

Publics’ documentation

Contents:

	Installation
	Getting the source

	Dependencies

	Running the example

	Asking questions to the database
	Setup

	Accessing the database

	API Reference
	Contract

	Entity

	Category

	Legislature

	Deputy

	Mandate

	Party

	Other tools
	Crawler for Contracts and Tenders

	Crawler for Categories

	Database

	Install development environment
	Dependencies for the website

	Running the website

	Running tests

	Running the crawler

	Organization of the code
	Django apps

	Scheduling

	Contribute
	Install the project for development environment

	Ticket system

	The Source Code

	Committing

	Pull requests

Publics

This place documents the backend of our website [http://publicos.pt].

This backend provides an interface to access to three distinct portuguese public
databases:

	Public procurements (Base [http://www.base.gov.pt/base2])

	MPs and parliament procedures (parliament [http://parlamento.pt])

	Law (law [http://dre.pt])

We build and maintain an open source website and API for querying these databases.
Specifically, this project consists in three components:

	A database in postgres and driven by Django ORM, remotely accessible.

	An API for querying the database using Django and Python.

	A website for visualizing the database and sharing statistical features of it.

How can you use it?

To navigate in the database and discover some of its features, you can
visit the website [http://publicos.pt].

To use the API, e.g. to ask your own questions to the database,
you must first install it.

To contribute to this API and/or website, see section Install development environment.

Installation

This document explains how you can install the API for accessing the database.
To deploy the website, see Install development environment.

We assume you know a little of Python and know how to install Python packages
in your computer using pip [https://pypi.python.org/pypi/pip].

Getting the source

The source can be either downloaded [https://github.com/jorgecarleitao/public-contracts/archive/master.zip] or cloned from the GitHub [https://github.com/jorgecarleitao/public-contracts] repository using:

git clone https://github.com/jorgecarleitao/public-contracts.git

Like most Python code, the source doesn’t need to be installed; you just have to
put it somewhere in your computer.

You need Python 3.

Dependencies

For using the code, you need to install three python packages:

Django

We use Django ORM to abstract ourselves of the idea of database and use Python
classes to work with the data:

pip install Django

Postgres

Our remote database is in postgres. To Python communicate with it, we need a
binding:

pip install psycopg2

treebeard

The categories in the database are organized in a tree structure. We use django-treebeard to efficiently storage them
in our database.

Install using:

pip install django-treebeard

Running the example

Once you have the dependencies installed, enter in its directory and run:

python -m contracts.tools.example

If everything went well, it outputs two numbers:

	the total number of contracts in the database, that you can corroborate
with the official number [http://www.base.gov.pt/base2/html/pesquisas/contratos.shtml].

	the sum of the values of all contracts.

If some problem occur, please add an [issue](https://github.com/jorgecarleitao/public-contracts/issues)
so we can help you and improve these instructions.

From here, you can see section Asking questions to the database for a tutorial, and section
API Reference for the complete documentation.

Asking questions to the database

This tutorial assumes you already installed the source.

We assume you are in directory “public-contracts”, as the installation part ended
there, and that you start a Python session from there (e.g. enter “python” in
the terminal).

Setup

To use Django [https://www.djangoproject.com/], we have to setup it first. In the module set_up of package
main/tools, we provide a function to that, which we now use:

>>> from main.tools.set_up import set_up_django_environment
>>> set_up_django_environment('main.settings_for_script')

This sets up a minimal Django environment using the settings
main/settings_for_script.py, a minimal configuration to use the database.

Accessing the database

In this API, objects are Django models [https://docs.djangoproject.com/en/dev/topics/db/models/], which we need to import:

>>> from contracts import models

Look at this contract [http://www.base.gov.pt/base2/html/pesquisas/contratos.shtml#791452] in the official database. It has the number “791452”.
Lets pick it up:

>>> contract = models.Contract.objects.get(base_id=791452)

Now, lets start with its price:

>>> print(contract.price)

and its description:

>>> print(contract.description)

Lets now pick the entity that made this contract. In this case there is only one,
but in general there can be more: a contract has a ManyToMany [https://docs.djangoproject.com/en/dev/topics/db/examples/many_to_many/] relationship
with entities because each contract can have several entities (a joint
contract), but also each entity can have several contracts.

