

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pulpdist 0.1.1 documentation

PulpDist - Filtered Mirroring with Pulp

PulpDist is a set of Pulp [http://pulpproject.org/] plugins and an associated Django [http://djangoproject.com/] application that
together allow a network of Pulp [http://pulpproject.org/] servers to be used as a filtered mirroring
network with robust access control mechanisms.

The project is in a usable state for the specific task of filtered mirroring
with rsync, but still has quite a few rough edges. In particular, it still
relies on the alpha version of the plugin APIs in Pulp v1 rather than using
the updated version that are coming in Pulp v2.

Contents:

	1. PulpDist Architecture

	2. PulpDist Web Application
	2.1. Deployment

	2.2. Django Admin CLI

	2.3. REST API

	3. PulpDist Repository Management Client
	3.1. Invoking the Client

	3.2. Limiting commands to selected repositories

	3.3. Scheduling sync operations

	3.4. The repository definition file format

	3.5. PulpDist metadata in Pulp

	4. PulpDist Custom Plugins
	4.1. Sync Operation Results

	4.2. Simple Tree Sync

	4.3. Versioned Tree Sync

	4.4. Snapshot Tree Sync

	4.5. Snapshot Delta Sync

	5. PulpDist Site Configuration
	5.1. Site Configuration Components

	5.2. Deriving Raw Repo Definitions from Local Mirror Definitions

	6. Site Configuration Tutorial
	6.1. Working with the Example Configuration

	6.2. The Raw Repo Definition

	6.3. Local Mirror Definition: Simple Tree

	6.4. Local Mirror Definition: Versioned Tree

	6.5. Local Mirror Definition: Snapshot Tree

	7. PulpDist Python API
	7.1. pulpdist Package

	7.2. pulpdist_importers Package

	8. PulpDist Development
	8.1. Target Platforms

	8.2. Build/Test Dependencies

	8.3. Plugin Dependencies

	8.4. Web Application Dependencies

	8.5. Setting up a basic devel environment

	8.6. Running the unit tests

	8.7. Building the PulpDist RPMs

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

1. PulpDist Architecture

PulpDist uses the Pulp repository management utilities to manage
arbitrary directory trees (note that the underlying Pulp features
it uses are under active development, so it still has quite a
long way to go before it can be considered ready for production
use beyond a very narrow set of use cases).

Each site in the mirror network has its own Pulp server. These
servers handle the actual data transfers involved in the mirror
network using a number of custom Pulp plugins.

The status of these transfers can then be monitored using a central
web application which uses OAuth to retrieve
information from each Pulp server in the network. An instance of the
web app may also be run at each site with a Pulp mirror server for local
status monitoring.

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

2. PulpDist Web Application

The PulpDist web application is a Django-based web service that can be set
up to monitor a network of Pulp servers.

Current iterations focus primarily on status monitoring, leaving
configuration tasks to command line scripting tools. Longer term,
some configuration tasks may be permitted through forms in the web
application.

This page focuses on deployment of a single PulpDist web app instance with
a colocated Pulp server. Other configurations are of course possible - the
two communicate solely through the Pulp REST API (Note: the PulpDist web app
does not yet cache results received from the Pulp server, nor has it been
optimised to make full use of server side batch queries and filtering, so
expect poor performance from the current version if the two aren’t running on
the same web server and abysmal performance if they aren’t at least on the same
LAN).

2.1. Deployment

The first step in deploying a standard PulpDist web application with a
colocated Pulp server is:

$ sudo yum install pulpdist-plugins pulpdist-httpd

(Note: prebuilt RPMs are not yet available from the public repo. See
Building the PulpDist RPMs)

If you’re using a custom Django settings file, then package that as an RPM
with a dependency on pulpdist-django and install the custom RPM instead
of pulpdist-httpd. More on that below.

After installation, a few configuration settings need to be adjusted.

	Update /etc/pulp/pulp.conf in accordance with the Pulp Installation
Guide [http://pulpproject.org/ug/UGInstallation.html], including:

	setting up OAuth authentication [https://fedorahosted.org/pulp/wiki/AuthenticationOAuth#HowTo]

	setting up LDAP user authentication [https://fedorahosted.org/pulp/wiki/AuthenticationLDAP#ConfigurepulptouseLDAP:]

	changing the default password

	Ensure the file is not world-readable (as both the OAuth key and the
admin password allow full access to the Pulp server)

There are various certificate related settings in this file that can be
safely ignored for current PulpDist installations. They relate to the use
of access controlled repositories, which PulpDist doesn’t currently support.
Setting up the AMQP messaging support is also an option, but not required.

	Update /etc/pulpdist/site.conf in accordance with the embedded comments.
Notably:

	Enter the initial list of system administrators

	Set the passphrase for encrypted database fields

	Generate and enter a private Django secret key (see below)

	Update /etc/httpd/conf.d/pulpdist.conf to set the Kerberos domain
correctly (and, optionally, add a keytab reference for single-sign-on
support). Note that pulpdist-httpd makes a number of assumptions that
are only valid when using Kerberos for authentication - if you want to do
something else (e.g. use Django’s native authentication), install
pulpdist-django instead (either directly or an RPM dependency) and
include pulpdist.django_app as an installed application in a custom
Django site definition.

	Initialise and start the Pulp server. This will start both the MongoDB data
store as well the Apache web server (note that running Pulp’s init.d
scripts directly doesn’t appear to work correctly):

$ service pulp-server init
$ service pulp-server start

	Update /etc/pulp/admin/admin.conf to replace localhost.localdomain
with the fully qualified domain of the server

	Optionally, set up a separate administrator account for the Pulp server and
restrict the default admin account to read-only access (currently used via
the web UI over OAuth)

Use the default account to add a new administrator
pulp-admin auth login --username admin
pulp-admin user create --username ncoghlan --name "Nick Coghlan" --ldap
pulp-admin role add --role super-users --user ncoghlan

Use the new administrator account to restrict the default account
pulp-admin auth login --username ncoghlan
pulp-admin role create --role read-only
pulp-admin permission grant --resource / --role read-only -o read
pulp-admin role add --role read-only --user admin
pulp-admin role remove --role super-users --user admin

Check the permissions have been updated appropriately
pulp-admin permission show --resource /

	Log in to the PulpDist web application as one of the system administrators
configured in Step 2. Click the “Site Admin” link, then use the Django admin
UI to add a reference to the colocated Pulp server. The fields are as
follows:

	Pulp site: name used in the user interface for this server

	Hostname: fully qualified hostname for this server (will be checked by SSL)

	Oauth key: the Pulp OAuth key configured in Step 1

	Oauth secret: the Pulp OAuth secret configured in Step 1

The following command can be used to generate a fresh Django secret key:

python -c 'from random import choice; print("".join([choice("abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)") for i in range(50)]))'

2.2. Django Admin CLI

The command line interface for Django administration of the site is available
as:

$ sudo python -m pulpdist.manage_site --help

Refer to the Django documentation [https://docs.djangoproject.com/en/1.3/ref/django-admin/#django-admin-py-and-manage-py] for details of what this command supports
(like the default manage.py, pulpdist.manage_site is a thin
convenience wrapper around django-admin).

2.3. REST API

The Rest API is relative to the assigned base URL for the django_pulpdist
application (/pulpdist/ by default):

api/ # API root

api/servers/ # All configured Pulp servers
api/servers/<server_id>/ # Specific server
api/servers/<server_id>/repos # -> api/repos/<server_id>
api/servers/<server_id>/content_types # -> api/content_types/<server_id>
api/servers/<server_id>/distributors # -> api/distributors/<server_id>
api/servers/<server_id>/importers # -> api/importers/<server_id>

api/repos # All repos on all servers
api/repos/<server_id>/ # All repos on server
api/repos/<server_id>/<repo_id>/ # Specific repo
api/repos/<server_id>/<repo_id>/importer # Importer config & status
api/repos/<server_id>/<repo_id>/distributors # Assigned distributors
api/repos/<server_id>/<repo_id>/sync_history # Past sync operations

api/content_types # All content types on all servers
api/content_types/<server_id>/ # All content types on server
api/content_types/<server_id>/<type_id>/ # Specific content type definition

api/distributors # All distributors on all servers
api/distributors/<server_id>/ # All distributors on server
api/distributors/<server_id>/<plugin_id>/ # Specific distributor definition

api/importers # All importers on all servers
api/importers/<server_id>/ # All importers on server
api/importers/<server_id>/<plugin_id>/ # Specific importer definition

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

3. PulpDist Repository Management Client

The 1.x series of the upstream Pulp project does not provide a management
client for repositories that use the preliminary support for the v2 repo
plugin model. Accordingly, PulpDist comes with a command line interface
for working with these repositories.

3.1. Invoking the Client

At this stage, there is no separately installed executable script to manage
repositories. Instead, a feature of the CPython interpreter is used to invoke
the appropriate module as a command line script:

$ python -m pulpdist.manage_repos --help

Before using the command line client to manage a Pulp server, it is necessary
to create the login credentials for the Pulp server. PulpDist supports three
mechanisms for that:

	Kerberos tickets (default, but requires a patched version of Pulp [https://bugzilla.redhat.com/show_bug.cgi?id=831937])

	Pulp’s native credential caching mechanism

The former just requires an active Kerberos ticket that will be recognised
by the server. The credentials for the latter can be acquired with the
upstream pulp-admin client (entering the appropriate password when
prompted):

$ pulp-admin --host <HOST> auth login --username <USER>

To request use of these credentials (rather than a Kerberos ticket), pass
the --auth pulp option to the client.

Like pulp-admin the PulpDist repo management client defaults to using the
fully qualified domain name of the current host as the target server. This can
be overridden by passing a different hostname via the --host option.

3.1.1. Synchronisation Management Commands

	sync: Request immediate synchronisation of repositories

	enable: Configure repositories to respond to sync requests

	disable: Configure repositories to ignore sync requests

	cron_sync: See Scheduling sync operations with cron

3.1.2. Repository Status Queries

	list: Display id and name for repositories

	info: Display details for repositories

	status: Display repository synchronisation status

	history: Display repository synchronisation history

	log: Display most recent synchronisation log

	stats: Display most recent synchronisation statistics

3.1.3. Repository Management Commands

	init: Create or update repositories on the server

	delete: Remove repositories from the server

	validate: Check the validity of a repository definition file

	export: Create a site definition file from an existing repository
(Not Yet Implemented)

3.2. Limiting commands to selected repositories

The --repo option accepts repository identifiers and allows a command
to run against the named repository. It may be supplied multiple times to
run a command against multiple repositories.

The --mirror option accepts local mirror identifiers and allows a command
to run against the named local mirror. It may be supplied multiple times to
run a command against multiple repositories.

The --tree option accepts remote tree identifiers and allows a
command to run against repositories that were configured from a site
configuration file to sync with a particular remote tree. It may be
supplied multiple times to run a command against mirrors of multiple trees.

The --source option accepts remote source identifiers and allows a
command to run against repositories that were configured from a site
configuration file to sync with a tree from that remote source. It may be
supplied multiple times to run a command against repositories from multiple
sources.

The --server option accepts remote server identifiers and allows a
command to run against repositories that were configured from a site
configuration file to sync with a tree from that remote server. It may be
supplied multiple times to run a command against repositories from multiple
servers.

The --site option accepts site identifiers and allows a command to run
against repositories that were configured from a site configuration file
based on the specified site settings. It may be supplied multiple times to
run a command against multiple local “sites”. This option is only useful if
repositories are configured against more than one site on the specified Pulp
server.

If no specific repositories are identified, most commands default to affecting
every repository defined on the server, or, if the command accepts a
configuration file, every repository named in the file.

By default, the command line client uses the metadata stored on the server to
identify the available repositories. If this metadata is incomplete or invalid,
the --ignoremeta option can be passed before the command to be executed. In
this mode, the Pulp server will be treated as containing only raw repo
definitions, allowing listing and manipulation of repos that would otherwise be
ignored (due to the fact they aren’t recorded in the stored metadata).

3.3. Scheduling sync operations

3.3.1. Scheduling sync operations with Pulp

Eventually, PulpDist will use the native Pulp task scheduler for sync
operations. However, this is not yet supported by Pulp for plugin based
repositories (such as those used by PulpDist).

3.3.2. Scheduling sync operations with cron

As the versions of Pulp currently supported by PulpDist do not provide native
sync scheduling support for plugin based repositories), PulpDist offers a
simple alternative mechanism based on cron (or any similar tool that can be
used to periodically execute a Python script).

The relevant command is:

python -m pulpdist.manage_repos cron_sync

This tool is designed to be run once per hour (if a previous instance for
the same Pulp host is still running, the new instance will immediately exit).
For more immediate synchronisation, the sync command should be invoked
directly.

The command first retrieves the list of repository definitions from the
Pulp server and queries each one for a ["notes"]["pulpdist"]["sync_hours"]
setting in the metadata.

If sync operations on the repository are currently enabled, the repository
does not already have a sync operation in progress, the sync_hours setting
is found and is non-zero,and the current time (in hours) relative to midnight
is a multiple of the sync_hours setting, then a new thread is spawned to
request immediate synchronisation of the repository through the Pulp REST API.

Otherwise, the repository is ignored until the next check for new sync
operations.

As long as any sync operations are still in progress, the client will
periodically query the server for updated information, scheduling sync
operations as appropriate.

As soon as all sync operations are complete (regardless of success or failure),
the client will terminate.

The following options can be set to control the sync operation:

	--threads: maximum number of concurrent sync operations (default: 4)

	--day: rsync bandwidth limit to apply during the day (6 am - 6 pm)

	--night: rsync bandwidth limit to apply at night (6 pm - 6 am)

By default, no bandwidth limits are applied.

Note

Support for bandwidth limiting is not yet implemented

3.4. The repository definition file format

The init and validate commands provided by manage_repos both
require a repository definition file. The export command generates a
respository definition file describing the server contents.

These are JSON files that specify the information needed to create the
repositories on the Pulp server, and appropriately configure the associated
importer plugins. See PulpDist Site Configuration for more details.

3.5. PulpDist metadata in Pulp

When PulpDist repositories are initialised from a site configuration file,
a pulpdist-meta repo is automatically created to record the full contents
of the original site configuration. This information is stored in the “notes”
field for that repository.

Additional information is also recorded in the notes field of each created
Pulp repo to support some features of the PulpDist command line client. This
additional metadata is stored in the format:

	pulpdist: Top-level mapping entry to identify pulpdist related metadata
	sync_hours: The remote tree sync_hours setting (if any)

	site_id: The site settings used to configure this repo

	mirror_id: The local mirror name for this repo

	tree_id: The remote tree mirrored by this repo

	source_id: The remote source for this tree

	server_id: The remote server for this tree

The repo_id of the associated Pulp repository is built from the
mirror_id and site_id of the local mirror definition.

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

4. PulpDist Custom Plugins

The custom Pulp plugins for PulpDist use rsync under the hood to perform
efficient updates over the network. They currently use the rsync CLI
directly, but may eventually move to a more programmatic API based on
librsync.

4.1. Sync Operation Results

Each of the PulpDist sync plugins may report the following results:

	SYNC_UP_TO_DATE: the local copy was up to date, no changes were made.

	SYNC_COMPLETED: upstream changes were found and applied locally

	SYNC_PARTIAL: upstream changes were found, but the attempt to apply them
locally failed to incorporate some changes (see log output for details)

	SYNC_FAILED: sync completely failed (e.g. upstream could not be reached)

	SYNC_DISABLED: the plugin has been set to ignore sync requests

These statuses may also be reported with _DRY_RUN appended to indicate
that a sync operation was executed with rsync configured to avoid actually
transferring any files (some temporary local copies of small metadata files
may still be made in order to determine the details of the dry run operation).

4.2. Simple Tree Sync

A simple tree sync is a convenient way to define and schedule an rsync task.
Configuration options for this plugin are:

	tree_name: A short text name for the tree

	remote_server: The host name or IPv4 address of the source rsync server

	remote_path: The path to read from on the remote server

	local_path: The local destination path for the received tree

	exclude_from_sync: A list of rsync --exclude patterns applied to the
tree synchronisation operation. Defaults to no exclusions.

	sync_filters: A list of rsync --filter patterns applied to the
tree synchronisation operation. Defaults to no filtering.

	bandwidth_limit: If provided and not zero, passed to rsync as
--bwlimit to limit the amount of bandwidth used by the operation.

	old_remote_daemon: If provided and true, passes --no-implied-dirs to
rsync to run it in a mode compatible with older versions of the rsync daemon.

	rsync_port: If provided and not zero, passed to rsync as --port to
allow connections to a remote daemon that isn’t running on the default port.

	enabled: If provided and true, actually performs a sync operation when
invoked by Pulp. Defaults to ignoring sync requests.

	dry_run_only: If provided and true, passes -n to rsync to run it in
“dry run” mode (i.e. no actual file transfers will take place).

Adding files named PROTECTED to directories at downstream sites will
keep the plugin from overwriting (or otherwise altering) them.

4.3. Versioned Tree Sync

A versioned tree sync works like a series of simple tree syncs. It is
intended for directories containing multiple versions of a single tree,
where each tree may change over time. The trees are synchronised in separate
operations, but the sync process attempts to create hard links between
the trees whenever possible.

In addition to all of the simple tree sync configuration options, the
versioned tree sync has the following additional options that are used to
build the list of individual subtrees to be synchronised:

	listing_pattern: An rsync --include pattern identifying the subtrees
to synchronise. Defaults to all subdirectories of remote_path.

	exclude_from_listing: A list of rsync --exclude patterns applied to
the subtree listing operation. Defaults to no filtering.

	listing_filters: A list of rsync --filter patterns applied to the
subtree listing operation. Defaults to no filtering.

	delete_old_dirs: If provided and true, removes local subdirectories that
are no longer present on the source server. By default, local subdirectories
are retained until explicitly deleted by a system administrator. Adding a
PROTECTED file will also ensure a directory is not deleted automatically.

To avoid data loss due to network and remote storage glitches, the plugin
treats the case where absolutely no relevant remote directories are found
as an error and never deletes local directories in that situation.
Similarly, if the overall job will be reported as SYNC_FAILED
or SYNC_PARTIAL, then no local directories will be removed.

