

 Navigation

 	
 index

 	
 next |

 	PSURC Docs 0.1 documentation

Welcome to PSURC System Documentation

PSURC Docs is a collection of documents, notes, instructions and tutorials that help explain resources available to students and faculty provided by PSU Research Computing through PSU [http://www.pdx.edu]s OIT [http://www.pdx.edu/oit/].

Warning

First time here? Please read the Getting Started guide!

Getting Started

	Getting Started
	Server Resources

	Connecting to Our Servers

	Storage

	Other Tutorials on Getting Started

Servers

	Compute Servers
	Usage Rules and Guidelines

	Linux Clusters
	Hydra Cluster

	Other Servers
	Hera

Software

	Unix Software
	Bash

	Boost 1.58.0

	.dotfiles

	Ganglia

	GCC

	Go

	htop

	nice

	Perl

	Python

	Rocks Cluster Distribution

	screen

	Slurm Cluster Scheduler

	ssh

	stow

	Research Software
	Lumerical FDTD

	Gaussian g09

	MPI and MPICH

	PGI Cluster Development Kit

arc-docs

	How to Edit
	ReadTheDocs and Sphinx

	RST Tools

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

Getting Started

Server Resources

There are two kinds of computing services for running jobs that ARC provides, Compute Servers and Clusters.

Compute Servers

When you make a research account you will have access to our compute servers Circe and Hecate by default. These servers are large computers running linux that allow multiple users to run jobs simultaneously. Once you are connected to a compute servers, you can run jobs in the command line like you would on a normal linux computer, just be mindful of other users and their jobs.

Compute Clusters

A compute cluster is a set of networked computers that act as one. Compute clusters provide much more power for parallel jobs than the compute servers Circe and Hecate. We have two clusters here at ARC, Hydra and Gravel. If you want access to the compute clusters you will have to request access in addition to your regular research account. To request access to ARC’s compute clusters please contact: consultants@pdx.edu

Additional Information About Our Servers

	Knowing your software
	Setting up a testing environment locally

	Installing to your home directory

	Picking A Server
	Circe

	Hecate

	Hydra Cluster

	Gravel Cluster

Connecting to Our Servers

ssh is used to connect to our servers. ssh is included on Mac OSX and Linux and can used via the command line. If you are on Windows you will need additional software, most commonly PuTTY, to access our servers over ssh.

Connecting From Off Campus

If you are off the campus network you will have to use PSU’s vpn client OR ssh onto hera.rc.pdx.edu and then ssh onto the server you want to access from there.

Additional Information About Connecting

	Connecting to a Server
	OSX/Linux/Unix

	Windows

	Off Campus?

Storage

There are several options for storage on our systems.

Home Directories

Your home directory (~) is your own personal default storage space. When you connect to a server via ssh you are in your home directory. Home directory space is very limited. Do not store large files here–only configuration files, documents, and locally built programs. The compute servers share home directories.

Scratch Drives

Each server has its own Scratch Drive or scratch space. Scratch Drives are fast storage devices that you can use to store the data you want to run your jobs on. Scratch Drives are only intended to be used as short-term storage so please move your data off of scratch when you are done with your analysis.

If you are going to use a scratch drive please make a directory named after yourself to keep all of your files in.

Scratch drive locations

	Compute Servers (Circe/Hecate):

	
	/disk/scratch

	Hydra (compute cluster):

	
	/scratch

	/scratch2

Note

Scratch Space is not shared between the servers. e.g: scratch on Hecate is separate from scratch on Circe

Research Shares (I-Drive)

Research Shares are shared folders that you need to request access to. To request access to a share OR request a separate research share for you project please go to: http://intranet.pdx.edu/oit/i-drive-request

Research shares can be found in: /vol/share on all systems (excluding gravel)

Other Tutorials on Getting Started

	Tuning your Software

	Moving Data
	Rsync Between Servers

	Using SFTP and a GUI

	Nice your processes

	More Resources

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Getting Started

Knowing your software

The best thing you can do to learn how to use new and complicated Unix software packages is get it running on your local machine. Once you have that experience, getting it running in a shared computing environment will make a lot more sense.

