

Pull Into Place

Pull Into Place (PIP) is a protocol to design protein functional groups with
sub-angstrom accuracy. The protocol is based on two ideas: 1) using restraints
to define the geometry you’re trying to design and 2) using an unrestrained
simulations to test designs.

[image: https://img.shields.io/pypi/v/pull_into_place.svg]
 [https://pypi.python.org/pypi/pull_into_place][image: https://img.shields.io/pypi/pyversions/pull_into_place.svg]
 [https://pypi.python.org/pypi/pull_into_place][image: https://readthedocs.org/projects/pull_into_place/badge/?version=latest]
 [http://pull_into_place.readthedocs.io/en/latest/?badge=latest]The design pipeline orchestrated by PIP has the following steps:

	Define your project. This entails creating an input PDB file and preparing
it for use with rosetta, creating a restraints file that specifies your
desired geometry, creating a resfile that specifies which residues are
allowed to design, and creating a loop file that specifies where backbone
flexibility will be considered:

$ pull_into_place 01_setup_workspace ...
$ pull_into_place 02_setup_model_fragments ...

	Build a large number of models that plausibly support your desired geometry
by running flexible backbone Monte Carlo simulations restrained to stay near
said geometry. The goal is to strike a balance between finding models that
are realistic and finding models that satisfy your restraints:

$ pull_into_place 03_build_models ...

	Filter out models that don’t meet your quality criteria:

$ pull_into_place 04_pick_models_to_design ...

	Generate a number of designs for each model remaining:

$ pull_into_place 05_design_models ...

	Pick a small number of designs to validate. Typically I generate 100,000
designs and can only validate 50-100. I’ve found that randomly picking
designs according to the Boltzmann weight of their rosetta score gives a
nice mix of designs that are good but not too homogeneous:

$ pull_into_place 06_pick_designs_to_validate ...

	Validate the designs using unrestrained Monte Carlo simulations. Designs
that are “successful” will have a funnel on the left side of their score vs
rmsd plots:

$ pull_into_place 07_setup_design_fragments ...
$ pull_into_place 08_validate_designs ...

	Optionally take the decoys with the best geometry from the validation run
(even if they didn’t score well) and feed them back into step 4. Second and
third rounds of simulation usually produce much better results than the
first, because the models being designed are more realistic. Additional
rounds of simulation give diminishing returns, and may be more effected by
some of rosetta’s pathologies (i.e. it’s preference for aromatic residues):

$ pull_into_place 04_pick_models_to_design ...
$ pull_into_place 05_design_models ...
$ pull_into_place 06_pick_designs_to_validate ...
$ pull_into_place 07_setup_design_fragments ...
$ pull_into_place 08_validate_designs ...

	Generate a report summarizing a variety of quality metrics for each design.
This report is meant to help you pick designs to test experimentally:

$ pull_into_place 09_compare_best_designs ...

Installation

Typically, you would install Pull Into Place (PIP) both on your workstation and
on your supercomputing cluster. On your cluster, you would run the steps in
the pipeline that involve long rosetta simulations. On your workstation, you
would run the analysis and filtering steps between those simulations. The
reason for splitting up the work like this is that the analysis scripts have
more dependencies than the simulation scripts, and those dependencies can be
hard to install on clusters with limited internet access and/or out-of-date
software. Some of the analysis scripts also require a GUI environment, which
most clusters don’t have. Also note that the simulation scripts require
python>=2.6 while the analysis scripts require python>=2.7.

Note

Right now, the pipeline will only work as written on the QB3 cluster at
UCSF. There are two issues preventing more general use. The first issue is
that all of the scripts that submit jobs to the cluster use Sun Grid Engine
(SGE) commands to do so. This would be easy to generalize, but so far there
hasn’t been any need to do so. If you have a need, send an email to the
maintainer describing your system and we’ll do what we can to support it.

The second issue is that the fragment generation scripts contain a number of
hard-coded paths to executables and databases that are specific to the QB3
cluster. For a variety of reasons, fixing this would be a fairly serious
undertaking. Nonetheless, please let the maintainer know if you need this
done, and we’ll do what we can. In the meantime, you can try using
simulations that don’t require fragments (although these don’t perform as
well) or generating fragments yourself.

Installing PIP on your workstation

PIP is available on PyPI, so you can use pip to install it. (Sorry if the
distinction between PIP and pip is confusing. PIP is the Pull Into Place
pipeline, pip is the package manager distributed with modern versions of
python):

$ pip install 'pull_into_place [analysis]'

The [analysis] part of the command instructs pip to install all of the
dependencies for the analysis scripts. These dependencies aren’t installed by
default because they aren’t needed for the rosetta simulation steps and they
can be challenging to install on some clusters.

If the installation worked, this command should print out a nice help message:

$ pull_into_place --help

Note

If you don’t have administrator access on your workstation, or if you just
don’t want to install PIP system-wide, you can use the --user flag to
install PIP in your home directory:

$ pip install 'pull_into_place [analysis]' --user

This will install the PIP executable in ~/.local/bin, which may not be
on your $PATH by default. If the installation seemed to work but you
get a “command not found” error when trying to run pull_into_place, you
probably need to add ~/.local/bin to $PATH:

echo 'export PATH=~/.local/bin:$PATH' >> ~/.bashrc
source ~/.bashrc

GTK and the plot_funnels command

The plot_funnels command creates an interactive GUI that can show score vs
RMSD funnels, open structures corresponding to individual points in pymol
or chimera, and keep track of your notes on different designs.

In order to use this command, you have to install pygtk yourself. This
dependency is not included with the other [analysis] dependencies because
it can’t be installed with pip (except maybe on Windows). On Linux
systems, your package manager should be able to install it pretty easily:

$ apt-get install pygtk # Ubuntu
$ yum install pygtk2 # Fedora<=21
$ dnf install pygtk2 # Fedora>=22

On Mac systems, the easiest way to do this is to use homebrew to install
matplotlib with the --with-pygtk option:

$ brew install matplotlib --with-pygtk

Installing PIP on your cluster

If pip is available on your cluster, use it:

$ pip install pull_into_place

Otherwise, you will need to install PIP manually. The first step is to
download and install source distributions of setuptools [https://pypi.python.org/pypi/setuptools] and klab [https://pypi.python.org/pypi/klab]. PIP
needs setuptools [https://pypi.python.org/pypi/setuptools] to install itself and klab [https://pypi.python.org/pypi/klab] to access a number of
general-purpose tools developed by the Kortemme lab. Once those dependencies
are installed, you can download and install a source distribution of
pull_into_place [https://pypi.python.org/pypi/pull_into_place]. The next section has example command lines for all of
these steps in the specific context of the QB3 cluster at UCSF.

Installing PIP on the QB3 cluster at UCSF

Because the UCSF cluster is not directly connected to the internet, it cannot
automatically download and install dependencies. Instead, we have to do these
steps manually.

	Download the most recent source distributions for setuptools [https://pypi.python.org/pypi/setuptools], klab [https://pypi.python.org/pypi/klab],
and pull_into_place [https://pypi.python.org/pypi/pull_into_place] from PyPI (those are links, in case it’s hard to
tell) onto your workstation. When I did this, the most recent distributions
were:

	setuptools-27.2.0.tar.gz

	klab-0.3.0.tar.gz

	pull_into_place-1.2.2.tar.gz

Note

Three new dependencies were added to setuptools in version
34.0.0: six, packaging, and appdirs. You can either
install these dependencies in the same way as the others, or you can just
use an earlier version of setuptools.

