
PUFFINN

Michael Vesterli and Martin Aumüller

Jan 17, 2020





CONTENTS:

1 Locality Sensitive Hashing 3

2 Algorithm Description 5

3 C++ Documentation 7

4 Python Documentation 15

Python Module Index 17

Index 19

i



ii



PUFFINN

Parameterless and Universal Fast FInding of Nearest Neighbors

PUFFINN is a library which uses Locality Sensitive Hashing (LSH) to find close neighbors in high-dimensional space.
The specific approach used is described below and has a number of desirable properties, namely that it is easy to use
and provides guarantees for the expected accuracy of the result. It is also very performant. Knowledge of LSH is not
necessary to use the library when using the recommended default parameters in Index.

CONTENTS: 1



PUFFINN

2 CONTENTS:



CHAPTER

ONE

LOCALITY SENSITIVE HASHING

A more thorough introduction to LSH should be found elsewhere, but a brief overview is presented here.

Locality Sensitive Hash functions are hash functions with the property that similar points have a higher probability
of having a hash collision than distant points. These hash functions are grouped into families, from which multiple
functions are drawn randomly. By concatenating multiple such functions, the collision probability of distant points
becomes very low, while the collision probability of similar points remains reasonably high.

To use these functions to search for nearest neighbors, it is first necessary to construct an index which contains hashes
of every point for multiple concatenated LSH functions. The nearest neighbors of a query point can then be found by
hashing the query using the same hash functions. Any point with a colliding hash is then considered a candidate for
being among the nearest neighbors. The most similar points among the candidates are then found by computing the
actual similarity. In this way, most of the dataset does not need to be considered.

3



PUFFINN

4 Chapter 1. Locality Sensitive Hashing



CHAPTER

TWO

ALGORITHM DESCRIPTION

PUFFINN uses an adaptive query mechanism which adjusts the length of the concatenated hashes depending on the
similarity of the nearest neighbors and the index size. If the index is small or if the neighbors are distant, the collision
probability needs to be increased, which is done by reducing the length of the hashes. This ensures that the target
recall is achieved regardless of the difficulty of the query.

PUFFINN also uses a filtering step to further reduce the number of candidates. This is done by computing a number
of sketches for each point using 1-bit LSH functions. Points are then only considered if the hamming similarity of a
randomly selected pair of sketches is above a set treshold, which depend on the similarity. This significantly reduces
the number of candidates, but reduces the recall slightly.

It is also possible to draw hash functions from different sources. By default, they are sampled independently, but it is
also possible to use a precalculated set of functions and concatenate them in various ways. This reduces the number
of necessary hash computations but yields hashes of lower quality. It is sometimes more efficient to use one of these
alternative hash sources.

5



PUFFINN

6 Chapter 2. Algorithm Description



CHAPTER

THREE

C++ DOCUMENTATION

template<typename TSim, typename THash = typename TSim::DefaultHash, typename TSketch = typename TSim::DefaultSketch>
class Index : private puffinn::ChunkSerializable

An index constructed over a dataset which supports approximate near-neighbor queries for a specific similarity
measure.

Basic usage consists of using the insert, rebuild and search methods in that order. These methods are
the only ones in the library that need to be called during typical use.

The Index is generic over the similarity measure and two LSH families, one used for searching and one used
for the following filtering step. The LSH families default to good choices for the similarity measure and should
usually not be explicitly set.

Parameters

• TSim: The similarity measure. Currently CosineSimilarity and JaccardSimilarity are
supported. Depending on the similarity measure, points are stored internally using different Formats.
The Format specifies which types of input are supported.

• THash: The family of Locality-Sensitive hash functions used to search for near neighbor candidates.
Defaults to a family chosen by the similarity measure.

• TSketch: The family of 1-bit Locality-Sensitive hash functions used to further filter candidates.
Defaults to a family chosen by the similarity measure.

Public Functions

Index(typename TSim::Format::Args dataset_args, uint64_t memory_limit, const Hash-
SourceArgs<THash> &hash_args = IndependentHashArgs<THash>(), const Hash-
SourceArgs<TSketch> &sketch_args = IndependentHashArgs<TSketch>())

Construct an empty index.