All of ARC’s Servers run CentOS Linux, a flavor of Unix.

Some software specific support can be provided by ARC students and employees if time is available.

Since all software is different the best we can offer on this are tool suggestions to help with local testing.

Here is a good strategy to learn unfamiliar software:

	Install it locally on your desktop or in a virtual machine

	Install it to you home directy, or use the the system wide install of the program on the computation servers and see if it works the way you would exepct.

	Install your program to your home directory on cluster and try launching it through the scheduler on a compute node.

Setting up a testing environment locally

There isn’t one way to set up a local test environment, but here are a few tools to help get you started.

Testing on Linux

If you run Linux locally, usually you can simply install the dev tools and start building and testing software from source.

Testing on OS X

OS X has the benefit of running a flavor of Unix and offers a package manager that has a large catalog of research software. Install Xcode [https://itunes.apple.com/us/app/xcode/id497799835?mt=12] using the App Store and set up homebrew [http://brew.sh/] and the homebrew-science [https://github.com/Homebrew/homebrew-science] tap.

Testing on Windows

Windows is not a Unix operating system and therefor will preset a challenge to setting up Unix software locally. You are better off using a Virtual Machine and testing with that. You can try to use something like Cygwin [https://www.cygwin.com/] if you wish.

Testing Using a VM

This option is available to all operating systems. Using a tool like vagrant [https://www.vagrantup.com/] along side virtualbox [https://www.virtualbox.org/], you can quickly install a Centos 6.5 image to test in:

	CentOS 6.5 Vagrant Manifest [https://atlas.hashicorp.com/chef/boxes/centos-6.5]

Installing to your home directory

Once your software is installed and working locally, the next step is to install it to your home directory on the computational servers (if its not already installed system wide). You can use stow to manage these manual builds in your home directory.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Getting Started

Picking A Server

Once you have an idea of the software you wish to run, and its hardware requirements, you can pick a server to run your compute jobs on.

Circe

circe.rc.pdx.edu

Circe is a general compute server for smaller jobs. All minor computing tasks should take place here. It also offeres a GPGPU for hardware accelerated computations.

	Good for jobs that require less than 10GB of RAM.

	Can utilize GPGPU(CUDA) parallellization.

	No job scheduler.

See also

Read more about how the Nvidia Tesla K20 GPGPU card can help speed up your computations.

Hecate

hecate.rc.pdx.edu

Hecate is the other general purpose compute server for RAM hungry jobs. Jobs that require over 10 GB of ram should have priority over jobs that are not ram intensive. If you are running a CPU or IO bound job that does not require lots of RAM, you should move your job to Circe or a node in the clusters.

Hecate is good for jobs that:

	Requires large (over 10 GB) of RAM.

	No Scheduler

Hydra Cluster

hydra.rc.pdx.edu

The Hydra Cluster is the primary compute cluster at ARC. It is available for massivly distributed compute jobs, or just running CPU/IO intensive tasks on single nodes if they are distruptive to other tasks on the general compute servers. Programs are required to use the slurm scheduler which requires a bit of extra training to get started on.

Hydra is good for jobs that:

	Use message passing (MPI, MPIC etc)

	Tend to have a high CPU load and distrupt other processes on the general compute serers and require their own dedicated node.

	Can be broke into many little parts and executed in parallel across multiple nodes.

	Are easily distrupted by other processes on the general compute servers and require a dedicated node.

	Have users wishing to run their programs using a Job scheduler.

Gravel Cluster

gravel.rc.pdx.edu

The gravel_cluster is the secondary compute cluster at ARC. It runs slightly older hardware, and generally is less busy than hydra. Students are free to use gravel if they wish but changes to hydra are tested on gravel first.

