

Ptyprocess

Launch a subprocess in a pseudo terminal (pty), and interact with both the
process and its pty.

Sometimes, piping stdin and stdout is not enough. There might be a password
prompt that doesn’t read from stdin, output that changes when it’s going to a
pipe rather than a terminal, or curses-style interfaces that rely on a terminal.
If you need to automate these things, running the process in a pseudo terminal
(pty) is the answer.

Interface:

from ptyprocess import PtyProcessUnicode
p = PtyProcessUnicode.spawn(['python'])
p.read(20)
p.write('6+6\n')
p.read(20)

Contents:

	Ptyprocess API

What is a pty?

A pty is a kernel-level object which processes can write data to and read data
from, a bit like a pipe.

Unlike a pipe, data moves through a single pty in both directions. When you use
a program in a shell pipeline, or with subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] in Python, up
to three pipes are created for the process’s standard streams (stdin, stdout
and stderr). When you run a program using ptyprocess, all three of its standard
streams are connected to a single pty:

[image: _images/pty_vs_popen.png]
A pty also does more than a pipe. It keeps track of the window size (rows and
columns of characters) and notifies child processes (with a SIGWINCH signal)
when it changes. In cooked mode, it does some processing of data sent from the
parent process, so for instance the byte 03 (entered as Ctrl-C) will cause
SIGINT to be sent to the child process.

Many command line programs behave differently if they detect that stdin or stdout
is connected to a terminal instead of a pipe (using
isatty() [http://linux.die.net/man/3/isatty]), because this normally means
that they’re being used interactively by a human user.
They may format output differently (e.g. ls lists files in columns)
or prompt the user to confirm actions.
When you run these programs in ptyprocess, they will exhibit their ‘interactive’
behaviour, instead of the ‘pipe’ behaviour you’ll see using Popen().

See also

	The TTY demystified [http://www.linusakesson.net/programming/tty/]

	Detailed article by Linus Akesson

Indices and tables

	Index

	Module Index

	Search Page

Ptyprocess API

	
class ptyprocess.PtyProcess(pid, fd)

	This class represents a process running in a pseudoterminal.

The main constructor is the spawn() classmethod.

	
classmethod spawn(argv, cwd=None, env=None, echo=True, preexec_fn=None, dimensions=(24, 80), pass_fds=())

	Start the given command in a child process in a pseudo terminal.

This does all the fork/exec type of stuff for a pty, and returns an
instance of PtyProcess.

If preexec_fn is supplied, it will be called with no arguments in the
child process before exec-ing the specified command.
It may, for instance, set signal handlers to SIG_DFL or SIG_IGN.

Dimensions of the psuedoterminal used for the subprocess can be
specified as a tuple (rows, cols), or the default (24, 80) will be used.

By default, all file descriptors except 0, 1 and 2 are closed. This
behavior can be overridden with pass_fds, a list of file descriptors to
keep open between the parent and the child.

	
read(size=1024)

	Read and return at most size bytes from the pty.

Can block if there is nothing to read. Raises EOFError [https://docs.python.org/3/library/exceptions.html#EOFError] if the
terminal was closed.

Unlike Pexpect’s read_nonblocking method, this doesn’t try to deal
with the vagaries of EOF on platforms that do strange things, like IRIX
or older Solaris systems. It handles the errno=EIO pattern used on
Linux, and the empty-string return used on BSD platforms and (seemingly)
on recent Solaris.

	
readline()

	Read one line from the pseudoterminal, and return it as unicode.

Can block if there is nothing to read. Raises EOFError [https://docs.python.org/3/library/exceptions.html#EOFError] if the
terminal was closed.

	
write(s, flush=True)

	Write bytes to the pseudoterminal.

Returns the number of bytes written.

	
sendcontrol(char)

	Helper method for sending control characters to the terminal.

For example, to send Ctrl-G (ASCII 7, bell, '\a'):

child.sendcontrol('g')

See also, sendintr() and sendeof().

	
sendeof()

	Sends an EOF (typically Ctrl-D) through the terminal.

This sends a character which causes
the pending parent output buffer to be sent to the waiting child
program without waiting for end-of-line. If it is the first character
of the line, the read() in the user program returns 0, which signifies
end-of-file. This means to work as expected a sendeof() has to be
called at the beginning of a line. This method does not send a newline.
It is the responsibility of the caller to ensure the eof is sent at the
beginning of a line.

	
sendintr()

	Send an interrupt character (typically Ctrl-C) through the terminal.

This will normally trigger the kernel to send SIGINT to the current
foreground process group. Processes can turn off this translation, in
which case they can read the raw data sent, e.g. b'\x03' for Ctrl-C.

See also the kill() method, which sends a signal directly to the
immediate child process in the terminal (which is not necessarily the
foreground process).

	
getecho()

	Returns True if terminal echo is on, or False if echo is off.

Child applications that are expecting you to enter a password often
disable echo. See also waitnoecho().

Not supported on platforms where isatty() returns False.

	
waitnoecho(timeout=None)

	Wait until the terminal ECHO flag is set False.

