

 1C:\Users\Pete\Documents\eclipse\punx\src\punx\main.py
 2
 3!!! WARNING: this program is not ready for distribution.
 4
 5
 6console> punx validate C:\Users\Pete\Documents\eclipse\punx\src\punx\data\writer_1_3.hdf5
 7data file: C:\Users\Pete\Documents\eclipse\punx\src\punx\data\writer_1_3.hdf5
 8NeXus definitions (branch): master, dated 2018-05-16 02:07:48, sha=2dc081ee4265eebf80a953080a2ed275c1799a21
 9
10findings
11============================ ====== ==================================== ===
12address status test comments
13============================ ====== ==================================== ===
14/ TODO NeXus base class NXroot: more validations needed
15/ OK known NXDL NXroot: recognized NXDL specification
16/ OK NeXus base class NXroot: known NeXus base class
17/ OK NeXus default plot found by v3: /Scan/data/counts
18/Scan TODO NeXus base class NXentry: more validations needed
19/Scan OK group in base class not defined: NXroot/Scan
20/Scan OK known NXDL NXentry: recognized NXDL specification
21/Scan OK NeXus base class NXentry: known NeXus base class
22/Scan OK NXDL group in data file found: in /Scan/data
23/Scan NOTE validItemName relaxed pattern: [A-Za-z_][\w_]*
24/Scan@NX_class OK validItemName pattern: NX.+
25/Scan@NX_class OK attribute value recognized NXDL base class: NXentry
26/Scan@NX_class OK known attribute known: NXentry@NX_class
27/Scan/data TODO NeXus base class NXdata: more validations needed
28/Scan/data OK validItemName strict pattern: [a-z_][a-z0-9_]*
29/Scan/data OK group in base class defined: NXentry/data
30/Scan/data OK known NXDL NXdata: recognized NXDL specification
31/Scan/data OK NeXus base class NXdata: known NeXus base class
32/Scan/data@NX_class OK validItemName pattern: NX.+
33/Scan/data@NX_class OK attribute value recognized NXDL base class: NXdata
34/Scan/data@NX_class OK known attribute known: NXdata@NX_class
35/Scan/data@axes TODO attribute value implement
36/Scan/data@axes OK validItemName strict pattern: [a-z_][a-z0-9_]*
37/Scan/data@axes OK known attribute known: NXdata@axes
38/Scan/data@signal OK validItemName strict pattern: [a-z_][a-z0-9_]*
39/Scan/data@signal OK valid name @signal=counts strict pattern: [a-z_][a-z0-9_]*
40/Scan/data@signal OK attribute value found: @signal=counts
41/Scan/data@signal OK known attribute known: NXdata@signal
42/Scan/data@signal OK value of @signal found: /Scan/data/counts
43/Scan/data@signal OK NeXus default plot v3, NXdata@signal correct default plot setup in /NXentry/NXdata
44/Scan/data@two_theta_indices TODO attribute value implement
45/Scan/data@two_theta_indices OK validItemName strict pattern: [a-z_][a-z0-9_]*
46/Scan/data@two_theta_indices OK known attribute unknown: NXdata@two_theta_indices
47/Scan/data/counts OK validItemName strict pattern: [a-z_][a-z0-9_]*
48/Scan/data/counts OK field in base class not defined: NXdata/counts
49/Scan/data/counts@units TODO attribute value implement
50/Scan/data/counts@units OK validItemName strict pattern: [a-z_][a-z0-9_]*
51/Scan/data/two_theta OK validItemName strict pattern: [a-z_][a-z0-9_]*
52/Scan/data/two_theta OK field in base class not defined: NXdata/two_theta
53/Scan/data/two_theta@units TODO attribute value implement
54/Scan/data/two_theta@units OK validItemName strict pattern: [a-z_][a-z0-9_]*
55============================ ====== ==================================== ===
56
57
58summary statistics
59======== ===== === =========
60status count description (value)
61======== ===== === =========
62OK 33 meets NeXus specification 100
63NOTE 1 does not meet NeXus specification, but acceptable 75
64WARN 0 does not meet NeXus specification, not generally acceptable 25
65ERROR 0 violates NeXus specification -10000000
66TODO 7 validation not implemented yet 0
67UNUSED 0 optional NeXus item not used in data file 0
68COMMENT 0 comment from the punx source code 0
69OPTIONAL 38 allowed by NeXus specification, not identified 99
70 --
71TOTAL 79
72======== ===== === =========
73
74<finding>=99.125000 of 72 items reviewed
75
76console> punx tree C:\Users\Pete\Documents\eclipse\punx\src\punx\data\writer_1_3.hdf5
77C:\Users\Pete\Documents\eclipse\punx\src\punx\data\writer_1_3.hdf5 : NeXus data file
78 Scan:NXentry
79 @NX_class = NXentry
80 data:NXdata
81 @NX_class = NXdata
82 @signal = counts
83 @axes = two_theta
84 @two_theta_indices = 0
85 counts:NX_INT32[31] = [1037, 1318, 1704, '...', 1321]
86 @units = counts
87 two_theta:NX_FLOAT64[31] = [17.92608, 17.92591, 17.92575, '...', 17.92108]
88 @units = degrees

Problems when running the demo

Sometimes, problems happen when running the demo.
In this section are some common problems encountered and
what was done to resolve them.

Cannot reach GitHub

See GitHub API rate limit exceeded

User interface: subcommand: hierarchy

-tba-

User interface: subcommand: tree

show tree structure of HDF5 or NXDL file

command line help

console> punx tree -h
usage: punx tree [-h] [-a] [-m MAX_ARRAY_ITEMS] infile

positional arguments:
 infile HDF5 or NXDL file name

optional arguments:
 -h, --help show this help message and exit
 -a Do not print attributes of HDF5 file structure
 -m MAX_ARRAY_ITEMS, --max_array_items MAX_ARRAY_ITEMS
 maximum number of array items to be shown

Examples

–tba–

User interface: subcommand: update

punx keeps a local copy of the NeXus definition files.
The originals of these files are located on GitHub.

+.. caution:: The update process is being refactored, this may not work correctly now

To update the local cache of NeXus definitions, run:

console> punx update

INFO: get repo info: https://api.github.com/repos/nexusformat/definitions/commits
INFO: git sha: 8eb46e229f900d1e77e37c4b6ee6e0405efe099c
INFO: git iso8601: 2016-06-17T18:05:28Z
INFO: not updating NeXus definitions files

This shows the current cache was up to date. Here’s an example
when the source cache needed to be updated:

console> punx update

INFO: get repo info: https://api.github.com/repos/nexusformat/definitions/commits
INFO: git sha: 8eb46e229f900d1e77e37c4b6ee6e0405efe099c
INFO: git iso8601: 2016-06-17T18:05:28Z
INFO: updating NeXus definitions files
INFO: download: https://github.com/nexusformat/definitions/archive/master.zip
INFO: extract ZIP to: C:/Users/Pete/Documents/eclipse/punx/punx/cache

command line help

console> punx update -h
punx update -h
usage: punx update [-h] [-f]

optional arguments:
 -h, --help show this help message and exit
 -f, --force force update (if GitHub available)

Examples

–tba–

Problems

GitHub API rate limit exceeded

A common problem happens when updating the NXDL definitions from GitHub.
Here’s what it looks like:

$ python ./punx/main.py update --force

('INFO:', 'get repo info: https://api.github.com/repos/nexusformat/definitions/commits')

Traceback (most recent call last):

 File "./punx/main.py", line 416, in <module>

 main()

 File "./punx/main.py", line 412, in main

 args.func(args)

 File "./punx/main.py", line 170, in func_update

 cache.update_NXDL_Cache(force_update=args.force)

 File "/home/travis/build/prjemian/punx/punx/cache.py", line 257, in update_NXDL_Cache

 info = __get_github_info__() # check with GitHub first

 File "/home/travis/build/prjemian/punx/punx/cache.py", line 246, in __get_github_info__

 punx.GITHUB_NXDL_REPOSITORY)

 File "/home/travis/build/prjemian/punx/punx/cache.py", line 228, in githubMasterInfo

 raise punx.CannotUpdateFromGithubNow(msg)

punx.CannotUpdateFromGithubNow: API rate limit exceeded for nn.nn.nn.nn.
(But here's the good news: Authenticated requests get a higher rate limit.
Check out the documentation for more details.)