The versioned tree sync also reproduces locally any upstream symlinks that
match the listing pattern and point to destinations that exist on the local
server after the sync operation is otherwise complete.

4.4. Snapshot Tree Sync

A snapshot tree sync works like a versioned tree sync, but versions are
never updated after their initial release. “STATUS” marker files in the root
directory of each tree are used to indicate when a tree is completed. Each
tree is synchronised only if the remote tree includes a STATUS file
containing the text FINISHED, and there is no existing local tree that
contains such a file.

The big advantage of snapshot tree syncs is that once a tree has been
marked as complete locally, it never needs to be checked against the
upstream site again.

In addition to all of the versioned tree sync configuration options, the
snapshot tree sync has the following additional options that allow special
treatment for the most recent snapshot (as determined by the timestamps in
the remote directory listing):

	latest_link_name: If provided and not None, a local symbolic link
is created with this name that points to the most recent snapshot after
each sync operation. By default, no symbolic link is created.

	sync_latest_only: If provided and true, only the most recent remote
snapshot will be mirrored locally. By default, all remote snapshots are
mirrored.

The snapshot tree sync also modifies the behaviour of the delete_old_dirs
setting: the most recently synchronised snapshot will never be deleted
automatically, even after it has been deleted remotely. This is useful
when mirroring snapshots generated by an automatic build process that
only retains a limited number of build attempts, regardless of whether or
not the build succeeded. Retaining the most recent snapshot ensures that
there will always be a version of the tree available for local use,
the “latest snapshot” symlink (if defined) will remain valid, and future
sync operations will have a base to use for hardlinking previously
synchronised files.

4.5. Snapshot Delta Sync

Delta syncs actually require an upstream Pulp server (rather than just
an rsync daemon) and use a chain of 3 custom Pulp plugins.

At the upstream site, rsync is run in batch mode to generate delta files
to update from the previous version of the tree to the latest snapshot.

These delta files are then published for retrieval by the downstream servers.

The downstream servers first check if a delta file is available that
is applicable to the most recent version of the tree they have completed
locally. If it exists, they download and apply it. Otherwise, they fall
back on doing a full synchronisation via rsync (i.e. the same process as an
ordinary snapshot tree sync)

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

5. PulpDist Site Configuration

The PulpDist site configuration file is used to describe the full set of
mirroring tasks to be carried out at a site. It is designed to allow data
source definitions to be shared amongst multiple sites, and even to define
the jobs for multiple sites within a single file.

5.1. Site Configuration Components

A site config file consists of a top-level JSON mapping, defining
the following attributes:

	LOCAL_MIRRORS: A sequence of local mirror definitions.

	REMOTE_TREES: A sequence of remote tree definitions.

	REMOTE_SOURCES: A sequence of remote source definitions.

	REMOTE_SERVERS: A sequence of remote server definitions.

	SITE_SETTINGS: A sequence of site definitions.

	RAW_REPOS: A sequence of raw repo definitions.

The general concept is that:

	each local tree mirrors a particular remote tree

	each remote tree is provided by a particular remote source

	each remote source is provided by a particular remote server

	these settings are combined with the appropriate site settings to create
raw repo definitions that are uploaded to the server

	details of the original settings are stored in the raw repo metadata,
allowing them to be exported again if necessary

	additional raw repos can be defined and are passed directly to the Pulp
server

The current format doesn’t allow for the definition of alternative sources for
a given tree, but this capability may be added in the future.

5.1.1. Local Mirror Definitions

A local mirror is a PulpDist managed mirror (possibly filtered) of a remote
tree.

A local mirror definition is a mapping with the following attributes:

	mirror_id: locally unique ID (alphanumeric characters and hyphens only)

	tree_id: the ID of the remote tree that this local tree mirrors

	site_id: the ID of the site settings used for this tree (default: "default")

	name: human readable name of local tree (default: same as remote tree)

	description: description of local tree (default: same as remote tree)

	mirror_path: final path segment for this tree (default: same as tree_path)

	enabled: whether the tree starts with sync enabled (default: false)

	dry_run_only: whether the tree starts in dry run mode (default: false)

	exclude_from_sync: rsync wildcard patterns to ignore when retrieving
files (optional)

	sync_filters: additional rsync filters applied when retrieving files
(optional)

	notes: additional notes to store in the Pulp repo metadata (optional)

The exclude_from_sync and sync_filters settings are appended to the
default filtering options including in the remote tree definition.

The following additional settings are only valid if the remote tree specifies
the use of either versioned or snapshot as the sync algorithm:

	delete_old_dirs: whether local dirs no longer in the remote tree are
deleted (default: false)

	exclude_from_listing: additional rsync wildcard patterns to ignore when
determining which version directories to synchronise (optional)

	listing_filters: additional rsync filters applied when determining
which version directories to synchronise (optional)

The exclude_from_listing and listing_filters settings are appended to
the default filtering options including in the remote tree definition.

The following additional settings is only valid if the sync algorithm is set to
snapshot:

	sync_latest_only: If provided and true, only the most recent remote
snapshot will be mirrored locally. By default, all remote snapshots are
mirrored.

5.1.2. Remote Tree Definitions

A remote tree is a file tree available for synchronisation via rsync.

A remote tree definition is a mapping with the following attributes:

	tree_id: locally unique ID (alphanumeric characters and hyphens only)

	source_id: the ID of the remote source that publishes this tree

	name: human readable name of tree

	description: description of tree

	tree_path: final path segment for this tree (before the tree contents)

	sync_hours: used for Scheduling sync operations with cron.

	sync_type: the tree sync algorithm to use. See below for details.

	exclude_from_sync: rsync wildcard patterns to ignore when retrieving
files (optional)

	sync_filters: additional rsync filters applied when retrieving files
(optional)

The currently supported sync algorithms are:

	simple: Settings are derived for a Simple Tree Sync

	versioned: Settings are derived for a Versioned Tree Sync

	snapshot: Settings are derived for a Snapshot Tree Sync

The following additional settings are only valid if the sync algorithm is
either versioned or snapshot:

	listing_pattern: rsync wildcard pattern used to determine which
directories to synchronise (default: ‘*’)

	listing_prefix: alternative mechanism to specify the listing pattern
as listing_prefix + listing_suffix (where the latter comes from the
remote source settings).

	exclude_from_listing: rsync wildcard patterns to ignore when determining
which directories to synchronise (optional)

	listing_filters: rsync filters applied when determining which directories
to synchronise (optional)

The following additional setting is only valid if the sync algorithm is set to
snapshot:

	latest_link: the filename used for a symlink that refers to the most
recently synchronised snapshot directory. If omitted, indicates that no
such symlink should be created.

5.1.3. Remote Source Definitions

A remote source describes common settings for a group of remote trees.

A remote source definition is a mapping with the following attributes:

	source_id: locally unique ID (alphanumeric characters and hyphens only)

	server_id: the ID of the remote server that publishes these trees

	name: human readable name for this group of remote trees

	remote_path: shared path prefix for these trees on the remote server

	listing_suffix: rsync wildcard pattern to append when a remote tree
definition uses the listing_prefix setting

5.1.4. Remote Server Definitions

A remote server describes the location of an actual rsync server.

A remote server definition is a mapping with the following attributes:

	server_id: locally unique ID (alphanumeric characters and hyphens only)

	name: human readable name for this server

	dns: DNS name used to access this server

	old_daemon: Server runs an old version of rsync (default: False)

	rsync_port: Port rsync daemon is listening on (default: rsync default)

5.1.5. Site Definitions

A site definition is a mapping with the following attributes:

	site_id: locally unique ID (alphanumeric characters and hyphens only)

	name: human readable name for this site

	storage_prefix: The shared path prefix for the local data storage area

	server_prefixes: mapping from server_id values to path segments

	source_prefixes: mapping from source_id values to path segments

	exclude_from_listing: rsync wildcard patterns to ignore by default
when determining which version directories to synchronise (if one of these
filters matches the wildcard pattern identifying desired versions, then
that exclusion filter will be omitted from the raw repo definition).

	exclude_from_sync: rsync wildcard patterns that are always ignored
when creating a raw repo definition (e.g. to exclude standard locations for
temporary working files)

5.1.6. Raw Repo Definitions

Raw repo definitions are a low-level interface that corresponds directly with
the settings accepted by the underyling calls to the Pulp REST API. They allow
direct specification of sync operations at the rsync level without needing to
create single use remote tree, source and server definitions.

A raw repo definition is a mapping with the following attributes:

	repo_id: Locally unique repo ID (alphanumeric characters and hyphens only)

	display_name: Human readable short name for the repository

	description: Longer description of the repository contents

	notes: Arbitrary notes about the repository as a JSON mapping

	importer_type_id: Importer plugin type identifier. See below.

	importer_config: JSON mapping with plugin configuration data. See below.

The plugin names in the list below are the exact names that should be used in
the importer_type_id field for the PulpDist plugins, while the links go
to the descriptions of the individual plugins. The options described in those
sections are the values that need to be provided in the importer_config
mapping.

	simple_tree: Simple Tree Sync

	versioned_tree: Versioned Tree Sync

	snapshot_tree: Snapshot Tree Sync

For further information, refer to the documentation for the Pulp
Create Repository [https://fedorahosted.org/pulp/wiki/UGREST-v2-Repositories#CreateaRepository] and Add Importer [https://fedorahosted.org/pulp/wiki/UGREST-v2-Repositories#AssociateanImportertoaRepository] REST API calls.

5.2. Deriving Raw Repo Definitions from Local Mirror Definitions

Deriving raw repo definitions from local mirror definitions requires that a
specific site be nominated. If no site is nominated, or the site settings
have no entry for a particular value, then the corresponding settings for
the default site are used instead.

The local path used in the import configuration is calculated as:

storage_prefix/server_prefix/source_prefix/local_tree_path

Where:

	storage_prefix is taken directly from the site settings

	server_prefix is looked up in the server prefixes map. If it is not
defined for either the specified site or the default site, then the empty
string is used (and the now redundant extra path separator is omitted).

	source_prefix is looked up in the source prefixes map. If it is not
defined for either the specified site or the default site, then the empty
string is used (and the now redundant extra path separator is omitted).

	local_tree_path is the tree_path setting for the local tree, if
it is defined, otherwise it uses the setting for the remote tree.

The remote path used to retrieve a tree is calculated as:

rsync://server_dns/source_remote_path/remote_tree_path

These values are all taken directly from the appropriate remote server, remote
source and remote tree settings, respectively.

The filtering options for the sync process (and, if applicable, the listing
process) are determined by inspecting the settings for the local mirror, the
remote tree, the local site and the default site. All filtering options given
in any of those applications are applied to the underlying rsync command. (The
one exception is that any listing exclusion settings that would exclude
directories matching the listing pattern for a particular tree are omitted
from the remote listing command for that tree).

For the sync_filters and listing_filters properties, order is
preserved and the filters for the local mirror are added to the
command line before those for the remote tree.

For the exclude_from_sync and exclude_from_listing options, order
is not preserved. The settings for the local mirror, remote tree, specific
site (if any) and default site are merged into a single list in sorted
order with any duplicates remove.

Other settings are derived as detailed in the descriptions of the individual
setting.

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

6. Site Configuration Tutorial

The following file is an example site definition provided in the PulpDist
source tree (as misc/example_site.json) for demonstration purposes:

{
 "SITE_SETTINGS": [
 {
 "site_id": "default",
 "name": "Default Site",
 "storage_prefix": "/var/www/pub",
 "server_prefixes": {
 "demo_server": "sync_demo",
 "other_demo_server": "sync_demo_trees"
 },
 "source_prefixes": {
 "sync_demo": "sync_demo_trees"
 },
 "exclude_from_sync": ["*dull*"],
 "exclude_from_listing": ["*justfortesting*"]
 },
 {
 "site_id": "other",
 "name": "Other Site",
 "storage_prefix": "/var/www/pub/sync_demo"
 }
],
 "LOCAL_MIRRORS": [
 {
 "mirror_id": "simple_sync",
 "tree_id": "simple_sync",
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_irrelevant/"],
 "notes": {
 "basic": "note",
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 }
 },
 {
 "mirror_id": "versioned_sync",
 "tree_id": "versioned_sync",
 "site_id": "other",
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_dull/"],
 "exclude_from_listing": ["relevant-but*"],
 "notes": {
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 }
 },
 {
 "mirror_id": "snapshot_sync",
 "tree_id": "snapshot_sync",
 "notes": {
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 }
 }
],
 "REMOTE_TREES": [
 {
 "tree_id": "simple_sync",
 "name": "Simple Sync Demo",
 "description": "Demonstration of the simple tree sync plugin",
 "tree_path": "simple",
 "sync_type": "simple",
 "sync_hours": 0,
 "source_id": "sync_demo"
 },
 {
 "tree_id": "versioned_sync",
 "name": "Versioned Sync Demo",
 "description": "Demonstration of the versioned tree sync plugin",
 "tree_path": "versioned",
 "sync_type": "versioned",
 "sync_hours": 12,
 "source_id": "sync_demo_other",
 "listing_pattern": "relevant*",
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_irrelevant/"]
 },
 {
 "tree_id": "snapshot_sync",
 "name": "Snapshot Sync Demo",
 "description": "Demonstration of the snapshot tree sync plugin",
 "tree_path": "snapshot",
 "sync_type": "snapshot",
 "sync_hours": 1,
 "source_id": "sync_demo",
 "listing_prefix": "re*ev",
 "latest_link": "latest-relevant",
 "exclude_from_listing": ["relevant-but*"],
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_irrelevant/", "exclude_dull/"]
 }
],
 "REMOTE_SOURCES": [
 {
 "source_id": "sync_demo",
 "server_id": "demo_server",
 "name": "Sync Demo Trees",
 "remote_path": "demo",
 "listing_suffix": "*"
 },
 {
 "source_id": "sync_demo_other",
 "server_id": "other_demo_server",
 "name": "Other Sync Demo Trees",
 "remote_path": "demo",
 "listing_suffix": "*"
 }
],
 "REMOTE_SERVERS": [
 {
 "server_id": "demo_server",
 "name": "Sync Demo Server",
 "dns": "localhost"
 },
 {
 "server_id": "other_demo_server",
 "name": "Other Sync Demo Server",
 "dns": "localhost"
 }
],
 "RAW_REPOS": [
 {
 "repo_id": "raw_sync",
 "display_name": "Raw Sync Demo",
 "description": "Demonstration of raw sync configuration in site config",
 "notes": {
 "pulpdist": {
 "sync_hours": 24
 },
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 },
 "importer_type_id": "simple_tree",
 "importer_config": {
 "tree_name": "Raw Simple Tree",
 "remote_server": "localhost",
 "remote_path": "/demo/simple/",
 "local_path": "/var/www/pub/sync_demo_raw/",
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_irrelevant/", "exclude_dull/"]
 }
 }
]
}

The example configuration is actually based on the PulpDist test suite - it
is designed to exercise most of the major features of the PulpDist plugins in a
single comprehensive scenario (some other key features, such as the use of
PROTECTED files to prevent the deletion of directories, or the creation of
symlinks to the most recent snapshot directory, are testing by setting up
the standard scenario and adjusting some of the settings or the filesystem
layout appropriately). This section aims to break the example down
into components and explain how each of them works.

6.1. Working with the Example Configuration

The example configuration is designed to be used with a local rsync daemon
and the misc/create_demo_tree.py script in the source repo.

Using /var/pulpdist_example_data as the location for our demonstration
tree, then /etc/rsyncd.conf should look something like this:

log file = /var/log/rsyncd.log

[demo]
comment="PulpDist Example Data Source"
path=/var/pulpdist_example_data

With pulpdist installed (or else with the src directory in a
source checkout as the current directory), the following command will
create a demonstration tree:

python create_demo_tree.py /var/pulpdist_example_data

The file tree created is laid out as follows (see below for details of the
subtree layout represented by ...):

simple/
 ...
versioned/
 ignored/
 ...
 relevant-1/
 ...
 relevant-2/
 ...
 relevant-3/
 ...
 relevant-4/
 ...
 relevant-but-not-really/
 ...
snapshot/
 ignored/
 ...
 relevant-1/
 STATUS
 ...
 relevant-2/
 STATUS
 ...
 relevant-3/
 ...
 relevant-4/
 STATUS
 ...
 relevant-but-not-really/
 ...

The common subtrees all look like the following:

data.txt
data2.txt
skip.txt
subdir/
 data.txt
 data2.txt
 skip.txt
 subdir/
 data.txt
 data2.txt
 skip.txt
subdir2/
 data.txt
 data2.txt
 dull/
 data.txt
 data2.txt
 skip.txt
 skip.txt

All STATUS files contain the text FINISHED (and nothing else), while
the example text files contain the text PulpDist test data!.

6.2. The Raw Repo Definition

The example configuration includes a single
Raw Repo Definition. For ease
of reference, it is reproduced here:

"RAW_REPOS": [
 {
 "repo_id": "raw_sync",
 "display_name": "Raw Sync Demo",
 "description": "Demonstration of raw sync configuration in site config",
 "notes": {
 "pulpdist": {
 "sync_hours": 24
 },
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 },
 "importer_type_id": "simple_tree",
 "importer_config": {
 "tree_name": "Raw Simple Tree",
 "remote_server": "localhost",
 "remote_path": "/demo/simple/",
 "local_path": "/var/www/pub/sync_demo_raw/",
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_irrelevant/", "exclude_dull/"]
 }
 }
]

Raw repos map almost directly to the Pulp settings for the corresponding
plugin. This has the advantage of making them entirely self contained and
very flexible, but also makes their configuration very repetitive if multiple
trees are being mirrored from the same source location.

The first three fields, repo_id, display_name and description
are mainly of significance for humans. The repo ID is the unique string
identifier used to refer to this repository in the command line interface,
while the display name and description are shown in the web interface.

The notes field uses a feature of Pulp that allows arbitrary additional
information to be associated with each repository. The site_custom data is
just there as an example, but the pulpdist metadata section is used to
control interaction with command line client. In this case, the
value 24 means that the python -m pulpdist.manage_repos cron_sync
command will synchronise this repo at midnight each day if synchronisation
is enabled on the repo (like all trees in the example configuration, this
one has synchronisation disabled by default).