Gravel is good for jobs that:

	Might be disruptive to jobs running on Hydra

	Wont fit on hydra if hydra is busy

	Want to try something new without affecting performance of jobs on hydra

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Getting Started

Connecting to a Server

The research systems are accessed primarily through use of a command-line interface utilizing a secure shell (SSH). For information on how to use this go here:

	Using SSH [http://www.pdx.edu/oit/secure-shell-ssh]

OSX/Linux/Unix

Use your system provided terminal program to connect to ARC research servers using SSH.

Windows

Use putty [http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html] to connect to ARC research servers.

Off Campus?

The research servers can only be connected to on campus. If you wish to connect to the research servers off campus, you have two options:

	PSUs VPN [http://www.pdx.edu/oit/virtual-private-network-vpn]

	Connecting to Hera (rc.pdx.edu) then connecting to the research server of your choice from that connection.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Getting Started

Tuning your Software

The optimal number of threads to use is entirely dependent on the program being run and may take a bit of trial and error. More threads does not usually result in faster runs and can actually be detrimental.

Warning

Please limit the number of threads to half of the currently available on the compute servers unless you have demonstrable evidence of increased performance with more threads.

Start small and increase the concurrency of your program. Benchmarking will help you discover the optimal settings for your program.

Warning

More threads does NOT equal faster performance. Play with the concurrency and thread settings and benchmark to find the sweet spot.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Getting Started

Moving Data

Getting data on on and off the servers can be done using SFTP or rsync.

Rsync Between Servers

If you need to switch which server you are running on, the fastest safe way to move your files is with rsync which can synchronize folders reliably.

Moving a folder from hecate to circe

Log into circe via ssh:

$ ssh user@circe.rc.pdx.edu

Then tell rsync which files you want to move:

$ rsync -v -a -e ssh user@hecate.rc.pdx.edu:/disk/scratch/FOLDER.TO.MOVE /disk/scratch/

This will clone the folder from hecate onto circe. NOTE: The files remain on the original server so please clean up those to preserve disk space.

Using SFTP and a GUI

Sometimes its easiest to just use a GUI to move files onto the research servers. Here are some decent options.

Windows

	WinSCP [http://winscp.net/eng/index.php]

OS X

	Cyber Duck [https://cyberduck.io/?l=en]

	Transmit [http://panic.com/transmit/] (Paid) - Local portland product!

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Getting Started

Nice your processes

It is important to nice intensive processes so that they don’t interfere with using the most basic functions of the research server such as changing directories or moving files.

The nice and renice commands adjust the priority of a process. ARC recommends that all users nice all of their processes with a value of at least 5. To nice a process when it is started type:

$ nice +5 [other_commands]

where [other_commands] is the command you actually wan to run. If you have already started a job and want to nice it after the fact, you can use the renice command to do this. First identify the process ID that you wish to nice:

$ ps -u

Then run renice on it:

$ renice +5 [PID]

where [PID] is the process ID.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Getting Started

More Resources

Here are some links to more resources on learning technical computing and unix/linux skills:

	Software Carpentry [http://software-carpentry.org/lessons.html]

	Cyberwizard Institute [https://github.com/cyberwizardinstitute/workshops]

	Cyberwizard Lectures [https://www.youtube.com/channel/UCzDHOdHNitu70iiva25rV7w]

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

Compute Servers

Here at ARC we provide two general purpose compute servers, Circe and Hecate.

Usage Rules and Guidelines

	Programs that require large amounts of memory (100’s of GB or more) should be run on hecate.

	Before you run your jobs on a server run htop to check the server load. It will be pretty obvious if the server you are on is under a heavy load (lots of green, red, yellow and blue). If so, checkout the other server to see if it is more available.

	Please limit the number of threads a multi-threaded job uses. Be mindful of the other user’s jobs on the server you are using. If there is a heavy load on the server you are using, please nice your jobs so they do not clog up the system too much. If someone complains about your job consuming to many resources we will nice it for you.

	If you want software installed, try building it locally before contacting us.