GitHub imposes a limit on the number of unauthenticated downloads per hour 1.
You can check your rate limit status 2. Mostly, this means try again later.

	1

	“The rate limit allows you to make up to 60 requests per hour,
associated with your IP address”,
https://developer.github.com/v3/#rate-limiting

	2

	Status of GitHub API Rate Limit: https://developer.github.com/v3/rate_limit/

A GitHub issue has been raised to resolve this for the punx project. 3

	3

	update: cannot download NXDL files from GitHub #64,
https://github.com/prjemian/punx/issues/64

Validation

Validation is the process of comparing an object with a standard.
An important aspect of validation is the report of each aspect tested and whether
or not it complies with the standard. This is a useful and necessary step when
composing NeXus HDF5 data files or software that will read NeXus data files and when
building NeXus Definition Language (NXDL) files.

In NeXus, three basic types of object can be validated:

	HDF5 data files must comply with the specifications set forth in the
applicable NeXus base classes, application definitions, and contributed definitions.

	NeXus NXDL files must comply with the
XML Schema files nxdl.xsd and nxdlTypes.xsd.

	XML Schema files must comply with the rules defined by the WWW3 consortium.
TODO: citation needed.

User interface: subcommand: validate

validate a NeXus file

command line help

 1usage: punx validate [-h] [--report REPORT] [-l [LOGFILE]] [-i INTEREST]
 2 infile
 3
 4positional arguments:
 5 infile HDF5 or NXDL file name
 6
 7optional arguments:
 8 -h, --help show this help message and exit
 9 --report REPORT select which validation findings to report, choices:
10 COMMENT,ERROR,NOTE,OK,TODO,UNUSED,WARN
11 -l [LOGFILE], --logfile [LOGFILE]
12 log output to file (default: no log file)
13 -i INTEREST, --interest INTEREST
14 logging interest level (1 - 50), default=1 (Level 1)

The REPORT findings are as presented in the table above for each validation step.

The logging INTEREST levels are for output from the program,

Examples

–tba–

Data File Validation

NeXus HDF5 data files can have significant structure and variation.
It can be a challenge to determine that a given file is compliant
with any of the rules specified in the NeXus definitions
(here, we refer to the the applicable NXDL files
and NeXus XML Schema in aggregate as the NeXus definitions).
Additionally, there are various releases and version of the NeXus standard.

The first test for any file to be considered a NeXus data file is
whether or not the file is a valid HDF5 file. If the file is not HDF5,
it is not a valid NeXus HDF5 data file.

General

In general, validation of data files proceeds through several steps:

	Is file HDF5?

	Does file contain one or more NXentry 1 groups?

	Test the NeXus definitions against the file

	Does the file define a default plot in each NXdata group? (recommended but no longer required)

	Does the file define a path to the default plot? (recommended but no longer required)

	Is the file a NeXus HDF5 data file?

Is file HDF5?

This is a simple test and is handled by the h5py package.

Test NeXus definitions against the data file

The NeXus definitions provide specifications for what should be found in a NeXus data file
and where it should be found. Some itmes are optional and some items may be repeated.

In NeXus data files, the structure is defined by adding NX_class attributes to each
of the groups. This structure must match what is defined in the NXDL file for that group.

Groups must be one of the defined base classes
(or contributed definitions intended for use as a base class, but this is rare)

Test each NXentry group agains the NeXus definitions

In a NeXus data file, there are one more more NXentry groups. Validation proceeds
by walking through each of the groups that define a NX_class attribute using the
matching base class (or contributed definition).

NeXus application definitions are a special case of NXentry (or NXsubentry) group.
If a group’s NX_class attribute has the value NXentry or NXsubentry, that group must
contain a definition field. The value of this definition field gives the name of the
application definition to which this group (and all its subgroups) must comply.
It is recommended to use NXsubentry to contain an application definition.

Base classes are the building blocks of the NeXus structure.
Application definitions differ from NXentry and NXsubentry in one important aspect:
content specified in an application definition is required, by default. In base classes,
content is optional by default.
Contributed definitions include propositions from the community for NeXus base classes
or application definitions, as well as other NXDL files for long-term archival by NeXus.
Consider the contributed definitions as either candidates for inclusion in the NeXus standard
or a special case not for general use.

	1

	http://download.nexusformat.org/doc/html/classes/base_classes/NXentry.html

Details

–tba–

Parsing the XML Schema

The XML Schema defines the constructs of the NXDL language, the various enumerations,
and the default values when the constructs are used in base classes or application definitions.

Parsing the NXDL files

–tba–

Application Definitions

–tba–

NXDL File Validation

NXDL files must adhere to the specifications of the NeXus XML Schema, as
defined in nxdl.xsd and nxdlTypes.xsd.

Caution

TODO: citation needed

Any NXDL file may be validated using the Linux command line tool xmllint.
Such as:

user@host ~ $ xmllint --noout --schema nxdl.xsd base_classes/NXentry.nxdl.xml
base_classes/NXentry.nxdl.xml validates

Installation

Released versions of punx are available on PyPI [https://pypi.python.org/pypi/punx].

If you have pip installed, then you can install:

$ pip install punx

The latest development versions of punx can be downloaded from the
GitHub repository listed above:

$ cd /some/directory
$ git clone http://github.com/prjemian/punx.git

To install in the standard Python location:

$ cd punx
$ pip install .
-or-
$ python setup.py install

To install in user’s home directory:

$ python setup.py install --user

To install in an alternate location:

$ python setup.py install --prefix=/path/to/installation/dir

Updating

	pip

	If you have installed previously with pip:

$ pip install -U --no-deps punx

	git

	assuming you have cloned as shown above:

$ cd /some/directory/punx
$ git pull
$ pip install -U --no-deps .

Required Packages

It may be necessary to install some prerequisite packages in your python installation.
If you are using an Anaconda python distribution, it is advised to install these
pre-requisites using conda rather than pip. The pre-requisites include:

	h5py

	lxml

	numpy

	Qt and PyQt (either v4 or v5)

	requests

	PyGithub

See your distribution’s documentation for how to install these. With Anaconda, use:

conda install h5py lxml numpy Qt=5 PyQt=5 requests
pip install PyGitHub pyRestTable

	Package

	URL

	h5py

	http://www.h5py.org

	lxml

	http://lxml.de

	numpy

	http://numpy.scipy.org

	PyGithub

	https://github.com/PyGithub/PyGithub

	PyQt4

	https://riverbankcomputing.com/software/pyqt/intro

	requests

	http://docs.python-requests.org

Optional Packages

	Package

	URL

	pyRestTable

	http://pyresttable.readthedocs.io

	The pyRestTable package is used for various reports in the punx application.
	If using the punx package as a library and developing your own custom
reporting, this package is not required.

Change History

Production

–none–

Development

	0.2.6

	2021–tba – drop support for python<3.6

	0.2.5

	2020-06-29 – bug fix and up to date

	0.2.0

	2018-07-02 – first tag after major refactor (#72, #105)

	0.1.9

	2017-07-09 – last tag before major refactor (#72), no changes here since 2017-03-31

	0.1.8

	2017-03-12 – package .json file in the cache file sets

	0.1.7

	2017-03-11 – NeXus def 3.2 bundled into repo now

	0.1.4

	2016-12-09 – validation reports sorted by HDF5 address

	0.1.3

	2016-12-07 – Py2 & Py3: passes all unit tests

	0.1.2

	2016-11-21 – unit tests added for reports

	0.0.9

	2016-06-29 – retry failed https requests to GitHub and cleanup a QString

	0.0.8

	2016-06-29 – refactor update procedure

	0.0.7

	2016-06-27 – add “report” arguments to “demo” subcommand

	0.0.6

	2016-06-22 – resolved some UnicodeDecodeError exceptions

	0.0.5

	2016-06-20 – added subcommand shortcuts and logging

	0.0.4

	2016-06-17 – work-in-progress to test installation with remote user

	0.0.3

	2016-06-11 – basic UI established, demo command added

	0.0.2

	2016-06-11 – basic UI established

	0.0.1

	2016-06-10 – basic functions

	started

	2016-05-20 – initial project creation

License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.