The importer_type_id field indicates which kind of synchronisation
operation is being defined. The value of simple_tree indicates that this
configuration entry will set up a Simple Tree Sync on the server.

Finally, the importer_config field actually sets up the synchronisation
operation. In this case, a simple tree sync maps directly to a single call to
rsync, so there isn’t a great deal to be configured.

The tree_name value (along with repo_id) will appear in the sync
operation logs created by the server.

The remote_server and remote_path operations are used to
identify the location of the source rsync daemon (rsync over ssh is not
currently supported). The local_path entry states exactly where to
save the mirrored files. For the example configuration, this means files
will be retrieved from rsync://localhost/demo/simple/ and saved to
/var/www/pub/sync_demo_raw (the Pulp plugins run as the Apache user, and
saving the files to pub makes it easy to share them again).

The last two entries are a little more interesting, as they map to rsync’s
filtering options. Any files or directories mentioned in exclude_from_sync
are passed via rsync’s --exclude option, while those mentioned in
sync_filters are passed with the --filter option. This offers a great
deal of flexibility in determining exactly what gets copied from the data
source into the local mirror.

6.2.1. Synchronization Behaviour

The effect of this configuration is that, after running the following two
commands:

python -m pulpdist.manage_repos enable --repo raw_sync --force
python -m pulpdist.manage_repos sync --repo raw_sync --force

The following filtered tree layout should be seen in
/var/www/pub/sync_demo_raw:

data.txt
data2.txt
subdir/
 data.txt
 data2.txt
 subdir/
 data.txt
 data2.txt
subdir2/
 data.txt
 data2.txt

The skip.txt files because they match the pattern in the
exclude_from_sync filter.

The dull directory and its contents get excluded by the
exclude_dull/ entry in the sync_filters setting.

6.3. Local Mirror Definition: Simple Tree

Where a raw repo definition aims to include all the information needed to
configure the rsync task directly, local mirror definitions are designed
to work as part of a wider mirroring network, where various upstream
servers publish trees for consumption by downstream clients. A local
mirror definition is converted to a raw repo definition by the command line
client before being uploaded to the Pulp server at a site.

The example configuration includes a number of
Local Mirror Definitions.To introduce the
concepts involved, we’ll first review the simplest of the definitions, which
describes a Simple Tree Sync task, just like the example raw repo
definition.

6.3.1. Defining the Local Mirror

The basic mirror definition appears in the LOCAL_MIRRORS section of the
configuration file:

"LOCAL_MIRRORS": [
 {
 "mirror_id": "simple_sync",
 "tree_id": "simple_sync",
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_irrelevant/"],
 "notes": {
 "basic": "note",
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 }
 }
]

This example creates a local mirror named simple_sync at the default site
(see below for more on sites), which will be a copy of the remote tree
simple_sync. While the mirror and the remote tree have the same name in
the example, that isn’t a requirement in general.

The notes entry just defines a few arbitrary notes that will be added to
the tree definition. This can be used to record additional information about
the mirror, such as the initial rationale for creating it.

The exclude_from_sync and sync_filters entries contribute to the
filter settings in the derived raw repo definition.

A local mirror definition can actually override most of the settings
defined for the remote tree being mirrored. However, this particular
example doesn’t do that. See the config reference
for details.

6.3.2. Defining the Remote Tree

The tree_id entry names a particular
Remote Tree Definition in the REMOTE_TREES
section:

"REMOTE_TREES": [
 {
 "tree_id": "simple_sync",
 "name": "Simple Sync Demo",
 "description": "Demonstration of the simple tree sync plugin",
 "tree_path": "simple",
 "sync_type": "simple",
 "sync_hours": 0,
 "source_id": "sync_demo"
 }
]

The tree_id is just a unique identifier for the tree, while the name
and description fields are used for display to users.

The tree_path defines the name of the directory to be synchronised,
relative to the base location defined by the source_id.

It is expected that this configuration format will eventually be expanded
to include a list of alternate sources for the tree, but that feature is
not yet supported.

The sync_type setting selects the specific importer plugin to be used.
Currently only PulpDist provided plugins are supported, but this may
change in future versions.

As in the raw repo example, the sync_hours ties into the cron_sync
scheduling command. In this case, a setting of 0 servers to disable
automatic synchronisation, even if synchronisation is enabled for the repo.

Most of the settings in the tree definition are inherited by local mirrors
that don’t override them. See the config reference
for details.

6.3.3. Defining the Remote Source

The source_id entry names a particular
Remote Source Definition in the
REMOTE_SOURCES section:

"REMOTE_SOURCES": [
 {
 "source_id": "sync_demo",
 "server_id": "demo_server",
 "name": "Sync Demo Trees",
 "remote_path": "demo",
 "listing_suffix": "*"
 }
]

The source_id is just a unique identifier for the source, while the
name field is intended for display to users.

The remote_path setting defines an the leading path component to use
for the remote path when deriving the raw repo definition.

The server-id defines the rsync server that hosts the content provided
by this source.

The listing_suffix isn’t relevant for a simple tree definition, but
can be of significance for versioned and snapshot trees. It will
be discussed in more detail later in the tutorial.

See the config reference for additional
options and details.

6.3.4. Defining the Remote Server

The server_id entry names a particular
Remote Server Definition in the
REMOTE_SERVERS section:

"REMOTE_SERVERS": [
 {
 "server_id": "demo_server",
 "name": "Sync Demo Server",
 "dns": "localhost"
 }
]

The server_id is just a unique identifier for the source, while the
name field is intended for display to users.

The dns field is either a hostname or IP address for the source
rsync server.

See the config reference for additional
options and details.

6.3.5. Defining the Local Site

A local mirror definition may include a site_id setting that names
a particular local site configuration to be used when deriving the raw
repo definition. If no specific site is named, then the default site
definition is used. The default site definition is also used to provide
default values that are used when a specific site definition doesn’t
replace them with more specific values.

This particular mirror definition is for the default
Site Definition in the SITE_SETTINGS section:

"SITE_SETTINGS": [
 {
 "site_id": "default",
 "name": "Default Site",
 "storage_prefix": "/var/www/pub",
 "server_prefixes": {
 "demo_server": "sync_demo",
 "other_demo_server": "sync_demo/sync_demo_trees"
 },
 "source_prefixes": {
 "sync_demo": "sync_demo_trees"
 },
 "exclude_from_sync": ["*dull*"],
 "exclude_from_listing": ["*justfortesting*"]
 }
]

The site_id is just a unique identifier for the site, while the
name field is intended for display to users.

The storage_prefix is included in all local paths.

The server_prefixes and source_prefixes mappings are used to
map server_id and source_id values to local path components. For
this local mirror, the relevant entries are demo_server and
sync_demo respectively.

The exclude_from_sync and exclude_from_listing settings affect the
filtering used for various rsync operations. For a simple sync operation,
only the exclude_from_sync operation is relevant.

See the config reference for additional
options and details.

6.3.6. Equivalent Raw Repo Definition

A local mirror definition isn’t used to configure a repo directly.
Instead, an equivalent raw repo definition is derived from the local
mirror definition and all of the related settings. The
config reference gives an overview of this
process.

For the simple tree mirror, the equivalent definition would look like this:

{
 "repo_id": "simple__default",
 "display_name": "Simple Sync Demo",
 "description": "Demonstration of the simple tree sync plugin",
 "notes": {
 "basic": "note",
 "pulpdist": {
 "mirror_id": "simple_sync",
 "server_id": "demo_server",
 "site_id": "default",
 "source_id": "sync_demo",
 "sync_hours": 0,
 "tree_id": "simple_sync"
 },
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 },
 "importer_type_id": "simple_tree",
 "importer_config": {
 "tree_name": "simple_sync__default",
 "remote_server": "localhost",
 "remote_path": "/demo/simple/",
 "local_path": "/var/www/pub/sync_demo/sync_demo_trees/simple/",
 "exclude_from_sync": ["*dull*", "*skip*"],
 "sync_filters": ["exclude_irrelevant/"]
 }
}

The repo_id is a combination of the mirror_id and the site_id.
This allows multiple nominal sites to be configured on the same Pulp
server without identifier conflicts. Note that the command line client
displays these merged IDs a little differently (<mirror_id>(<site_id>)).
To select a mirror by its repo id, use the back end form with the double
underscore separator (<mirror_id>__<site_id>).

The display_name and description in this case come directly from
the remote tree definition.

The notes are a combination of those specified in the local mirror
definition, along with those automatically created by the derivation
process. The derived notes include the identifiers for each of the
components used to derive the repo definition, along with the sync_hours
setting for use by the cron_sync scheduling operation.

The importer_type_id is derived from the sync_type setting in the
remote tree definition.

The import configuration details used for a simple sync operation are
common to all supported importer plugins.

tree_name is always just the derived repo_id for the local mirror.

remote_server is the dns property of the remote server definition.

remote_path in this case is a combination of the remote_path entry
in the remote source definition and the tree_path entry in the remote
tree definition.

local_path is a combination of the storage_prefix from the site
settings, the prefixes for the remote server and source respectively (both
retrieved from the site settings) and finishing with the tree_path entry
from the remote tree definition (this is one of those settings where the
value from the remote tree definition is used if the local mirror
definition doesn’t override it).

The exclude_from_sync setting includes the value from the local mirror
definition along with the value from the default site settings.

The sync_filters setting is taken directly from the local mirror
definition, as this particular remote tree definition omits all of the
filtering options.

Unlisted configuration options are left at their default values.

6.3.7. Synchronization Behaviour

The effect of this configuration is that, after running the following two
commands:

python -m pulpdist.manage_repos enable --mirror simple_sync --force
python -m pulpdist.manage_repos sync --mirror simple_sync --force

The following filtered tree layout should be seen in
/var/www/pub/sync_demo/sync_demo_trees/simple:

data.txt
data2.txt
subdir/
 data.txt
 data2.txt
 subdir/
 data.txt
 data2.txt
subdir2/
 data.txt
 data2.txt

This is the same as the tree layout produced by the example raw repo
definition.

6.3.8. Why Use Mirror Definitions?

From the worked example, it may seem that mirror definitions are actually
harder to use than the equivalent raw repo definitions. If you only want to
mirror a single tree, this is true (that’s why the option to provide a
raw repo definition exists).

The primary use case for PulpDist, however, is for an internal mirroring
network, where any given rsync server will be publishing multiple trees,
and any given site will be downloading multiple trees (potentially from
different sources).

The advantage of the mirror definition format is that it allows this
arrangement to be modelled directly - when setting up a new local mirror
for an existing remote tree, all you need to know is the id of the
remote tree and the id of the site where the mirror is being created,
rather than all of the details necessary to create the raw repo definition
by hand. Avoiding the data duplication also helps ensure consistency
between mirrors, and also makes various data changes substantially easier
(for example, changing the hostname of a particular upstream rsync server).

6.4. Local Mirror Definition: Versioned Tree

Where a simple sync definition maps directly to a single invocation of
rsync, a versioned sync performs an initial listing step to identify a
set of remote directories. A separate rsync task is then invoked for
each directory. This is useful when a subset of directories from a
particular remote directory are being split out to separate locations
in the local mirror.

The versioned tree definition in the example site configuration is set up
to show the mechanism for limiting a mirror definition to a specific site.
It also shows the additional filtering options that become available once
the mirroring plugin switches to the two-step process of first doing a
remote listing to identify the trees to be synchronised and then issuing
a separate rsync command to mirror each tree.

The “versioned tree” name comes from the original use case for this plugin,
which is to mirror a subset of versions from a product directory where
each version is split out into a separate directory, but new maintenance
releases may be added to old version directories. In practice, the plugin
works for any tree where it is desirable to mirror a subset of the
available top-level directories using a set of selection filters that differ
from those used for the actual mirror operations.

6.4.1. Defining the Local Mirror

The basic mirror definition appears in the LOCAL_MIRRORS section of the
configuration file:

"LOCAL_MIRRORS": [
 {
 "mirror_id": "versioned_sync",
 "tree_id": "versioned_sync",
 "site_id": "other",
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_dull/"],
 "exclude_from_listing": ["relevant-but*"],
 "notes": {
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 }
 }
]

This example creates a local mirror named versioned_sync at the site
other, which will be a copy of the remote tree versioned_sync.
As with the simple_sync example, using the same name for the local
mirror and the remote tree is entirely optional.

The notes entry is again used to record additional information about
the mirror, such as the initial rationale for creating it.

The exclude_from_sync and sync_filters entries contribute to the
filter settings in the derived raw repo definition. These filters apply
to the step of synchronising the individual trees

The exclude_from_listing setting controls which remote directories will
be synchronised at all.

See the config reference for additional
options and details.

6.4.2. Defining the Remote Tree

The tree_id entry names a particular
Remote Tree Definition in the REMOTE_TREES
section:

"REMOTE_TREES": [
 {
 "tree_id": "versioned_sync",
 "name": "Versioned Sync Demo",
 "description": "Demonstration of the versioned tree sync plugin",
 "tree_path": "versioned",
 "sync_type": "versioned",
 "sync_hours": 12,
 "source_id": "sync_demo_other",
 "listing_pattern": "relevant*",
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_irrelevant/"]
 }
]

The settings here are largely the same as those for the simple local mirror.

The setting of 12``for ``sync_hours indicates that cron_sync should
sync this repo at 12 AM and 12 PM each day.

The listing_pattern setting restricts the trees which will be considered
for synchronisation, while exclude_from_sync and sync_filters
contribute to the rsync settings for the actual tree synchronisation tasks.

See the config reference for additional
options and details.

6.4.3. Defining the Remote Source

The source_id entry names a particular
Remote Source Definition in the
REMOTE_SOURCES section:

"REMOTE_SOURCES": [
 {
 "source_id": "sync_demo_other",
 "server_id": "other_demo_server",
 "name": "Other Sync Demo Trees",
 "remote_path": "demo",
 "listing_suffix": "*"
 }
]

Aside from referring to a different remote server, the settings here are
essentially the same as those for the simple local mirror.

While the listing_suffix can be relevant for versioned tree definitions,
in this case it is superseded by the listing_pattern setting in the
remote tree definition.

See the config reference for additional
options and details.

6.4.4. Defining the Remote Server

The server_id entry names a particular
Remote Server Definition in the
REMOTE_SERVERS section:

"REMOTE_SERVERS": [
 {
 "server_id": "other_demo_server",
 "name": "Other Sync Demo Server",
 "dns": "localhost"
 }
]

As this is just an example site configuration, the “other” remote server
also resolves to the local machine. This can also occur in real mirroring
networks if multiple logical servers end up being combined on a single
physical server.

See the config reference for additional
options and details.

6.4.5. Defining the Local Site

The scope of this mirror is limited to a specific site. This means the
settings for the named site become relevant, while those for the
default site also still apply.

Both of these Site Definitions are given in the
SITE_SETTINGS section:

"SITE_SETTINGS": [
 {
 "site_id": "default",
 "name": "Default Site",
 "storage_prefix": "/var/www/pub",
 "server_prefixes": {
 "demo_server": "sync_demo",
 "other_demo_server": "sync_demo_trees"
 },
 "source_prefixes": {
 "sync_demo": "sync_demo_trees"
 },
 "exclude_from_sync": ["*dull*"],
 "exclude_from_listing": ["*justfortesting*"]
 },
 {
 "site_id": "other",
 "name": "Other Site",
 "storage_prefix": "/var/www/pub/sync_demo"
 }
]

The interesting point to note is that this site definition overrides the
storage_prefix setting. This will be used in preference to the
default setting when deriving the raw repo configuration.

See the config reference for additional
options and details.

6.4.6. Equivalent Raw Repo Definition

For the versioned tree mirror, the equivalent raw repo definition looks
like this:

{
 "repo_id": "versioned__other",
 "display_name": "Versioned Sync Demo",
 "description": "Demonstration of the versioned tree sync plugin",
 "notes": {
 "pulpdist": {
 "mirror_id": "versioned_sync",
 "source_id": "sync_demo_other",
 "server_id": "other_demo_server",
 "site_id": "other",
 "sync_hours": 12,
 "tree_id": "versioned_sync"
 },
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 },
 "importer_type_id": "versioned_tree",
 "importer_config": {
 "tree_name": "versioned_sync__other",
 "remote_server": "localhost",
 "remote_path": "/demo/versioned/",
 "local_path": "/var/www/pub/sync_demo/sync_demo_trees/versioned/",
 "exclude_from_sync": ["*dull*", "*skip*"],
 "sync_filters": ["exclude_dull/", "exclude_irrelevant/"],
 "listing_pattern": "relevant*",
 "exclude_from_listing": ["*justfortesting*", "relevant-but*"]
 }
}

The derivation of most of these settings is essentially the same as that
for the simple mirror.

local_path is slightly different, in that the storage_prefix comes
from the settings for the other site, while the prefix for the remote
server still comes from the default site, and there is no prefix at all
for the nominated remote source.

The exclude_from_sync setting includes the value from the local mirror
definition along with the value from the default site settings. Note that
the duplicate value from the remote tree settings has been omitted.

The sync_filters setting includes the filter options from both the
local mirror and remote tree defitions.

The completely new configuration settings all relate to the remote
listing step.

The listing_pattern is taken directly from the remote
tree configuration and is passed to rsync to indicate which directories to
include in the listing.

The exclude_from_listing setting includes the value from the local mirror
definition along with the value from the default site settings.

Unlisted configuration options are left at their default values.

6.4.7. Synchronization Behaviour

The effect of this configuration is that, after running the following two
commands:

python -m pulpdist.manage_repos enable --mirror versioned_sync --force
python -m pulpdist.manage_repos sync --mirror versioned_sync --force

The following filtered tree layout should be seen in
/var/www/pub/sync_demo/sync_demo_trees/versioned:

relevant-1/
 ...
relevant-2/
 ...
relevant-3/
 ...
relevant-4/
 ...

Where the individual tree layouts represented by ... are the same as
those produced by both the local mirror and raw repo simple sync
definitions.