	Circe
	Nvidia Tesla K20 GPGPU

	Hecate

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Compute Servers

Circe

	Server Domain
	circe.rc.pdx.edu

	Model
	

	Ram
	189GB

	OS
	CentOS 6.5

	CPU
	2 x Intel Xeon E5-2665

	Clock
	2.40 GHz

	Cores
	16 (2 x 8)

	Special Hardware
	NVIDIA GK110GL
[Tesla K20m] (rev a1)

	HyperThreading
	Disabled

Nvidia Tesla K20 GPGPU

Circe is equipped with a Tesla K20 [http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf] GPGPU [https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units]. A GPGPU, when utilized properly, can drastially improve the performance of certain types of computing jobs by incresasing computational concurrency.

Nvidia has a list of software that can take advantage of their GPGPUs:

	Nvidia Software List [http://www.nvidia.com/object/gpu-applications.html?All]

Software that can use the GPGPU:

	WRF [http://www2.mmm.ucar.edu/wrf/WG2/GPU/]

	Gaussian G09 [http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=roberto+gomperts&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=&select=+]

	G-BLASTN [http://www.comp.hkbu.edu.hk/~chxw/software/G-BLASTN.html]

	GPU-BLAST [http://archimedes.cheme.cmu.edu/?q=gpublast]

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Compute Servers

Hecate

	Server Domain
	hecate.rc.pdx.edu

	Model
	Dell R720

	Ram
	757GB

	OS
	CentOS 6.5

	CPU
	2 x Intel Xeon E5-2690

	Clock
	2.90 Ghz

	Cores
	16 (2 x 8)

	Special Hardware
	

	HyperThreading
	Disabled

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

Linux Clusters

	Hydra Cluster
	Hydra Specifications

	Applications

	Storage

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Linux Clusters

Hydra Cluster

Hydra is a research cluster available to PSU students and faculty.

Hydra Specifications

	Server Domain
	hydra.rc.pdx.edu
	compute-0-[0-13]
	compute-1-[0-11]

	Model
	Dell PowerEdge R720
	Dell PowerEdge R620
	Dell PowerEdge R900

	RAM
	64GB
	64GB
	128GB

	OS
	Rocks 6.1.1
	Rocks 6.1.1
	Rocks 6.1.1

	CPU
	2 x Intel Xeon E5-2650
	2 x Intel Xeon E5-2650
	4 x Intel Xeon E7330

	Clock
	2.00GHz
	2.00GHz
	2.40GHz

	Cores
	16 (2 x 8)
	16 (2 x 8)
	16 (4 x 4)

	Special Hardware
	SSE4_2
	SSE4_2
	

	Hyper Threading
	Enabled
	Disabled
	N/A

	Network
	N/A
	10 Gigabit
	1 Gigabit

[image: The Hydra Cluster.]
A photo of the Hydra Cluster servers (highlighted in red).

Applications

Applications that have been compiled/configured locally are stored in:

/share/apps

Storage

Hydra has a large scratch space that can be used for computations:

/disk/scratch/[user folder]
/disk/scratch2/[user folder]

We have two JBODs attatched:

	Dell PowerVault MD1220 (scratch)

	Dell PowerVault MD1200 (scratch2)

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

Other Servers

	Hera
	Connecting to another research server from Hera:

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Other Servers

Hera

Hera(.rc.pdx.edu) is a server that you can use to connect to research servers (Circe/Hecate/Hydra) from off campus. Hera is accessable without PSU’s VPN service.

Connecting to another research server from Hera:

	first, ssh into Hera from your local machine

	then, ssh onto the server that you want to use

And there you have it. That is all you need to do to connect to our infastructure from the outside world.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

Unix Software

This section contains pages that give information and primers on how to use standard unix utilities and tools. Found a useful unix tool everyone should know about? Write it up and send it our way!

	Bash
	Check which shell you are running

	What to do if my default shell is NOT bash?