	Copy the source distributions onto the cluster:

$ scp setuptools-27.2.0.tar.gz chef.compbio.ucsf.edu:
$ scp klab-0.3.0.tar.gz chef.compbio.ucsf.edu:
$ scp pull_into_place-1.2.2.tar.gz chef.compbio.ucsf.edu:

	Log onto the cluster and unpack the source distributions:

$ ssh chef.compbio.ucsf.edu
$ tar -xzf setuptools-27.2.0.tar.gz
$ tar -xzf klab-0.3.0.tar.gz
$ tar -xzf pull_into_place-1.2.2.tar.gz

	Install setuptools [https://pypi.python.org/pypi/setuptools]:

$ cd ~/setuptools-27.2.0
$ python setup.py install --user

	Install klab [https://pypi.python.org/pypi/klab]:

$ cd ~/klab-0.3.0
$ python setup.py install --user

	Install pull_into_place [https://pypi.python.org/pypi/pull_into_place]:

$ cd ~/pull_into_place-1.2.2
$ python setup.py install --user

	Make sure ~/.local/bin is on your $PATH:

The above commands install PIP into ~/.local/bin. This directory is
good because you can install programs there without needing administrator
privileges, but it’s not on your $PATH by default (which means that any
programs installed there won’t be found). This command modifies your shell
configuration file to add ~/.local/bin to your $PATH:

$ echo 'export PATH=~/.local/bin:$PATH' >> ~/.bashrc

This command reloads your shell configuration so the change takes place
immediately (otherwise you’d have to log out and back in):

$ source ~/.bashrc

	Make sure it works:

$ pull_into_place --help

Installing Rosetta

PIP also requires Rosetta to be installed, both on your workstation and on your
cluster. You can consult this page [https://www.rosettacommons.org/docs/latest/build_documentation/Build-Documentation] for more information on how to do this,
but in general there are two steps. First, you need to check out a copy of the
source code from GitHub:

$ git clone git@github.com:RosettaCommons/main.git ~/rosetta

Second, you need to compile everything:

$ cd ~/rosetta/source
$./scons.py bin mode=release -j8

Be aware that compiling Rosetta requires a C++11 compiler. This is much more
likely to cause problems on your cluster than on your workstation. If you have
problems, ask your administrator for help.

Installing Rosetta on the QB3 cluster at UCSF

Installing Rosetta on the QB3 cluster is especially annoying because the
cluster has limited access to the internet and outdated versions of both the
C++ compiler and python. As above, the first step is to check out a copy of
the Rosetta source code from GitHub. This has to be done from one of the
interactive nodes (e.g. iqint, optint1, optint2, or xeonint)
because chef and sous are not allowed to communicate with GitHub:

$ ssh chef.compbio.ucsf.edu
$ ssh iqint
$ git clone git@github.com:RosettaCommons/main.git ~/rosetta

The second step is to install the QB3-specific build settings, which specify
the path to the cluster’s C++11 compiler (among other things):

$ ln -s site.settings.qb3 ~/rosetta/source/tools/build/site.settings

The final step is to compile Rosetta. This command has several parts: scl
enable python27 causes python2.7 to be used for the rest of the command,
which scons requires. nice reduces the compiler’s CPU priority, which
helps the shell stay responsive. ./scons.py bin is the standard command to
build Rosetta. mode=release tells to compiler to leave out debugging code,
which actually makes Rosetta ≈10x faster. -j16 tells the compiler that
iqint has 16 cores for it to use:

$ cd ~/rosetta/source
$ scl enable python27 'nice ./scons.py bin mode=release -j16'

Rescue the D38E mutation in KSI

Ketosteroid isomerase (KSI) is a model enzyme that catalyzes the rearrangement
of a double bond in steroid molecules. Asp38 is the key catalytic residue
responsible for taking a proton from one site and moving it to another:

[image: ../../_images/mechanism.svg]

The enzyme is 200x less active when Asp38 is mutated to Glu (D38E), even though
Asp and Glu have the same carboxyl (COOH) functional group. The difference is
that Glu has one more carbon in its sidechain, so the COOH is shifted out of
position by just over 1Å. This demo will show everything you would need to do
to use Pull Into Place (PIP) to redesign the active site loop to correct the
position of the COOH in the D38E mutant.

[image: ../../_images/abstract.svg]

Note

This demo assumes that you’re running the Rosetta simulations on the QB3
cluster at UCSF. If you’re using a different cluster, you may have to adapt
some of the commands (most notably the ssh ones, but maybe others as
well). That said, I believe the pull_into_place commands themselves
should be the same.

Before you start

Before starting the demo, you will need to install PIP on both your workstation
and your cluster. See the installation page for
instructions. If you installed PIP correctly, this command should produce a
lengthy help message:

$ pull_into_place --help

You also need to have Rosetta compiled on both your workstation and your
cluster. See the Rosetta section of the installation page for instructions. In general, PIP doesn’t care where
rosetta is installed; it just needs a path to the installation. This tutorial
will assume that rosetta is installed in ~/rosetta such that:

$ ls ~/rosetta/source/bin
...
rosetta_scripts
...

Finally, you need to download the example input files [https://github.com/Kortemme-Lab/pull_into_place/tree/master/demos/ksi/inputs] we’ll be using onto
your cluster. If your cluster has svn installed, you can use this command
to download all these files at once:

Run this command on ``iqint`` if you're using the QB3 cluster.
$ svn export https://github.com/Kortemme-Lab/pull_into_place/trunk/demos/ksi/inputs ~/ksi_inputs

Otherwise, you can download them by hand onto your workstation and use scp
to copy them onto your cluster. You can put the input files wherever you want,
but the tutorial will assume that they’re in ~/ksi_inputs such that:

$ ls ~/ksi_inputs
EQU.cen.params
EQU.fa.params
KSI_D38E.pdb
KSI_WT.pdb
compare_to_wildtype.sho
flags
loops
resfile
restraints

Set up your workspaces

Our first step is to create a workspace for PIP. A workspace is a directory
that contains all the inputs and outputs for each simulation. We will call our
workspace ~/rescue_ksi_d38e and by the end of this step it will contain all
the input files that describe what we’re trying to design. It won’t (yet)
contain any simulation results.

We will also use workspaces to sync files between our workstation and the
cluster. The workspace on the cluster will be “normal” and will not know about
the one on our workstation. In contrast, the workspace on our workstation will
know about the one on the cluster and will be able to transfer data to and from
it:

Note

Pay attention to the ssh chef.compbio.ucsf.edu and exit commands,
because they indicate which commands are meant to be run on your workstation
and which are meant to be run on the cluster.

The ssh shef.compbio.ucsf.edu command means that you should log onto the
cluster and run all subsequent commands on the cluster. The exit
command means that you should log off the cluster and run all subsequent
commands on your workstation. If you get errors, especially ones that seem
to involve version or dependency issues, double check to make sure that
you’re logged onto the right machine.

$ ssh chef.compbio.ucsf.edu # log onto the cluster
$ pull_into_place 01 rescue_ksi_d38e
Please provide the following pieces of information:

Rosetta checkout: Path to the main directory of a Rosetta source code checkout.
This is the directory called 'main' in a normal rosetta checkout. Rosetta is
used both locally and on the cluster, but the path you specify here probably
won't apply to both machines. You can manually correct the path by changing
the symlink called 'rosetta' in the workspace directory.

Path to rosetta: ~/rosetta

Input PDB file: A structure containing the functional groups to be positioned.
This file should already be parse-able by rosetta, which often means it must be
stripped of waters and extraneous ligands.