In fact, each contract has two ManyToMany: the entities that paid, and the
entities that were paid.

Lets say we want the entity that paid this contract. In that case, we pick the
set of all entities that paid, and select the first one:

>>> entity = contract.contractors.all()[0]
>>> print(entity)

Let’s now pick the contracts that this entity made. To that, we use the
“contracts_made” of the entity:

>>> entity_contracts = entity.contracts_made.all()

Lets count [https://docs.djangoproject.com/en/dev/ref/models/querysets/#count] the number of these contracts:

>>> print(entity_contracts.count())

You can check [http://www.base.gov.pt/base2/html/pesquisas/entidades.shtml#23537] that this number matches the number in the official database.
(there can be small error when there were contracts added today;
our database is synchronized in the end of the day).

Now, how much is the price of all those contracts?

To answer that, we have to aggregate the prices. The syntax in
Django is the following:

>>> from django.db.models import Sum
>>> total_price = entity_contracts.aggregate(our_sum=Sum('price'))['our_sum']
>>> print(total_price)

Again, you can check [http://www.base.gov.pt/base2/html/pesquisas/entidades.shtml#23537] on the official website.

As a final example, we are going to use a filter. Lets say you want all the above
contracts, but restricted to prices higher than 10.000€. For this, we need to
“filter” these contracts:

>>> expensive_contracts = entity_contracts.filter(price__gt=10000*100)
>>> print(expensive_contracts.count())

The “price__gt” means price (g)reater (t)han, and we
multiply by 100 because prices are in euro cents.

For now, that’s it. You now have the minimal knowledge to ask your own questions.
In section here you can find references of all models.

Notes:

	The syntax we use here (e.g. “contracts_made”) is Django API.

	If you don’t know Django, you can look at the existing source code of the
website and start from there.

	You can find the documentation of the API here.

If some problem occur, please add an issue [https://github.com/jorgecarleitao/public-contracts/issues] so we can help you and improve
these instructions.

API Reference

This part of the documentation focus on the API for accessing and using the database.
It documents what objects the database contains, and how you can interact with them.

Publics uses Django ORM to build, maintain and query a Postgres database.
This has two immediate consequences:

	If you don’t know python/Django but you know SQL, you can access it remotely (see Database).

	If you don’t know SQL, but you know Python and/or Django,
you can take advantage of this API (see Asking questions to the database)

	Contract

	Entity

	Category

	Legislature

	Deputy

	Mandate

	Party

Contract

This document provides the API references for the contracts in the database.

API

	
class models.Contract

	A contract is a relationship between entities enrolled in the database.
Each contract has a set of contractors (who paid), and contracted (who were paid),
and relevant information about the contract.

All the fields of this model are retrieved from Base [http://www.base.gov.pt/base2]. Except for base_id
and added_date, all entries can be null if they don’t exist in
Base [http://www.base.gov.pt/base2]. They are:

	
description

	The description of the contract.

	
price

	The price of the contract, in cents (to be an integer).

	
category

	A Foreign key to the contract Category.

	
contractors

	A ManyToMany relationship with entities. Related name “contracts_made”.

	
contracted

	A ManyToMany relationship with entities.

	
added_date

	The date it was added to Base [http://www.base.gov.pt/base2] database.

	
signing_date

	The date it was signed.

	
close_date

	The date is was closed. It is normally null.

	
base_id

	The primary key of the contract on the Base [http://www.base.gov.pt/base2] database.
It is “unique” and can used to create the link to Base (see get_base_url())

	
contract_type

	A Foreign key to one of the types of contracts.

	
procedure_type

	A Foreign key to one of the types of procedures.

	
contract_description

	A text about the object of the contract (i.e. what was bought or sold).

	
country

	

	
district

	

	
council

	Country, district, council.