Section 1 -- Definitions.

 Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
 Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.
 Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
 Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
 Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
 Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
 Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
 Licensor means the individual(s) or entity(ies) granting rights under this Public License.
 Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
 Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
 You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

 License grant.
 Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
 reproduce and Share the Licensed Material, in whole or in part; and
 produce, reproduce, and Share Adapted Material.
 Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
 Term. The term of this Public License is specified in Section 6(a).
 Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
 Downstream recipients.
 Offer from the Licensor -- Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
 No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
 No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

 Other rights.
 Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
 Patent and trademark rights are not licensed under this Public License.
 To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

 Attribution.

 If You Share the Licensed Material (including in modified form), You must:
 retain the following if it is supplied by the Licensor with the Licensed Material:
 identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
 a copyright notice;
 a notice that refers to this Public License;
 a notice that refers to the disclaimer of warranties;
 a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
 indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
 indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
 You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
 If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
 If You Share Adapted Material You produce, the Adapter's License You apply must not prevent recipients of the Adapted Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

 for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database;
 if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and
 You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

 Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.
 To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.

 The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

Section 6 -- Term and Termination.

 This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.

 Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
 automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
 upon express reinstatement by the Licensor.
 For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
 For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
 Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 -- Other Terms and Conditions.

 The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
 Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

 For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
 To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
 No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
 Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.

Cache : cache_manager

Hierarchy:

	punx.nxdl_manager

	punx.schema_manager

	punx.cache_manager

	punx.github_handler

source code documentation

manages the NXDL cache directories of this project

A key component necessary to validate both NeXus data files and
NXDL class files is a current set of the NXDL definitions.

There are two cache directories:

	the source cache

	the user cache

Within each of these cache directories,
there may be one or more subdirectories, each
containing the NeXus definitions subdirectories and files (*.xml,
*.xsl, & *.xsd) of a specific branch, release, tag, or commit hash
from the NeXus definitions repository.

	source cache

	contains default set of NeXus NXDL files

	user cache

	contains additional set(s) of NeXus NXDL files, installed by user

The cache_manager calls the github_handler and
is called by schema_manager and nxdl_manager.

Public interface

	CacheManager(*args, **kwargs)

	manager both source and user caches

Internal interface

	get_short_sha(full_sha)

	return the first few unique characters of the git commit hash (SHA)

	read_json_file(filename)

	read a structured object from the JSON file file_name

	write_json_file(filename, obj)

	write the structured obj to the JSON file file_name

	should_extract_this(item, ...)

	decide if this item should be extracted from the ZIP download

	should_avoid_download(grr, path)

	decide if the download should be avoided (True: avoid, False: download)

	extract_from_download(grr, path)

	download & extract NXDL files from grr into a subdirectory of path

	table_of_caches()

	return a pyRestTable table describing all known file sets in both source and user caches

	Base_Cache()

	provides comon methods to get the QSettings path and file name

	SourceCache()

	manage the source directory cache of NXDL files

	UserCache()

	manage the user directory cache of NXDL files

	NXDL_File_Set()

	describe a single set of NXDL files

	
class punx.cache_manager.Base_Cache

	provides comon methods to get the QSettings path and file name

	find_all_file_sets()

	index all NXDL file sets in this cache

	fileName()

	full path of the QSettings file

	path()

	directory containing the QSettings file

	cleanup()

	removes any temporary directories

	
cleanup()

	removes any temporary directories

	
fileName()

	full path of the QSettings file

	
find_all_file_sets()

	index all NXDL file sets in this cache

	
path()

	directory containing the QSettings file

	
class punx.cache_manager.CacheManager(*args, **kwargs)

	manager both source and user caches

	install_NXDL_file_set(grr[, user_cache, ...])

	using ref as a name, get the se of NXDL files from the NeXus GitHub

	select_NXDL_file_set([ref])

	return the named self.default_file_set instance or raise KeyError exception if unknown

	find_all_file_sets()

	return dictionary of all NXDL file sets in both source & user caches

	cleanup()

	removes any temporary directories

	
cleanup()

	removes any temporary directories

	
find_all_file_sets()

	return dictionary of all NXDL file sets in both source & user caches

	
install_NXDL_file_set(grr, user_cache=True, ref=None, force=False)

	using ref as a name, get the se of NXDL files from the NeXus GitHub

	Parameters

	
	grr (obj) – instance of GitHub_Repository_Reference

	user_cache (bool) – True: use user cache,
`` False``: use source cache (default)

	ref (str) – name to use when requesting from GitHub,
(master, commit hash such as abc1234,
branch name, release name such as v3.2,
or tag name)

	force (bool) – update if installed is not the same SHA

	
select_NXDL_file_set(ref=None)

	return the named self.default_file_set instance or raise KeyError exception if unknown

	Return obj

	

	
table_of_caches()

	return a pyRestTable table describing all known file sets in both source and user caches

	Returns obj

	instance of pyRestTable.Table with all known file sets

Example:

============= ======= ====== =================== ======= ===================================
NXDL file set type cache date & time commit path
============= ======= ====== =================== ======= ===================================
v3.2 tag source 2017-01-18 23:12:44 e888dac /home/user/punx/src/punx/cache/v3.2
NXroot-1.0 tag user 2016-10-24 14:58:10 e0ad63d /home/user/.config/punx/NXroot-1.0
master branch user 2016-12-20 18:30:29 85d056f /home/user/.config/punx/master
Schema-3.3 release user 2017-05-02 12:33:19 4aa4215 /home/user/.config/punx/Schema-3.3
a4fd52d commit user 2016-11-19 01:07:45 a4fd52d /home/user/.config/punx/a4fd52d
============= ======= ====== =================== ======= ===================================

	
class punx.cache_manager.NXDL_File_Set

	describe a single set of NXDL files

	
class punx.cache_manager.SourceCache

	manage the source directory cache of NXDL files

	
class punx.cache_manager.UserCache

	manage the user directory cache of NXDL files

	
punx.cache_manager.extract_from_download(grr, path)

	download & extract NXDL files from grr into a subdirectory of path

USAGE:

grr = github_handler.GitHub_Repository_Reference()
grr.connect_repo()
if grr.request_info() is not None:
 extract_from_download(grr, cache_directory)

	
punx.cache_manager.get_short_sha(full_sha)

	return the first few unique characters of the git commit hash (SHA)

	Parameters

	full_sha (str) – hash code from Github

	
punx.cache_manager.read_json_file(filename)

	read a structured object from the JSON file file_name

	See

	https://docs.python.org/3.5/library/json.html#json.loads

	
punx.cache_manager.should_avoid_download(grr, path)

	decide if the download should be avoided (True: avoid, False: download)

	Return bool

	

	
punx.cache_manager.should_extract_this(item, NXDL_file_endings_list, allowed_parent_directories)

	decide if this item should be extracted from the ZIP download

	Return bool

	

	
punx.cache_manager.table_of_caches()

	return a pyRestTable table describing all known file sets in both source and user caches

	Returns obj

	instance of pyRestTable.Table with all known file sets

Example:

============= ======= ====== =================== ======= ===================================
NXDL file set type cache date & time commit path
============= ======= ====== =================== ======= ===================================
v3.2 tag source 2017-01-18 23:12:44 e888dac /home/user/punx/src/punx/cache/v3.2
NXroot-1.0 tag user 2016-10-24 14:58:10 e0ad63d /home/user/.config/punx/NXroot-1.0
master branch user 2016-12-20 18:30:29 85d056f /home/user/.config/punx/master
Schema-3.3 release user 2017-05-02 12:33:19 4aa4215 /home/user/.config/punx/Schema-3.3
a4fd52d commit user 2016-11-19 01:07:45 a4fd52d /home/user/.config/punx/a4fd52d
============= ======= ====== =================== ======= ===================================

	
punx.cache_manager.write_json_file(filename, obj)

	write the structured obj to the JSON file file_name

	See

	https://docs.python.org/3.5/library/json.html#json.dumps

Findings : finding

Each validation test of an object in the NeXus data file should produce a finding.