Path to the input PDB file: ~/ksi_inputs/KSI_D38E.pdb

Loops file: A file specifying which backbone regions will be allowed to move.
These backbone regions do not have to be contiguous, but each region must span
at least 4 residues.

Path to the loops file: ~/ksi_inputs/loops

Resfile: A file specifying which positions to design and which positions to
repack. I recommend designing as few residues as possible outside the loops.

Path to resfile: ~/ksi_inputs/resfile

Restraints file: A file describing the geometry you're trying to design. In
rosetta parlance, this is more often (inaccurately) called a constraint file.
Note that restraints are not used during the validation step.

Path to restraints file: ~/ksi_inputs/restraints

Score function: A file that specifies weights for all the terms in the score
function, or the name of a standard rosetta score function. The default is
talaris2014. That should be ok unless you have some particular interaction
(e.g. ligand, DNA, etc.) that you want to score in a particular way.

Path to weights file [optional]:

Build script: An XML rosetta script that generates backbones capable of
supporting the desired geometry. The default version of this script uses KIC
with fragments in "ensemble-generation mode" (i.e. no initial build step).

Path to build script [optional]:

Design script: An XML rosetta script that performs design (usually on a fixed
backbone) to stabilize the desired geometry. The default version of this
script uses fixbb.

Path to design script [optional]:

Validate script: An XML rosetta script that samples the designed loop to
determine whether the desired geometry is really the global score minimum. The
default version of this script uses KIC with fragments in "ensemble-generation
mode" (i.e. no initial build step).

Path to validate script [optional]:

Flags file: A file containing command line flags that should be passed to every
invocation of rosetta for this design. For example, if your design involves a
ligand, put flags related to the ligand parameter files in this file.

Path to flags file [optional]: ~/ksi_inputs/flags

Setup successful for design 'rescue_ksi_d38e'.

Note

You don’t need to type out the full names of PIP subcommands, you just need
to type enough to be unambiguous. So pull_into_place 01 is the same as
pull_into_place 01_setup_workspace.

You may have noticed that we were not prompted for the EQU.cen.params,
EQU.fa.params, KSI_WT.pdb, or compare_to_wildtype.sho files.
EQU.cen.params and EQU.fa.params are ligand parameters for centroid and
fullatom mode, respectively. PIP doesn’t specifically ask for ligand parameter
files, but we still need them for our simulations because we referenced them in
flags:

$ cat ~/rescue_ksi_d38e/flags
-extra_res_fa EQU.fa.params
-extra_res_cen EQU.cen.params

The paths in flags are relative to the workspace directory, because PIP
sets the current working directory to the workspace directory for every
simulation it runs. Therefore, in order for these paths to be correct, we have
to manually copy the ligand parameters files into the workspace:

$ cp ~/ksi_inputs/EQU.*.params ~/rescue_ksi_d38e
$ exit # log off the cluster and return to your workstation

KSI_WT.pdb is the structure of the wildtype KSI enzyme and
compare_to_wildtype.sho is a script that configures and displays scenes in
pymol that compare design models against KSI_WT.pdb. PIP itself doesn’t
need these files, but we will use them later on to evaluate designs. For now
just copy them into the workspace:

$ cp ~/ksi_inputs/KSI_WT.pdb ~/rescue_ksi_d38e
$ cp ~/ksi_inputs/compare_to_wildtype.sho ~/rescue_ksi_d38e

Now that the workspace on the cluster is all set up, we can make a workspace on
our workstation that links to it:

$ cd ~
$ pull_into_place 01 -r rescue_ksi_d38e
Please provide the following pieces of information:

Rosetta checkout: Path to the main directory of a Rosetta source code checkout.
This is the directory called 'main' in a normal rosetta checkout. Rosetta is
used both locally and on the cluster, but the path you specify here probably
won't apply to both machines. You can manually correct the path by changing
the symlink called 'rosetta' in the workspace directory.

Path to rosetta: ~/rosetta

Rsync URL: An ssh-style path to the directory that contains (i.e. is one level
above) the remote workspace. This workspace must have the same name as the
remote one. For example, to link to "~/path/to/my_design" on chef, name this
workspace "my_design" and set its rsync URL to "chef:path/to".

Path to project on remote host: chef.compbio.ucsf.edu:

receiving incremental file list
./
EQU.cen.params
EQU.fa.params
build_models.xml
design_models.xml
flags
input.pdb.gz
loops
resfile
restraints
scorefxn.wts
validate_designs.xml
workspace.pkl

sent 322 bytes received 79,420 bytes 31,896.80 bytes/sec
total size is 78,647 speedup is 0.99

If this command was successful, all of the input files from the cluster, even
the ligand parameters, will have been automatically copied from the cluster to
your workstation. This workspace is also properly configured for you to use
pull_into_place push_data and pull_into_place fetch_data to copy data
to and from the cluster.

Build initial backbone models

The first actual design step in the pipeline is to generate a large number of
backbone models that support the desired sidechain geometry. This will be done
by running a flexible backbone simulation while applying the restraints we
added to the workspace.

You can control which loop modeling algorithm is used for this step by manually
editing build_models.xml. The default algorithm is kinematic closure (KIC)
with fragments, which samples conformations from a fragment library and uses
KIC to keep the backbone closed. This algorithm was chosen for its ability to
model large conformational changes, but it does require us to make a fragment
library before we can run the model-building simulation:

$ ssh chef.compbio.ucsf.edu
$ pull_into_place 02_setup_model_fragments rescue_ksi_d38e

Note

Generating fragment libraries is the most fragile part of the pipeline. It
only works on the QB3 cluster at UCSF, and even there it breaks easily. If
you have trouble with this step, you can consider using a loop modeling
algorithm that doesn’t require fragments.

This step should take about an hour. Once it finishes, we can generate our
models:

$ pull_into_place 03 rescue_ksi_d38e --test-run
$ exit

With the --test-run flag, which dramatically reduces both the number and
length of the simulations, this step should take about 30 minutes. This flag
should not be used for production runs, but I will continue to use it
throughout this demo with the idea that your goal is just to run through the
whole pipeline as quickly as possible.

Once the simulations finish, we can download the results to our workstation and
visualize them:

$ pull_into_place fetch_data rescue_ksi_d38e
$ pull_into_place plot_funnels rescue_ksi_d38e/01_restrained_models/outputs

Note

On Mac OS, you may have to give the plot_funnels command the -F
flag. This flag prevents the GUI from detaching from the terminal and
running in a background process. This behavior is normally convenient
because it allows you to keep using the terminal while the GUI is open, but
on Mac OS it seems to cause problems.

[image: ../../_images/plot_funnels.png]
A screenshot of the plot_funnels GUI.

Remember that the purpose of this step is to generate physically realistic
models with the geometry we want to design. These two goals are somewhat at
odds with each other, in the sense that models that are less physically
realistic should be able to achieve more ideal geometries. The second command
displays a score vs. restraint satisfaction plot that we can use to judge how
wells these two goals were balanced. If too many models superimpose with the
restraints too well, the restraints might too strong. If too few models get
within 1Å of the restraints, they might be to weak. You can tune the weights
of the restraints by manually editing shared_defs.xml.

Stabilize good backbone models

The next step in the pipeline is to select a limited number of backbone models
to carry forward and to generate a number of designed sequences for each of
those models. It’s worth noting that the first step in the pipeline already
did some design, so the purpose of this step is more to quickly generate a
diversity of designs than to introduce mutations for the first time.