Parameters

• dataset_args: Arguments specifying how the dataset should be stored, depending on the
format of the similarity measure. When using CosineSimilarity , it specifies the dimension
that all vectors must have. When using JaccardSimilarity , it specifies the universe size.
All tokens must be integers between 0, inclusive, and the paramter, exclusive.

• memory_limit: The number of bytes of memory that the index is permitted to use. Using
more memory almost always means that queries are more efficient.

• hash_args: Arguments used to construct the source from which hashes are drawn. This also
includes arguments that are specific to the hash family specified in THash. It is recommended to
use the default value.

7



PUFFINN

• sketch_args: Similar to hash_args, but for the hash family specified in TSketch. It is
recommended to use the default value.

Index(std::istream &in)
Deserialize an index.

It is assumed that the input data is a serialized index using the same version of PUFFINN.

void deserialize_chunk(std::istream &in)
Deserialize a single chunk.

void serialize(std::ostream &out, bool use_chunks = false) const
Serialize the index to the output stream to be loaded later. Supports splitting the serialized data into
chunks, which can be accessed using the serialize_chunks method. This is primarily useful when
the serialized data cannot be written to a file directly and storing the index twice in memory is infeasible.

Parameters

• use_chunks: Whether to split the serialized index into chunks. Defaults to false.

SerializeIter serialize_chunks() const
Get an iterator over serialized chunks in the dataset. See serialize for its use.

template<typename T>
void insert(const T &value)

Insert a value into the index.

Before the value can be found using the search method, rebuild must be called.

Parameters

• value: The value to insert. The type must be supported by the format used by TSim.

template<typename T>
T get(uint32_t idx)

Retrieve the n’th value inserted into the index.

Since the value is converted back from the internal storage format, it is unlikely to be equal to the inserted
value due to normalization, rounding and other adjustments.

void rebuild()
Rebuild the index using the currently inserted points.

This is done in parallel by default. The number of threads used can be specified using the
OMP_NUM_THREADS environment variable.

template<typename T>
std::vector<uint32_t> search(const T &query, unsigned int k, float recall, FilterType filter_type =

FilterType::Default) const
Search for the approximate k nearest neighbors to a query.

Return The indices of the k nearest found neighbors. Indices are assigned incrementally to each point in
the order they are inserted into the dataset, starting at 0. The result is ordered so that the most similar
neighbor is first.

Parameters

• query: The query value. It follows the same constraints as when inserting a value.

8 Chapter 3. C++ Documentation



PUFFINN

• k: The number of neighbors to search for.

• recall: The expected recall of the result. Each of the nearest neighbors has at least this prob-
ability of being found in the first phase of the algorithm. However if sketching is used, the
probability of the neighbor being returned might be slightly lower. This is given as a number
between 0 and 1.

• filter_type: The approach used to filter candidates. Unless the expected recall needs to be
strictly above the recall parameter, the default should be used.

std::vector<uint32_t> search_from_index(uint32_t idx, unsigned int k, float recall, FilterType fil-
ter_type = FilterType::Default) const

Search for the approximate k nearest neighbors to a value already inserted into the index.

This is similar to search(get(idx)), but avoids potential rounding errors from converting between
data formats and automatically removes the query index from the search results .

template<typename T>
std::vector<unsigned int> search_bf(const T &query, unsigned int k) const

Search for the k nearest neighbors to a query by computing the similarity of each inserted value.

rebuild does not need to be called before a point is considered.

Return The indices of the k nearest neighbors. Indices are assigned incrementally to each point in the
order they are inserted into the dataset, starting at 0. The result is ordered so that the most similar
neighbor is first.

Parameters

• query: The query value. It follows the same constraints as when inserting a value.

• k: The number of neighbors to search for.

struct CosineSimilarity
Measures the cosine of the angle between two unit vectors.

This is also known as the angular distance. The supported LSH families are CrossPolytopeHash,
FHTCrossPolytopeHash and SimHash.