source code documentation

document each item during validation

	Finding(h5_address, test_name, status, comment)

	a single reported observation while validating

	VALID_STATUS_DICT

	dictionary (by names) of all available validations

	
class punx.finding.Finding(h5_address, test_name, status, comment)

	a single reported observation while validating

	Parameters

	
	h5_address (str) – address of h5py item

	test_name (str) – short description of the test

	status (obj) – one of: OK NOTE WARN ERROR TODO COMMENT OPTIONAL UNUSED

	comment (str) – description

	
make_md5()

	make a unique hash for this finding

	
punx.finding.VALID_STATUS_DICT = {'COMMENT': <punx.finding.ValidationResultStatus object>, 'ERROR': <punx.finding.ValidationResultStatus object>, 'NOTE': <punx.finding.ValidationResultStatus object>, 'OK': <punx.finding.ValidationResultStatus object>, 'OPTIONAL': <punx.finding.ValidationResultStatus object>, 'TODO': <punx.finding.ValidationResultStatus object>, 'UNUSED': <punx.finding.ValidationResultStatus object>, 'WARN': <punx.finding.ValidationResultStatus object>}

	dictionary (by names) of all available validations

	
class punx.finding.ValidationResultStatus(key, value, color, description)

	summary result of a Finding

	Parameters

	
	key (str) – short name

	color (str) – suggested color for GUI

	description (str) – one-line summary

GitHub : github_handler

The github_handler module handles all communications with the NeXus
GitHub repository. The interaction is handled through the GitHub REST
API [https://docs.github.com/en/rest]. A token is needed to update the local
cache of NeXus definitions. (See punx update -h for help on this command.)

GitHub requests use an access token. The token is unique to each user and may
be generated by visiting the GitHub user’s token settings page [https://github.com/settings/tokens]. Without a token, the GitHub API Rate
Limit allows unauthenticated access only a few downloads per hour.

These environment variables are searched (in order) for a token:

	GH_TOKEN

	GITHUB_TOKEN (searched in that order).

Here is an example of a GitHub token:
ghp_AbcdEF0gHIJKlMNopqrs1tUvwXyzAb2CDEFg (N.B.: This is not a valid token;
it is only an example. You must use your own token.)

To set the GH_TOKEN environment variable with this token:

export GH_TOKEN=ghp_AbcdEF0gHIJKlMNopqrs1tUvwXyzAb2CDEFg

For more details about tokens and authentication, please visit the GitHub
documentation [https://docs.github.com/en/rest/overview/other-authentication-methods].

source code documentation

manages the communications with GitHub

	GitHub_Repository_Reference()

	all information necessary to describe and download a repository branch, release, tag, or SHA hash

USAGE:

grr = punx.github_handler.GitHub_Repository_Reference()
grr.connect_repo()
if grr.request_info(u'v3.2') is not None:
 d = grr.download()

	
class punx.github_handler.GitHub_Repository_Reference

	all information necessary to describe and download a repository branch, release, tag, or SHA hash

ROUTINES

	connect_repo([repo_name, token])

	connect with the GitHub repository

	request_info([ref])

	request download information about ref

	download()

	download the NXDL definitions described by ref

	See

	https://github.com/PyGithub/PyGithub/tree/master/github

	
connect_repo(repo_name=None, token=None)

	connect with the GitHub repository

	Parameters

	
	repo_name (str) – name of repository in https://github.com/nexusformat (default: definitions)

	token (str or None) – GitHub access token or None

	Returns bool

	True if using GitHub credentials

	
download()

	download the NXDL definitions described by ref

	
get_branch(ref='main')

	learn the download information about the named branch

	Parameters

	ref (str) – name of branch in repository

	
get_commit(ref='a4fd52d')

	learn the download information about the referenced commit

	Parameters

	ref (str) – name of SHA hash, first unique characters are sufficient, usually 7 or less

	
get_release(ref='v2018.5')

	learn the download information about the named release

	Parameters

	ref (str) – name of release in repository

	
get_tag(ref='Schema-3.3')

	learn the download information about the named tag

	Parameters

	ref (str) – name of tag in repository

	
request_info(ref=None)

	request download information about ref

	Parameters

	ref (str) – name of branch, release, tag, or SHA hash (default: v3.2)

download URLs

	base: https://github.com

	master: https://github.com/nexusformat/definitions/archive/master.zip

	branch (www_page_486): https://github.com/nexusformat/definitions/archive/www_page_486.zip

	hash (83ce630): https://github.com/nexusformat/definitions/archive/83ce630.zip

	release (v3.2): see hash c0b9500

	tag (NXcanSAS-1.0): see hash 83ce630

	
punx.github_handler.get_GitHub_credentials()

	Get the Github API token from a file or environment.

GitHub requests use an access token. The token is unique to a user and may
be generated by visiting https://github.com/settings/tokens.

The token is provided in either of these environment variables: GH_TOKEN
or GITHUB_TOKEN (searched in that order).

Issues a warning and returns None if credentials are not found per above
search.

HDF5 Data File Tree Structure : h5tree

Print the tree structure of any HDF5 file.

	Note

	The tree subcommand replaces the now-legacy structure subcommand and
also replaces [https://github.com/prjemian/spec2nexus/issues/70]
the h5toText program from the
spec2nexus [https://github.com/prjemian/spec2nexus] project.

How to use h5tree

Print the HDF5 tree of a file:

$ punx tree path/to/file/hdf5/file.hdf5

the help message:

 1 [linux,512]$ punx tree -h
 2 usage: punx tree [-h] [-a] [-m MAX_ARRAY_ITEMS] infile
 3
 4 positional arguments:
 5 infile HDF5 or NXDL file name
 6
 7 optional arguments:
 8 -h, --help show this help message and exit
 9 -a Do not print attributes of HDF5 file structure
10 -m MAX_ARRAY_ITEMS, --max_array_items MAX_ARRAY_ITEMS
11 maximum number of array items to be shown

Example

Here’s an example tree view of a NeXus HDF5 data file
(writer_1_3.h5 from the NeXus documentation 1):

 1 [linux,512]$ punx tree data/writer_1_3.hdf5
 2 data/writer_1_3.hdf5 : NeXus data file
 3 Scan:NXentry
 4 @NX_class = NXentry
 5 data:NXdata
 6 @NX_class = NXdata
 7 @signal = counts
 8 @axes = two_theta
 9 @two_theta_indices = [0]
10 counts:NX_INT32[31] = [1037, 1318, 1704, '...', 1321]
11 @units = counts
12 two_theta:NX_FLOAT64[31] = [17.926079999999999, 17.925909999999998, 17.925750000000001, '...', 17.92108]
13 @units = degrees

	1

	writer_1_3 from NeXus:
http://download.nexusformat.org/doc/html/examples/h5py/writer_1_3.html

source code documentation

Describe the tree structure of any HDF5 file

	Hdf5TreeView(filename)

	Describe the tree structure of any HDF5 file

	
class punx.h5tree.Hdf5TreeView(filename)

	Describe the tree structure of any HDF5 file

Example usage showing default display:

mc = Hdf5TreeView(filename)
mc.array_items_shown = 5
show_attributes = False
txt = mc.report(show_attributes)

	
report(show_attributes=True)

	Return the structure of the HDF5 file in a list of strings.

The work of parsing the datafile is done in this method.

The hierarchy of the file is represented by indentation using spaces.
Attributes are signified using @. Group/dataset names are separated
from their datatypes using :. A preview of the value of an item
follows the =. For example:

1 [
2 '/tmp/tmpb7iqqapu.hdf5',
3 ' external_data:NXdata',
4 ' @NX_class = NXdata',
5 ' @signal = x',
6 ' x:int64 = 0',
7]

User interface : main

Provides the user interface(s) to the punx program.

source code settings

Python Utilities for NeXus HDF5 files

main user interface file

Usage

console> punx -h
usage: punx [-h] [-v]
 {configuration,demonstrate,structure,tree,update,validate} ...