	What to do in the meantime

	Boost 1.58.0
	Using Boost 1.58.0 on your system:

	.dotfiles

	Ganglia

	GCC
	GCC on compute servers (Circe/Hecate):

	GCC on Clusters (Hydra/Deino):

	Using non-system GCC

	Go
	Setting up Go on your system:

	Setting up your own Go install:

	Additional Info and Links:

	htop
	Using htop to keep an eye on the server

	nice
	How to nice your processes

	Perl
	Installing Local Perl Modules:

	Python
	Activate pyenv in your environment

	Check which versions of python are available

	Switch your session to the version you want

	Create a virtual environment in your home directory

	Using Pyenv and Virtualenv on Hydra

	Rocks Cluster Distribution

	screen
	Set up GNU screen for long running processes

	Slurm Cluster Scheduler
	Example Job Submission

	Useful Slurm Commands

	Useful Slurm Links

	ssh
	SSH Tutorials

	Set up SSH keys and config files

	stow
	Setting up programs in your home directory with stow

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

Bash

Bash is the default shell on ARC’s systems. You are free to use a different shell if you’d like, however, all of our documentation only supports Bash implementations.

Check which shell you are running

Log into any research server and enter the following command:

echo $0

If you see any kind of output other than something like this:

> echo $0
-bash

then you are likely running some other shell by default, most likely tcsh or some variation of this. This command tells you what your active shell is.

What to do if my default shell is NOT bash?

Send us a quick request from your PDX email address requesting that your default research account shell be set to bash.

What to do in the meantime

You can always switch over to bash by typing the following into the console no matter what your default shell is set to after logging in:

> bash

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

Boost 1.58.0

The Boost Library is a large set of libraries for C++.

Using Boost 1.58.0 on your system:

To compile code that uses boost libraries use the -I flag to set the path to boost.
The path to boost 1.58.0 is:

/vol/apps/system/boost-1.58.0

Example:

$> g++ -I /vol/apps/system/boost-1.58.0 example.cpp -o executable_example

Note

When you are building software that uses boost 1.5 with make or other install scripts: Check for a configure flag that sets the path to the boost library. If there is one, set it to the path specified above.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

.dotfiles

Dotfiles (files that live in your home directory that start with a .) are hidden preference files that allow you to change your shell environment and settings for different unix programs. You can see these files by passing the -a flag to the ls command.

When you want to make changes to your environment that take effect every time you log in just add them to your .bash_profile. Careful though! If you screw this file’s syntax up you may break your $PATH making it difficult to edit the file to fix the problem.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

Ganglia

The clusters can be monitored using the Ganglia webview from on campus at the following URLS:

	http://hydra.rc.pdx.edu/

	http://gravel.rc.pdx.edu/

[image: A screenshot of the ganglia view for hydra.]

These can be viewed off campus by using PSUs VPN [http://www.pdx.edu/oit/virtual-private-network-vpn].

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

GCC

ARC aims to supply robust up-to-date versions of GCC.

Currently we support the lastest release of every major version of GCC. If there is a version of GCC that isn’t supported that you need please let us know and we’ll get to building it for you.

GCC on compute servers (Circe/Hecate):

All versions of GCC can be found under:

/vol/apps/gcc/

Versions Currenty Supported:

	4.4.7 (system)

	4.6.4

	4.7.4

	4.8.5

	4.9.3

	5.1.0

	5.2.0

	5.3.0

	6.1.0

Languages Currently Supported:

	C

	C++

	Objective C

	Objective C++

	Fortran

Note

GCC on the compute servers does not support 32 bit

GCC on Clusters (Hydra/Deino):

We are currently working on building GCC on the clusters.

GCC has been built up to 4.9.3 on Deino.

Versions Currenty Supported:

	4.4.7 (system)

	4.6.4

	4.7.4

	4.8.5

	4.9.3

Languages Currently Supported:

	C

	C++

	Objective C

	Objective C++

	Fortran

Note

Newer GCC builds are not yet available on Hydra

Using non-system GCC

Using a non-system GCC is done serveral different ways depending on your use-case. This document will cover two common scenarios you might encounter.

Compiling a single file:

First, set your LD_LIBRARY_PATH to include the libraries of gcc build you want to use (This configuration will change when you log out or change shells). Depending on what you are doing, this step might not be necessary.

export LD_LIBRARY_PATH=/vol/apps/gcc/gcc-6.1.0/lib:/vol/apps/gcc/gcc-6.1.0/lib64

After your library path is set, compile your file using the full path to the non-system gcc compiler.