This model has a getter:

	
get_base_url()

	Returns the url of this entity in Base [http://www.base.gov.pt/base2].

Entity

This document provides the API references for the entities in the database.

API

	
class models.Entity

	An entity is any company or institution that is enrolled in the database that are related
trough contracts.

All the fields of this model are directly retrieved from Base [http://www.base.gov.pt/base2].
They are:

	
name

	The name of the entity.

	
base_id

	The primary key of the entity on the Base [http://www.base.gov.pt/base2] database. It is “unique”.

	
nif

	The fiscal identification number of the entity.

	
country

	The country it is registered. It may be “null” when there is no such information.

It has the following getters:

	
total_earned()

	Returns the total earned, in € cents, a value stored in EntityData.

	
total_expended()

	Returns the total expended, in € cents, a value stored in EntityData.

	
get_base_url()

	Returns the url of this entity in Base [http://www.base.gov.pt/base2].

	
get_absolute_url()

	Returns the url of this entity on this website.

And the following setters:

	
compute_data()

	Computes two aggregations and stores them in its EntityData:

	the total value in € of the contracts where it is a contractor

	the total value in € of the contracts where it is contracted

This method is used when the crawler updates new contracts.

	
class models.EntityData

	Data of an entity that is not retrieved from Base, i.e, it is computed with existing data.
It is a kind of cache, but more persistent. This may become a proper cache in future.

It has a OneToOne relationship with Entity.

As the following attributes:

	
total_earned

	The money, in cents, the entity earned so far.

	
total_expended

	The money, in cents, the entity expended so far.

Category

This document provides the API references for the categories of contracts in
the database. See ../tools/cpvs_importer for how these categories are
built.

API References

	
class models.Category

	A category is a formal way to categorize public contracts within European
Union. It is a tag assigned to a contract.

A category as an OneToMany relationship to Contract: each
contract has one category, each category can have more than one contract.
This relationship is thus defined in the contract model.

A category has the following attributes:

	
code

	The CPVS [http://simap.europa.eu/codes-and-nomenclatures/codes-cpv/codes-cpv_en.htm] code of the category.

	
description_en

	

	
description_pt

	The official descriptions of the category in english and portuguese,
respectively.

	
depth

	The depth of the attribute on the tree.

And has the following methods:

	
get_children()

	Returns all children categories, excluding itself.

	
get_ancestors()

	Returns all ancestor categories, excluding itself.

	
get_absolute_url()

	Returns the url of this category in the website.

	
contracts_count()

	Counts the number of all contracts that belong to this category or any
of its children.

	
contracts_price()

	Sums the prices of all contracts that belong to this category or any of
its children.

Legislature

This document provides the API references for the legislatures in the database.

API

	
class models.Legislature

	A legislature is a time-interval between two elections.

All the fields of this model are retrieved from parliament website [http://www.parlamento.pt] using a crawler.

	
number

	The official number of the legislature.

	
date_start

	The date corresponding to the beginning of the legislature.

	
date_end

	The date corresponding to the end of the legislature.
It can be null when is an ongoing legislature.

Deputy

This document provides the API references for the deputies in the database.

API

	
class models.Deputy

	A deputy is a person that at some point was part of the parliament.

All the fields of this model are retrieved from parliament website [http://www.parlamento.pt] using a crawler.

	
name

	The name of the person.

	
birthday

	Birthday of the person. May be null if it is not in the official database.

	
party

	
	A foreign key to the party the deputy belongs. This is a cached version, the correct

	version is always obtained from the mandate the deputy is.

	
is_active

	A bool telling if the deputy is active or not. This is a cached version, the correct
value is always obtained from the last mandate the deputy is.

	
get_absolute_url()

	Returns the url of this entity in parliament website [http://www.parlamento.pt].

	
update()

	Updates the party and is_active using the deputies’ last mandate information.
This only has to be called when the deputy has a new mandate.

Mandate

This document provides the API references for the mandates in the database.

API

	
class models.Mandate

	A mandate is a time-interval corresponding to a mandate in the parliament of a deputy.
A mandate require always a district and a party.