Python Utilities for NeXus HDF5 files version: 0.2.0+9.g31fd4b4.dirty URL:
http://punx.readthedocs.io

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit

subcommand:
 valid subcommands

 {configuration,demonstrate,structure,tree,update,validate}
 configuration show configuration details of punx
 demonstrate demonstrate HDF5 file validation
 structure structure command deprecated. Use ``tree`` instead
 tree show tree structure of HDF5 or NXDL file
 update update the local cache of NeXus definitions
 validate validate a NeXus file

Note: It is only necessary to use the first two (or more) characters of any
subcommand, enough that the abbreviation is unique. Such as: ``demonstrate``
can be abbreviated to ``demo`` or even ``de``.

	main()

	

	MyArgumentParser([prog, usage, description, ...])

	override standard ArgumentParser to enable shortcut feature

	parse_command_line_arguments()

	process command line

	func_demo(args)

	show what punx can do

	func_validate(args)

	validate the content of a NeXus HDF5 data file of NXDL XML file

	func_hierarchy(args)

	not implemented yet

	func_configuration(args)

	show internal configuration of punx

	func_tree(args)

	print the tree structure of a NeXus HDF5 data file of NXDL XML file

	func_update(args)

	update or install versions of the NeXus definitions

	
class punx.main.MyArgumentParser(prog=None, usage=None, description=None, epilog=None, parents=[], formatter_class=<class 'argparse.HelpFormatter'>, prefix_chars='-', fromfile_prefix_chars=None, argument_default=None, conflict_handler='error', add_help=True, allow_abbrev=True, exit_on_error=True)

	override standard ArgumentParser to enable shortcut feature

stretch goal: permit the first two char (or more) of each subcommand to be accepted
?? http://stackoverflow.com/questions/4114996/python-argparse-nargs-or-depending-on-prior-argument?rq=1

	
parse_args(args=None, namespace=None)

	permit the first two char (or more) of each subcommand to be accepted

	
punx.main.exit_message(msg, status=None, exit_code=1)

	exit this code with a message and a status

	Parameters

	
	msg (str) – text to be reported

	status (int) – 0 - 50 (default: ERROR = 40)

	exit_code (int) – 0: no error, 1: error (default)

	
punx.main.func_configuration(args)

	show internal configuration of punx

	
punx.main.func_demo(args)

	show what punx can do

Internally, runs these commands:

punx validate <source_directory>/data/writer_1_3.hdf5
punx tree <source_directory>/data/writer_1_3.hdf5

If you get an error message that looks like this one
(line breaks added here for clarity):

punx.cache.FileNotFound: file does not exist:
/Users/<username>/.config/punx/definitions-master/nxdl.xsd
AND not found in source cache either! Report this problem to the developer.

then you will need to update your local cache of the NeXus definitions.
Use this command to update the local cache:

punx update

	
punx.main.func_hierarchy(args)

	not implemented yet

	
punx.main.func_structure(args)

	deprecated subcommand

	
punx.main.func_tree(args)

	print the tree structure of a NeXus HDF5 data file of NXDL XML file

	
punx.main.func_update(args)

	update or install versions of the NeXus definitions

	
punx.main.func_validate(args)

	validate the content of a NeXus HDF5 data file of NXDL XML file

	
punx.main.parse_command_line_arguments()

	process command line

NXDL Manager : nxdl_manager

source code documentation

Load and/or document the structure of a NeXus NXDL class specification

The nxdl_manager calls the schema_manager and
is called by ____tba_____.

	
class punx.nxdl_manager.NXDL_Manager(file_set=None)

	the NXDL classes found in nxdl_dir

	
class punx.nxdl_manager.NXDL__Mixin(nxdl_definition, *args, **kwargs)

	base class for each NXDL structure

	
assign_defaults()

	set default values for required components now

	
parse_nxdl_xml(*args, **kwargs)

	parse the XML node and assemble NXDL structure

	
class punx.nxdl_manager.NXDL__attribute(nxdl_definition, nxdl_defaults=None, *args, **kwargs)

	contents of a attribute structure (XML element) in a NXDL XML file

~parse_nxdl_xml

	
parse_nxdl_xml(xml_node)

	parse the XML content

	
class punx.nxdl_manager.NXDL__definition(nxdl_manager=None, *args, **kwargs)

	contents of a definition element in a NXDL XML file

	Parameters

	path (str) – absolute path to NXDL definitions directory (has nxdl.xsd)

	
parse_nxdl_xml()

	parse the XML content

	
set_file(fname)

	self.category: base_classes | applications | contributed_definitions

determine the category of this NXDL

	
class punx.nxdl_manager.NXDL__dim(nxdl_definition, nxdl_defaults=None, *args, **kwargs)

	contents of a dim structure (XML element) in a NXDL XML file

	
parse_nxdl_xml(xml_node)

	parse the XML content

	
class punx.nxdl_manager.NXDL__dimensions(nxdl_definition, nxdl_defaults=None, *args, **kwargs)

	contents of a dimensions structure (XML element) in a NXDL XML file

	
parse_nxdl_xml(xml_node)

	parse the XML content

	
class punx.nxdl_manager.NXDL__field(nxdl_definition, nxdl_defaults=None, *args, **kwargs)

	contents of a field structure (XML element) in a NXDL XML file

	
parse_nxdl_xml(xml_node)

	parse the XML content

	
class punx.nxdl_manager.NXDL__group(nxdl_definition, nxdl_defaults=None, *args, **kwargs)

	contents of a group structure (XML element) in a NXDL XML file

	
parse_nxdl_xml(xml_node)

	parse the XML content

	
class punx.nxdl_manager.NXDL__link(nxdl_definition, nxdl_defaults=None, *args, **kwargs)

	contents of a link structure (XML element) in a NXDL XML file

example from NXmonopd:

<link name="polar_angle" target="/NXentry/NXinstrument/NXdetector/polar_angle">
 <doc>Link to polar angle in /NXentry/NXinstrument/NXdetector</doc>
</link>
<link name="data" target="/NXentry/NXinstrument/NXdetector/data">
 <doc>Link to data in /NXentry/NXinstrument/NXdetector</doc>
</link>

	
parse_nxdl_xml(xml_node)

	parse the XML content

	
class punx.nxdl_manager.NXDL__symbols(nxdl_definition, nxdl_defaults=None, *args, **kwargs)

	contents of a symbols structure (XML element) in a NXDL XML file

example from NXcrystal:

<symbols>
 <doc>These symbols will be used below to coordinate dimensions with the same lengths.</doc>
 <symbol name="n_comp"><doc>number of different unit cells to be described</doc></symbol>
 <symbol name="i"><doc>number of wavelengths</doc></symbol>
</symbols>

	
parse_nxdl_xml(symbols_node)

	parse the XML content

	
punx.nxdl_manager.get_NXDL_file_list(nxdl_dir)

	return a list of all NXDL files in the nxdl_dir

The list is sorted by NXDL category
(base_classes, applications, contributed_definitions)
and then alphabetically within each category.

	
punx.nxdl_manager.validate_xml_tree(xml_tree)

	validate an NXDL XML file against the NeXus NXDL XML Schema file

	Parameters

	xml_file_name (str) – name of XML file

NXDL Rules: The XML Schema files : nxdl_schema

Read the NeXus XML Schema

source code documentation

Read the NeXus XML Schema

	NXDL_Summary(nxdl_xsd_file_name)

	provide an easy interface for the nxdl_manager

	render_class_str(obj)

	useful optimization for classes

	get_reference_keys(xml_node)

	reference an xml_node in the catalog: catalog[section][line]

	get_named_parent_node(xml_node)

	return closest XML ancestor node with a name attribute or the schema node

	get_xml_namespace_dictionary()

	return the NeXus XML namespace dictionary

The NXDL_item_catalog.definition_element will provide the
defaults for the definition, group, field, link, and symbols
NXDL structures. These internal structures are used:

	NXDL_item_catalog(nxdl_file_name)

	content from the NeXus XML Schema (nxdl.xsd)