/vol/apps/gcc/gcc-6.1.0/bin/gcc myfile.c

Compiling a program with make:

The process of using a non-system gcc to compile software with make differs between programs. Generally make will look for environment vairables durring the configure step that tell make which compiler and libraries to build the program with. To get a list of significant environment vairables run the following command inside the programs base directory.

./configure --help

Some typical enviroment vairables for setting compiler paths include:

CC -- C compiler (gcc)
CXX -- C++ compiler (g++)
FC -- Fortran compiler (gfortran)
F77 -- Fortran 77 compiler (typically gfortran)

Before configuring your software set the nesseary compiler environment variables and your library path variable in your current shell.

export LD_LIBRARY_PATH=/vol/apps/gcc/gcc-6.1.0/lib:/vol/apps/gcc/gcc-6.1.0/lib64
export CC=/vol/apps/gcc/gcc-6.1.0/bin/gcc

./configure
make
make install

Note

The LD_LIBRARY_PATH variable doesn’t always need to be set. Consult ./configure –help for more infomation

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

Go

Go is an open source programming language initially developed by Google. Go version 1.4.2 is currently installed on the compute servers, Crice and Hecate.

Setting up Go on your system:

Go will not work right off the bat, you need to export the GOROOT directory variable to where Go is loacted. The system install of go is currently located in /vol/apps/system/stow/go-1.4.2/.

Add this line to either your ~/.bash_profile or ~/.bash_rc:

export GOROOT=/vol/apps/system/stow/go-1.4.2/

To check if the Go is working properly, run this command:

$> go version

If GOROOT is set properly your terminal should output:

go version go1.4.2 linux/amd64

Setting up your own Go install:

step 1: Download Go source code from golang.org/dl [https://golang.org/dl/] and unpack.

step 2: export GOROOT path variable to where you unpacked the package. Put these lines into your either your ~/.profile or your ~/bash_rc:

export GOROOT=/path_to_go_install
export PATH=$PATH:$GOROOT/bin

Additional Info and Links:

	Go Hompage [https://golang.org/]

	Go Source Code [https://golang.org/dl/]

	Go Download Documentation [https://golang.org/doc/install#download/]

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

htop

Using htop to keep an eye on the server

You can use a program called htop to keep an eye on the server.

[image: A screenshot of the htop program running on hecate.]
A screenshot of the htop program running on hecate.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

nice

Information on modifying your process priority using nice.

How to nice your processes

It is important to nice intensive processes so that they don’t interfere with using the most basic functions of the research server such as changing directories or moving files.

The nice and renice commands adjust the priority of a process. ARC recommends that all users nice all of their processes with a value of at least 5. To nice a process when it is started type:

$ nice +5 [other_commands]

where [other_commands] is the command you actually wan to run. If you have already started a job and want to nice it after the fact, you can use the renice command to do this. First identify the process ID that you wish to nice:

$ ps -u

Then run renice on it:

$ renice +5 [PID]

where [PID] is the process ID.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

Perl

To use an updated perl version we need to use perlbrew and point it at the perlbrew install that works system wide.

Make sure you are running bash as your default shell the add the following two lines to the end of your .bashrc file:

export PERLBREW_ROOT=/vol/apps/system/perl5/
source $PERLBREW_ROOT/etc/bashrc

Run this command to see which versions of perl are available:

perlbrew list

Run this command to activate the version you want:

perlbrew switch perl-5.22.0

Note

Make sure you use the the correct version that is listed as available above.

Run this command to switch back to system perl:

perlbrew switch-off

Installing Local Perl Modules:

You can use perlbrew to install modules to your own system locally.