The ignored directory is omitted because it does not match the
derived listing_pattern setting.

The relevant-but-not-really directory is omitted because it matches
one of the patterns in the exclude_from_listing setting.

6.5. Local Mirror Definition: Snapshot Tree

Snapshot tree definitions are very similar to versioned tree definitions,
as they also perform an initial directory listing step before proceeding
to separate sync operations for each identified directory.

The difference is that snapshot sync operations are designed for systems
where individual trees are never modified after their initial creation (for
example, a system which creates automatic nightly builds with a date-based
naming scheme for the build directories).

The state of individual trees is recorded in a STATUS at the root of each
directory. If this file exists and contains the text FINISHED then it
indicates that the tree is available for synchronisation (if present at
the remote site) or has already been synchronised (if present at the local
site). For large trees, this allows a lot of wasted data transfers to be
skipped: already synchronised trees don’t need to be checked for changes,
and unusable trees from the remote site don’t need to be copied in the
first place.

6.5.1. Defining the Local Mirror

The basic mirror definition appears in the LOCAL_MIRRORS section of the
configuration file:

"LOCAL_MIRRORS": [
 {
 "mirror_id": "snapshot_sync",
 "tree_id": "snapshot_sync",
 "notes": {
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 }
 }
]

This example aims to show an almost minimal local mirror definition. The
only optional information here is the note indicating why this mirror
exists.

See the config reference for additional
options and details.

6.5.2. Defining the Remote Tree

The tree_id entry names a particular
Remote Tree Definition in the REMOTE_TREES
section:

"REMOTE_TREES": [
 {
 "tree_id": "snapshot_sync",
 "name": "Snapshot Sync Demo",
 "description": "Demonstration of the snapshot tree sync plugin",
 "tree_path": "snapshot",
 "sync_type": "snapshot",
 "sync_hours": 1,
 "source_id": "sync_demo",
 "listing_prefix": "re*ev",
 "latest_link": "latest-relevant",
 "exclude_from_listing": ["relevant-but*"],
 "exclude_from_sync": ["*skip*"],
 "sync_filters": ["exclude_irrelevant/", "exclude_dull/"]
 }
]

The settings here are largely the same as those for the simple local mirror.

The setting of 1``for ``sync_hours indicates that cron_sync should
sync this repo every hour.

The listing_prefix setting is another way to restrict the trees which
will be considered for synchronisation. Unlike listing_pattern, which
completely defines the inclusion filter, listing_prefix is combined
with the listing_suffix setting from the relevant remote source
definition.

The exclude_from_listing filter provides a pattern for directories
that would otherwise match the inclusion filter, but should still not be
synchronised.

The latest_link setting indicates that a symlink should be created that
always points to the most recently synchronised tree, and that it should be
called latest-relevant

As with the versioned tree, exclude_from_sync and sync_filters
contribute to the rsync settings for the actual tree synchronisation tasks.

See the config reference for additional
options and details.

6.5.3. Defining the Remote Source

The source_id entry names a particular
Remote Source Definition in the
REMOTE_SOURCES section:

"REMOTE_SOURCES": [
 {
 "source_id": "sync_demo",
 "server_id": "demo_server",
 "name": "Sync Demo Trees",
 "remote_path": "demo",
 "listing_suffix": "*"
 }
]

This is the exact same source as is used for the simple local mirror
definition.

The listing_suffix becomes relevant in this case, as this source is now
being used for a sync operation with a listing step based on
listing_prefix. While the example configuration allows any suffix,
real deployments may use this setting to enforce a standard version
numbering or date formatting scheme for a particular remote source.

See the config reference for additional
options and details.

6.5.4. Defining the Remote Server

The server_id entry names a particular
Remote Server Definition in the
REMOTE_SERVERS section:

"REMOTE_SERVERS": [
 {
 "server_id": "demo_server",
 "name": "Sync Demo Server",
 "dns": "localhost"
 }
]

As the remote server is specified by the remote source, this is the exact
same server as is used for the simple local mirror definition.

See the config reference for additional
options and details.

6.5.5. Defining the Local Site

Like the simple local mirror, the snapshot mirror example uses the default
site settings directly.

This Site Definitions is given in the
SITE_SETTINGS section:

"SITE_SETTINGS": [
 {
 "site_id": "default",
 "name": "Default Site",
 "storage_prefix": "/var/www/pub",
 "server_prefixes": {
 "demo_server": "sync_demo",
 "other_demo_server": "sync_demo_trees"
 },
 "source_prefixes": {
 "sync_demo": "sync_demo_trees"
 },
 "exclude_from_sync": ["*dull*"],
 "exclude_from_listing": ["*justfortesting*"]
 }
]

The only difference with the simple local mirror is that the
exclude_from_listing setting becomes relevant, as the snapshot sync
plugin includes the listing step.

See the config reference for additional
options and details.

6.5.6. Equivalent Raw Repo Definition

For the versioned tree mirror, the equivalent raw repo definition looks
like this:

{
 "repo_id": "snapshot_sync__default",
 "display_name": "Snapshot Sync Demo",
 "description": "Demonstration of the snapshot tree sync plugin",
 "notes": {
 "pulpdist": {
 "mirror_id": "snapshot_sync",
 "source_id": "sync_demo",
 "server_id": "demo_server",
 "sync_hours": 1,
 "site_id": "default",
 "tree_id": "snapshot_sync"
 },
 "site_custom": {
 "origin": "PulpDist example repository"
 }
 },
 "importer_type_id": "snapshot_tree",
 "importer_config": {
 "sync_filters": ["exclude_irrelevant/", "exclude_dull/"],
 "remote_path": "/test_data/snapshot/",
 "latest_link_name": "latest-relevant",
 "tree_name": "snapshot_sync__default",
 "exclude_from_sync": ["*dull*", "*skip*"],
 "exclude_from_listing": ["*justfortesting*", "relevant-but*"],
 "remote_server": "localhost",
 "listing_pattern": "re*ev*",
 "local_path": "/var/www/pub/sync_demo/sync_demo_trees/snapshot/"
 }
}

The derivation of most of these settings is essentially the same as in the
previous examples.

The exclude_from_sync setting includes the value from the remote tree
definition along with the value from the default site settings.

The latest_link_name and sync_filters settings are taken directly
from the remote tree settings.

The listing_pattern is derived by concatenating the listing_prefix
from the remote tree settings with the listing_suffix from the remote
source settings.

The exclude_from_listing setting includes the value from the remote tree
definition along with the value from the default site settings.

Unlisted configuration options are left at their default values.

6.5.7. Synchronization Behaviour

The effect of this configuration is that, after running the following two
commands:

python -m pulpdist.manage_repos enable --mirror snapshot_sync --force
python -m pulpdist.manage_repos sync --mirror snapshot_sync --force

The following filtered tree layout should be seen in
/var/www/pub/sync_demo/sync_demo_trees/snapshot:

relevant-1/
 ...
relevant-2/
 ...
relevant-4/
 ...
latest-relevant -> ./relevant-4

Where the individual tree layouts represented by ... are the same as
those produced by both the local mirror and raw repo simple sync
definitions.

The ignored directory is omitted because it does not match the
derived listing_pattern setting.

The relevant-but-not-really directory is omitted because it matches
one of the patterns in the exclude_from_listing setting.

The relevant-3 directory is omitted because it does not contain the
STATUS file to indicate that the tree is valid.

The latest-relevant symlink refers to relevant-4 as that is the
most recent tree to be synchronised.

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

7. PulpDist Python API

This is the current Python API exposed by the pulpdist package. It is
in a very preliminary state and comes with no backwards compatibility
guarantees at all.

	7.1. pulpdist Package
	7.1.1. manage_repos Module

	7.1.2. manage_site Module

	7.1.3. Subpackages
	7.1.3.1. cli Package
	7.1.3.1.1. commands Module

	7.1.3.1.2. display Module

	7.1.3.1.3. repo_cli Module

	7.1.3.1.4. thread_pool Module

	7.1.3.2. core Package
	7.1.3.2.1. mirror_config Module

	7.1.3.2.2. pulpapi Module

	7.1.3.2.3. repo_config Module

	7.1.3.2.4. shellutil Module

	7.1.3.2.5. site_config Module

	7.1.3.2.6. site_sql Module

	7.1.3.2.7. sync_config Module

	7.1.3.2.8. sync_trees Module

	7.1.3.2.9. util Module

	7.1.3.2.10. validation Module

	7.1.3.3. django_app Package
	7.1.3.3.1. admin Module

	7.1.3.3.2. auth Module

	7.1.3.3.3. fields Module

	7.1.3.3.4. forms Module

	7.1.3.3.5. models Module

	7.1.3.3.6. restapi Module

	7.1.3.3.7. urls Module

	7.1.3.3.8. util Module

	7.1.3.3.9. views Module

	7.1.3.3.10. Subpackages

	7.1.3.4. django_site Package
	7.1.3.4.1. dummy_auth Module

	7.1.3.4.2. management_settings Module

	7.1.3.4.3. settings Module

	7.1.3.4.4. urls Module

	7.2. pulpdist_importers Package
	7.2.1. importer Module

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

 	7. PulpDist Python API

7.1. pulpdist Package

7.1.1. manage_repos Module

7.1.2. manage_site Module

7.1.3. Subpackages

	7.1.3.1. cli Package
	7.1.3.1.1. commands Module

	7.1.3.1.2. display Module

	7.1.3.1.3. repo_cli Module

	7.1.3.1.4. thread_pool Module

	7.1.3.2. core Package
	7.1.3.2.1. mirror_config Module

	7.1.3.2.2. pulpapi Module

	7.1.3.2.3. repo_config Module

	7.1.3.2.4. shellutil Module

	7.1.3.2.5. site_config Module

	7.1.3.2.6. site_sql Module

	7.1.3.2.7. sync_config Module

	7.1.3.2.8. sync_trees Module

	7.1.3.2.9. util Module

	7.1.3.2.10. validation Module

	7.1.3.3. django_app Package
	7.1.3.3.1. admin Module

	7.1.3.3.2. auth Module

	7.1.3.3.3. fields Module

	7.1.3.3.4. forms Module

	7.1.3.3.5. models Module

	7.1.3.3.6. restapi Module

	7.1.3.3.7. urls Module

	7.1.3.3.8. util Module

	7.1.3.3.9. views Module

	7.1.3.3.10. Subpackages
	7.1.3.3.10.1. templatetags Package
	7.1.3.3.10.1.1. pulpdist_tags Module

	7.1.3.4. django_site Package
	7.1.3.4.1. dummy_auth Module

	7.1.3.4.2. management_settings Module

	7.1.3.4.3. settings Module

	7.1.3.4.4. urls Module

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

 	7. PulpDist Python API

 	7.1. pulpdist Package

7.1.3.1. cli Package

7.1.3.1.1. commands Module

7.1.3.1.2. display Module

7.1.3.1.3. repo_cli Module

7.1.3.1.4. thread_pool Module

Simple size constrained thread pool that blocks when all threads are busy

	
exception pulpdist.cli.thread_pool.PendingTasks[source]

	Bases: exceptions.Exception

Exception thrown if ThreadPool.wait_for_tasks() times out

	
class pulpdist.cli.thread_pool.Task(priority, func, args, kwds)

	Bases: tuple

	
args

	Alias for field number 2

	
func

	Alias for field number 1

	
kwds

	Alias for field number 3

	
priority

	Alias for field number 0

	
class pulpdist.cli.thread_pool.ThreadPool(num_threads, name='ThreadPool')[source]

	Pool of threads consuming tasks from a queue

	
add_task(priority, func, *args, **kwds)[source]

	Add a task to the queue. Blocks if all threads are busy.

	
wait_for_tasks(timeout=None)[source]

	Wait for completion of all the tasks in the queue

	
class pulpdist.cli.thread_pool.Worker(tasks, name=None)[source]

	Bases: threading.Thread

Thread executing tasks from a given tasks queue

	
run()[source]

	

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

 	7. PulpDist Python API

 	7.1. pulpdist Package

7.1.3.2. core Package

7.1.3.2.1. mirror_config Module

Convert from a site mirror config to a PulpDist repo config

	
class pulpdist.core.mirror_config.MirrorConverter(mirror)[source]

	Bases: object

	
build_importer_config()[source]

	

	
build_notes()[source]

	

	
pulpdist.core.mirror_config.make_repo(mirror)[source]

	

	
pulpdist.core.mirror_config.make_repo_id(mirror_id, site_id)[source]

	Derive a Pulp repo ID from a mirror ID and a site ID

7.1.3.2.2. pulpapi Module

7.1.3.2.3. repo_config Module

Config definitions and helpers for pulpdist importer plugins

	
class pulpdist.core.repo_config.RepoConfig(config)[source]

	Bases: pulpdist.core.validation.ValidatedConfig

	
validate()[source]

	

7.1.3.2.4. shellutil Module

shellutil - additional shell utilities (beyond the standard library’s shutil)

	
class pulpdist.core.shellutil.WalkedDir(path, subdirs, files, depth)

	Bases: tuple

	
depth

	Alias for field number 3

	
files

	Alias for field number 2

	
path

	Alias for field number 0

	
subdirs

	Alias for field number 1

	
pulpdist.core.shellutil.filtered_walk(top, file_pattern=None, dir_pattern=None, excluded_files=None, excluded_dirs=None, depth=None, followlinks=False, onerror=None, onloop=None)[source]

	filtered_walk is similar to os.walk, but offers the following additional features:

	yields a named tuple of (path, subdirs, files, depth)

	allows independent glob-style filters for filenames and subdirectories

	allows independent exclusion filters for filenames and subdirectories

	emits a message to stderr and skips the directory if a symlink loop is encountered when following links

	allows a recursion depth limit to be specified

Selective walks are always top down, as the directory listings must be altered to provide
the above features. If not None, depth must be at least 0. A depth of zero can be useful
to get separate filtered subdirectory and file listings for a given directory.

onerror is passed to os.walk to handle os.listdir errors
onloop (if provided) can be used to override the default symbolic loop handling. It is
called with the directory path as an argument when a loop is detected. Any false return
value will skip the directory, any true value means the directory will be processed
as normal.

	
pulpdist.core.shellutil.temp_dir(*args, **kwds)[source]

	

7.1.3.2.5. site_config Module

7.1.3.2.6. site_sql Module

7.1.3.2.7. sync_config Module

Config definitions and helpers for pulpdist importer plugins

	
class pulpdist.core.sync_config.SnapshotSyncConfig(config=None)[source]

	Bases: pulpdist.core.sync_config.VersionedSyncConfig

	
class pulpdist.core.sync_config.TreeSyncConfig(config=None)[source]

	Bases: pulpdist.core.validation.ValidatedConfig

	
class pulpdist.core.sync_config.VersionedSyncConfig(config=None)[source]

	Bases: pulpdist.core.sync_config.TreeSyncConfig

	
pulpdist.core.sync_config.retrieves_listing(sync_type)[source]

	

7.1.3.2.8. sync_trees Module

sync_trees - utilities for synchronising trees with rsync

	
class pulpdist.core.sync_trees.BaseSyncCommand(config, log_dest=None)[source]

	Bases: object

	
CONFIG_TYPE = None

	

	
DRY_RUN_SUFFIX = '_DRY_RUN'

	

	
SYNC_COMPLETED = 'SYNC_COMPLETED'

	

	
SYNC_DISABLED = 'SYNC_DISABLED'

	

	
SYNC_FAILED = 'SYNC_FAILED'

	

	
SYNC_PARTIAL = 'SYNC_PARTIAL'

	

	
SYNC_UP_TO_DATE = 'SYNC_UP_TO_DATE'

	

	
fetch_dir(remote_source_path, local_dest_path, local_seed_paths=())[source]

	Fetch a single directory from the remote server

	
run_sync()[source]

	Execute the full synchronisation task

Ensures the sync log is flushed before returing

	
class pulpdist.core.sync_trees.SyncFromDelta[source]

	Bases: pulpdist.core.sync_trees.BaseSyncCommand

Create a new local snapshots from an upstream delta

	
class pulpdist.core.sync_trees.SyncSnapshotDelta[source]

	Bases: pulpdist.core.sync_trees.BaseSyncCommand

Create an rsync delta from a snapshot directory

	
class pulpdist.core.sync_trees.SyncSnapshotTree(config, log_dest=None)[source]

	Bases: pulpdist.core.sync_trees.SyncVersionedTree

Sync the contents of a directory containing multiple snapshots of a tree

	
CONFIG_TYPE

	alias of SnapshotSyncConfig

	
class pulpdist.core.sync_trees.SyncStats[source]

	Bases: pulpdist.core.sync_trees.SyncStats

	
classmethod from_rsync_output(raw_data, old_daemon=False)[source]

	

	
class pulpdist.core.sync_trees.SyncTree(config, log_dest=None)[source]

	Bases: pulpdist.core.sync_trees.BaseSyncCommand

Sync the contents of a directory

	
CONFIG_TYPE

	alias of TreeSyncConfig

	
class pulpdist.core.sync_trees.SyncVersionedTree(config, log_dest=None)[source]

	Bases: pulpdist.core.sync_trees.BaseSyncCommand

Sync the contents of a directory containing multiple versions of a tree

	
CONFIG_TYPE

	alias of VersionedSyncConfig

	
remote_ls(remote_ls_path)[source]

	

7.1.3.2.9. util Module

util - miscellaneous utility functions

	
pulpdist.core.util.call_repr(name, args)[source]

	

	
pulpdist.core.util.format_iter(iterable, fmt='{0!r}', sep=', ')[source]

	

	
pulpdist.core.util.obj_repr(obj, fields)[source]

	

7.1.3.2.10. validation Module

Simple validation for JSON compatible data structures

	
class pulpdist.core.validation.ValidatedConfig(config=None)[source]

	Bases: object

	
classmethod check()[source]

	

	
classmethod ensure_validated(config)[source]

	Returns a mapping that has been validated against the spec

	
classmethod from_json(json_config)[source]

	Read the config from a JSON file and ensure it is valid

	
classmethod post_validate(value)[source]

	

	
validate()[source]