The following command specifies that we want to carry forward any model that
puts its Glu within 1.0Å of where we restrained it to be:

$ pull_into_place 04 rescue_ksi_d38e 1 'restraint_dist < 1.0'
Selected 4 of 8 models

Note

This command just makes symlinks from the output directory of the model
building command to the input directory of the design command. The models
that aren’t selected aren’t deleted, and you run this command more than once
if you change your mind about which models you want to keep.

This is a very relaxed threshold because we used --test-run in the previous
step and don’t have very many models to pick from. For a production run, I
would try to set the cutoff close to 0.6Å while still keeping a couple thousand
models. You can also eliminate models based on total score and a number of
other metrics; use the --help flag for more information.

Also note that we had to specify the round “1” after the name of the workspace.
In fact, most of the commands from here on out will expect a round number.
This is necessary because, later on, we will be able to start new rounds of
design by picking models from the results of validation simulations. We’re
currently in round 1 because we’re still making our first pass through the
pipeline.

Once we’ve chosen which models to design, we need to push that information to
the cluster:

$ pull_into_place push rescue_ksi_d38e

Then we can log into the cluster and start the design simulations:

$ ssh chef.compbio.ucsf.edu
$ pull_into_place 05 rescue_ksi_d38e 1 --test-run
$ exit

With the --test-run flag, this step should take about 30 min. When the
design simulations are complete, we can download the results to our workstation
as before:

$ pull_into_place fetch_data rescue_ksi_d38e

Validate good designs

You could have hundreds of thousands of designs after the design step, but it’s
only really practical to validate about a hundred of those. Due to this vast
difference in scale, picking which designs to validate is not a trivial task.

PIP approaches this problem by picking designs with a probability proportional
to their Boltzmann-weighted scores. This is naive in the sense that it only
considers score (although we are interested in considering more metrics), but
more intelligent than simply picking the lowest scores, which tend to be very
structurally homogeneous:

$ pull_into_place 06_pick rescue_ksi_d38e 1 -n5
Total number of designs: 39
 minus duplicate sequences: 13
 minus current inputs: 13

Press [enter] to view the designs that were picked and the distributions that
were used to pick them. Pay particular attention to the CDF. If it is too
flat, the temperature (T=2.0) is too high and designs are essentially being
picked randomly. If it is too sharp, the temperature is too low and only the
highest scoring designs are being picked.

Accept these picks? [Y/n] y
Picked 5 designs.

This command will open a window to show you how the scores are distributed and
which were picked. As the command suggests, it worth looking at the cumulative
distribution function (CDF) of the Boltzmann-weighted scores to make sure it’s
neither too flat nor too sharp. This is a subjective judgment, but one good
rule of thumb is that the designs being picked (represented by the circles)
should be mostly, but not exclusively, low-scoring. The CDF below looks about
like what you’d want:

[image: ../../_images/06_pick_designs_to_validate.png]
A screenshot of the 06_pick_designs_to_validate GUI.

The -n5 argument instructs PIP to pick 5 designs to validate. The default
is 50, which would be appropriate for a production run. However, in this demo
we only have about 50 designs because we’ve been using the --test-run flag.
The algorithm that picks from a Boltzmann weighted distribution gets very slow
when the number of designs to pick is close to the number of designs to pick
from, which is why we only pick 5.

It’s also worth noting that there is a 06_manually_pick_designs_to_validate
command that you can use if you have a PDB file with a specific mutation
(perhaps that you made in pymol) that you want to validate. This is not
normally part of the PIP pipeline, though:

$ pull_into_place 06_man rescue_ksi_d38e 1 path/to/manual/design.pdb

We can push our picks to the cluster in the same way as before:

$ pull_into_place push rescue_ksi_d38e

The validation step consists of 500 independent loop modeling simulations for
each design, without restraints. As with the model building step, the default
algorithm is KIC with fragments and we need to create fragment libraries before
we can start the simulations:

$ ssh chef.compbio.ucsf.edu
$ pull_into_place 07 rescue_ksi_d38e 1

Once the fragment libraries have been created (as before, this should take
about an hour), we can run the validation simulations:

$ pull_into_place 08 rescue_ksi_d38e 1 --test-run
$ exit

We could wait for the simulations to finish (which as before will take about 30
min) then download the results to our workstation using the same fetch_data
command as before. However, I generally prefer to use the following command to
automatically download and cache the results from the validation simulations as
they’re running:

$ pull_into_place fetch_and_cache rescue_ksi_d38e/03_validated_designs_round_1/outputs --keep-going

The simulations in production runs generate so much data that it can take
several hours just to download and parse it all. This command gets rid of that
wait by checking to see if any new data has been generated, and if it has,
downloading it, parsing it, and caching the information that the rest of the
pipeline will need to use. The --keep-going flag tells the command to keep
checking for new data over and over again until you hit Ctrl-C, otherwise
it would check once and stop.

Once we’ve downloaded all the data, we can use the plot command again to
visualize the validation results:

$ pull_into_place plot rescue_ksi_d38e/03_validated_designs_round_1/outputs/*

The plot GUI has a number of features that can help you delve into your
simulation results and find good designs. First, notice that there is a panel
on the left listing all of the designs that were validated. You can click on a
design to view the results for that design. You can also hit j and k
to quickly scroll through the designs.

Second, notice that there is a place to take notes on the current design below
the plot. The search bar in the top left can be used to filter designs based
on these notes. One convention that I find useful is to mark designs with +,
++, +++, etc. depending on how much I like them, so I can easily select
interesting designs by searching for the corresponding number of + signs.

Third, you can view the model corresponding to any particular point by
right-clicking (or Ctrl-clicking) on that point and choosing one of the options
in the menu that appears. For example, try choosing “Compare to wildtype”.
Behind the scenes, this runs the compare_to_wildtype.sho script that we
copied into the workspace with the path to the selected model as the first and
only argument. That script then runs pymol with the design superimposed on
the wildtype structure, a number of useful selections pre-defined, the proteins
rendered as cartoons, the ligands rendered as sticks, and the camera positioned
with a good vantage point of the active-site loop.

[image: ../../_images/compare_to_wildtype.png]
A screenshot of the pymol scene created by compare_to_wildtype.sho.

Within pymol, I use a plugin I wrote called wt_vs_mut to see how the
design model differs from the wildtype structure. The plugin’s philosophy is
to focus on each mutation one-at-a-time, to try to understand what interactions
the wildtype residue was making and how those interactions are (or are not)
being accommodated by the mutant residue. If this sounds useful to you, visit
this page [https://github.com/kalekundert/wt_vs_mut] for instructions on how to install and use wt_vs_mut.
“Compare to wildtype” pre-loads a shortcut to run wt_vs_mut with the
correct arguments, so once you have the plugin installed, you can simply type
ww to run it.

The plot command has several other features and hotkeys that aren’t
described here, so you may find it worthwhile to read its complete help text:

$ pull_into_place plot --help

Iterate the design process

Often, some of the models from the validation simulations will fulfill the
design goal really well despite not scoring very well. These models are
promising because they’re clearly capable of supporting the desired geometry,
and they may just need another round of design to make the conformation in
question the most favorable.

You can use the 04_pick_models_to_design command to pick models from the
validation simulations to redesign. The command has exactly the same form as
when we used it after the model building step, we just need to specify that
we’re in round 2 instead of round 1:

$ pull_into_place 04 rescue_ksi_d38e 2 'restraint_dist < 1'

I won’t repeat the remaining commands in the pipeline, but they’re exactly the
same as before, with the round number updated as appropriate.