To install local modules first create a local library with perlbrew:

$> perlbrew lib create perl-5.22.0@mylocallibrary

This command creates a local library for perl 5.22.0 called “mylocallibrary”

You can use the use parameter to use that library only for the current shell:

$> perlbrew use perl-5.22.0@mylocallibrary

or the switch parameter to switch that library to the defualt:

$> perlbrew switch perl-5.22.0@mylocallibrary

Now once you have switched to or are using a local library you can go ahead and install perl modules locally with cpanm:

$> cpanm Moo

To check if your installation worked check it with:

$> perldoc perllocal

To delete a library:

$> perlbrew lib delete perl-5.22.0@mylocallibrary

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

Python

It is difficult to update python beyond the version CentOS provides at the system level. For this reason, ARC offers an alternate python environments using pyenv.

If you are interested in installing your own python packages to your home folder, you must do so in a virtual environment. In short, switch to the version of python that you want in your virtualenv using pyenv, create the virtualenv, and proceed to do all your development in that virualenv going forward.

Activate pyenv in your environment

You must add the following lines in your ~/.bashrc file:

Compute servers (Circe/Hecate):

export PYENV_ROOT="/vol/apps/system/python/pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"

Compute Clusters (Hydra/Gravel):

export PYENV_ROOT="/share/apps/user/stow/pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"

Now re-source your settings file (IE source ~/.bashrc) or log out and back in.

Check which versions of python are available

Now that the pyenv command is available, check which versions are installed:

> pyenv versions
* system (set by /vol/apps/system/python/pyenv/version)
2.7.6
3.3.3

This shows three available versions of python. The currently active version denoted by the *. In this case, system python is the currently active python version.

Switch your session to the version you want

To change to a different version of python use the shell command:

> pyenv shell 2.7.6
> python --version
Python 2.7.6

Now python 2.7.6 is the active python version provided by pyenv

Create a virtual environment in your home directory

Virtual Environments are local python installations that allow you to install python packages locally with pip without having to request an admin to install them for you.
Virtualenvs are easy to setup and quite disposable if you mess up.
The virtualenv command will create a virtual environment with the python version that is currently selected in pyenv:

> mkdir my_environment
> virtualenv my_environment
> source my_environment/bin/activate

Upon first activation, its a good idea to update pip and setuptools:

> pip install --upgrade pip
> pip install --upgrade setuptools

After you have created, updated and activated your new virtual environment you can install packages with pip freely.

To exit your python environment type:

> deactivate

To reactivate an environment you have already created type:

> source my_environment/bin/activate

Now you can freely install packages with pip once again!!

Using Pyenv and Virtualenv on Hydra

Because hydra uses a scheduler to run jobs using pyenv requires a few extra steps to get jobs running.

This section is assuming that you have already created a virtualenv with pyenv and virtualenv using the steps above.

Using Full Path to Python

If you want to run jobs with a python virtualenv in slurm you will need to use the full path to the python installed in your virtualenv in the commands in your slurm script.

Example: You created a virtualenv with python 2.7.7 called env2 that is in your home directory (/home/me/). You want to run a python script you wrote called my_script.py on the slurm scheduler.

If you were running a python script in slurm with the default system python this line would be in your slurm script:

> srun python my_script.py

But because you are using a personal virtualenv you need to specify full path to the python in your virtualenv (this line will go into your slurm batch file):

> srun /home/me/env2/bin/python my_script.py

Setting Python Evironment Variables

WAIT!!! You are not completely ready to run jobs through slurm quite yet. Before you can run your jobs you need to set two environment variables, PYTHONPATH and PYTHONHOME:

Setting PYTHONPATH

PYTHONPATH points to extra libraries you want to use with your script. In our case, we point it to the default libraries found in the pyenv installation.

Example: Type this into the command line on your head node before your run your slurm script

> export PYTHONPATH=/share/apps/pyenv/versions/<version_you_are_using>/lib/python<version>

Replace <version_you_are_using> with the version of python you chose to make your env with.