	

	
exception pulpdist.core.validation.ValidationError[source]

	Bases: exceptions.Exception

	
pulpdist.core.validation.check_host(allow_none=False)[source]

	

	
pulpdist.core.validation.check_mapping(spec, allow_none=False, allow_extra=False)[source]

	

	
pulpdist.core.validation.check_mapping_items(key_validator, value_validator, allow_none=False)[source]

	

	
pulpdist.core.validation.check_path(allow_none=False)[source]

	

	
pulpdist.core.validation.check_pulp_id(expected='valid Pulp ID', allow_none=False)[source]

	

	
pulpdist.core.validation.check_regex(pattern, expected=None, allow_none=False)[source]

	

	
pulpdist.core.validation.check_remote_path(allow_none=False)[source]

	

	
pulpdist.core.validation.check_rsync_filter(allow_none=False)[source]

	

	
pulpdist.core.validation.check_rsync_filter_sequence()[source]

	

	
pulpdist.core.validation.check_sequence(item_validator, allow_none=False)[source]

	

	
pulpdist.core.validation.check_simple_id(expected='simple ID (alphanumeric, underscores, hyphens)', allow_none=False)[source]

	

	
pulpdist.core.validation.check_text(allow_none=False)[source]

	

	
pulpdist.core.validation.check_type(expected_type, allow_none=False)[source]

	

	
pulpdist.core.validation.check_value(allowed_values, allow_none=False)[source]

	

	
pulpdist.core.validation.fail_validation(fmt, *args, **kwds)[source]

	

	
pulpdist.core.validation.validate_config(config, spec, *args, **kwds)[source]

	

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

 	7. PulpDist Python API

 	7.1. pulpdist Package

7.1.3.3. django_app Package

7.1.3.3.1. admin Module

7.1.3.3.2. auth Module

7.1.3.3.3. fields Module

7.1.3.3.4. forms Module

7.1.3.3.5. models Module

7.1.3.3.6. restapi Module

7.1.3.3.7. urls Module

7.1.3.3.8. util Module

7.1.3.3.9. views Module

7.1.3.3.10. Subpackages

	7.1.3.3.10.1. templatetags Package
	7.1.3.3.10.1.1. pulpdist_tags Module

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

 	7. PulpDist Python API

 	7.1. pulpdist Package

 	7.1.3.3. django_app Package

7.1.3.3.10.1. templatetags Package

7.1.3.3.10.1.1. pulpdist_tags Module

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

 	7. PulpDist Python API

 	7.1. pulpdist Package

7.1.3.4. django_site Package

7.1.3.4.1. dummy_auth Module

7.1.3.4.2. management_settings Module

7.1.3.4.3. settings Module

7.1.3.4.4. urls Module

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pulpdist 0.1.1 documentation

 	7. PulpDist Python API

7.2. pulpdist_importers Package

Note that this package cannot be imported directly from most Python code.
Instead, it is installed into the Pulp importer plugins directory to be
loaded by the Pulp server.

7.2.1. importer Module

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pulpdist 0.1.1 documentation

8. PulpDist Development

PulpDist is written primarily in Python and developed in git on
Fedora Hosted [http://fedorahosted.org/pulpdist]. Issue tracking is handled in Bugzilla [https://bugzilla.redhat.com/buglist.cgi?product=PulpDist&bug_status=__open__].

8.1. Target Platforms

The code is currently tested and known to work under Python 2.7 on Fedora and
under Python 2.6 on RHEL6. It should also run under either version of Python on
other *nix systems (so long as the relevant dependencies are available).

The client and plugins are written to work with the 1.x series of Pulp. Any
errors encountered while using Pulp 1.x should be reported on the bug tracker.

The Pulp 2.x series (due for initial release in July 2012) is not currently
supported.

8.2. Build/Test Dependencies

	setuptools/distribute (packaging)

	setuptools-git (tito RPM build tool support)

	tito (RPM build tool)

	sphinx (the reStructuredText documentation tool)

	sphinxcontrib-blockdiag (not used yet, but will be eventually)

	nose (test runner)

	unittest2 (backport of Python 2.7 unittest module to earlier versions)

	mock (the Python test library, not the Fedora packaging utility)

	mock/mockbuild (the Fedora packaging utility)

	djangosanetesting (web app test runner)

	parse (date/time checking)

8.3. Plugin Dependencies

(not necessarily complete)

	rsync (currently used via CLI, may some day switch to librsync)

	pulp (of course!)

8.4. Web Application Dependencies

(not necessarily complete)

	Django 1.3+ (built on Class Based Views)

	Django-south (database migrations)

	python-m2crypto (OAuth support, including protected config storage)

	python-oauth2 (OAuth based access to Pulp)

	django-tables2 (simple HTML display of tabular data)

	djangorestframework (simple development of rich REST APIs)

	pulp-admin (used to simplify access to server REST API)

Standard deployment configuration assumes Apache + mod_wsgi + mod_auth_kerb
deployment, but alternatives are likely possible.

8.5. Setting up a basic devel environment

First, install the pulp-admin client as described in the
Pulp Installation Guide.

The following set of instructions should then provide a working development
instance of the pulpdist web application on a Fedora 16 system:

$ sudo yum install Django Django-south python-nose python-m2crypto python-oauth2 tito
$ sudo wget -O /etc/yum.repos.d/fedora-pulpdist.repo http://repos.fedorapeople.org/repos/pulpdist/pulpdist/fedora-pulpdist.repo
$ sudo yum install python-django-tables2 python-djangorestframework python-mock python-djangosanetesting python-setuptools-git

$ git clone git://fedorahosted.org/pulpdist.git pulpdist
$ cd pulpdist/src
$ python -m pulpdist.manage_site syncdb
$ python -m pulpdist.manage_site migrate
$ python -m pulpdist.manage_site runserver

Pointing your preferred browser at http://localhost:8000
should then display the web UI with the dummy authentication scheme enabled.
Pulp server definitions can be entered either through the REST API or else
via the Django admin interface (use pulpdist-test-su as the login name to
get access to the latter).

Pulp Installation Guide: http://pulpproject.org/ug/UGInstallation.html

8.6. Running the unit tests

Running the test suite (from the base directory of the source checkout):

$ make test

Some of these test may require a Pulp server running on the local machine with
OAuth enabled. Refer to the Pulp Installation Guide and
OAuth authentication [https://fedorahosted.org/pulp/wiki/AuthenticationOAuth#HowTo] for details.

8.7. Building the PulpDist RPMs

Currently, there are no prebuilt RPMs for PulpDist available. However,creating
them locally is intended to be straightforward:

$ make rpm

This will create a pulpdist SRPM, along with the following noarch RPMs:

	pulpdist - the core Python package for PulpDist

	pulpdist-plugins - the custom Pulp plugins for tree synchronisation

	pulpdist-django - a meta-package that brings in the additional
dependencies needed to actually run pulpdist.django_app

	pulpdist-httpd - installs the PulpDist web application, largely
preconfigured to run under Apache using Kerberos-over-Basic-Auth for
authentication.

	pulpdist-devel - a meta-package that isn’t currently very useful,
but will eventually be available in the public repo to make it easy to
bring in all the dependencies needed to work on PulpDist.

pulpdist-plugins should be installed on all Pulp servers in a PulpDist
network.

pulpdist-httpd can be installed directly to use the standard PulpDist
Django site settings. Alternatively, any RPM-based Django site definitions
that use the PulpDist Django application should depend on
pulpdist and pulpdist-django.

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pulpdist 0.1.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pulpdist	

 	
 	
 pulpdist.cli.thread_pool	

 	
 	
 pulpdist.core.mirror_config	

 	
 	
 pulpdist.core.repo_config	

 	
 	
 pulpdist.core.shellutil	

 	
 	
 pulpdist.core.sync_config	

 	
 	
 pulpdist.core.sync_trees	

 	
 	
 pulpdist.core.util	

 	
 	
 pulpdist.core.validation	

 	
 	
 pulpdist.django_site.management_settings	

 	
 	
 pulpdist.django_site.settings	

 	
 	
 pulpdist.manage_site	

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pulpdist 0.1.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | K
 | M
 | O
 | P
 | R
 | S
 | T
 | V
 | W

A

 	

 	add_task() (pulpdist.cli.thread_pool.ThreadPool method)

 	

 	args (pulpdist.cli.thread_pool.Task attribute)

B

 	

 	BaseSyncCommand (class in pulpdist.core.sync_trees)

 	build_importer_config() (pulpdist.core.mirror_config.MirrorConverter method)

 	

 	build_notes() (pulpdist.core.mirror_config.MirrorConverter method)

C

 	

 	call_repr() (in module pulpdist.core.util)

 	check() (pulpdist.core.validation.ValidatedConfig class method)

 	check_host() (in module pulpdist.core.validation)

 	check_mapping() (in module pulpdist.core.validation)

 	check_mapping_items() (in module pulpdist.core.validation)

 	check_path() (in module pulpdist.core.validation)

 	check_pulp_id() (in module pulpdist.core.validation)

 	check_regex() (in module pulpdist.core.validation)

 	check_remote_path() (in module pulpdist.core.validation)

 	

 	check_rsync_filter() (in module pulpdist.core.validation)

 	check_rsync_filter_sequence() (in module pulpdist.core.validation)

 	check_sequence() (in module pulpdist.core.validation)

 	check_simple_id() (in module pulpdist.core.validation)

 	check_text() (in module pulpdist.core.validation)

 	check_type() (in module pulpdist.core.validation)

 	check_value() (in module pulpdist.core.validation)

 	CONFIG_TYPE (pulpdist.core.sync_trees.BaseSyncCommand attribute)

 	

 	(pulpdist.core.sync_trees.SyncSnapshotTree attribute)

 	(pulpdist.core.sync_trees.SyncTree attribute)

 	(pulpdist.core.sync_trees.SyncVersionedTree attribute)

D

 	

 	depth (pulpdist.core.shellutil.WalkedDir attribute)

 	

 	DRY_RUN_SUFFIX (pulpdist.core.sync_trees.BaseSyncCommand attribute)

E

 	

 	ensure_validated() (pulpdist.core.validation.ValidatedConfig class method)

F

 	

 	fail_validation() (in module pulpdist.core.validation)

 	fetch_dir() (pulpdist.core.sync_trees.BaseSyncCommand method)

 	files (pulpdist.core.shellutil.WalkedDir attribute)

 	filtered_walk() (in module pulpdist.core.shellutil)

 	

 	format_iter() (in module pulpdist.core.util)

 	from_json() (pulpdist.core.validation.ValidatedConfig class method)

 	from_rsync_output() (pulpdist.core.sync_trees.SyncStats class method)

 	func (pulpdist.cli.thread_pool.Task attribute)

K

 	

 	kwds (pulpdist.cli.thread_pool.Task attribute)

M

 	

 	make_repo() (in module pulpdist.core.mirror_config)

 	make_repo_id() (in module pulpdist.core.mirror_config)

 	

 	MirrorConverter (class in pulpdist.core.mirror_config)

O

 	

 	obj_repr() (in module pulpdist.core.util)

P

 	

 	path (pulpdist.core.shellutil.WalkedDir attribute)

 	PendingTasks

 	post_validate() (pulpdist.core.validation.ValidatedConfig class method)

 	priority (pulpdist.cli.thread_pool.Task attribute)

 	pulpdist.cli.thread_pool (module)

 	pulpdist.core.mirror_config (module)

 	pulpdist.core.repo_config (module)

 	pulpdist.core.shellutil (module)

 	

 	pulpdist.core.sync_config (module)

 	pulpdist.core.sync_trees (module)

 	pulpdist.core.util (module)

 	pulpdist.core.validation (module)

 	pulpdist.django_site.management_settings (module)

 	pulpdist.django_site.settings (module)

 	pulpdist.manage_site (module)

R

 	

 	remote_ls() (pulpdist.core.sync_trees.SyncVersionedTree method)

 	RepoConfig (class in pulpdist.core.repo_config)

 	retrieves_listing() (in module pulpdist.core.sync_config)

 	

 	run() (pulpdist.cli.thread_pool.Worker method)

 	run_sync() (pulpdist.core.sync_trees.BaseSyncCommand method)

S

 	

 	SnapshotSyncConfig (class in pulpdist.core.sync_config)

 	subdirs (pulpdist.core.shellutil.WalkedDir attribute)

 	SYNC_COMPLETED (pulpdist.core.sync_trees.BaseSyncCommand attribute)

 	SYNC_DISABLED (pulpdist.core.sync_trees.BaseSyncCommand attribute)

 	SYNC_FAILED (pulpdist.core.sync_trees.BaseSyncCommand attribute)

 	SYNC_PARTIAL (pulpdist.core.sync_trees.BaseSyncCommand attribute)

 	SYNC_UP_TO_DATE (pulpdist.core.sync_trees.BaseSyncCommand attribute)

 	

 	SyncFromDelta (class in pulpdist.core.sync_trees)

 	SyncSnapshotDelta (class in pulpdist.core.sync_trees)

 	SyncSnapshotTree (class in pulpdist.core.sync_trees)

 	SyncStats (class in pulpdist.core.sync_trees)

 	SyncTree (class in pulpdist.core.sync_trees)

 	SyncVersionedTree (class in pulpdist.core.sync_trees)

T

 	

 	Task (class in pulpdist.cli.thread_pool)

 	temp_dir() (in module pulpdist.core.shellutil)

 	

 	ThreadPool (class in pulpdist.cli.thread_pool)

 	TreeSyncConfig (class in pulpdist.core.sync_config)

V

 	

 	validate() (pulpdist.core.repo_config.RepoConfig method)

 	

 	(pulpdist.core.validation.ValidatedConfig method)

 	validate_config() (in module pulpdist.core.validation)

 	ValidatedConfig (class in pulpdist.core.validation)

 	

 	ValidationError

 	VersionedSyncConfig (class in pulpdist.core.sync_config)

W

 	

 	wait_for_tasks() (pulpdist.cli.thread_pool.ThreadPool method)

 	WalkedDir (class in pulpdist.core.shellutil)

 	

 	Worker (class in pulpdist.cli.thread_pool)

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 All modules for which code is available

		pulpdist.cli.thread_pool

		pulpdist.core.mirror_config

		pulpdist.core.repo_config

		pulpdist.core.shellutil

		pulpdist.core.sync_config

		pulpdist.core.sync_trees

		pulpdist.core.util

		pulpdist.core.validation

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_modules/pulpdist/core/sync_trees.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 		Module code »

 Source code for pulpdist.core.sync_trees

#
Copyright (C) 2011 Red Hat, Inc.
#
This software is licensed to you under the GNU General Public
License as published by the Free Software Foundation; either version
2 of the License (GPLv2) or (at your option) any later version.
There is NO WARRANTY for this software, express or implied,
including the implied warranties of MERCHANTABILITY,
NON-INFRINGEMENT, or FITNESS FOR A PARTICULAR PURPOSE. You should
have received a copy of GPLv2 along with this software; if not, see
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.

"""sync_trees - utilities for synchronising trees with rsync"""

from datetime import datetime
import logging
import os
from os import path
import sys # We use stdout for testing purposes
import shellutil
import shutil
import subprocess
import traceback
import collections
import re
import contextlib
import errno

from . import sync_config, util

_BASE_FETCH_DIR_PARAMS = """
 -rlptDvH --delete-after --ignore-errors --progress --stats --human-readable
 --timeout=18000 --partial --delay-updates
""".split()

Rsync statistics collection
_sync_stats_pattern = re.compile(r"""
Number of files: (?P<total_file_count>\d+)
Number of files transferred: (?P<transferred_file_count>\d+)
Total file size: (?P<total_size>[.\d]+)(?P<total_size_kind>[BKMG]?) bytes
Total transferred file size: (?P<transferred_size>[.\d]+)(?P<transferred_size_kind>[BKMG]?) bytes
Literal data: (?P<literal_size>[.\d]+)(?P<literal_size_kind>[BKMG]?) bytes
Matched data: (?P<matched_size>[.\d]+)(?P<matched_size_kind>[BKMG]?) bytes
File list size: (?P<listing_size>[.\d]+)(?P<listing_size_kind>[BKMG]?)
File list generation time: (?P<listing_creation_seconds>[.\d]+) seconds
File list transfer time: (?P<listing_transfer_seconds>[.\d]+) seconds
Total bytes sent: (?P<sent_size>[.\d]+)(?P<sent_size_kind>[BKMG]?)
Total bytes received: (?P<received_size>[.\d]+)(?P<received_size_kind>[BKMG]?)

sent [.\d]+[BKMG]? bytes\s+received [.\d]+[BKMG]? bytes\s+(?P<transfer_rate>[.\d]+)(?P<transfer_rate_kind>[BKMG]?)\s+bytes/sec
""", re.DOTALL)

_old_sync_stats_pattern = re.compile(r"""
Number of files: (?P<total_file_count>\d+)
Number of files transferred: (?P<transferred_file_count>\d+)
Total file size: (?P<total_size>[.\d]+)(?P<total_size_kind>[BKMG]?) bytes
Total transferred file size: (?P<transferred_size>[.\d]+)(?P<transferred_size_kind>[BKMG]?) bytes
Literal data: (?P<literal_size>[.\d]+)(?P<literal_size_kind>[BKMG]?) bytes
Matched data: (?P<matched_size>[.\d]+)(?P<matched_size_kind>[BKMG]?) bytes
File list size: (?P<listing_size>[.\d]+)(?P<listing_size_kind>[BKMG]?)
Total bytes sent: (?P<sent_size>[.\d]+)(?P<sent_size_kind>[BKMG]?)
Total bytes received: (?P<received_size>[.\d]+)(?P<received_size_kind>[BKMG]?)

sent [.\d]+[BKMG]? bytes\s+received [.\d]+[BKMG]? bytes\s+(?P<transfer_rate>[.\d]+)(?P<transfer_rate_kind>[BKMG]?)\s+bytes/sec
""", re.DOTALL)

_kind_scale = {
 None : 1,
 '' : 1,
 'B' : 1,
 'K' : 1024,
 'M' : 1024*1024,
 'G' : 1024*1024*1024,
 'T' : 1024*1024*1024*1024,
}

def _bytes_from_size_and_kind(size, kind):
 scale = _kind_scale[kind]
 return int(float(size) * scale)