All the fields of this model are retrieved from parliament website [http://www.parlamento.pt] using a crawler.

	
deputy

	The models.Deputy of the mandate.

	
legislature

	The models.Legislature of the mandate.

	
party

	The parlamentary group this mandate is respective to. A ForeignKey to models.Party.

	
district

	The district this mandate is respective to. This is a ForeignKey to models.District.

The next two fields are required because some mandates end before the legislature ends.

	
date_start

	The date corresponding to the beginning of the mandate.

	
date_end

	The date corresponding to the end of the mandate.
It can be null when is an ongoing legislature.

Party

This document provides the API references for the parties in the database.

API

	
class models.Party

	A party, formally known as a Parlamentary Group, is required to have a mandate in the parliament.
Here is just a category of the mandate.

All fields of this model are retrieved from parliament website [http://www.parlamento.pt] using a crawler.

	
abbrev

	The abbreviated name of the party.

	
get_absolute_url()

	The url for its view on the website.

Other tools

	Crawler for Contracts and Tenders

	Crawler for Categories

	Database

Crawler for Contracts and Tenders

This document explains how Base [http://www.base.gov.pt/base2] provides its data and how the crawler works.

Important

Please, take precautions on using the crawler as it can generate Denial of
Service (DoS) to Base [http://www.base.gov.pt/base2] database. We provide remote access to our database to
avoid that.

Important

Crawling Base [http://www.base.gov.pt/base2] from scratch takes more than 2 days as of Jan. 2014.

Base database

Base [http://www.base.gov.pt/base2] uses the following urls to expose its data

	Entity: http://www.base.gov.pt/base2/rest/entidades/[base_id]

	Contract: http://www.base.gov.pt/base2/rest/contratos/[base_id]

	Tender: http://www.base.gov.pt/base2/rest/anuncios/[base_id]

	List of Country: http://www.base.gov.pt/base2/rest/lista/paises

	List of District: http://www.base.gov.pt/base2/rest/lista/distritos?pais=[country_base_id]; (portugal_base_id=187)

	List of Council: http://www.base.gov.pt/base2/rest/lista/concelhos?distrito=[district_base_id];

	List of ContractType: http://www.base.gov.pt/base2/rest/lista/tipocontratos

	List of ProcedureType: http://www.base.gov.pt/base2/rest/lista/tipoprocedimentos

Each url returns json with information about the particular object.
For this reason, we have an abstract crawler for retrieving this information
and map it to this API.

What the crawler does

The crawler accesses Base [http://www.base.gov.pt/base2] urls using the same procedure for entities, contracts
and tenders. It does the following:

	retrieves the list c1_ids=[i*10k, (i+1)*10k] of ids from links 4., 5. or 6.;

	retrieves all ids in range [c_ids[0], c_ids[-1]] from our db, c2_ids

	Adds, using links 1.,2. or 3. all ids in c1_ids and not in c2_ids.

	Removes, using links 1.,2. or 3. all ids in c2_ids and not in c1_ids.

	Go to 1 with i += 1 until it covers all contracts.

The initial value of i is 0 when the database is populated from scratch, and is
such that only one cycle 1-5 is performed when searching for new items.

API references

This section introduces the different crawlers we use to crawl Base [http://www.base.gov.pt/base2].

	
class contracts.crawler.ContractsStaticDataCrawler

	A subclass JSONCrawler for static data. This crawler only needs to
be run once and is used to populate the database the first time.

	
retrieve_and_save_all()

	Retrieves and saves all static data of contracts.

Given the size of Base [http://www.base.gov.pt/base2] database, and since it is constantly being updated,
contracts, entities and tenders, use the following approach:

	
class contracts.crawler.DynamicCrawler

	An abstract subclass of JSONCrawler that implements the crawling
procedure described in the previous section.

	
object_name = None

	A string with the name of the object used to name the .json files;
to be overwritten.

	
object_url = None

	The url used to retrieve data from BASE; to be overwritten.

	
object_model = None

	The model to be constructed from the retrieved data; to be overwritten.

	
static clean_data(data)

	Cleans data, returning a cleaned_data dictionary with keys being
fields of the object_model and values being extracted from
data.