Public Types

using Format = UnitVectorFormat

using DefaultHash = FHTCrossPolytopeHash

using DefaultSketch = SimHash

struct JaccardSimilarity
Measures the Jaccard Similarity between two sets.

This is defined as the size of the intersection divided by the size of the union. The supported LSH families are
MinHash and MinHash1Bit.

9



PUFFINN

Public Types

using Format = SetFormat

using DefaultSketch = MinHash1Bit

using DefaultHash = MinHash

struct UnitVectorFormat
A format for storing real vectors of unit length.

Currently, only std::vector<float>` is supported as input type. The vectors do not need to be normalized
before insertion.

Each number is stored using a 16-bit fixed point format. Although this slightly reduces the precision, the
inaccuracies are very unlikely to have an impact on the result. The vectors are stored using 256-bit alignment.

struct SetFormat
A format for storing sets.

Currently, only std::vector<uint32_t> is supported as input type. Each integer in this set represents a
token and must be between 0 and the number of dimensions specified when constructing the LSHTable.

class SimHash
A one-bit hash function, which creates a random hyperplane at the origin and hashes points depending on which
side of the plane the point is located on.

Public Types

using Args = SimHashArgs

struct SimHashArgs
SimHash does not take any arguments.

class CrossPolytopeHash
An implementation of cross-polytope LSH using random rotations.

See FHTCrossPolytopeHash for a more efficient hash function using pseudo-random rotations instead.

This LSH applies a random rotation to vectors and then maps each vector to the closest axis. This yields
multiple bits per hash function. Since there is no easy way to calculate collision probabilities, they are estimated
via sampling instead.

Public Types

using Args = CrossPolytopeArgs

struct CrossPolytopeArgs
Arguments for the cross-polytope LSH.

10 Chapter 3. C++ Documentation



PUFFINN

Public Members

unsigned int estimation_repetitions
Number of samples used to estimate collision probabilities.

float estimation_eps
Granularity of collision probability estimation.

class FHTCrossPolytopeHash
An implementation of cross-polytope LSH using fast-hadamard transforms.

See CrossPolytopeHash for a description of the hash function.

Using repeated applications of random +/-1 diagonal matrices and hadamard transforms, a pseudo-random ro-
tation can be calculated more efficiently than using a random rotation. In practice, using three applications of
each transform gives hashes of similar quality as the ones produced using a true random rotation.

Public Types

using Args = FHTCrossPolytopeArgs

struct FHTCrossPolytopeArgs
Arguments for the fast-hadamard cross-polytope LSH.

Public Members

int num_rotations
Number of iterations of the fast-hadamard transform.

unsigned int estimation_repetitions
Number of samples used to estimate collision probabilities.

float estimation_eps
Granularity of collision probability estimation.

class MinHash
A multi-bit hash function for sets, which selects the minimum token when ordered by a random permutation.

In practice, each token is hashed using a standard hash function, after which the token with the smallest hash is
selected. The higher the Jaccard similarity, the higher the probability of two sets containing the same minimum
token.

Public Types

using Args = MinHashArgs

struct MinHashArgs
Arguments for MinHash.

class MinHash1Bit
MinHash, but only use 1 bit to make it suitable for sketching.

11



PUFFINN

Public Types

using Args = MinHash::Args

template<typename T>
struct HashSourceArgs

Arguments that can be supplied with data from the LSHTable to construct a HashSource.

Parameters

• T: The used LSH family.

Subclassed by puffinn::HashPoolArgs< T >, puffinn::IndependentHashArgs< T >,
puffinn::TensoredHashArgs< T >

template<typename T>
struct IndependentHashArgs : public puffinn::HashSourceArgs<T>

Describes a hash source where all hash functions are sampled independently.

Public Members

T::Args args
Arguments for the hash family.

template<typename T>
struct HashPoolArgs : public puffinn::HashSourceArgs<T>

Describes a hash source which precomputes a pool of a given size.

Each hash is then constructed by sampling from this pool. This reduces the number of hashes that need to be
computed, but produces hashes of lower quality.

