
publicator Documentation
Release 0.1.0

Huseyin Yilmaz

Mar 09, 2017

Contents

1 About Publicator 3

2 Publicator Installation 5
2.1 How to build a release . 5
2.2 How to run for development . 5

3 Configuring publicator server 7
3.1 Clustering: . 7

4 Usage 9
4.1 Running publicator . 9
4.2 Using web interface . 9
4.3 Using publicator javascript client . 9
4.4 Using publicator python client . 10
4.5 Using publicator from http interface . 10

5 Indices and tables 13

i

ii

publicator Documentation, Release 0.1.0

publish-subscribe server for web.

Contents:

Contents 1

publicator Documentation, Release 0.1.0

2 Contents

CHAPTER 1

About Publicator

publicator is a scalable publish-subscribe server that publishes data to users of your website. Is can easyly do server-
to-client, client-to-client or client-to-server message sending.

3

publicator Documentation, Release 0.1.0

4 Chapter 1. About Publicator

CHAPTER 2

Publicator Installation

For now there is no package available for publicator, You have to build it from the source code. (Which is pretty easy
though)

How to build a release

To use publicator in a production system, you should package it. Your package will include all dependencies including
erlang runtime itself. So you won’t need erlang installed on your production system in order to run it. To generate a
package first download source code from github.

$ git clone git://github.com/huseyinyilmaz/publicator.git

Now you can generate a package for your system.

$ make configure
$ make

publicator.tar.gz will be generated in project root directory (current directory). You can untar it anywhere in your target
system and run it with

$ bin/publicator start

How to run for development

If you want to checkout the code you can configure the system for development.

$ make configure
$ make configure-dev

This will download development dependencies. After this you can start server in development mode with

5

publicator Documentation, Release 0.1.0

$ make start

You can also run eunit tests with the following.

$ make test

If you do not want to full compile before starting to test use following

$ make eunit

To do dialyzer checks first you have to create plt files. Because plt files takes to much times to generate, plt file
generation seperated two different parts.

First of all you have to generate plt files for erlang standard library

6 Chapter 2. Publicator Installation

CHAPTER 3

Configuring publicator server

Clustering:

Publicator can run as a cluster. Creating a cluster is pretty easy. You can just use ‘/bin/publicator connect’ command
to connect to a node. When you connect to a node, You will automatically connect to othernodes in the cluster. So
connecting to only one node will be enough.

$ bin/publicator node # return current node name
$ bin/publicator nodes # return connected node list
$ bin/publicator connect other_publicator_node@127.0.0.1
Connect to cluster that node named other_publicator_node@127.0.0.1 belongs to.

7

publicator Documentation, Release 0.1.0

8 Chapter 3. Configuring publicator server

CHAPTER 4

Usage

Running publicator

After building publicator you will have a file named publicator.tar.gz. extract it anywhere you want by running

$ tar -xzvf publicator.tar.gz

After that you can run several commands.

$ bin/publicator start # start server
$ bin/publicator stop # stop server
$ bin/publicator restart # restart serve
$ bin/publicator node # get current node name
$ bin/publicator nodes # get connected node list (for clustering)
$ bin/publicator connect publicator2@127.0.0.1 # connect to given node's cluster

Using web interface

Publicator web interface is a one page web app that can connect publicator server and facilitates client capibilities
with a web interface. This client can be used for debugging purposes. Publicator-web-interface can be found at
https://github.com/huseyinyilmaz/publicator-web-interface

Using publicator javascript client

Publicator consumers can connect to server with javascript client. This client uses websocket to connect to server. It
will fallback to http interface if connection problems occur with the connection.

Javascript client can be found at https://github.com/huseyinyilmaz/publicator-js-client

When You get client code from given repository, You must make sure that version number of your client code is same
as version number of your publicator server code.

9

https://github.com/huseyinyilmaz/publicator-web-interface
https://github.com/huseyinyilmaz/publicator-js-client

publicator Documentation, Release 0.1.0

Using publicator python client

Publicator consumers can connect to server with python client. This client uses http interface for connection.

Python client can be found at https://github.com/huseyinyilmaz/publicator-python-client

When You get client code from given repository, You must make sure that version number of your client code is same
as version number of your publicator server code.

Using publicator from http interface

If You need to connect publicator from an interface that is not provided. You can roll your own with simple http
interface of publicator. First thing you should do to use publictor is to get a session id from the system. You can get
your session id from session/

$ curl --request POST localhost:8766/session/ --include --data "{\"some_auth_data\": \
→˓"bla\"}"
HTTP/1.1 200 OK
connection: keep-alive
server: Cowboy
date: Mon, 24 Feb 2014 09:49:16 GMT
content-length: 42
content-type: application/json; charset=utf-8

{"type":"session_created","data":"session123"}

Here, We send a post request to server. Body of the post request is a json that will be send to authentication backend
as a “auth_info”.

In result, You get a session id “session123” from the system. System will recognize You with this session id and
associates your subscribed channels to You.

To subscribe a channel:

$ curl --request POST http://localhost:8766/$SESSION_ID/subscribtions/$CHANNEL_CODE/ \
--include \
--header "Content-Type: application/json"

HTTP/1.1 204 No Content
connection: keep-alive
server: Cowboy
date: Sun, 29 Sep 2013 10:29:07 GMT
content-length: 0
content-type: text/html

To unscribe a channel:

$ curl --request DELETE http://localhost:8766/$SESSION_ID/subscribtions/$CHANNEL_CODE/
→˓ \
--include \
--header "Content-Type: application/json"

HTTP/1.1 204 No Content
connection: keep-alive
server: Cowboy
date: Sun, 29 Sep 2013 10:43:00 GMT

10 Chapter 4. Usage

https://github.com/huseyinyilmaz/publicator-python-client

publicator Documentation, Release 0.1.0

content-length: 0
content-type: text/html

To send a message to a channel:

$ curl --request POST http://localhost:8766/$SESSION_ID/messages/$CHANNEL_CODE/ \
--include \
--header "Content-Type: application/json" \
--data "message=Message1"

HTTP/1.1 204 No Content
connection: keep-alive
server: Cowboy
date: Sun, 29 Sep 2013 10:47:38 GMT
content-length: 0
content-type: text/html

To check for incoming messages that is coming from your subscribed channels:

$ curl --request GET http://localhost:8766/$SESSION_ID2/messages/ \
--include \
--header "Content-Type: application/json"

HTTP/1.1 200 OK
connection: keep-alive
server: Cowboy
date: Sun, 29 Sep 2013 10:48:46 GMT
content-length: 25
content-type: text/plain
vary: accept

{"channel1":["Message1"]}

Please beware that message publishers do not receive messages they sent. Thats why in this example we are receiving
messages from different session id. Format of message url is channel_code to message list mapping. for instance

{"channel_name1": ["msg1", "msg2",......],
"channel_name2": ["msg3", "msg4",......],
.....

}

4.5. Using publicator from http interface 11

publicator Documentation, Release 0.1.0

12 Chapter 4. Usage

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

	About Publicator
	Publicator Installation
	How to build a release
	How to run for development

	Configuring publicator server
	Clustering:

	Usage
	Running publicator
	Using web interface
	Using publicator javascript client
	Using publicator python client
	Using publicator from http interface

	Indices and tables