_sync_stats_fields = """
 total_file_count transferred_file_count
 total_bytes transferred_bytes
 literal_bytes matched_bytes
 sent_bytes received_bytes
 transfer_bps
 listing_bytes listing_creation_seconds listing_transfer_seconds
""".split()

[docs]class SyncStats(collections.namedtuple("SyncStats", _sync_stats_fields)):
 def __add__(self, other):
 if not isinstance(other, SyncStats):
 return NotImplemented
 return SyncStats(*(a + b for a, b in zip(self, other)))

 @classmethod
[docs] def from_rsync_output(cls, raw_data, old_daemon=False):
 stats = collections.defaultdict(int)
 scraped = None
 if old_daemon:
 pattern = _old_sync_stats_pattern
 else:
 pattern = _sync_stats_pattern
 for scraped in pattern.finditer(raw_data):
 data = scraped.groupdict()
 if old_daemon:
 data["listing_creation_seconds"] = 0
 data["listing_transfer_seconds"] = 0
 for field in SyncStats._fields:
 if field.endswith("_count"):
 stats[field] += int(data[field])
 elif field.endswith("_seconds"):
 stats[field] += float(data[field])
 elif field.endswith("_bps"):
 field_prefix = field.rpartition('_')[0]
 rate = data[field_prefix + "_rate"]
 kind = data[field_prefix + "_rate_kind"]
 stats[field] += _bytes_from_size_and_kind(rate, kind)
 else:
 field_prefix = field.rpartition('_')[0]
 size = data[field_prefix + "_size"]
 kind = data[field_prefix + "_size_kind"]
 stats[field] += _bytes_from_size_and_kind(size, kind)
 if scraped is None:
 raise ValueError("No rsync stats found in output")
 return cls(**stats)

_null_sync_stats = SyncStats(*([0]*len(SyncStats._fields)))

rsync remote ls scraping

_remote_ls_entry_pattern = re.compile(
"^(?P<entry_kind>.).*"
" (?P<mtime>\d\d\d\d\/\d\d\/\d\d \d\d:\d\d:\d\d)"
" (?P<entry_details>.*)$", re.MULTILINE)

[docs]class BaseSyncCommand(object):

 SYNC_UP_TO_DATE = "SYNC_UP_TO_DATE"
 SYNC_COMPLETED = "SYNC_COMPLETED"
 SYNC_PARTIAL = "SYNC_PARTIAL"
 SYNC_FAILED = "SYNC_FAILED"
 SYNC_DISABLED = "SYNC_DISABLED"

 DRY_RUN_SUFFIX = "_DRY_RUN"

 CONFIG_TYPE = None

 def __init__(self, config, log_dest=None):
 config_type = self.CONFIG_TYPE
 if config_type is None:
 raise NotImplementedError("CONFIG_TYPE not set by subclass")
 config_data = config_type(config)
 config_data.validate()
 self.__dict__.update(config_data.config)
 self._init_run_log(log_dest)

 def _init_run_log(self, log_dest):
 self._run_log_indent_level = 0
 if log_dest is None:
 self._run_log_file = None
 elif isinstance(log_dest, basestring):
 # Use line buffered output by default
 self._run_log_file = open(log_dest, 'w', 1)
 else:
 self._run_log_file = log_dest
 self._update_run_log("Log initialised: {0} {1}",
 type(self).__name__,
 util.__version__)

 @contextlib.contextmanager
 def _indent_run_log(self, level=None):
 old_level = self._run_log_indent_level
 if level is None:
 level = old_level + 1
 self._run_log_indent_level = level
 try:
 yield
 finally:
 self._run_log_indent_level = old_level

 def _update_run_log(self, _fmt, *args, **kwds):
 if self._run_log_file is None:
 return
 fmt = (" " * self._run_log_indent_level) + _fmt
 if args:
 msg = fmt.format(*args, **kwds)
 else:
 msg = fmt
 self._run_log_file.write(msg.rstrip() + '\n')

 @contextlib.contextmanager
 def _flush_run_log(self):
 if self._run_log_file is None:
 yield
 else:
 try:
 yield
 finally:
 self._run_log_file.flush()

 def _run_shell_command(self, cmd):
 shell_output = []
 with self._indent_run_log(0):
 self._update_run_log("_"*75)
 self._update_run_log("Getting shell output for:\n\n {0}\n\n", cmd)
 proc = subprocess.Popen(cmd, stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT)
 for line in proc.stdout:
 shell_output.append(line)
 self._update_run_log(line)
 result = proc.wait()
 self._update_run_log("^"*75)
 return result, "".join(shell_output)

 def _consolidate_tree(self):
 local_path = self.local_path
 hardlink_cmd = ["hardlink", "-v", self.local_path]
 try:
 return_code, __ = self._run_shell_command(hardlink_cmd)
 except:
 self._update_run_log(traceback.format_exc())
 result_msg = "Exception while hard linking duplicates in {0!r}"
 else:
 if return_code == 0:
 result_msg = "Successfully hard linked duplicates in {0!r}"
 else:
 result_msg = "Failed to hard link duplicates in {0!r}"
 self._update_run_log(result_msg, local_path)

 def _send_amqp_message(self, result, sync_stats):
 details = "{0!r} transfer {1!r} -> {2!r}: {3}, {4}".format(
 self.tree_name, self.remote_path, self.local_path, result, sync_stats)
 if self.dry_run_only:
 msg = "Not sending AMQP message for test run ({0})"
 msg = "AMQP support not yet implemented ({0})"
 self._update_run_log(msg, details)

 def _run_sync_inner(self):
 start_time = datetime.utcnow()
 if not self.enabled:
 self._update_run_log("Ignoring sync request for {0!r} at {1}", self.tree_name, start_time)
 return self.SYNC_DISABLED, start_time, start_time, _null_sync_stats

 self._update_run_log("Syncing tree {0!r} at {1}", self.tree_name, start_time)

 with self._indent_run_log():
 if self.dry_run_only:
 self._update_run_log("Performing test run (no file transfer)")
 elif not path.exists(self.local_path):
 self._update_run_log("Local path {0!r} does not exist, creating it", self.local_path)
 try:
 os.makedirs(self.local_path, 0755)
 except OSError as ex:
 if ex.errno != errno.EEXIST:
 raise
 self._update_run_log(" Destination directory already created by another process")

 result, sync_stats = self._do_transfer()

 if sync_stats.transferred_file_count > 0:
 self._update_run_log("Consolidating downloaded data with hard links")
 with self._indent_run_log():
 self._consolidate_tree()
 self._update_run_log("Sending AMQP message")
 with self._indent_run_log():
 self._send_amqp_message(result, sync_stats)

 finish_time = datetime.utcnow()
 if self.dry_run_only:
 result += self.DRY_RUN_SUFFIX

 msg = "Completed sync of {0!r} at {1} (Result: {2}, Duration: {3})"
 self._update_run_log(msg, self.tree_name,
 finish_time, result, finish_time - start_time)
 return result, start_time, finish_time, sync_stats

[docs] def run_sync(self):
 """Execute the full synchronisation task

 Ensures the sync log is flushed before returing
 """
 with self._flush_run_log():
 return self._run_sync_inner()

 def _build_common_rsync_params(self):
 """Construct rsync parameters common to all operations"""
 params = []
 if self.old_remote_daemon:
 params.append("--no-implied-dirs")
 if self.rsync_port:
 params.append("--port={0}".format(self.rsync_port))
 return params

 def _build_fetch_dir_rsync_params(self, remote_source_path, local_dest_path,
 local_seed_paths=()):
 """Construct rsync parameters to fetch a remote directory"""
 params = _BASE_FETCH_DIR_PARAMS[:]
 params.extend(self._build_common_rsync_params())
 if self.dry_run_only:
 params.append("-n")
 if self.bandwidth_limit:
 params.append("--bwlimit={0}".format(self.bandwidth_limit))
 # Add sync filters
 for rsync_filter in self.sync_filters:
 params.append("--filter={0}".format(rsync_filter))
 # Add exclude filters
 for excluded_file in self.exclude_from_sync:
 params.append("--exclude={0}".format(excluded_file))
 # Protect directories from deletion if they contain a file called PROTECTED
 for dir_info in shellutil.filtered_walk(local_dest_path, file_pattern='PROTECTED'):
 if dir_info.files:
 rel_path = dir_info.path
 if os.path.isabs(rel_path):
 rel_path = os.path.relpath(rel_path, local_dest_path)
 params.append("--filter=protect {0}".format(rel_path))
 for seed_path in local_seed_paths:
 params.append("--link-dest={0}".format(seed_path))
 params.append(remote_source_path)
 params.append(local_dest_path)
 return params

 def _scrape_fetch_dir_rsync_stats(self, data):
 try:
 return SyncStats.from_rsync_output(data, self.old_remote_daemon)
 except ValueError:
 self._update_run_log("No stats data found in rsync output")
 raise RuntimeError("No stats data found in rsync output")

 def _fetch_dir_complete(self, result, remote_source_path, local_dest_path):
 return result

[docs] def fetch_dir(self, remote_source_path, local_dest_path, local_seed_paths=()):
 """Fetch a single directory from the remote server"""
 params = self._build_fetch_dir_rsync_params(remote_source_path,
 local_dest_path,
 local_seed_paths)
 rsync_fetch_command = ["rsync"] + params
 rsync_stats = _null_sync_stats
 self._update_run_log("Downloading {0!r} -> {1!r}", remote_source_path, local_dest_path)
 for seed_path in local_seed_paths:
 self._update_run_log("Using {0!r} as local seed data", seed_path)
 if not self.dry_run_only:
 # Remove any previously synchronised files and symlinks that have
 # have been changed to directories on the source server
 if (os.path.lexists(local_dest_path) and
 (os.path.islink(local_dest_path) or
 not os.path.isdir(local_dest_path))):
 self._update_run_log("Unlinking {0!r} (replacing with directory)", local_dest_path)
 os.unlink(local_dest_path)
 # Ensure the full path to the destination directory exists locally
 if not os.path.lexists(local_dest_path):
 self._update_run_log("Creating destination directory {0!r}", local_dest_path)
 try:
 os.makedirs(local_dest_path)
 except OSError as ex:
 if ex.errno != errno.EEXIST:
 raise
 self._update_run_log(" Destination directory already created by another process")
 with self._indent_run_log():
 try:
 return_code, captured = self._run_shell_command(rsync_fetch_command)
 except:
 self._update_run_log(traceback.format_exc())
 result_msg = "Exception while updating {0!r} from {1!r}"
 else:
 if return_code in (0, 23):
 with self._indent_run_log():
 rsync_stats = self._scrape_fetch_dir_rsync_stats(captured)
 self._update_run_log("Retrieved rsync stats:")
 with self._indent_run_log():
 for field, value in zip(rsync_stats._fields, rsync_stats):
 self._update_run_log("{0}={1}", field, value)
 if return_code == 23:
 result_msg = "Partially updated {0!r} from {1!r}"
 result = self.SYNC_PARTIAL
 elif rsync_stats.transferred_file_count == 0:
 result_msg = "{0!r} already up to date relative to {1!r} (or all updates were found in seed directory)"
 result = self.SYNC_UP_TO_DATE
 else:
 result_msg = "Successfully updated {0!r} from {1!r}"
 result = self.SYNC_COMPLETED
 # We give subclasses a chance to second guess the nominal result
 # as well as taking other actions
 result = self._fetch_dir_complete(result, remote_source_path, local_dest_path)
 else:
 result_msg = "Non-zero return code (%d) updating {0!r} from {1!r}" % return_code
 result = self.SYNC_FAILED
 self._update_run_log(result_msg, local_dest_path, remote_source_path)
 return result, rsync_stats

[docs]class SyncTree(BaseSyncCommand):
 """Sync the contents of a directory"""
 CONFIG_TYPE = sync_config.TreeSyncConfig

 def _do_transfer(self):
 remote_source_path = "rsync://{0}{1}".format(self.remote_server, self.remote_path)
 local_dest_path = self.local_path
 return self.fetch_dir(remote_source_path, local_dest_path)

[docs]class SyncVersionedTree(BaseSyncCommand):
 """Sync the contents of a directory containing multiple versions of a tree"""
 CONFIG_TYPE = sync_config.VersionedSyncConfig

 def _build_remote_ls_rsync_params(self, remote_ls_path):
 """Construct rsync parameters to get a remote directory listing"""
 params = ["-nl"]
 if self.old_remote_daemon:
 # The common params handles adding --no-implied-dirs, but the
 # directory listing operation also needs this option
 params.append("--old-d")
 params.extend(self._build_common_rsync_params())
 # Filter out unwanted directories
 for subdir_filter in self.listing_filters:
 params.append("--filter={0}".format(subdir_filter))
 for excluded_pattern in self.exclude_from_listing:
 params.append("--exclude={0}".format(excluded_pattern))
 params.append(remote_ls_path)
 return params

 def _scrape_rsync_remote_ls(self, data):
 dir_entries = []
 link_entries = []
 for entry in re.finditer(_remote_ls_entry_pattern, data):
 kind = entry.group("entry_kind")
 details = entry.group("entry_details")
 if kind == 'l':
 link_entries.append(details.strip())
 elif kind == 'd':
 mtime = entry.group("mtime")
 dir_entries.append((mtime, details.strip()))
 else:
 self._update_run_log("Unknown entry kind {0!r}", entry)
 self._update_run_log("Identified directories {0!r}", dir_entries)
 self._update_run_log("Identified symlinks {0!r}", link_entries)
 return dir_entries, link_entries

[docs] def remote_ls(self, remote_ls_path):
 params = self._build_remote_ls_rsync_params(remote_ls_path)
 rsync_ls_command = ["rsync"] + params
 self._update_run_log("Getting remote listing for {0!r}", remote_ls_path)
 dir_entries = link_entries = ()
 with self._indent_run_log():
 try:
 return_code, captured = self._run_shell_command(rsync_ls_command)
 except:
 self._update_run_log(traceback.format_exc())
 result_msg = "Exception while listing {0!r}"
 else:
 if return_code == 0:
 result_msg = "Successfully listed {0!r}"
 with self._indent_run_log():
 dir_entries, link_entries = self._scrape_rsync_remote_ls(captured)
 else:
 result_msg = "Non-zero return code ({0:d}) listing {{0!r}}".format(return_code)
 self._update_run_log(result_msg, remote_ls_path)
 return dir_entries, link_entries

 def _iter_local_versions(self):
 local_path = self.local_path
 dir_info = shellutil.filtered_walk(local_path,
 dir_pattern=self.listing_pattern,
 excluded_dirs=self.exclude_from_listing,
 depth=0).next()
 for d in dir_info.subdirs:
 yield os.path.join(local_path, d)

 def _get_initial_seed_paths(self):
 # By default, there are no initial seed paths
 return ()

 def _iter_remote_versions(self, remote_dir_entries):
 seed_paths = self._get_initial_seed_paths()
 for mtime, version in sorted(remote_dir_entries):
 remote_version = self.remote_path + version
 remote_source_path = "rsync://{0}{1}/".format(self.remote_server, remote_version)
 local_dest_path = os.path.join(self.local_path, version)
 yield remote_source_path, local_dest_path, seed_paths
 # If it exists, use the previous tree as the seed for the next one
 if os.path.isdir(local_dest_path):
 seed_paths = (local_dest_path,)

 def _already_retrieved(self, local_dest_path):
 # Local directories are overwritten by default
 return False

 def _should_retrieve(self, remote_source_path):
 # Remote directories are retrieved by default
 return True

 def _fix_link_entries(self, remote_link_entries):
 # ensure local symlinks match remote ones
 self._update_run_log("Ensuring local validity of upstream symlinks")
 with self._indent_run_log():
 local_path = self.local_path
 for ls_entry in remote_link_entries:
 link_path, target_path = re.search("([^]*) -> ([^]*)$", ls_entry).groups()
 # If those paths are absolute, os.path.join will just ignore 'local_path'
 link_path = os.path.join(local_path, link_path)
 full_target_path = os.path.join(local_path, target_path)
 self._update_run_log("Checking symlink '{0} -> {1}'", link_path, target_path)
 # Only care about symlinks to directories that exist on the local system
 if not os.path.exists(full_target_path):
 self._update_run_log("Local {0!r} does not exist, ignoring symlink {1!r}", full_target_path, ls_entry)
 continue
 if not os.path.isdir(full_target_path):
 self._update_run_log("Local {0!r} is not a directory, ignoring symlink {1!r}", full_target_path, ls_entry)
 continue
 if os.path.islink(full_target_path):
 old_target_link = os.path.join(os.path.dirname(full_target_path), os.readlink(full_target_path))
 if os.path.samefile(old_target_link, link_path):
 self._update_run_log("Local {0!r} links back to {1!r}, ignoring symlink {2!r}", full_target_path, link_path, ls_entry)
 continue
 if os.path.lexists(link_path):
 if os.path.islink(link_path):
 old_link_target = os.readlink(link_path)
 if old_link_target == target_path:
 self._update_run_log("Symlink {0!r} already exists at {1!r}", ls_entry, link_path)
 continue
 self._update_run_log("Unlinking old symlink '{0} -> {1}'", link_path, old_link_target)
 os.unlink(link_path)
 elif os.path.isdir(link_path):
 if os.path.exists(os.path.join(link_path, "PROTECTED")):
 self._update_run_log("Skipping existing directory {0!r} (PROTECTED file found)", link_path)
 continue
 self._update_run_log("Removing old directory {0!r}", link_path)
 shutil.rmtree(link_path)
 else:
 self._update_run_log("Unlinking old file {0!r}", link_path)
 os.unlink(link_path)
 self._update_run_log("Creating symlink '{0} -> {1}'", link_path, target_path)
 os.symlink(target_path, link_path)

 def _delete_old_dirs(self, remote_dir_entries):
 self._update_run_log("Checking for removal of directories on remote server")
 dirs_to_delete = self._get_old_dirs(remote_dir_entries)
 return self._delete_local_dirs(dirs_to_delete)