It is typically possible to choose a pool size which performs better than independent hashing, but using indepen-
dent hashes is a better default.

Public Functions

constexpr HashPoolArgs(unsigned int pool_size)

HashPoolArgs(std::istream &in)

Public Members

T::Args args
Arguments for the hash family.

unsigned int pool_size
The size of the pool in bits.

template<typename T>
struct TensoredHashArgs : public puffinn::HashSourceArgs<T>

Describes a hash source where hashes are constructed by combining a unique pair of smaller hashes from two
sets.

This means that the number of necessary hashes is only the square root of the number used for independent
hashing. However, this hash source does not perform well when targeting a high recall.

12 Chapter 3. C++ Documentation



PUFFINN

enum puffinn::FilterType
Approaches to filtering candidates.

Values:

Default
The most optimized and recommended approach, which stops shortly after the required expected recall
has been achieved.

None
A simple approach without sketching. Use this if it is very important that the expected recall is above the
given treshold. However it currently looks at every table in the internal structure before checking whether
the recall target has been achieved.

Simple
A simple approach which mirrors None, but with filtering. It is only intended to be used to fairly assess
the impact of sketching on the result.

13



PUFFINN

14 Chapter 3. C++ Documentation



CHAPTER

FOUR

PYTHON DOCUMENTATION

class puffinn.Index(similarity_measure, dimensions, memory_limit, kwargs)
An index constructed over a dataset which supports approximate near-neighbor queries for a specific similarity
measure. It can be serialized using pickle.

Parameters

• metric (str) – The name of the metric used to measure the similarity of two points.
Currently "angular" and "jaccard" are supported, which respectively map to
CosineSimilarity and JaccardSimilarity in the C++ API.

• dimensions (integer) – The required number of dimensions of the input. When
using the "angular" metric, all input vectors must have this length. When using the
"jaccard" metric, all tokens in the input sets must be integers between 0, inclusive, and
dimensions, exclusive.

• memory_limit (integer) – The number of bytes of memory that the index is permitted
to use. Using more memory almost always means that queries are more efficient.

• kwargs – Additional arguments used to setup hash functions. None of these are nec-
essary. The hash family, hash source and their arguments are given by specifying
"hash_function", "hash_args", "hash_source" and "source_args" re-
spectively.

• kwargs.hash_function – The hash function can be either "simhash",
"crosspolytope", "fht_crosspolytope", "minhash" or
"1bit_minhash", depending on the metric. See the C++ documentation on the
corresponding types for details.

• kwargs.hash_args – Arguments for the used hash function. The supported argu-
ments when using “crosspolytope” are “estimation_repetitions” and “estimation_eps”. Us-
ing “fht_crosspolytope”, “num_rotations” can also be specified. The other hash functions
do not take any arguments. See the C++ documentation on the hash functions for details.

• kwargs.hash_source – The supported hash sources are "independent", "pool"
and "tensor". See the C++ documentation on HashSourceArgs for details.

• kwargs.source_args – Arguments for the hash source. Most hash sources do not
take arguments. If "pool" is selected, the size of the pool can be specified as the
"pool_size".

insert(value)

Insert a value into the index.

Before the value can be found using the search method, rebuild() must be called.

Parameters value (list[integer]) – The value to insert.

15



PUFFINN

get(idx)

Retrieve a value that has been inserted into the index.

The value is converted back from the internal storage format, which means that it is unlikely to be equal to the
inserted value due to normalization, rounding and other adjustments.

Parameters idx (integer) – The value to retrieve by insertion order.

rebuild()
Rebuild the index using the currently inserted points.

This is done in parallel.

search(query, k, recall, filter_type = "default")

Search for the approximate k nearest neighbors to a query.

Parameters

• query (list[integer]) – The query value.

• k (integer) – The number of neighbors to search for.

• recall (float) – The expected recall of the result. Each of the nearest neighbors has at
least this probability of being found in the first phase of the algorithm. However if sketching
is used, the probability of the neighbor being returned might be slightly lower. This is given
as a number between 0 and 1.