For a production run, I would recommend doing at least two rounds of design. I
believe that models from the validation simulations – which are the basis for
the later rounds of design – are more relaxed than the initial models, which
makes them better starting points for design. At the same time, I would
recommend against doing more than three or four rounds of design, because
iterated cycles of backbone optimization and design seem to provoke artifacts
in Rosetta’s score function.

Pick designs to test experimentally

The final step in the PIP pipeline is to interpret the results from the
validation simulations and to choose an experimentally tractable number of
designs to test. The primary results from the validation simulations are the
score vs. restraint satisfaction plots. Promising designs will have distinct
“funnels” in these plots: the models with the best geometries (i.e. restraint
satisfaction) will also be the most stable (i.e. Rosetta score).

However, there are other factors we might want to consider as well. For
example, you might be suspicious of designs with large numbers of glycine,
proline, or aromatic mutations. You might also want to know which designs are
the most similar to each other – either in terms of sequence or structure –
so you can avoid wasting time testing two designs that are nearly identical.
Finally, you might be interested in some of general-purpose metrics of protein
stability that are not well represented by score alone, like the number of
buried unsatisfied H-bonds or the amount of strain in the designed sidechains.

The following command generates a spreadsheet that collects all this
information in one place:

$ pull_into_place 09 rescue_ksi_d38e 1

This command will create a file called quality_metrics.xlsx that you can
open with Excel or any other spreadsheet program. By default, the spreadsheet
will only include entries for designs where the lowest scoring model is within
1.2Å of satisfying the restraints. Each column presents a different quality
metric, and each cell is colored according to how favorable that value of that
metric is. The precise meaning and interpretation of each metric is discussed
below:

	Resfile Sequence

	Show the amino acid identity of every position that was allowed to mutate in
the design (although not all of the positions are necessarily different from
wildtype). Use this information to look for specific sequence motifs that
make you suspicious.

	Sequence Cluster

	Show which designs have the most similar sequences. Only positions that
were allowed to design are considered in this clustering, and no alignment
is done. The sequences are simply compared using a score matrix like
BLOSUM80. Use this metric to avoid picking too many designs that are too
similar to each other.

	Struct Cluster

	Show which designs are the most structurally similar. This metric works by
creating a hierarchical clustering of the lowest scoring models for each
design based on loop backbone RMSD. Clusters are then made such that every
member in every cluster is within a certain loop RMSD of all its peers. Use
this metric to avoid picking too many designs that are too similar to each
other.

	Restraint Dist (Å)

	Show how well each design satisfies the design goal, as embodied by the
restraints given at the very beginning of the pipeline.

	Score Gap (REU)

	Show the difference in score between the lowest scoring models with
restraint distances less than and greater than 1Å and 2Å, respectively. Use
this metric to get a rough idea of how deep the score vs. RMSD funnel is for
each design.

	% Subangstrom

	Show what percent of the models from the validation simulations had
sub-angstrom restraint distances. Use this metric to get a rough idea of
how well-populated the score vs. RMSD funnel is.

	# Buried Unsats

	Show how many buried unsatisfied H-bonds each design has, relative to the
input structure given at the very beginning of the pipeline. This is
something that’s not accounted for by the Rosetta score function, but that
can do a very good job discriminating reasonable backbones from horrible
ones.

	Dunbrack (REU)

	Show the Dunbrack score for each residue that was part of the design goal
(i.e. was restrained in the building step). High Dunbrack scores indicate
unlikely sidechain conformations.

Command Usage

Pull Into Place (PIP) is a protocol to design protein functional groups with
sub-angstrom accuracy. The protocol is based on two ideas: 1) using restraints
to define the geometry you're trying to design and 2) using an unrestrained
simulations to test designs.

Usage:
 pull_into_place <command> [<args>...]
 pull_into_place --version
 pull_into_place --help

Arguments:
 <command>
 The name of the command you want to run. You only need to specify
 enough of the name to be unique. Broadly speaking, there are two
 categories of scripts. The first are part of the main design pipeline.
 These are prefixed with numbers so that you know the order to run them
 in. The second are helper scripts and are not prefixed.

 01_setup_workspace cache_models
 02_setup_model_fragments count_models
 03_build_models fetch_and_cache_models
 04_pick_models_to_design fetch_data
 05_design_models make_web_logo
 06_manually_pick_designs_to_validate plot_funnels
 06_pick_designs_to_validate push_data
 07_setup_design_fragments
 08_validate_designs
 09_compare_best_designs

 <args>...
 The necessary arguments depend on the command being run. For more
 information, pass the '--help' flag to the command you want to run.

Options:
 -v, --version
 Display the version of PIP that's installed.

 -h, --help
 Display this help message.

PIP's design pipeline has the following steps:

1. Define your project. This entails creating an input PDB file and preparing
 it for use with rosetta, creating a restraints file that specifies your
 desired geometry, creating a resfile that specifies which residues are
 allowed to design, and creating a loop file that specifies where backbone
 flexibility will be considered.

 $ pull_into_place 01_setup_workspace ...

2. Build a large number of models that plausibly support your desired geometry
 by running flexible backbone Monte Carlo simulations restrained to stay near
 said geometry. The goal is to find a balance between finding models that
 are realistic and that satisfy your restraints.

 $ pull_into_place 02_setup_model_fragments ...
 $ pull_into_place 03_build_models ...

3. Filter out models that don't meet your quality criteria.

 $ pull_into_place 04_pick_models_to_design ...

4. Generate a number of designs for each model remaining.

 $ pull_into_place 05_design_models ...

5. Pick a small number of designs to validate. Typically I generate 100,000
 designs and can only validate 50-100. I've found that randomly picking
 designs according to the Boltzmann weight of their rosetta score gives a
 nice mix of designs that are good but not too homogeneous.

 $ pull_into_place 06_pick_designs_to_validate ...

6. Validate the designs using unrestrained Monte Carlo simulations. Designs
 that are "successful" will have a funnel on the left side of their score vs
 rmsd plots.

 $ pull_into_place 07_setup_design_fragments ...
 $ pull_into_place 08_validate_designs ...

7. Optionally take the decoys with the best geometry from the validation run
 (even if they didn't score well) and feed them back into step 3. Second and
 third rounds of simulation usually produce much better results than the
 first, because the models being designed are more realistic. Additional
 rounds of simulation give diminishing returns, and may be more effected by
 some of rosetta's pathologies (i.e. it's preference for aromatic residues).

 $ pull_into_place 04_pick_models_to_design ...
 $ pull_into_place 05_design_models ...
 $ pull_into_place 06_pick_designs_to_validate ...
 $ pull_into_place 07_setup_design_fragments ...
 $ pull_into_place 08_validate_designs ...

8. Generate a report summarizing a variety of quality metrics for each design.
 This report is meant to help you pick designs to test experimentally.

 $ pull_into_place 09_compare_best_designs ...

Step 1: Setup workspace

Query the user for all the input data needed for a design. This includes a
starting PDB file, the backbone regions that will be remodeled, the residues
that will be allowed to design, and more. A brief description of each field is
given below. This information is used to build a workspace for this design
that will be used by the rest of the scripts in this pipeline.

Usage:
 pull_into_place 01_setup_workspace <workspace> [--remote] [--overwrite]

Options:
 --remote, -r
 Setup a link to a design directory on a remote machine, to help with
 transferring data between a workstation and a cluster. Note: the
 remote and local design directories must have the same name.

 --overwrite, -o
 If a design with the given name already exists, remove it and replace
 it with the new design created by this script.