To be overwritten by subclasses.

	
save_instance(cleaned_data)

	Saves or updates an instance of type object_model
using the dictionary cleaned_data.

This method can be overwritten for changing how the instance is saved.

Returns a tuple (instance, created) where created is True
if the instance was created (and not just updated).

	
update_instance(base_id)

	Uses get_json(), clean_data() and save_instance() to
create or update an instance identified by base_id.

Returns the output of save_instance().

	
get_instances_count()

	Returns the total number of existing instances in BASE db.

	
get_base_ids(row1, row2)

	Returns a list of instances from BASE of length row2 - row1.

	
update_batch(row1, row2)

	Updates a batch of rows, step 2.-4. of the previous section.

	
update(start=0, end=None, items_per_batch=1000)

	The method retrieves count of all items in BASE (1 hit), and
synchronizes items from start until min(end, count) in batches
of items_per_batch.

If end=None (default), it retrieves until the last item.

if start < 0, the start is counted from the end.

Use e.g. start=-2000 for a quick retrieve of new items;

Use start=0 (default) to synchronize all items in database
(it takes time!)

	
class contracts.crawler.EntitiesCrawler

	A subclass of DynamicCrawler to populate
Entity table.

Overwrites clean_data() to clean data to
Entity.

Uses:

	object_directory: '../../data/entities'

	object_name: 'entity';

	object_url:
'http://www.base.gov.pt/base2/rest/entidades/%d'

	object_model: Entity.

	
class contracts.crawler.ContractsCrawler

	A subclass of DynamicCrawler to populate
Contract table.

Overwrites clean_data() to clean data to
Contract
and save_instance() to also save ManytoMany
relationships of the Contract.

Uses:

	object_directory: '../../data/contracts'

	object_name: 'contract';

	object_url: 'http://www.base.gov.pt/base2/rest/contratos/%d'

	object_model: Contract.

	
class contracts.crawler.TenderCrawler

	A subclass of DynamicCrawler to populate
Tender table.

Overwrites clean_data() to clean data to
Tender and save_instance()
to also save ManytoMany relationships of the
Tender.

Uses:

	object_directory: '../../data/tenders'

	object_name: 'tender';

	object_url: 'http://www.base.gov.pt/base2/rest/anuncios/%d'

	object_model: Tender.

Crawler for Categories

Europe Union has a categorisation system for public contracts, CPVS [http://simap.europa.eu/codes-and-nomenclatures/codes-cpv/codes-cpv_en.htm], that
translates a string of 8 digits into a category to be used in public contracts.

More than categories, this system is a tree with broader categories like
“agriculture”, and more specific ones like “potatos”.

They provide the fixture as an XML file [https://raw.githubusercontent.com/data-ac-uk/cpv/master/etc/cpv_2008.xml], which we import:

	
contracts.categories_crawler.build_categories()

	Constructs the category tree of categories.

Gets the most general categories and saves then, repeating this recursively
to more specific categories until it reaches the leaves of the tree.

The categories are retrieved from the internet.

Database

This document explains what is our database, how you can access it remotely,
and how you can obtain a dump of it.

Database

Our database contains all the information the official databases contains. Additionally, our database is bound
to a database ORM and web framework - Django - that facilitates its usage.

Either by using Django or not, you have full remote access (read only) to it.

Remote connection

You can access our database using:

	database: publics

	username: publics_read_only

	password: read-only

	host: 185.20.49.8

	port: 5432

Create dumps

In the terminal, run:

pg_dump -h 185.20.49.8 -p 5432 -U publics_read_only -d publics > dump.sql

This creates a file “dump.sql” (it can take a while) that you can load to a database in your own computer.

Install development environment

This part of the documentation explains how you can jump to the development of
publicos.pt and deploy the website on your computer. To only interact with the
database, e.g. to do statistics, you only need to
install the API dependencies.