This returns True if the echo mode is off, or False if echo was not
disabled before the timeout. This can be used to detect when the
child is waiting for a password. Usually a child application will turn
off echo mode when it is waiting for the user to enter a password. For
example, instead of expecting the “password:” prompt you can wait for
the child to turn echo off:

p = pexpect.spawn('ssh user@example.com')
p.waitnoecho()
p.sendline(mypassword)

If timeout=None then this method to block until ECHO flag is False.

	
setecho(state)

	Enable or disable terminal echo.

Anything the child sent before the echo will be lost, so you should be
sure that your input buffer is empty before you call setecho().
For example, the following will work as expected:

p = pexpect.spawn('cat') # Echo is on by default.
p.sendline('1234') # We expect see this twice from the child...
p.expect(['1234']) # ... once from the tty echo...
p.expect(['1234']) # ... and again from cat itself.
p.setecho(False) # Turn off tty echo
p.sendline('abcd') # We will set this only once (echoed by cat).
p.sendline('wxyz') # We will set this only once (echoed by cat)
p.expect(['abcd'])
p.expect(['wxyz'])

The following WILL NOT WORK because the lines sent before the setecho
will be lost:

p = pexpect.spawn('cat')
p.sendline('1234')
p.setecho(False) # Turn off tty echo
p.sendline('abcd') # We will set this only once (echoed by cat).
p.sendline('wxyz') # We will set this only once (echoed by cat)
p.expect(['1234'])
p.expect(['1234'])
p.expect(['abcd'])
p.expect(['wxyz'])

Not supported on platforms where isatty() returns False.

	
getwinsize()

	Return the window size of the pseudoterminal as a tuple (rows, cols).

	
setwinsize(rows, cols)

	Set the terminal window size of the child tty.

This will cause a SIGWINCH signal to be sent to the child. This does not
change the physical window size. It changes the size reported to
TTY-aware applications like vi or curses – applications that respond to
the SIGWINCH signal.

	
eof()

	This returns True if the EOF exception was ever raised.

	
isalive()

	This tests if the child process is running or not. This is
non-blocking. If the child was terminated then this will read the
exitstatus or signalstatus of the child. This returns True if the child
process appears to be running or False if not. It can take literally
SECONDS for Solaris to return the right status.

	
wait()

	This waits until the child exits. This is a blocking call. This will
not read any data from the child, so this will block forever if the
child has unread output and has terminated. In other words, the child
may have printed output then called exit(), but, the child is
technically still alive until its output is read by the parent.

	
kill(sig)

	Send the given signal to the child application.

In keeping with UNIX tradition it has a misleading name. It does not
necessarily kill the child unless you send the right signal. See the
signal [https://docs.python.org/3/library/signal.html#module-signal] module for constants representing signal numbers.

	
terminate(force=False)

	This forces a child process to terminate. It starts nicely with
SIGHUP and SIGINT. If “force” is True then moves onto SIGKILL. This
returns True if the child was terminated. This returns False if the
child could not be terminated.

	
close(force=True)

	This closes the connection with the child application. Note that
calling close() more than once is valid. This emulates standard Python
behavior with files. Set force to True if you want to make sure that
the child is terminated (SIGKILL is sent if the child ignores SIGHUP
and SIGINT).

	
class ptyprocess.PtyProcessUnicode(pid, fd, encoding='utf-8', codec_errors='strict')

	Unicode wrapper around a process running in a pseudoterminal.

This class exposes a similar interface to PtyProcess, but its read
methods return unicode, and its write() accepts unicode.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 ptyprocess	

Index

 C
 | E
 | G
 | I
 | K
 | P
 | R
 | S
 | T
 | W

C

 	
 	close() (ptyprocess.PtyProcess method)

E

 	
 	eof() (ptyprocess.PtyProcess method)

G

 	
 	getecho() (ptyprocess.PtyProcess method)

 	
 	getwinsize() (ptyprocess.PtyProcess method)

I

 	
 	isalive() (ptyprocess.PtyProcess method)

K

 	
 	kill() (ptyprocess.PtyProcess method)

P

 	
 	PtyProcess (class in ptyprocess)

 	
 	ptyprocess (module)

 	PtyProcessUnicode (class in ptyprocess)

R

 	
 	read() (ptyprocess.PtyProcess method)

 	
 	readline() (ptyprocess.PtyProcess method)

S

 	
 	sendcontrol() (ptyprocess.PtyProcess method)

 	sendeof() (ptyprocess.PtyProcess method)

 	sendintr() (ptyprocess.PtyProcess method)

 	
 	setecho() (ptyprocess.PtyProcess method)

 	setwinsize() (ptyprocess.PtyProcess method)

 	spawn() (ptyprocess.PtyProcess class method)

T

 	
 	terminate() (ptyprocess.PtyProcess method)

W

 	
 	wait() (ptyprocess.PtyProcess method)

 	
 	waitnoecho() (ptyprocess.PtyProcess method)

 	write() (ptyprocess.PtyProcess method)

 nav.xhtml

 Table of Contents

 		
 Ptyprocess

 		
 Ptyprocess API

_images/pty_vs_popen.png
Pseudoterminal

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