Step 2: Setup model fragments

Generate fragments for the initial model building simulations. Note that it's
a little bit weird to use fragments even though the models are allowed to
design in these simulations. Conformations that are common for the current
sequence but rare for the original one might not get sampled. However, we
believe that the improved sampling that fragments offer outweighs this
potential drawback.

Usage:
 pull_into_place 02_setup_model_fragments <workspace> [options]

Options:
 -L, --ignore-loop-file
 Generate fragments for the entire input structure, not just for the
 region that will be remodeled as specified in the loop file. This is
 currently necessary only if multiple loops are being remodeled.

 -m, --mem-free=MEM [default: 2]
 The amount of memory (GB) to request from the cluster. Bigger systems
 may need more memory, but making large memory requests can make jobs
 take much longer to come off the queue (since there may only be a few
 nodes with enough memory to meet the request).

 -d, --dry-run
 Print out the command-line that would be used to generate fragments,
 but don't actually run it.

Step 3: Build models

Build models satisfying the design goal. Only the regions of backbone
specified by the loop file are allowed to move and only the residues specified
in the resfile are allowed to design. The design goal is embodied by the
restraints specified in the restraints file.

Usage:
 pull_into_place 03_build_models <workspace> [options]

Options:
 --nstruct NUM, -n NUM [default: 10000]
 The number of jobs to run. The more backbones are generated here, the
 better the rest of the pipeline will work. With too few backbones, you
 can run into a lot of issues with degenerate designs.

 --max-runtime TIME [default: 12:00:00]
 The runtime limit for each model building job.

 --max-memory MEM [default: 1G]
 The memory limit for each model building job.

 --test-run
 Run on the short queue with a limited number of iterations. This
 option automatically clears old results.

 --clear
 Clear existing results before submitting new jobs.

Step 4: Pick models to design

Pick backbone models from the restrained loopmodel simulations to carry on
though the rest of the design pipeline. The next step in the pipeline is to
search for the sequences that best stabilize these models. Models can be
picked based on number of criteria, including how well the model satisfies the
given restraints and how many buried unsatisfied H-bonds are present in the
model. All of the criteria that can be used are described in the "Queries"
section below.

Usage:
 pull_into_place 04_pick_models_to_design [options]
 <workspace> <round> <queries>...

Options:
 --clear, -x
 Remove any previously selected "best" models.

 --recalc, -f
 Recalculate all the metrics that will be used to choose designs.

 --dry-run, -d
 Choose which models to pick, but don't actually make any symlinks.

Queries:
 The queries provided after the workspace name and round number are used to
 decide which models to carry forward and which to discard. Any number of
 queries may be specified; only models that satisfy each query will be
 picked. The query strings use the same syntax of the query() method of
 pandas DataFrame objects, which is pretty similar to python syntax.
 Loosely speaking, each query must consist of a criterion name, a comparison
 operator, and a comparison value. Only 5 criterion names are recognized:

 "restraint_dist"
 The average distance between all the restrained atoms and their target
 positions in a model.
 "loop_dist"
 The backbone RMSD of a model relative to the input structure.
 "buried_unsat_score"
 The change in the number of buried unsatisfied H-bonds in a model
 relative to the input structure.
 "dunbrack_score"
 The average Dunbrack score of any sidechains in a model that were
 restrained during the loopmodel simulation.
 "total_score"
 The total score of a model.

 Some example query strings:

 'restraint_dist < 0.6'
 'buried_unsat_score <= 4'

Step 5: Design models

Find sequences that stabilize the backbone models built previously. The same
resfile that was used for the model building step is used again for this step.
Note that the model build step already includes some design. The purpose of
this step is to expand the number of designs for each backbone model.

Usage:
 pull_into_place 05_design_models <workspace> <round> [options]

Options:
 --nstruct NUM, -n NUM [default: 100]
 The number of design jobs to run.

 --max-runtime TIME [default: 0:30:00]
 The runtime limit for each design job. The default value is
 set pretty low so that the short queue is available by default. This
 should work fine more often than not, but you also shouldn't be
 surprised if you need to increase this.

 --max-memory MEM [default: 1G]
 The memory limit for each design job.

 --test-run
 Run on the short queue with a limited number of iterations. This
 option automatically clears old results.

 --clear
 Clear existing results before submitting new jobs.

Step 6: Pick designs to validate

Pick a set of designs to validate. This is actually a rather challenging task
because so few designs can be validated. Typically the decision is made based
on sequence identity and rosetta score. It might be nice to add a clustering
component as well.

Usage:
 pull_into_place 06_pick_designs_to_validate
 <workspace> <round> [<queries>...] [options]

Options:
 --num NUM, -n NUM [default: 50]
 The number of designs to pick. The code can gets stuck and run for a
 long time if this is too close to the number of design to pick from.

 --temp TEMP, -t TEMP [default: 2.0]
 The parameter controlling how often low scoring designs are picked.

 --clear, -x
 Forget about any designs that were previously picked for validation.

 --recalc, -f
 Recalculate all the metrics that will be used to choose designs.

 --dry-run
 Don't actually fill in the input directory of the validation workspace.
 Instead just report how many designs would be picked.

Step 6’: Manually pick designs to validate

Manually provide designs to validate.

The command accepts any number of pdb files, which should already contain the
mutations you want to test. These files are simply copied into the workspace
in question. The files are copied (not linked) so they're less fragile and
easier to copy across the network.

Usage:
 pull_into_place 06_manually_pick_designs_to_validate [options]
 <workspace> <round> <pdbs>...

Options:
 --clear, -x
 Forget about any designs that were previously picked for validation.

Step 7: Setup design fragments

Generate fragments for the design validation simulations. Each design has a
different sequence, so each input needs its own fragment library. You can skip
this step if you don't plan to use fragments in your validation simulations,
but other algorithms may not perform as well on long loops.

Usage:
 pull_into_place 07_setup_design_fragments <workspace> <round> [options]

Options:
 -m, --mem-free=MEM [default: 2]
 The amount of memory (GB) to request from the cluster. Bigger systems
 may need more memory, but making large memory requests can make jobs
 take much longer to come off the queue (since there may only be a few
 nodes with enough memory to meet the request).

 -d, --dry-run
 Print out the command-line that would be used to generate fragments,
 but don't actually run it.

Step 8: Validate designs

Validate the designs by running unrestrained flexible backbone simulations.
Only regions of the backbone specified by the loop file are allowed to move.
The resfile used in the previous steps of the pipeline is not respected here;
all residues within 10A of the loop are allowed to pack.

Usage:
 pull_into_place 08_validate_designs <workspace> <round> [options]

Options:
 --nstruct NUM, -n NUM [default: 500]
 The number of simulations to run per design.

 --max-runtime TIME [default: 24:00:00]
 The runtime limit for each validation job.

 --max-memory MEM [default: 1G]
 The memory limit for each validation job.

 --test-run
 Run on the short queue with a limited number of iterations. This
 option automatically clears old results.

 --clear
 Clear existing results before submitting new jobs.

Step 9: Compare best designs

Create a nicely organized excel spreadsheet comparing all of the validated
designs in the given workspace where the lowest scoring decoy within some
threshold of the target structure.

Usage:
 pull_into_place 09_compare_best_designs <workspace> [<round>] [options]

Options:
 -t, --threshold RESTRAINT_DIST [default: 1.2]
 Only consider designs where the lowest scoring decoy has a restraint
 satisfaction distance less than the given threshold.

 -u, --structure-threshold LOOP_RMSD
 Limit how different two loops can be before they are placed in
 different clusters by the structural clustering algorithm.