We assume here that you know Python and a minimum of Django.

Dependencies for the website

Besides the dependencies of the API, the website uses
the following packages:

BeautifulSoup 4

For crawling websites, we use a Python package to handle HTML elements. To
install it, use:

pip install beautifulsoup4

django-debug-toolbar

To develop, we use django-debug-toolbar, an utility to debug Django websites:

pip install django-debug-toolbar

Running the website

Once you have the dependencies installed, you can run the website from the root
directory using:

python manage.py runserver

and enter in the url http://127.0.0.1:8000.

If anything went wrong or you have any question,
please drop by our mailing list [https://groups.google.com/forum/#!forum/public-contracts] so we can help you.

Running tests

We use standard Django unit test cases. To run tests, use:

python manage.py test <package, module, or function>

For instance, for running the test suite of contracts app, run:

python manage.py test contracts.tests

Running the crawler

To run the Crawler for Contracts and Tenders to populate the database,
you require an additional package:

pip install requests

Organization of the code

Django apps

The code is organized as a standard Django website composed of 4 apps:

	main: delivers robots.txt, the main page, the about page, etc;

	contracts

	deputies

	law

The rest of this section, apps refer to all aps except main. main
is also a Django app, but does not share the common logic of the other apps.

All apps are Django-standard: they have models.py, views.py, urls.py,
templates, static, tests.

Each app has a module called <app>/crawler.py that contains the crawler it
uses to download the data from official sources. Each app has a <app>/tasks
.py with django-rq [http://python-rq.org/] jobs for running the app’s crawler.

Besides a crawler, each app has a package <app>/analysis. This package contains
a list of existing analysis. An analysis is just an expensive operation that is
performed once a day (after data synchronization) and is cached for 24 hours.

Since contracts is a large app, its backend is sub-divided:

	views and urls modules are divided according to whom they refer to

	templates are divided into folders, according to the view they refer to.

Scheduling

We have a periodic job that runs in django-rq [http://python-rq.org/] to synchronize our database with
the official sources and update caches. It uses settings from
main/settings_for_schedule.py.

Contribute

This document explains how you can contribute to this project. See why in
http://publicos.pt/contribui

Install the project for development environment

Deploy Python project

	Create and start a new virtualenv:

virtualenv ~/.virtualenvs/publicos
source ~/.virtualenvs/publicos/bin/activate

	Install dependencies:

pip install -r website_requirements.txt

Deploy database locally (Optional)

If you develop systematically, we recommend to install the database locally so
your queries don’t have to hit the production database.

	Install and start postgres

	Create a dump of the production database in your machine:

pg_dump -h 5.153.9.51 -p 5432 -U publics_read_only -d publics > dump.sql

This may take some minutes as it downloads the complete database to your computer.

	Create a new user (say publicos and no pass) and a database (say publicos_db)

	Fill the newly created database with the dump:

psql -U publicos -d publicos_db -f dump.sql

This also takes some time.

	Create a file main/settings_dev.py and add the credentials of your database:

DATABASES = {
'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'publicos',
 'USER': 'publicos',
 }
}

Enable searching (Optional)

If you plan to test or use search capabilities in your development environment,
you need to enable searching, done via Sphinx:

	Install Sphinx [https://sphinxsearch.com]

	Index your database:

python manage.py index_sphinx

	Start Sphinx daemon:

python manage.py start_sphinx

(To stop it, call python manage.py stop_sphinx.)

Start your server

Start the server running:

python manage.py runserver

and open a browser in 127.0.0.1:8000.

Ticket system

This project uses a ticket system [https://github.com/jorgecarleitao/public-contracts/issues] for documenting issues.

The system’s idea is to keep track of the issues the
project has and by whom they are being addressed.

Given the size of the project, we prefer to use tickets for problems that require
some time to be solved.

Adding tickets

We write tickets with clear, concise and specific information about issue we are addressing.

Working on tickets

Working on the ticket means the contributor is committing himself to modify to the
source to fulfill the ticket expectations.