 def _get_old_dirs(self, remote_dir_entries):
 local_dirs = set(os.path.basename(d) for d in self._iter_local_versions())
 remote_dirs = set(d for mtime, d in remote_dir_entries)
 return sorted(local_dirs - remote_dirs)

 def _delete_local_dirs(self, dirs_to_delete):
 local_path = self.local_path
 deleted = 0
 with self._indent_run_log():
 for dirname in dirs_to_delete:
 dirpath = os.path.join(local_path, dirname)
 if os.path.exists(os.path.join(dirpath, "PROTECTED")):
 self._update_run_log("Not deleting {0!r} (PROTECTED file found)", dirpath)
 continue
 self._update_run_log("Deleting {0!r} (not on remote server)", dirpath)
 shutil.rmtree(dirpath)
 deleted += 1
 return deleted

 def _do_transfer(self):
 sync_stats = _null_sync_stats
 remote_pattern = os.path.join(self.remote_path, self.listing_pattern)
 remote_ls_path = "rsync://{0}{1}".format(self.remote_server, remote_pattern)
 dir_entries, link_entries = self.remote_ls(remote_ls_path)
 if not dir_entries:
 self._update_run_log("No relevant directories found at {0!r}", remote_ls_path)
 return self.SYNC_FAILED, sync_stats
 tallies = collections.defaultdict(int)
 for remote_source_path, local_dest_path, local_seed_paths in self._iter_remote_versions(dir_entries):
 self._update_run_log("Preparing to download {0!r} -> {1!r}", remote_source_path, local_dest_path)
 if self._already_retrieved(local_dest_path):
 self._update_run_log("Skipping download for {0!r} -> {1!r} (already completed)", remote_source_path, local_dest_path)
 continue
 if not self._should_retrieve(remote_source_path):
 self._update_run_log("Skipping download for {0!r} -> {1!r} (source not ready)", remote_source_path, local_dest_path)
 continue
 dir_result, dir_stats = self.fetch_dir(remote_source_path, local_dest_path, local_seed_paths)
 tallies[dir_result] += 1
 sync_stats += dir_stats
 if link_entries:
 self._fix_link_entries(link_entries)
 up_to_date = tallies[self.SYNC_UP_TO_DATE]
 completed = tallies[self.SYNC_COMPLETED]
 partial = tallies[self.SYNC_PARTIAL]
 failed = tallies[self.SYNC_FAILED]
 deleted = 0
 if self.delete_old_dirs:
 if failed or partial:
 self._update_run_log("Errors occurred, not deleting old directories in {0!r}", self.local_path)
 else:
 deleted = self._delete_old_dirs(dir_entries)
 if failed and not (partial or completed or up_to_date):
 # Absolutely nothing worked
 result = self.SYNC_FAILED
 elif failed or partial:
 # Got at least some failures
 result = self.SYNC_PARTIAL
 elif completed or deleted:
 # Had to actually do something
 result = self.SYNC_COMPLETED
 else:
 # Everything was already up to date
 result = self.SYNC_UP_TO_DATE
 return result, sync_stats

[docs]class SyncSnapshotTree(SyncVersionedTree):
 """Sync the contents of a directory containing multiple snapshots of a tree"""
 CONFIG_TYPE = sync_config.SnapshotSyncConfig

 def _find_latest_remote_version(self, remote_dir_entries):
 seed_paths = self._get_initial_seed_paths()
 for mtime, dir_entry in sorted(remote_dir_entries, reverse=True):
 remote_entry = self.remote_path + dir_entry
 remote_source_path = "rsync://{0}{1}/".format(self.remote_server, remote_entry)
 local_dest_path = os.path.join(self.local_path, dir_entry)
 yield remote_source_path, local_dest_path, seed_paths
 # Keep going until we successfully copy a tree to the local system
 if self._already_retrieved(local_dest_path):
 self._update_run_log("Latest remote tree is in {0!r}", local_dest_path)
 break
 else:
 self._update_run_log("No valid remote tree identified")

 def _iter_remote_versions(self, remote_dir_entries):
 if self.sync_latest_only:
 return self._find_latest_remote_version(remote_dir_entries)
 return super(SyncSnapshotTree, self)._iter_remote_versions(remote_dir_entries)

 def _already_retrieved(self, local_dest_path):
 local_status_path = os.path.join(local_dest_path, "STATUS")
 with self._indent_run_log():
 self._update_run_log("Checking for STATUS file in {0!r}", local_dest_path)
 with self._indent_run_log():
 if os.path.exists(local_status_path):
 with open(local_status_path) as f:
 status = f.read().strip()
 self._update_run_log("Current status of {0!r} is {1!r}", local_dest_path, status)
 return status == "FINISHED"
 else:
 self._update_run_log("No STATUS file found in {0!r}", local_dest_path)
 return False

 def _should_retrieve(self, remote_source_path):
 with shellutil.temp_dir() as tmpdir:
 with self._indent_run_log():
 tmp_local_status = os.path.join(tmpdir, "STATUS")
 remote_status_path = os.path.join(remote_source_path, "STATUS")
 params = self._build_common_rsync_params()
 params.append(remote_status_path)
 params.append(tmp_local_status)
 self._update_run_log("Checking for STATUS file in {0!r}", remote_source_path)
 with self._indent_run_log():
 rsync_status_command = ["rsync"] + params
 try:
 return_code, __ = self._run_shell_command(rsync_status_command)
 except:
 self._update_run_log(traceback.format_exc())
 result_msg = "Exception while attempting to check status of {0!r}"
 else:
 if os.path.exists(tmp_local_status):
 with open(tmp_local_status) as f:
 status = f.read().strip()
 self._update_run_log("Current status of {0!r} is {1!r}", remote_source_path, status)
 return status == "FINISHED"
 else:
 result_msg = "No STATUS file found in {0!r}"
 self._update_run_log(result_msg, remote_source_path)
 return False

 def _fetch_dir_complete(self, result, remote_source_path, local_dest_path):
 if result == self.SYNC_PARTIAL:
 return result
 status_path = os.path.join(local_dest_path, "STATUS")
 if result == self.SYNC_UP_TO_DATE and os.path.exists(status_path):
 # Tree actually *was* up to date, we didn't just get lucky
 # and manage to hard link everything
 return result
 result = self.SYNC_COMPLETED
 if not self.dry_run_only:
 with open(status_path, 'w') as f:
 f.write("FINISHED\n")
 self._link_to_latest(local_dest_path)
 return result

 def _get_latest_dir(self):
 # Preferred approach is to use the symbolic link to the latest version
 link_name = self.latest_link_name
 if link_name is not None:
 link_path = os.path.join(self.local_path, link_name)
 if os.path.isdir(link_path):
 target_path = os.path.join(link_path, os.readlink(link_path))
 return os.path.abspath(target_path)
 # If that's not available, we rely on the local mtime
 def _sort_key(d):
 return os.path.getmtime(d), d
 candidates = self._iter_local_versions()
 try:
 return max(candidates, key=_sort_key)
 except ValueError:
 pass
 return None

 def _get_initial_seed_paths(self):
 # Use the most recent local dir as the initial seed path
 latest_dir = self._get_latest_dir()
 return (latest_dir,) if latest_dir is not None else ()

 def _get_old_dirs(self, remote_dir_entries):
 dirs_to_delete = (super(SyncSnapshotTree, self).
 _get_old_dirs(remote_dir_entries))
 # Never delete latest entry, even if it's gone from the remote server
 latest_dir = self._get_latest_dir()
 if latest_dir is not None:
 dirname = os.path.basename(latest_dir)
 try:
 dirs_to_delete.remove(dirname)
 except ValueError:
 pass
 return dirs_to_delete

 def _link_to_latest(self, target_path):
 link_name = self.latest_link_name
 if link_name is None:
 return
 local_path = self.local_path
 link_path = os.path.join(local_path, link_name)
 self._update_run_log("Updating {0!r} symlink to refer to latest version", link_path)
 with self._indent_run_log():
 if self.dry_run_only:
 self._update_run_log("Skipping creation of {0!r} for test run", link_path)
 return
 if target_path is None:
 self._update_run_log("No valid target versions in {0!r}, skipping", local_path)
 return
 relative_target = os.path.relpath(target_path, os.path.dirname(link_path))
 if os.path.isdir(link_path):
 if os.path.islink(link_path):
 if os.readlink(link_path) == relative_target:
 self._update_run_log("Link {0!r} -> {1!r} already exists", link_path, relative_target)
 return
 os.unlink(link_path)
 else:
 self._update_run_log("Existing latest directory, {0!r}, is not a symbolic link, deleting it", link_path)
 shutil.rmtree(link_path)
 elif os.path.lexists(link_path):
 self._update_run_log("Existing entry, {0!r}, is not a directory, deleting it", link_path)
 os.unlink(link_path)
 os.symlink(relative_target, link_path)
 self._update_run_log("Linked {0!r} -> {1!r}", link_path, relative_target)

[docs]class SyncSnapshotDelta(BaseSyncCommand):
 """Create an rsync delta from a snapshot directory"""

 def __init__(self):
 raise NotImplemented("Depends on Pulp plugin details")

[docs]class SyncFromDelta(BaseSyncCommand):
 """Create a new local snapshots from an upstream delta"""
 def __init__(self):
 raise NotImplemented("Depends on Pulp plugin details")

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/file.png

_static/minus.png

_static/comment.png

_modules/pulpdist/core/shellutil.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 		Module code »

 Source code for pulpdist.core.shellutil

#
Copyright (C) 2011 Red Hat, Inc.
#
This software is licensed to you under the GNU General Public
License as published by the Free Software Foundation; either version
2 of the License (GPLv2) or (at your option) any later version.
There is NO WARRANTY for this software, express or implied,
including the implied warranties of MERCHANTABILITY,
NON-INFRINGEMENT, or FITNESS FOR A PARTICULAR PURPOSE. You should
have received a copy of GPLv2 along with this software; if not, see
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.

"""shellutil - additional shell utilities (beyond the standard library's shutil)
"""

import fnmatch
import os
import os.path
import collections
import sys
import tempfile
import contextlib
import shutil

Rough equivalent of the 3.x tempfile.TemporaryDirectory
@contextlib.contextmanager
[docs]def temp_dir():
 dirname = tempfile.mkdtemp()
 dirname = os.path.realpath(dirname)
 try:
 yield dirname
 finally:
 shutil.rmtree(dirname)

Directory walking helper
WalkedDir = collections.namedtuple("WalkedDir", "path subdirs files depth")

[docs]def filtered_walk(top, file_pattern=None, dir_pattern=None,
 excluded_files=None, excluded_dirs=None,
 depth=None, followlinks=False,
 onerror=None, onloop=None):
 """\
 filtered_walk is similar to os.walk, but offers the following additional features:

 - yields a named tuple of (path, subdirs, files, depth)
 - allows independent glob-style filters for filenames and subdirectories
 - allows independent exclusion filters for filenames and subdirectories
 - emits a message to stderr and skips the directory if a symlink loop is encountered when following links
 - allows a recursion depth limit to be specified

 Selective walks are always top down, as the directory listings must be altered to provide
 the above features. If not None, depth must be at least 0. A depth of zero can be useful
 to get separate filtered subdirectory and file listings for a given directory.

 onerror is passed to os.walk to handle os.listdir errors
 onloop (if provided) can be used to override the default symbolic loop handling. It is
 called with the directory path as an argument when a loop is detected. Any false return
 value will skip the directory, any true value means the directory will be processed
 as normal.
 """
 if depth is not None and depth < 0:
 msg = "Depth limit must be None or greater than 0 ({0!r} provided)"
 raise ValueError(msg.format(depth))
 if onloop is None:
 def onloop(path):
 msg = "Symlink {0!r} refers to a parent directory, skipping\n"
 sys.stderr.write(msg.format(path))
 sys.stderr.flush()
 if followlinks:
 real_top = os.path.abspath(os.path.realpath(top))
 sep = os.sep
 initial_depth = top.count(sep)
 for path, walk_subdirs, files in os.walk(top, topdown=True,
 onerror=onerror,
 followlinks=followlinks):
 # Check for symlink loops
 if followlinks and os.path.islink(path):
 # We just descended into a directory via a symbolic link
 # Check if we're referring to a directory that is
 # a parent of our nominal directory
 relative = os.path.relpath(path, top)
 nominal_path = os.path.join(real_top, relative)
 real_path = os.path.abspath(os.path.realpath(path))
 path_fragments = zip(nominal_path.split(sep), real_path.split(sep))
 for nominal, real in path_fragments:
 if nominal != real:
 break
 else:
 if not onloop(path):
 walk_subdirs[:] = []
 continue
 # Filter files, if requested
 if file_pattern is not None:
 files = fnmatch.filter(files, file_pattern)
 if excluded_files is not None:
 files = [f for f in files
 if not any(fnmatch.fnmatch(f, pat)
 for pat in excluded_files)]
 # We hide the underlying generator's subdirectory list, since we
 # clear it internally when we reach the depth limit (if any)
 if dir_pattern is None:
 subdirs = walk_subdirs[:]
 else:
 subdirs = fnmatch.filter(walk_subdirs, dir_pattern)
 if excluded_dirs is not None:
 subdirs[:] = (d for d in subdirs
 if not any(fnmatch.fnmatch(d, pat)
 for pat in excluded_dirs))
 # Report depth
 current_depth = path.count(sep) - initial_depth
 yield WalkedDir(path, subdirs, files, current_depth)
 # Filter directories and implement depth limiting
 if depth is not None and current_depth >= depth:
 walk_subdirs[:] = []
 else:
 walk_subdirs[:] = subdirs

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_modules/pulpdist/core/validation.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 		Module code »

 Source code for pulpdist.core.validation

#
Copyright (C) 2011 Red Hat, Inc.
#
This software is licensed to you under the GNU General Public
License as published by the Free Software Foundation; either version
2 of the License (GPLv2) or (at your option) any later version.
There is NO WARRANTY for this software, express or implied,
including the implied warranties of MERCHANTABILITY,
NON-INFRINGEMENT, or FITNESS FOR A PARTICULAR PURPOSE. You should
have received a copy of GPLv2 along with this software; if not, see
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
"""Simple validation for JSON compatible data structures"""
import re
import copy
import json

[docs]class ValidationError(Exception): pass

[docs]def fail_validation(fmt, *args, **kwds):
 raise ValidationError(str(fmt).format(*args, **kwds))

[docs]def check_value(allowed_values, allow_none=False):
 def validator(value, setting='setting'):
 if allow_none and value is None:
 return
 if value not in allowed_values:
 fail_validation("Expected one of {0!r} for {1}, got {2!r}",
 allowed_values, setting, value)
 return validator

[docs]def check_type(expected_type, allow_none=False):
 def validator(value, setting='setting'):
 if allow_none and value is None:
 return
 if not isinstance(value, expected_type):
 fail_validation("Expected {0!r} for {1}, got {2!r}",
 expected_type, setting, type(value))
 return validator

[docs]def check_text(allow_none=False):
 # Allow either string type for now
 # TODO: Tighten this up to enforce unicode
 # Means fixing deserialisation interfaces :P
 return check_type(basestring, allow_none)

[docs]def check_regex(pattern, expected=None, allow_none=False):
 _validate_text = check_text()
 if expected is None:
 expected = "text matching {0!r}".format(pattern)
 err_msg = "Expected {0} for {{0}}, got {{1!r}}".format(expected)
 def validator(value, setting='setting'):
 if allow_none and value is None:
 return
 _validate_text(value, setting)
 # We use Unicode storage, but stick with the ASCII rules
 # for pattern matching on whitespace etc.
 if re.match(pattern, value) is None:
 fail_validation(err_msg, setting, value)
 return validator

SIMPLE_ID_REGEX = r'^[\w\-]+$'
[docs]def check_simple_id(expected='simple ID (alphanumeric, underscores, hyphens)', allow_none=False):
 return check_regex(SIMPLE_ID_REGEX, expected, allow_none)

PULP_ID_REGEX = r'^[_A-Za-z]+$'
[docs]def check_pulp_id(expected='valid Pulp ID', allow_none=False):
 return check_regex(PULP_ID_REGEX, expected, allow_none)

VALID_FILTER_REGEX = r'^[][*?@%+=:,./~_\w\-]+$'
[docs]def check_rsync_filter(allow_none=False):
 return check_regex(VALID_FILTER_REGEX, 'valid rsync filter', allow_none)

[docs]def check_rsync_filter_sequence():
 return check_sequence(check_rsync_filter())

We seriously need some better URL handling infrastructure in the stdlib...
From http://stackoverflow.com/questions/106179/regular-expression-to-match-hostname-or-ip-address
IPv4_REGEX = "^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$";
TODO: Allow IPv6 addresses as well (for now: just use hostnames if you need to access an IPv6-only host)
HOSTNAME_REGEX = "^(([a-zA-Z]|[a-zA-Z][a-zA-Z0-9\-]*[a-zA-Z0-9])\.)*([A-Za-z]|[A-Za-z][A-Za-z0-9\-]*[A-Za-z0-9])$";
VALID_HOST_REGEX = "({0})|({1})".format(IPv4_REGEX, HOSTNAME_REGEX)

[docs]def check_host(allow_none=False):
 return check_regex(VALID_HOST_REGEX, 'valid host', allow_none)

VALID_PATH_REGEX = r'^[\w@%+=:,./-]*$'
[docs]def check_path(allow_none=False):
 return check_regex(VALID_PATH_REGEX, 'valid filesystem path', allow_none)

[docs]def check_remote_path(allow_none=False):
 _validate_path = check_path()
 def validator(value, setting='setting'):
 if allow_none and value is None:
 return
 _validate_path(value, setting)
 if not value.startswith('/') or not value.endswith('/'):
 fail_validation("{0!r} must start and end with '/' "
 "characters, got {1!r}",
 setting, value)
 return validator