• filter_type (string) – The approach used to filter candidates. Unless the expected
recall needs to be strictly above the recall parameter, the default should be used. The supp-
ported types are “default”, “none” and “simple”. See FilterType for more information.

16 Chapter 4. Python Documentation



PYTHON MODULE INDEX

p
puffinn, 15

17



PUFFINN

18 Python Module Index



INDEX

G
get() (puffinn.Index method), 15

I
Index (class in puffinn), 15
insert() (puffinn.Index method), 15

P
puffinn (module), 15
puffinn::CosineSimilarity (C++ class), 9
puffinn::CosineSimilarity::DefaultHash

(C++ type), 9
puffinn::CosineSimilarity::DefaultSketch

(C++ type), 9
puffinn::CosineSimilarity::Format (C++

type), 9
puffinn::CrossPolytopeArgs (C++ class), 10
puffinn::CrossPolytopeArgs::estimation_eps

(C++ member), 11
puffinn::CrossPolytopeArgs::estimation_repetitions

(C++ member), 11
puffinn::CrossPolytopeHash (C++ class), 10
puffinn::CrossPolytopeHash::Args (C++

type), 10
puffinn::Default (C++ enumerator), 13
puffinn::FHTCrossPolytopeArgs (C++ class),

11
puffinn::FHTCrossPolytopeArgs::estimation_eps

(C++ member), 11
puffinn::FHTCrossPolytopeArgs::estimation_repetitions

(C++ member), 11
puffinn::FHTCrossPolytopeArgs::num_rotations

(C++ member), 11
puffinn::FHTCrossPolytopeHash (C++ class),

11
puffinn::FHTCrossPolytopeHash::Args

(C++ type), 11
puffinn::FilterType (C++ enum), 12
puffinn::HashPoolArgs (C++ class), 12
puffinn::HashPoolArgs::args (C++ member),

12

puffinn::HashPoolArgs::HashPoolArgs
(C++ function), 12

puffinn::HashPoolArgs::pool_size (C++
member), 12

puffinn::HashSourceArgs (C++ class), 12
puffinn::IndependentHashArgs (C++ class),

12
puffinn::IndependentHashArgs::args (C++

member), 12
puffinn::Index (C++ class), 7
puffinn::Index::deserialize_chunk (C++

function), 8
puffinn::Index::get (C++ function), 8
puffinn::Index::Index (C++ function), 7, 8
puffinn::Index::insert (C++ function), 8
puffinn::Index::rebuild (C++ function), 8
puffinn::Index::search (C++ function), 8
puffinn::Index::search_bf (C++ function), 9
puffinn::Index::search_from_index (C++

function), 9
puffinn::Index::serialize (C++ function), 8
puffinn::Index::serialize_chunks (C++

function), 8
puffinn::JaccardSimilarity (C++ class), 9
puffinn::JaccardSimilarity::DefaultHash

(C++ type), 10
puffinn::JaccardSimilarity::DefaultSketch

(C++ type), 10
puffinn::JaccardSimilarity::Format (C++

type), 10
puffinn::MinHash (C++ class), 11
puffinn::MinHash1Bit (C++ class), 11
puffinn::MinHash1Bit::Args (C++ type), 12
puffinn::MinHash::Args (C++ type), 11
puffinn::MinHashArgs (C++ class), 11
puffinn::None (C++ enumerator), 13
puffinn::SetFormat (C++ class), 10
puffinn::SimHash (C++ class), 10
puffinn::SimHash::Args (C++ type), 10
puffinn::SimHashArgs (C++ class), 10
puffinn::Simple (C++ enumerator), 13
puffinn::TensoredHashArgs (C++ class), 12

19



PUFFINN

puffinn::UnitVectorFormat (C++ class), 10

R
rebuild() (puffinn.Index method), 16

S
search() (puffinn.Index method), 16

20 Index


	Locality Sensitive Hashing
	Algorithm Description
	C++ Documentation
	Python Documentation
	Python Module Index
	Index