	NXDL_schema__attribute()

	node matches XPath query: //xs:attribute

	NXDL_schema__attributeGroup()

	node matches XPath query: /xs:schema/xs:attributeGroup

	NXDL_schema__complexType()

	node matches XPath query: /xs:schema/xs:complexType

	NXDL_schema__element()

	a complete description of a specific NXDL xs:element node

	NXDL_schema__group()

	node matches XPath query: //xs:group

	NXDL_schema_named_simpleType()

	node matches XPath query: /xs:schema/xs:simpleType

Note there is a recursion within NXDL_schema__group
since a group may contain a child group.

	
class punx.nxdl_schema.NXDL_Summary(nxdl_xsd_file_name)

	provide an easy interface for the nxdl_manager

USAGE:

summary = NXDL_Summary(nxdl_xsd_file_name)
...
summary.simpleType['validItemName'].patterns

	
class punx.nxdl_schema.NXDL_item_catalog(nxdl_file_name)

	content from the NeXus XML Schema (nxdl.xsd)

EXAMPLE:

nxdl_xsd_file_name = os.path.join(‘cache’, ‘v3.2’,’nxdl.xsd’)
catalog = NXDL_item_catalog(nxdl_xsd_file_name)
definition = catalog.definition_element

	
class punx.nxdl_schema.NXDL_schema__attribute

	node matches XPath query: //xs:attribute

xml_node is xs:attribute

a complete description of a specific NXDL attribute element

NOTES ON ATTRIBUTES

In nxdl.xsd, “attributeType” is used by fieldType and groupGroup to define
the NXDL “attribute” element used in fields and groups, respectively.
It is not necessary for this code to parse “attributeType” from the rules.

Each of these XML complexType elements defines its own set of
attributes and defaults for use in corresponding NXDL components:

	attributeType

	basicComponent

	definitionType

	enumerationType

	fieldType

	groupType

	linkType

There is also an “xs:attributeGroup” which may appear as a sibling
to any xs:attribute element. The xs:attributeGroup provides
a list of additional xs:attribute elements to add to the list.
This is the only one known at this time (2017-01-08):

	deprecatedAttributeGroup

When the content under xs:complexType is described within
an xs:complexContent/xs:extension element, the xs:extension
element has a base attribute which names a xs:complexType
element to use as a starting point (like a superclass) for the
additional content described within the xs:extension element.

The content may be found at any of these nodes under the parent
XML element. Parse them in the order shown:

	xs:complexContent/xs:extension/xs:attribute

	xs:attribute

	(xs:attributeGroup/)``xs:attribute``

This will get picked up when parsing the xs:sequence/xs:element.

	xs:sequence/xs:element/xs:complexType/xs:attribute (

The XPath query for //xs:attribute from the root node will
pick up all of these. It will be necessary to walk through the
parent nodes to determine where each should be applied.

	
parse(xml_node)

	read the attribute node content from the XML Schema

xml_node is xs:attribute

	
class punx.nxdl_schema.NXDL_schema__attributeGroup

	node matches XPath query: /xs:schema/xs:attributeGroup

xml_node is xs:attributeGroup

	
parse(xml_node)

	read the attributeGroup node content from the XML Schema

xml_node is xs:attributeGroup

	
class punx.nxdl_schema.NXDL_schema__complexType

	node matches XPath query: /xs:schema/xs:complexType

xml_node is xs:complexType

	
parse(xml_node, catalog)

	read the element node content from the XML Schema

	
class punx.nxdl_schema.NXDL_schema__element

	a complete description of a specific NXDL xs:element node

	
parse(xml_node)

	read the element node content from the XML Schema

	
class punx.nxdl_schema.NXDL_schema__group

	node matches XPath query: //xs:group

xml_node is xs:group

	
parse(xml_node)

	read the element node content from the XML Schema

	
class punx.nxdl_schema.NXDL_schema_named_simpleType

	node matches XPath query: /xs:schema/xs:simpleType

xml_node is xs:simpleType

	
parse(xml_node)

	read the attribute node content from the XML Schema

	
punx.nxdl_schema.get_named_parent_node(xml_node)

	return closest XML ancestor node with a name attribute or the schema node

	
punx.nxdl_schema.get_reference_keys(xml_node)

	reference an xml_node in the catalog: catalog[section][line]

	
punx.nxdl_schema.get_xml_namespace_dictionary()

	return the NeXus XML namespace dictionary

	
punx.nxdl_schema.render_class_str(obj)

	useful optimization for classes

USAGE:

def __str__(self):
 return render_class_str(self)

NXDL Definition File Tree Structure : nxdltree

Describe the tree structure of a NeXus Definition Language NXDL XML file.

Note: The tree subcommand replaces the now-legacy structure subcommand.

source code documentation

Describe the tree structure of a NXDL XML file

	NxdlTreeView(nxdl_file)

	Describe the tree structure of a NXDL XML file

	
class punx.nxdltree.NxdlTreeView(nxdl_file)

	Describe the tree structure of a NXDL XML file

Example usage showing default display:

mc = NxdlTreeView(nxdl_file_name)
mc.array_items_shown = 5
show_attributes = False
txt = mc.report(show_attributes)

	
report(show_attributes=True)

	return the structure of the NXDL file in a list of strings

The work of parsing the data file is done in this method.

	
punx.nxdltree.xslt_transformation(xslt_file, src_xml_file)

	return the transform of an XML file using an XSLT

	Parameters

	
	xslt_file (str) – name of XSLT file

	src_xml_file (str) – name of XML file

Manage the XML Schema files : schema_manager

-tba-

source code documentation

manages the XML Schema of this project

The schema_manager calls the cache_manager and
is called by nxdl_manager.

Public

	SchemaManager([path])

	describes the XML Schema for the NeXus NXDL definitions files

	Schema_Root(element_node[, obj_name, ...])

	root element of the nxdl.xsd file

	Schema_Attribute(xml_obj[, obj_name, ...])

	xs:attribute element

	Schema_Element(xml_obj[, obj_name, ns_dict, ...])

	xs:element

	Schema_Type(ref[, tag, schema_root])

	a named NXDL structure type (such as groupGroup)

	get_default_schema_manager()

	internal: convenience function

	raise_error(node, text, obj)

	standard ValueError exception handling

	strip_ns(ref)

	strip the namespace prefix from ref

Internal

	_Mixin(xml_obj[, obj_name, ns_dict, schema_root])

	common code for NXDL Rules classes below

	_GroupParsing(*args, **kwargs)

	internal: avoid a known recursion of group in a group

	_Recursion(obj_name)

	internal: an element used in recursion, such as child group of group

	
class punx.schema_manager.SchemaManager(path=None)

	describes the XML Schema for the NeXus NXDL definitions files

	
parse_nxdlTypes()

	get the allowed data types and unit types from nxdlTypes.xsd

	
parse_nxdl_patterns()

	get regexp patterns for validItemName, validNXClassName, & validTargetName from nxdl.xsd

	
class punx.schema_manager.Schema_Attribute(xml_obj, obj_name=None, ns_dict=None, schema_root=None)

	xs:attribute element

	Parameters

	
	xml_obj (lxml.etree.Element) – XML element

	obj_name (str) – optional, default taken from xml_obj

	ns_dict (dict) – optional, default taken from NAMESPACE_DICT

	schema_root (obj) – optional, instance of lxml.etree._Element

	
class punx.schema_manager.Schema_Element(xml_obj, obj_name=None, ns_dict=None, schema_root=None)

	xs:element

	Parameters

	
	xml_obj (lxml.etree.Element) – XML element

	obj_name (str) – optional, default taken from xml_obj

	ns_dict (dict) – optional, default taken from NAMESPACE_DICT

	schema_root (obj) – optional, instance of lxml.etree._Element

	See

	http://download.nexusformat.org/doc/html/nxdl.html

	See

	http://download.nexusformat.org/doc/html/nxdl_desc.html#nxdl-elements

	
class punx.schema_manager.Schema_Root(element_node, obj_name=None, ns_dict=None, schema_root=None, schema_manager=None)

	root element of the nxdl.xsd file

	Parameters

	
	xml_obj (lxml.etree.Element) – XML element

	obj_name (str) – optional, default taken from xml_obj

	ns_dict (dict) – optional, default taken from NAMESPACE_DICT

	schema_root (obj) – optional, instance of lxml.etree._Element

	
parse_sequence(seq_node)

	parse the sequence used in the root element

	
class punx.schema_manager.Schema_Type(ref, tag='*', schema_root=None)

	a named NXDL structure type (such as groupGroup)