We give the chance to contributors - specially to new contributors -
to go thought the full process: if the person who submitted the ticket is willing to work on it,
he should have priority on doing it, even if this means having the ticket open for a longer time.

Closing tickets

When a ticket is fixed, normally by a commit or set of commits, it is closed as fixed.
A ticket can be re-opened if there is no consensus that it was solved.

The Source Code

Code styling

	Follow PEP 8

	Capitalize the first letter of classes.

	Import modules in the following order:

	builtin modules

	Django modules

	other third party modules

	project modules

	app modules

	Don’t use:

from X import *

5. Comment and document directly the source code only when necessary to understand
what it means within its context. The big picture is documented here.

Hint

Making the code clearer and better documented is a good way of start contributing to this project since
you read code and try to make it more clear when you don’t understand of it.

Documentation

A modification on the code that changes semantics of the project has to be
accompanied by the respective change in documentation to be incorporated.

Hint

Improving the documentation is a good way to start contributing to the project, since you learn
about the project while improving it.

Committing

When you feel that your changes provide value to the existing code, commit it.

Commit message

Use 72 characters limit to the first line of the commit message.

A commit is self contained: the first message explains what it does, the rest of the lines explain how and what
changed specifically. The actual code changes of the commit support what the commit message claims.

When the commit fixes a given ticket, it must contain that information on the commit message. E.g.

Fixed #12 – Added support for i18n.

Pull requests

When you have a commit or set of commits that you fell are worth being incorporated (e.g.
because they close a specific ticket), make a pull request to announce that you have value that can be
added to the project.

requesting a pull

We prefer the GitHub way: push your local commits to your GitHub fork, and create a pull request from there.

The message of the pull request should be a message that explains that commit or set of commits.

Pull request review

The idea of the pull request is that you are notifying other contributors that you
have a set of commits that are worth adding to the project.

As such, it is worth to have the pull request reviewed by other contributors before
entering the project’s source. The idea is that other persons can check what you did.

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	abbrev (deputies.models.Party attribute)

 	
 	added_date (contracts.models.Contract attribute)

B

 	
 	base_id (contracts.models.Contract attribute)

 	(contracts.models.Entity attribute)

 	
 	birthday (deputies.models.Deputy attribute)

 	build_categories() (in module contracts.categories_crawler)

C

 	
 	category (contracts.models.Contract attribute)

 	clean_data() (contracts.crawler.DynamicCrawler static method)

 	close_date (contracts.models.Contract attribute)

 	code (contracts.models.Category attribute)

 	compute_data() (contracts.models.Entity method)

 	contract_description (contracts.models.Contract attribute)

 	contract_type (contracts.models.Contract attribute)

 	contracted (contracts.models.Contract attribute)

 	
 	contractors (contracts.models.Contract attribute)

 	contracts_count() (contracts.models.Category method)

 	contracts_price() (contracts.models.Category method)

 	ContractsCrawler (class in contracts.crawler)

 	ContractsStaticDataCrawler (class in contracts.crawler)

 	council (contracts.models.Contract attribute)

 	country (contracts.models.Contract attribute)

 	(contracts.models.Entity attribute)

D

 	
 	date_end (deputies.models.Legislature attribute)

 	(deputies.models.Mandate attribute)

 	date_start (deputies.models.Legislature attribute)

 	(deputies.models.Mandate attribute)

 	depth (contracts.models.Category attribute)

 	deputy (deputies.models.Mandate attribute)

 	
 	description (contracts.models.Contract attribute)

 	description_en (contracts.models.Category attribute)

 	description_pt (contracts.models.Category attribute)

 	district (contracts.models.Contract attribute)

 	(deputies.models.Mandate attribute)

 	DynamicCrawler (class in contracts.crawler)

E

 	
 	EntitiesCrawler (class in contracts.crawler)

G

 	
 	get_absolute_url() (contracts.models.Category method)

 	(contracts.models.Entity method)

 	(deputies.models.Deputy method)