 -q, --num-sequence-clusters NUM_CLUSTERS [default: 0]
 Specify how many sequence clusters should be created. If 0, the
 algorithms will try to detect the number of clusters that best matches
 the data on its own.

 -s, --subs-matrix NAME [default: blosum80]
 Specify a substitution matrix to use for the sequence clustering
 metric. Any name that is understood by biopython may be used. This
 includes a lot of the BLOSUM and PAM matrices.

 -p, --prefix PREFIX
 Specify a prefix to append to all the files generated by this script.
 This is useful for discriminating files generated by different runs.

 -v, --verbose
 Output sanity checks and debugging information for each calculation.

Cache models

Cache various distance and score metrics for each model in the given directory.
After being cached, a handful of these metrics are printed to the terminal to
show that things are working as expected.

Usage:
 pull_into_place cache_models <directory> [options]

Options:
 -r PATH, --restraints PATH
 Specify a restraints file that can be used to calculate the "restraint
 distance" metric. If the directory specified above was created by the
 01_setup_pipeline script, this flag is optional and will default to the
 restraints used in that pipeline.

 -f, --recalc
 Force the cache to be regenerated.

Count models

Count the number of models meeting the given query.

Usage:
 pull_into_place count_models <directories>... [options]

Options:
 --query QUERY, -q QUERY
 Specify which models to include in the count.

 --recalc, -f
 Recalculate all the metrics that will be used to choose designs.

 --restraints PATH
 The path to a set of restraints that can be used to recalculate the
 restraint_distance metric. This is only necessary if the cache is
 being regenerated in a directory that is not a workspace.

Queries:
 The query string uses the same syntax as the query() method of pandas
 DataFrame objects, which is pretty similar to python syntax. Loosely
 speaking, each query must consist of a criterion name, a comparison
 operator, and a comparison value. Only 5 criterion names are recognized:

 "restraint_dist"
 The average distance between all the restrained atoms and their target
 positions in a model.
 "loop_dist"
 The backbone RMSD of a model relative to the input structure.
 "buried_unsat_score"
 The change in the number of buried unsatisfied H-bonds in a model
 relative to the input structure.
 "dunbrack_score"
 The average Dunbrack score of any sidechains in a model that were
 restrained during the loopmodel simulation.
 "total_score"
 The total score of a model.

 Some example query strings:

 'restraint_dist < 0.6'
 'buried_unsat_score <= 4'

Fetch and cache models

Download models from a remote host then cache a number of distance and score
metrics for each one. This script is meant to be called periodically during
long running jobs, to reduce the amount of time you have to spend waiting to
build the cache at the end.

Usage:
 pull_into_place fetch_and_cache_models <directory> [options]

Options:
 --remote URL, -r URL
 Specify the URL to fetch data from. You can put this value in a file
 called "rsync_url" in the local workspace if you don't want to specify
 it on the command-line every time.

 --include-logs, -i
 Fetch log files (i.e. stdout and stderr) in addition to everything
 else. Note that these files are often quite large, so this may take
 significantly longer.

 --keep-going, -k
 Keep attempting to fetch and cache new models until you press Ctrl-C.
 You can run this command with this flag at the start of a long job, and
 it will incrementally cache new models as they are produced.

 --wait-time MINUTES, -w MINUTES [default: 5]
 The amount of time to wait in between attempts to fetch and cache new
 models, if the --keep-going flag was given.

Fetch data

Copy design files from a remote source. A common application is to copy
simulation results from the cluster to a workstation for analysis. The given
directory must be contained within a workspace created by 01_setup_workspace.

Usage:
 pull_into_place fetch_data <directory> [options]

Options:
 --remote URL, -r URL
 Specify the URL to fetch data from. You can put this value in a file
 called "rsync_url" in the local workspace if you don't want to specify
 it on the command-line every time.

 --include-logs, -i
 Fetch log files (i.e. stdout and stderr) in addition to everything
 else. Note that these files are often quite large, so this may take
 significantly longer.

 --dry-run, -d
 Output the rsync command that would be used to fetch data.

Make web logo

Create a web logos for sequences generated by the design pipeline.

Usage:
 pull_into_place make_web_logo <workspace> <round> <pdf_output>

It would be nice to pass all unparsed options through to weblogo. I'll have to
think a bit about how to do that.

Plot funnels

Visualize the results from the loop modeling simulations in PIP and identify
promising designs.

Usage:
 pull_into_place plot_funnels <pdb_directories>... [options]

Options:
 -F, --no-fork
 Do not fork into a background process.

 -f, --force
 Force the cache to be regenerated.

 -q, --quiet
 Build the cache, but don't launch the GUI.

This command launches a GUI designed to visualize the results for the loop
modeling simulations in PIP and to help you identify promising designs. To
this end, the following features are supported:

1. Extract quality metrics from forward-folded models and plot them against
 each other in any combination.

2. Easily visualize specific models by right-clicking on plotted points.
 Add your own visualizations by writing `*.sho' scripts.

3. Plot multiple designs at once, for comparison purposes.

4. Keep notes on each design, and search your notes to find the designs you
 want to visualize.

Generally, the only arguments you need are the names of one or more directories
containing the PDB files you want to look at. For example:

 $ ls -R
 .:
 design_1 design_2 ...

 ./design_1:
 model_1.pdb model_2.pdb ...

 ./design_2:
 model_1.pdb model_2.pdb ...

 $ pull_into_place plot_funnels design_*

This last command will launch the GUI. If you specified more than one design
on the command line, the GUI will have a panel on the left listing all the
designs being compared. You can control what is plotted by selecting one or
more designs from this list. The search bar at the top of this panel can be
used to filter the list for designs that have the search term in their
descriptions. The buttons at the bottom can be used to save information about
whatever designs are selected. The "Save selected paths" button will save a
text file listing the path to the lowest scoring model for each selected
design. The "Save selected funnels" button will save a PDF with the plot for
each selected design on a separate page.

The upper right area of the GUI will contain a plot with different metrics on
the two axes where each point represents a single model. You can right-click
on any point to take an action on the model represented by that point. Usually
this means visualizing the model in an external program, like pymol or chimera.
You can also run custom code by writing a script with the extension *.sho that
takes the path of a model as its only argument. ``plot_funnels`` will search
for scripts with this extension in every directory starting with the directory
containing the model in question and going down all the way to the root of the
file system. Any scripts that are found are added to the menu you get by
right-clicking on a point, using simple rules (the first letter is capitalized
and underscores are converted to spaces) to convert the file name into a menu
item name.

The tool bar below the plot can be used to pan around, zoom in or out, save an
image of the plot, or change the axes. If the mouse is over the plot, its
coordinates will be shown just to the right of these controls. Below the plot
is a text form which can be used to enter a description of the design. These
descriptions can be searched. I like using the '+', '++', ... convention to
rank designs so I can easily search for increasingly good designs.

Hotkeys:
 j,f,down: Select the next design, if there is one.
 k,d,up: Select the previous design, if there is one.
 i,a: Focus on the description form.
 z: Use the mouse to zoom on a rectangle.
 x: Use the mouse to pan (left-click) or zoom (right-click).
 c: Return to the original plot view.
 slash: Focus on the search bar.
 tab: Change the y-axis metric.
 space: Change the x-axis metric.
 escape: Unfocus the search and description forms.

Push data

Copy design files to a remote destination. A common application is to copy
input files onto the cluster before starting big jobs.

Usage:
 pull_into_place push_data <directory> [options]

Options:
 --remote URL, -r URL
 Specify the URL to push data to.