	Parameters

	
	ref (str) – name of NXDL structure type (such as groupGroup)

	tag (str) – XML Schema element tag, such as complexType (default=``*``)

	schema_root (obj) – optional, instance of lxml.etree._Element

	See

	http://download.nexusformat.org/doc/html/nxdl.html

	See

	http://download.nexusformat.org/doc/html/nxdl_desc.html#nxdl-data-types-internal

	
class punx.schema_manager.Schema_nxdlType(xml_obj, ns_dict=None, schema_root=None)

	one of the types defined in the file nxdlTypes.xsd

	
class punx.schema_manager.Schema_pattern

	describe the regular expression patterns ofr names of NeXus things

	
punx.schema_manager.get_default_schema_manager()

	internal: convenience function

	
punx.schema_manager.raise_error(node, text, obj)

	standard ValueError exception handling

	Parameters

	
	node (obj) – instance of

	text (str) – label for obj

	obj (str) – value

	
punx.schema_manager.strip_ns(ref)

	strip the namespace prefix from ref

	Parameters

	ref (str) – one word, colon delimited string, such as nx:groupGroup

	Returns str

	the part to the right of the last colon

Validation : validate

The process of validation compares each item in an HDF5 data file
and compares it with the NeXus standards to check that the item is valid
within that standard. Each test is assigned a finding result, a
Severity object, with values and meanings
as shown in the table below.

	value

	color

	meaning

	OK

	green

	meets NeXus specification

	NOTE

	palegreen

	does not meet NeXus specification, but acceptable

	WARN

	yellow

	does not meet NeXus specification, not generally acceptable

	ERROR

	red

	violates NeXus specification

	TODO

	blue

	validation not implemented yet

	UNUSED

	grey

	optional NeXus item not used in data file

	COMMENT

	grey

	comment from the punx source code

Items marked with the WARN severity status are as noted in either the
NeXus manual 1, the NXDL language specification 2, or
the NeXus Definition Language (NXDL) files 3.

The color is a suggestion for use in a GUI.

Numerical values are associated with each finding value.
The sum of these values is averaged to produce a numerical
indication of the validation of the file against the NeXus standard.
An average of 100 indicates that the file meets the NeXus
specification for every validation test applied.
An average that is less than zero indicates that the
file contains content that is not valid with the NeXus standard.

NeXus HDF5 Data Files

NeXus data files are HDF5 4 and are validated against the suite of NXDL files
using tools provided by this package. The strategy is to compare the structure
of the HDF file with the structure of the NXDL file(s) as specified by the
NX_class attributes of the various HDF groups in the data file.

NeXus NXDL Definition Language Files

NXDL files are XML and are validated against the XML Schema file: nxdl.xsd.
See the GitHub repository 5 for this file.

	1

	NeXus manual:
http://download.nexusformat.org/doc/html/user_manual.html

	2

	NXDL Language:
http://download.nexusformat.org/doc/html/nxdl.html

	3

	NeXus Class Definitions (NXDL files):
http://download.nexusformat.org/doc/html/classes/index.html

	4

	HDF5:
https://support.hdfgroup.org/HDF5/

	5

	NeXus GitHub Definitions repository:
https://github.com/nexusformat/definitions

source code documentation

validate files against the NeXus/HDF5 standard

PUBLIC

	Data_File_Validator([ref])

	manage the validation of a NeXus HDF5 data file

INTERNAL

	ValidationItem(parent, obj[, attribute_name])

	HDF5 data file object for validation

	
class punx.validate.Data_File_Validator(ref=None)

	manage the validation of a NeXus HDF5 data file

USAGE

	make a validator with a certain schema:

validator = punx.validate.Data_File_Validator() # default

You may have downloaded additional NeXus Schema (NXDL file sets).
If so, pick any of these by name as follows:

validator = punx.validate.Data_File_Validator("v3.2")
validator = punx.validate.Data_File_Validator("master")

	use to validate a file or files:

result = validator.validate(hdf5_file_name)
result = validator.validate(another_file)

	close the HDF5 file when done with validation:

validator.close()

PUBLIC METHODS

	close()

	close the HDF5 file (if it is open)

	validate(fname)

	start the validation process from the file root

	print_report()

	print a validation report

INTERNAL METHODS

	build_address_catalog()

	find all HDF5 addresses and NeXus class paths in the data file

	_group_address_catalog_(parent, group)

	catalog this group's address and all its contents

	validate_item_name(v_item)

	

	
build_address_catalog()

	find all HDF5 addresses and NeXus class paths in the data file

	
close()

	close the HDF5 file (if it is open)

	
finding_score()

	return a numerical score for the set of findings

count: number of findings
total: sum of status values for all findings
score: total / count – average status / finding

	
finding_summary(report_statuses=None)

	return a summary dictionary of the count of findings by status

summary statistics
======= ===== ===
status count description
======= ===== ===
OK 10 meets NeXus specification
NOTE 1 does not meet NeXus specification, but acceptable
WARN 0 does not meet NeXus specification, not generally acceptable
ERROR 0 violates NeXus specification
TODO 3 validation not implemented yet
UNUSED 2 optional NeXus item not used in data file
COMMENT 0 comment from the punx source code
– – –
TOTAL 16 –
======= ===== ===

	
print_report()

	print a validation report

	
record_finding(v_item, key, status, comment)

	prepare the finding object and record it

	
usedAsBaseClass(nx_class)

	returns bool: is the nx_class a base class?

NXDL specifications in the contributed definitions directory
could be intended as either a base class or an
application definition. NeXus provides no easy identifier
for this difference. The most obvious distinction between
them is the presence of the definition field
in the NXentry group of an application definition.
This field is not present in base classes.

	
validate(fname)

	start the validation process from the file root

	
validate_application_definition(v_item)

	validate group as a NeXus application definition

	
validate_group(v_item)

	validate the NeXus content of a HDF5 data file group

	
class punx.validate.ValidationItem(parent, obj, attribute_name=None)

	HDF5 data file object for validation

	
determine_NeXus_classpath()

	determine the NeXus class path

	See

	http://download.nexusformat.org/sphinx/preface.html#class-path-specification

EXAMPLE

Given this NeXus data file structure:

/
 entry: NXentry
 data: NXdata
 @signal = data
 data: NX_NUMBER

For the “signal” attribute of this HDF5 address: /entry/data,
its NeXus class path is: /NXentry/NXdata@signal

The @signal attribute has the value of data which means
that the local field named data is the plottable data.

The HDF5 address of the plottable data is: /entry/data/data,
its NeXus class path is: /NXentry/NXdata/data

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 punx	

 	
 	
 punx.cache_manager	
 manages the NXDL cache directories of this project

 	
 	
 punx.finding	
 document each item during validation

 	
 	
 punx.github_handler	
 manages the communications with GitHub

 	
 	
 punx.h5tree	
 Command line tool to print the structure of any HDF5 file

 	
 	
 punx.main	
 manage the application's user interface

 	
 	
 punx.nxdl_manager	
 Load and/or document the structure of a NeXus NXDL class specification

 	
 	
 punx.nxdl_schema	
 Read the NeXus XML Schema

 	
 	
 punx.nxdltree	
 Describe the tree structure of a NXDL XML file

 	
 	
 punx.schema_manager	
 manages the XML Schema of this project

 	
 	
 punx.validate	
 validate NeXus NXDL and HDF5 data files

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	assign_defaults() (punx.nxdl_manager.NXDL__Mixin method)

B

 	
 	Base_Cache (class in punx.cache_manager)

 	
 	build_address_catalog() (punx.validate.Data_File_Validator method)

C

 	
 	cache, [1]

 	cache update

 	CacheManager (class in punx.cache_manager)

 	cleanup() (punx.cache_manager.Base_Cache method)