 	(deputies.models.Party method)

 	get_ancestors() (contracts.models.Category method)

 	
 	get_base_ids() (contracts.crawler.DynamicCrawler method)

 	get_base_url() (contracts.models.Contract method)

 	(contracts.models.Entity method)

 	get_children() (contracts.models.Category method)

 	get_instances_count() (contracts.crawler.DynamicCrawler method)

I

 	
 	is_active (deputies.models.Deputy attribute)

L

 	
 	legislature (deputies.models.Mandate attribute)

M

 	
 	models.Category (class in contracts)

 	models.Contract (class in contracts)

 	models.Deputy (class in deputies)

 	models.Entity (class in contracts)

 	
 	models.EntityData (class in contracts)

 	models.Legislature (class in deputies)

 	models.Mandate (class in deputies)

 	models.Party (class in deputies)

N

 	
 	name (contracts.models.Entity attribute)

 	(deputies.models.Deputy attribute)

 	
 	nif (contracts.models.Entity attribute)

 	number (deputies.models.Legislature attribute)

P

 	
 	party (deputies.models.Deputy attribute)

 	(deputies.models.Mandate attribute)

 	
 	price (contracts.models.Contract attribute)

 	procedure_type (contracts.models.Contract attribute)

R

 	
 	retrieve_and_save_all() (contracts.crawler.ContractsStaticDataCrawler method)

S

 	
 	save_instance() (contracts.crawler.DynamicCrawler method)

 	
 	signing_date (contracts.models.Contract attribute)

T

 	
 	TenderCrawler (class in contracts.crawler)

 	total_earned (contracts.models.EntityData attribute)

 	
 	total_earned() (contracts.models.Entity method)

 	total_expended (contracts.models.EntityData attribute)

 	total_expended() (contracts.models.Entity method)

U

 	
 	update() (contracts.crawler.DynamicCrawler method)

 	(deputies.models.Deputy method)

 	
 	update_batch() (contracts.crawler.DynamicCrawler method)

 	update_instance() (contracts.crawler.DynamicCrawler method)

Publics

This place documents the backend of our website [http://publicos.pt].

This backend provides an interface to access to three distinct portuguese public
databases:

	Public procurements (Base [http://www.base.gov.pt/base2])

	MPs and parliament procedures (parliament [http://parlamento.pt])

	Law (law [http://dre.pt])

We build and maintain an open source website and API for querying these databases.
Specifically, this project consists in three components:

	A database in postgres and driven by Django ORM, remotely accessible.

	An API for querying the database using Django and Python.

	A website for visualizing the database and sharing statistical features of it.

How can you use it?

To navigate in the database and discover some of its features, you can
visit the website [http://publicos.pt].

To use the API, e.g. to ask your own questions to the database,
you must first install it.

To contribute to this API and/or website, see section Install development environment.

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Publics' documentation

 		Installation

 		Getting the source

 		Dependencies

 		Django

 		Postgres

 		treebeard

 		Running the example

 		Asking questions to the database

 		Setup

 		Accessing the database

 		API Reference

 		Contract

 		API

 		Entity

 		API

 		Category

 		API References

 		Legislature

 		API

 		Deputy

 		API

 		Mandate

 		API

 		Party

 		API

 		Other tools

 		Crawler for Contracts and Tenders

 		Base database

 		What the crawler does

 		API references

 		Crawler for Categories

 		Database

 		Database

 		Remote connection

 		Create dumps

 		Install development environment

 		Dependencies for the website

 		BeautifulSoup 4

 		django-debug-toolbar

 		Running the website

 		Running tests

 		Running the crawler

 		Organization of the code

 		Django apps

 		Scheduling

 		Contribute

 		Install the project for development environment

 		Deploy Python project

 		Deploy database locally (Optional)

 		Enable searching (Optional)

 		Start your server

 		Ticket system

 		Adding tickets

 		Working on tickets

 		Closing tickets

 		The Source Code

 		Code styling

 		Documentation

 		Committing

 		Commit message

 		Pull requests

 		requesting a pull

 		Pull request review

_static/up-pressed.png

_static/comment-bright.png