 --dry-run, -d
 Output the rsync command that would be used to push data.

API documentation

	pipeline — organize input and output files

	structures — load and cache PDB files

	big_jobs — submit jobs to the cluster

pipeline — organize input and output files

This module defines the Workspace classes that are central to every script.
The role of these classes is to provide paths to all the data files used in any
part of the pipeline and to hide the organization of the directories containing
those files. The base Workspace class deals with files in the root directory
of a design. It’s subclasses deal with file in the different subdirectories of
the design, each of which is related to a cluster job.

	
class pull_into_place.pipeline.BigJobWorkspace(root)

	Provide paths needed to run big jobs on the cluster.

This is a base class for all the workspaces meant to store results from
long simulations (which is presently all of them except for the root).
This class provides paths to input directories, output directories,
parameters files, and several other things like that.

	
class pull_into_place.pipeline.WithFragmentLibs

	Provide paths needed to interact with fragment libraries.

This is a mixin class that provides a handful of paths and features useful
for working with fragment libraries.

	
class pull_into_place.pipeline.Workspace(root)

	Provide paths to every file used in the design pipeline.

Each workspace object is responsible for returning paths to files that are
relevant to a particular stage of the design pipeline. These files are
organized hierarchically: files that are relevant to many parts of the
pipeline are stored in the root design directory while files that are
relevant to specific stages are stored in subdirectories. You can think of
each workspace class as representing a different directory.

The Workspace class itself represents the root directory, but it is also
the superclass from which all of the other workspace derive. The reason
for this is that the root workspace knows where all the shared parameter
files are located, and this information is needed in every workspace.

When modifying or inheriting from this class, keep in mind two things.
First, workspace objects should do little more than return paths to files.
There are a few convenience functions that clear directories and things
like that, but these are the exception rather than the rule. Second, use
the @property decorator very liberally to keep the code that uses this API
succinct and easy to read.

	
cd(*subpaths)

	Change the current working directory and update all the paths in the
workspace. This is useful for commands that have to be run from a
certain directory.

	
find_path(basename)

	Look in a few places for a file with the given name. If a custom
version of the file is found in the directory being managed by
this workspace, return it. Otherwise return the path to the default
version of the file in the root directory.

This function makes it easy to provide custom parameters to any stage
to the design pipeline. Just place the file with the custom parameters
in the directory associated with that stage.

	
focus_dir

	The particular directory managed by this class. This is meant to be
overridden in subclasses.

	
pull_into_place.pipeline.load_loops(directory, loops_path=None)

	Return a list of tuples indicating the start and end points of the loops
that were sampled in the given directory.

	
pull_into_place.pipeline.load_resfile(directory, resfile_path=None)

	Return a list of tuples indicating the start and end points of the loops
that were sampled in the given directory.

	
pull_into_place.pipeline.workspace_from_dir(directory, recurse=True)

	Construct a workspace object from a directory name. If recurse=True, this
function will search down the directory tree and return the first workspace
it finds. If recurse=False, an exception will be raised if the given
directory is not a workspace. Workspace identification requires a file
called ‘workspace.pkl’ to be present in each workspace directory, which can
unfortunately be a little fragile.

structures — load and cache PDB files

This module provides a function that will read a directory of PDB files and
return a pandas data frame containing a number of score, distance, and sequence
metrics for each structure. This information is also cached, because it takes
a while to calculate up front. Note that the cache files are pickles and seem
to depend very closely on the version of pandas used to generate them. For
example, caches generated with pandas 0.15 can’t be read by pandas 0.14.

	
class pull_into_place.structures.Design(directory)

	Represent a single validated design. Each design is associated with 500
scores, 500 restraint distances, and a “representative” (i.e. lowest
scoring) model. The representative has its own score and restraint
distance, plus a path to a PDB structure.

	
pull_into_place.structures.load(pdb_dir, use_cache=True, job_report=None, require_io_dir=True)

	Return a variety of score and distance metrics for the structures found in
the given directory. As much information as possible will be cached. Note
that new information will only be calculated for file names that haven’t
been seen before. If a file changes or is deleted, the cache will not be
updated to reflect this and you may be presented with stale data.

	
pull_into_place.structures.read_and_calculate(workspace, pdb_paths)

	Calculate a variety of score and distance metrics for the given structures.

	
pull_into_place.structures.xyz_to_array(xyz)

	Convert a list of strings representing a 3D coordinate to floats and return
the coordinate as a numpy array.

big_jobs — submit jobs to the cluster

	
pull_into_place.big_jobs.initiate()

	Return some relevant information about the currently running job.

	
pull_into_place.big_jobs.submit(script, workspace, **params)

	Submit a job with the given parameters.

Contributing

If you find a bug or would like to suggest a new feature, open an issue [https://github.com/Kortemme-Lab/pull_into_place/issues] or
make a pull request [https://github.com/Kortemme-Lab/pull_into_place/pulls]. If you want to contribute code, be sure your code
conforms with PEP8 [https://www.python.org/dev/peps/pep-0008/].

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pull_into_place	

 	
 	
 pull_into_place.big_jobs	

 	
 	
 pull_into_place.pipeline	

 	
 	
 pull_into_place.structures	

Index

 B
 | C
 | D
 | F
 | I
 | L
 | P
 | R
 | S
 | W
 | X

B

 	
 	BigJobWorkspace (class in pull_into_place.pipeline)

C

 	
 	cd() (pull_into_place.pipeline.Workspace method)

D

 	
 	Design (class in pull_into_place.structures)

F

 	
 	find_path() (pull_into_place.pipeline.Workspace method)

 	
 	focus_dir (pull_into_place.pipeline.Workspace attribute)

I

 	
 	initiate() (in module pull_into_place.big_jobs)

L

 	
 	load() (in module pull_into_place.structures)

 	
 	load_loops() (in module pull_into_place.pipeline)

 	load_resfile() (in module pull_into_place.pipeline)

P

 	
 	pull_into_place.big_jobs (module)

 	
 	pull_into_place.pipeline (module)

 	pull_into_place.structures (module)

R

 	
 	read_and_calculate() (in module pull_into_place.structures)

S

 	
 	submit() (in module pull_into_place.big_jobs)

W

 	
 	WithFragmentLibs (class in pull_into_place.pipeline)

 	
 	Workspace (class in pull_into_place.pipeline)

 	workspace_from_dir() (in module pull_into_place.pipeline)

X

 	
 	xyz_to_array() (in module pull_into_place.structures)

 _images/compare_to_wildtype.png
jo | fic
e e s [

[s[Hlc)
wildeype_surface
design_surface
Ceaw)

(loop)
)

Mouse Made 3-Button Viewing
Buttons L M R _lheel
& Keys Rgta Move MouZ Slab
ShPt +Box -Box Clip Movg
Cirl +/- PKAE Pkl MvSZ
CtSh Sele Orig Clip MovZ
SnelClk +/- Cent Henu
DbLCLK Menu - PKAE
Selecting Residues

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

_static/ajax-loader.gif

_images/plot_funnels.png
Total Score (REU)

-1140

—1145

-1150

-1155

-1160

0.0

05 10 15
Restraint Satisfaction (A)

_images/06_pick_designs_to_validate.png
Rosetta Scores

Boltzmann PDF

Boltzmann CDF

15 10°
o 07 09
08
10*
5 0.7
10°
i) 06
10 o5
s 102 04
-10 107 3
o2 4 6 s 0L T o et "oz 46 snR

OO+« B

_static/up.png

nav.xhtml

 Table of Contents

 		Pull Into Place

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