 	(punx.cache_manager.CacheManager method)

 	
 	close() (punx.validate.Data_File_Validator method)

 	configuration

 	connect_repo() (punx.github_handler.GitHub_Repository_Reference method)

D

 	
 	Data_File_Validator (class in punx.validate)

 	demo, [1]

 	
 	determine_NeXus_classpath() (punx.validate.ValidationItem method)

 	download() (punx.github_handler.GitHub_Repository_Reference method)

E

 	
 	
 examples

 	h5tree

 	
 	exit_message() (in module punx.main)

 	extract_from_download() (in module punx.cache_manager)

F

 	
 	fileName() (punx.cache_manager.Base_Cache method)

 	find_all_file_sets() (punx.cache_manager.Base_Cache method)

 	(punx.cache_manager.CacheManager method)

 	Finding (class in punx.finding)

 	finding_score() (punx.validate.Data_File_Validator method)

 	finding_summary() (punx.validate.Data_File_Validator method)

 	
 	func_configuration() (in module punx.main)

 	func_demo() (in module punx.main)

 	func_hierarchy() (in module punx.main)

 	func_structure() (in module punx.main)

 	func_tree() (in module punx.main)

 	func_update() (in module punx.main)

 	func_validate() (in module punx.main)

G

 	
 	get_branch() (punx.github_handler.GitHub_Repository_Reference method)

 	get_commit() (punx.github_handler.GitHub_Repository_Reference method)

 	get_default_schema_manager() (in module punx.schema_manager)

 	get_GitHub_credentials() (in module punx.github_handler)

 	get_named_parent_node() (in module punx.nxdl_schema)

 	get_NXDL_file_list() (in module punx.nxdl_manager)

 	
 	get_reference_keys() (in module punx.nxdl_schema)

 	get_release() (punx.github_handler.GitHub_Repository_Reference method)

 	get_short_sha() (in module punx.cache_manager)

 	get_tag() (punx.github_handler.GitHub_Repository_Reference method)

 	get_xml_namespace_dictionary() (in module punx.nxdl_schema)

 	GitHub_Repository_Reference (class in punx.github_handler)

H

 	
 	Hdf5TreeView (class in punx.h5tree)

 	
 	hierarchy

I

 	
 	install

 	
 	install_NXDL_file_set() (punx.cache_manager.CacheManager method)

M

 	
 	make_md5() (punx.finding.Finding method)

 	
 module

 	punx.cache_manager

 	punx.finding

 	punx.github_handler

 	punx.h5tree

 	punx.main

 	punx.nxdl_manager

 	punx.nxdl_schema

 	punx.nxdltree

 	punx.schema_manager

 	punx.validate

 	
 	MyArgumentParser (class in punx.main)

N

 	
 	NeXus definitions

 	NXDL file set, [1]

 	NXDL__attribute (class in punx.nxdl_manager)

 	NXDL__definition (class in punx.nxdl_manager)

 	NXDL__dim (class in punx.nxdl_manager)

 	NXDL__dimensions (class in punx.nxdl_manager)

 	NXDL__field (class in punx.nxdl_manager)

 	NXDL__group (class in punx.nxdl_manager)

 	NXDL__link (class in punx.nxdl_manager)

 	NXDL__Mixin (class in punx.nxdl_manager)

 	NXDL__symbols (class in punx.nxdl_manager)

 	
 	NXDL_File_Set (class in punx.cache_manager)

 	NXDL_item_catalog (class in punx.nxdl_schema)

 	NXDL_Manager (class in punx.nxdl_manager)

 	NXDL_schema__attribute (class in punx.nxdl_schema)

 	NXDL_schema__attributeGroup (class in punx.nxdl_schema)

 	NXDL_schema__complexType (class in punx.nxdl_schema)

 	NXDL_schema__element (class in punx.nxdl_schema)

 	NXDL_schema__group (class in punx.nxdl_schema)

 	NXDL_schema_named_simpleType (class in punx.nxdl_schema)

 	NXDL_Summary (class in punx.nxdl_schema)

 	NxdlTreeView (class in punx.nxdltree)

P

 	
 	parse() (punx.nxdl_schema.NXDL_schema__attribute method)

 	(punx.nxdl_schema.NXDL_schema__attributeGroup method)

 	(punx.nxdl_schema.NXDL_schema__complexType method)

 	(punx.nxdl_schema.NXDL_schema__element method)

 	(punx.nxdl_schema.NXDL_schema__group method)

 	(punx.nxdl_schema.NXDL_schema_named_simpleType method)

 	parse_args() (punx.main.MyArgumentParser method)

 	parse_command_line_arguments() (in module punx.main)

 	parse_nxdl_patterns() (punx.schema_manager.SchemaManager method)

 	parse_nxdl_xml() (punx.nxdl_manager.NXDL__attribute method)

 	(punx.nxdl_manager.NXDL__definition method)

 	(punx.nxdl_manager.NXDL__dim method)

 	(punx.nxdl_manager.NXDL__dimensions method)

 	(punx.nxdl_manager.NXDL__field method)

 	(punx.nxdl_manager.NXDL__group method)

 	(punx.nxdl_manager.NXDL__link method)

 	(punx.nxdl_manager.NXDL__Mixin method)

 	(punx.nxdl_manager.NXDL__symbols method)

 	parse_nxdlTypes() (punx.schema_manager.SchemaManager method)

 	parse_sequence() (punx.schema_manager.Schema_Root method)

 	path() (punx.cache_manager.Base_Cache method)

 	
 	print_report() (punx.validate.Data_File_Validator method)

 	
 punx.cache_manager

 	module

 	
 punx.finding

 	module

 	
 punx.github_handler

 	module

 	
 punx.h5tree

 	module

 	
 punx.main

 	module

 	
 punx.nxdl_manager

 	module

 	
 punx.nxdl_schema

 	module

 	
 punx.nxdltree

 	module

 	
 punx.schema_manager

 	module

 	
 punx.validate

 	module

R

 	
 	raise_error() (in module punx.schema_manager)

 	read_json_file() (in module punx.cache_manager)

 	record_finding() (punx.validate.Data_File_Validator method)

 	ref, [1]

 	
 	render_class_str() (in module punx.nxdl_schema)

 	report() (punx.h5tree.Hdf5TreeView method)

 	(punx.nxdltree.NxdlTreeView method)

 	request_info() (punx.github_handler.GitHub_Repository_Reference method)

S

 	
 	Schema_Attribute (class in punx.schema_manager)

 	Schema_Element (class in punx.schema_manager)

 	Schema_nxdlType (class in punx.schema_manager)

 	Schema_pattern (class in punx.schema_manager)

 	Schema_Root (class in punx.schema_manager)

 	Schema_Type (class in punx.schema_manager)

 	SchemaManager (class in punx.schema_manager)

 	select_NXDL_file_set() (punx.cache_manager.CacheManager method)

 	
 	set_file() (punx.nxdl_manager.NXDL__definition method)

 	severity

 	should_avoid_download() (in module punx.cache_manager)

 	should_extract_this() (in module punx.cache_manager)

 	source

 	source cache

 	SourceCache (class in punx.cache_manager)

 	strip_ns() (in module punx.schema_manager)

T

 	
 	table_of_caches() (in module punx.cache_manager)

 	(punx.cache_manager.CacheManager method)

 	
 	tree

U

 	
 	update

 	usedAsBaseClass() (punx.validate.Data_File_Validator method)

 	
 	user

 	user cache

 	UserCache (class in punx.cache_manager)

V

 	
 	VALID_STATUS_DICT (in module punx.finding)

 	validate

 	validate() (punx.validate.Data_File_Validator method)

 	validate_application_definition() (punx.validate.Data_File_Validator method)

 	
 	validate_group() (punx.validate.Data_File_Validator method)

 	validate_xml_tree() (in module punx.nxdl_manager)

 	validation, [1]

 	ValidationItem (class in punx.validate)

 	ValidationResultStatus (class in punx.finding)

W

 	
 	write_json_file() (in module punx.cache_manager)

X

 	
 	xslt_transformation() (in module punx.nxdltree)

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 punx