[docs]def check_sequence(item_validator, allow_none=False):
 def validator(value, setting='setting'):
 if allow_none and value is None:
 return
 # Check we've been given a sequence
 if isinstance(value, basestring):
 fail_validation("Strings not accepted for {0!r}, got {1!r}",
 setting, value)
 if hasattr(value, 'keys'):
 fail_validation("Mappings not accepted for {0!r}, got {1!r}",
 setting, type(value))
 try:
 itr = iter(value)
 except (TypeError, AttributeError):
 fail_validation("Expected sequence for {0!r}, got {1!r}",
 setting, type(value))
 # Check individual items
 for i, item in enumerate(itr):
 item_setting = setting + "[{0}]".format(i)
 item_validator(item, item_setting)
 return validator

[docs]def check_mapping_items(key_validator, value_validator, allow_none=False):
 def validator(value, setting='setting'):
 if allow_none and value is None:
 return
 for k, v in value.items():
 field = setting + "[{0!r}]".format(k)
 key_validator(k, field)
 value_validator(v, field)
 return validator

[docs]def check_mapping(spec, allow_none=False, allow_extra=False):
 def validator(value, setting='setting'):
 if allow_none and value is None:
 return
 # Check we've been given a mapping
 try:
 value_items = value.items()
 except (AttributeError, TypeError):
 fail_validation("Expected mapping for {0}, got {1!r}",
 setting, type(value))
 # Check for missing and extra attributes
 provided = set(value)
 expected = set(spec)
 missing = expected - provided
 if missing:
 fail_validation("{0!r} missing from {1}, got {2!r}",
 sorted(missing), setting, value)
 if not allow_extra:
 extra = provided - expected
 if extra:
 fail_validation("{0!r} unexpected in {1}, got {2!r}",
 sorted(extra), setting, value)
 # Check the validation of the individual items
 for key, value in value_items:
 if allow_extra and key not in spec:
 continue
 value_setting = setting + "[{0!r}]".format(key)
 checker = spec[key]
 if hasattr(checker, "check"):
 checker = checker.check()
 elif isinstance(checker, list):
 checker = check_sequence(checker[0].check())
 checker(value, value_setting)
 return validator

[docs]def validate_config(config, spec, *args, **kwds):
 check_mapping(spec, *args, **kwds)(config, 'config')

[docs]class ValidatedConfig(object):
 _ALLOW_NONE = False
 _ALLOW_EXTRA = False
 _SPEC = {}
 _DEFAULTS = {}

 def __init__(self, config=None):
 self.config = self._init_config(config)

 def _init_config(self, config):
 complete = copy.deepcopy(self._DEFAULTS)
 if config is not None:
 config = config.copy()
 # Check for subspecs first
 for key, spec in self._SPEC.items():
 try:
 value = config.pop(key)
 except KeyError:
 continue
 if isinstance(spec, ValidatedConfig):
 complete[key] = spec(value).config
 elif isinstance(spec, list):
 spec = spec[0]
 complete[key] = [spec(entry).config for entry in value]
 else:
 complete[key] = value
 # Make sure any unexpected values get reported on validation
 complete.update(config)
 return complete

 def __iter__(self):
 return self._SPEC.iterkeys()

[docs] def validate(self):
 self.check()(self.config, "config")

 @classmethod
[docs] def post_validate(cls, value):
 pass

 @classmethod
[docs] def check(cls):
 mapping_validator = check_mapping(cls._SPEC,
 cls._ALLOW_NONE,
 cls._ALLOW_EXTRA)
 def validator(value, setting='setting'):
 mapping_validator(value, setting)
 cls.post_validate(value)
 return validator

 @classmethod
[docs] def ensure_validated(cls, config):
 """Returns a mapping that has been validated against the spec"""
 checked_config = cls(config)
 checked_config.validate()
 return checked_config.config

 @classmethod
[docs] def from_json(cls, json_config):
 """Read the config from a JSON file and ensure it is valid"""
 checked_config = cls(json.loads(json_config))
 checked_config.validate()
 return checked_config

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/down.png

_modules/pulpdist/core/repo_config.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 		Module code »

 Source code for pulpdist.core.repo_config

#
Copyright (C) 2011 Red Hat, Inc.
#
This software is licensed to you under the GNU General Public
License as published by the Free Software Foundation; either version
2 of the License (GPLv2) or (at your option) any later version.
There is NO WARRANTY for this software, express or implied,
including the implied warranties of MERCHANTABILITY,
NON-INFRINGEMENT, or FITNESS FOR A PARTICULAR PURPOSE. You should
have received a copy of GPLv2 along with this software; if not, see
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
"""Config definitions and helpers for pulpdist importer plugins"""
from . import sync_config, validation

_fail_validation = validation.fail_validation

[docs]class RepoConfig(validation.ValidatedConfig):
 _ALLOW_EXTRA = True
 _SPEC = {
 u"repo_id": validation.check_simple_id(),
 u"display_name": validation.check_text(),
 u"description": validation.check_text(allow_none=True),
 u"notes": validation.check_type(dict, allow_none=True),
 u"importer_type_id": validation.check_pulp_id(allow_none=True),
 u"importer_config": validation.check_type(dict, allow_none=True),
 }
 _DEFAULTS = {
 u"description": None,
 u"notes": None,
 u"importer_type_id": None,
 u"importer_config": None,
 }

 _IMPORTER_CONFIGS = {
 u"simple_tree": sync_config.TreeSyncConfig,
 u"versioned_tree": sync_config.VersionedSyncConfig,
 u"snapshot_tree": sync_config.SnapshotSyncConfig,
 }

 def __init__(self, config):
 super(RepoConfig, self).__init__(config)

[docs] def validate(self):
 super(RepoConfig, self).validate()
 config = self.config
 importer_id = config["importer_type_id"]
 importer_config = config["importer_config"]
 if importer_id is None:
 if importer_config is not None:
 _fail_validation("Importer config set without importer type id")
 return
 if importer_config is None:
 _fail_validation("Importer type id set without importer config")
 try:
 config_type = self._IMPORTER_CONFIGS[importer_id]
 except KeyError:
 _fail_validation("Unknown importer type '{0}'", importer_id)
 config_type(importer_config).validate()

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/plus.png

_modules/pulpdist/core/sync_config.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 		Module code »

 Source code for pulpdist.core.sync_config

#
Copyright (C) 2011 Red Hat, Inc.
#
This software is licensed to you under the GNU General Public
License as published by the Free Software Foundation; either version
2 of the License (GPLv2) or (at your option) any later version.
There is NO WARRANTY for this software, express or implied,
including the implied warranties of MERCHANTABILITY,
NON-INFRINGEMENT, or FITNESS FOR A PARTICULAR PURPOSE. You should
have received a copy of GPLv2 along with this software; if not, see
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
"""Config definitions and helpers for pulpdist importer plugins"""
from . import validation

SYNC_TYPES = "simple versioned snapshot".split()
RETRIEVES_LISTING = SYNC_TYPES[1:]

[docs]def retrieves_listing(sync_type):
 return sync_type in RETRIEVES_LISTING

def _updated(original, additions):
 new = original.copy()
 new.update(additions)
 return new

[docs]class TreeSyncConfig(validation.ValidatedConfig):
 _SPEC = {
 u"tree_name": validation.check_text(),
 u"remote_server": validation.check_host(),
 u"remote_path": validation.check_remote_path(),
 u"local_path": validation.check_path(),
 u"exclude_from_sync": validation.check_rsync_filter_sequence(),
 u"sync_filters": validation.check_rsync_filter_sequence(),
 u"bandwidth_limit": validation.check_type(int),
 u"dry_run_only": validation.check_type(int),
 u"old_remote_daemon": validation.check_type(int),
 u"rsync_port": validation.check_type(int, allow_none=True),
 u"enabled": validation.check_type(int),
 }
 _DEFAULTS = {
 u"exclude_from_sync": (),
 u"sync_filters": (),
 u"bandwidth_limit": 0,
 u"dry_run_only": False,
 u"old_remote_daemon": False,
 u"rsync_port": None,
 u"enabled": False,
 }

[docs]class VersionedSyncConfig(TreeSyncConfig):
 _SPEC = _updated(TreeSyncConfig._SPEC, {
 u"listing_pattern": validation.check_rsync_filter(),
 u"exclude_from_listing": validation.check_rsync_filter_sequence(),
 u"listing_filters": validation.check_rsync_filter_sequence(),
 u"delete_old_dirs": validation.check_type(int),
 })
 _DEFAULTS = _updated(TreeSyncConfig._DEFAULTS, {
 u"listing_pattern": u'*',
 u"exclude_from_listing": (),
 u"listing_filters": (),
 u"delete_old_dirs": False,
 })

[docs]class SnapshotSyncConfig(VersionedSyncConfig):
 _SPEC = _updated(VersionedSyncConfig._SPEC, {
 u"latest_link_name": validation.check_path(allow_none=True),
 u"sync_latest_only": validation.check_type(int),
 })
 _DEFAULTS = _updated(VersionedSyncConfig._DEFAULTS, {
 u"latest_link_name": None,
 u"sync_latest_only": False,
 })

 def __init__(self, config=None):
 super(SnapshotSyncConfig, self).__init__(config)
 exclude_from_sync = list(self.config[u"exclude_from_sync"])
 exclude_from_sync += [u"STATUS", u".STATUS"]
 self.config[u"exclude_from_sync"] = exclude_from_sync

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_modules/pulpdist/core/mirror_config.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 		Module code »

 Source code for pulpdist.core.mirror_config

#
Copyright (C) 2011 Red Hat, Inc.
#
This software is licensed to you under the GNU General Public
License as published by the Free Software Foundation; either version
2 of the License (GPLv2) or (at your option) any later version.
There is NO WARRANTY for this software, express or implied,
including the implied warranties of MERCHANTABILITY,
NON-INFRINGEMENT, or FITNESS FOR A PARTICULAR PURPOSE. You should
have received a copy of GPLv2 along with this software; if not, see
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
"""Convert from a site mirror config to a PulpDist repo config"""

from fnmatch import fnmatch
import os.path

[docs]def make_repo(mirror):
 return MirrorConverter(mirror).config

[docs]def make_repo_id(mirror_id, site_id):
 """Derive a Pulp repo ID from a mirror ID and a site ID"""
 return u"{0}__{1}".format(mirror_id, site_id)

[docs]class MirrorConverter(object):
 def __init__(self, mirror):
 self.mirror = mirror
 self.config = {
 u"repo_id": make_repo_id(mirror.mirror_id, mirror.site_id),
 u"display_name": mirror.name or mirror.tree.name,
 u"description": mirror.description or mirror.tree.description
 }
 self.build_notes()
 self.build_importer_config()

[docs] def build_notes(self):
 mirror = self.mirror
 pulpdist = {
 u"sync_hours": mirror.tree.sync_hours,
 u"mirror_id": mirror.mirror_id,
 u"site_id": mirror.site_id,
 u"tree_id": mirror.tree_id,
 u"source_id": mirror.tree.source_id,
 u"server_id": mirror.tree.source.server_id
 }
 notes = {u"pulpdist": pulpdist}
 notes.update(mirror.notes)
 self.config[u"notes"] = notes

[docs] def build_importer_config(self):
 mirror = self.mirror
 sync_type = mirror.tree.sync_type
 tree_type = sync_type + u"_tree"
 config_builder = getattr(self, u"_build_{0}_config".format(sync_type))
 self.config[u"importer_type_id"] = tree_type
 self.config[u"importer_config"] = config_builder()

 def _build_simple_config(self):
 mirror = self.mirror
 tree = mirror.tree
 source = tree.source
 server = source.server
 site = mirror.site
 default_site = mirror.default_site
 config = {
 u"tree_name": self.config["repo_id"],
 u"remote_server": server.dns,
 u"old_remote_daemon": server.old_daemon,
 u"enabled": mirror.enabled,
 u"dry_run_only": mirror.dry_run_only,
 }
 sync_filters = mirror.sync_filters + tree.sync_filters
 config[u"sync_filters"] = sync_filters
 exclude_from_sync = sorted(set(mirror.exclude_from_sync
 + tree.exclude_from_sync
 + site.exclude_from_sync
 + default_site.exclude_from_sync))
 config[u"exclude_from_sync"] = exclude_from_sync
 mirror_path = mirror.mirror_path
 if mirror_path is None:
 mirror_path = tree.tree_path
 server_prefixes = site.server_prefixes
 server_prefixes.update(default_site.server_prefixes)
 server_prefix = server_prefixes.get(server.server_id, u"")
 source_prefixes = site.source_prefixes
 source_prefixes.update(default_site.source_prefixes)
 source_prefix = source_prefixes.get(source.source_id, u"")
 config[u"local_path"] = os.path.join(u"/",
 site.storage_prefix,
 server_prefix,
 source_prefix,
 mirror_path,
 u"")
 config[u"remote_path"] = os.path.join(u"/",
 source.remote_path,
 tree.tree_path,
 u"")
 rsync_port = server.rsync_port
 if rsync_port is not None:
 config[u"rsync_port"] = rsync_port
 return config

 def _build_versioned_config(self):
 mirror = self.mirror
 tree = mirror.tree
 site = mirror.site
 default_site = mirror.default_site
 source = tree.source
 config = self._build_simple_config()
 config[u"delete_old_dirs"] = mirror.delete_old_dirs
 listing_pattern = tree.listing_pattern
 if listing_pattern is None:
 listing_pattern = tree.listing_prefix + source.listing_suffix
 config[u"listing_pattern"] = listing_pattern
 def _matches_this(other_pattern):
 return fnmatch(listing_pattern, other_pattern)
 exclude_from_listing = sorted(set(mirror.exclude_from_listing
 + tree.exclude_from_listing
 + site.exclude_from_listing
 + default_site.exclude_from_listing))
 exclude_from_listing = [v for v in exclude_from_listing
 if not _matches_this(v)]
 config[u"exclude_from_listing"] = exclude_from_listing
 listing_filters = mirror.listing_filters + tree.listing_filters
 config[u"listing_filters"] = listing_filters
 return config

 def _build_snapshot_config(self):
 config = self._build_versioned_config()
 mirror = self.mirror
 config[u"sync_latest_only"] = mirror.sync_latest_only
 latest_link = mirror.tree.latest_link
 if latest_link is not None:
 config[u"latest_link_name"] = latest_link
 return config

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_modules/pulpdist/core/util.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 		Module code »

 Source code for pulpdist.core.util

#
Copyright (C) 2011 Red Hat, Inc.
#
This software is licensed to you under the GNU General Public
License as published by the Free Software Foundation; either version
2 of the License (GPLv2) or (at your option) any later version.
There is NO WARRANTY for this software, express or implied,
including the implied warranties of MERCHANTABILITY,
NON-INFRINGEMENT, or FITNESS FOR A PARTICULAR PURPOSE. You should
have received a copy of GPLv2 along with this software; if not, see
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.

"""util - miscellaneous utility functions
"""

This should be kept in sync with the version in the RPM spec file
The suffix should be removed before creating the RPM
__version__ = "0.1.1"

[docs]def format_iter(iterable, fmt='{0!r}', sep=', '):
 return sep.join(fmt.format(x) for x in iterable)

[docs]def call_repr(name, args):
 return "{0}({1})".format(name, format_iter(args))

[docs]def obj_repr(obj, fields):
 name = obj.__class__.__name__
 def kwds():
 for attr in fields:
 yield "{0}={1!r}".format(attr, getattr(obj, attr))
 return "{0}({1})".format(name, format_iter(kwds()))

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_modules/pulpdist/cli/thread_pool.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 		Module code »

 Source code for pulpdist.cli.thread_pool

"""Simple size constrained thread pool that blocks when all threads are busy"""

Based on Python recipe: http://code.activestate.com/recipes/577187/ (r9)
Posted by Emilio Monti: http://code.activestate.com/recipes/users/4173642/
Used under MIT License: http://www.opensource.org/licenses/mit-license.php
Retrieved 3rd April, 2012

Updates relative to original recipe:
- uses the traceback module to print a full traceback for *all* exceptions
- uses a PriorityQueue
- uses a namedtuple for Task objects (with a leading priority field)
- saves references to the workers from the pool
- customises the thread identifiers for the worker threads
- timeout support when waiting for task completion

from Queue import PriorityQueue
from threading import Thread
from traceback import format_exc
from collections import namedtuple
from time import time
import sys

Task = namedtuple("Task", "priority func args kwds")

[docs]class Worker(Thread):
 """Thread executing tasks from a given tasks queue"""
 def __init__(self, tasks, name=None):
 Thread.__init__(self, name=name)
 self.tasks = tasks
 self.daemon = True
 self.start()

[docs] def run(self):
 while True:
 task = self.tasks.get()
 try:
 task.func(*task.args, **task.kwds)
 except:
 header = "Error in {0}:\n".format(self.name)
 tb = format_exc()
 sys.stderr.write(header+tb)
 sys.stderr.flush()
 finally:
 self.tasks.task_done()

[docs]class PendingTasks(Exception):
 """Exception thrown if ThreadPool.wait_for_tasks() times out"""

[docs]class ThreadPool:
 """Pool of threads consuming tasks from a queue"""
 def __init__(self, num_threads, name="ThreadPool"):
 self.name=name
 self.tasks = PriorityQueue(num_threads)
 self.workers = [self._add_worker(i) for i in range(num_threads)]

 def _add_worker(self, index):
 name = "{0}-Worker-{1}".format(self.name, index)
 return Worker(self.tasks, name)

[docs] def add_task(self, priority, func, *args, **kwds):
 """Add a task to the queue. Blocks if all threads are busy."""
 self.tasks.put(Task(priority, func, args, kwds))

 def _join_with_timeout(self, timeout):
 """Workaround for the fact Queue.join() doesn't support timeouts"""
 tasks = self.tasks
 tasks.all_tasks_done.acquire()
 try:
 endtime = time() + timeout
 while tasks.unfinished_tasks:
 remaining = endtime - time()
 if remaining <= 0.0:
 raise PendingTasks
 tasks.all_tasks_done.wait(remaining)
 finally:
 tasks.all_tasks_done.release()

[docs] def wait_for_tasks(self, timeout=None):
 """Wait for completion of all the tasks in the queue"""
 if timeout is None:
 self.tasks.join()
 elif timeout < 0:
 raise ValueError("'timeout' must be a positive number")
 else:
 self._join_with_timeout(timeout)

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pulpdist 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/comment-close.png