Example: If you chose to use python 2.7.7 your PYTHONPATH would be

> export PYTHONPATH=/share/apps/pyenv/versions/2.7.7/lib/python2.7

If you used python 3.4.3 your PYTHONPATH would be:

> export PYTHONPATH=/share/apps/pyenv/versions/3.4.3/lib/python3.4

Setting PYTHONHOME

PYTHONHOME is an environment variable that points to the python executable you want to use. PYTHONHOME should be the path to your virtualenv directory.

Example: You created a virtualenv with python 2.7.7 called env2 that is in your home directory (/home/me/).

> export PYTHONHOME=/home/me/env2

Running your job

After you have set these evironment variables in your shell you are set to schedule jobs through slurm. These environment variables will only live as long as your session is open. You will have to set them every time you login and want to run a job with your virtualenv in slurm.

You can add PYTHONPATH and PYTHONHOME to your ~/.bashrc to make the changes last after you logout. This will likely cause issues when creating new virtualenvs, using pyenv and using the python interpreter outside of your env and slurm.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

Rocks Cluster Distribution

Hydra, Deino, and Gravel all run ROCKS 6.1.1 [http://central6.rocksclusters.org/roll-documentation/base/6.1.1/] with the following rolls installed:

	area51

	base

	bio

	ganglia

	hpc

	java

	kernal

	os

	perl

	python

	slurm

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

screen

Set up GNU screen for long running processes

screen is a simple way to start a process on the research servers that you want to keep running even aver you are logged out of the session.

Configuring Screen

Before we start, lets add as simple configuration file that vastly improves the screen programs behavior.

Create a file in your home directory called .screenrc:

touch ~/.screenrc

Paste in the following settings using your preferred $EDITOR

 # Source: https://gist.github.com/bcomnes/6689991/download
 # Sets the screen to use login shells
 shell -$SHELL

 # To reload .screenr Press Ctrl - a : source ~/.screenrc

 # Turn of startup message
 startup_message off

 # This helps prevent the screen from doing funny things.
 defflow off
 defnonblock on

 # Enable 256-color mode when screen is started with TERM=xterm-256color
 # Taken from: http://frexx.de/xterm-256-notes/
 # I took it from: http://www.robmeerman.co.uk/unix/256colours
 #
 # Note that TERM != "xterm-256color" within a screen window. Rather it is
 # "screen" or "screen-bce"
 #
 # terminfo and termcap for nice 256 color terminal
 # allow bold colors - necessary for some reason
 attrcolor b ".I"
 # tell screen how to set colors. AB = background, AF=foreground
 termcapinfo xterm-256color 'Co#256:AB=\E[48;5;%dm:AF=\E[38;5;%dm'

 # Sets the status bar
 caption string "%?%F%{= Bk}%? %C%A %D %d-%m-%Y %{= kB} %t%= %?%F%{= Bk}%:%{= wk}%? %n "
 hardstatus alwayslastline
 hardstatus string '%{= kG}[%{G}%H %{g}][%= %{= kw}%?%-Lw%?%{r}(%{W}%n* %f%t%?(%u)%?%{r})%{w}%?%+Lw%?%?%= %{g}][%{B} %d/%m %{W}%c %{g}]'

Download screenrc [https://raw.githubusercontent.com/PSU-OIT-ARC/arc-docs/master/source/examples/screen/screenrc]

This changes some subtle behavior and turns on a status bar making screen a little bit easier to wrap your head around. It also turns off the annoying startup message.

Using Screen

Here is a quick walkthrough of how to use screen. To start using screen, run:

> screen

This opens a new screen session. Type some commands into the window such as listing files (ls) or changing directory (cd ..).

Now we can disconnect from this screen and have it continue to run in the background. screen uses keyboard shortcuts where you press two keys at once, let go, then press the next key to actually issue the command. First press the two keys at the same time:

Ctl-a

Let go, then press:

d

This should disconnect you from your screen session and take you back to where you were before you launch screen. You can have multiple screen sessions running at the same time (and have even more screen windows per screen session if you really want!).

Note

In the future, this kind of keyboard shortcut will be referred to as Ctl-a d

Reconnecting to screen

To reconnect to screen, we can type screen -ls similar to list the running screen sessions. (Similar to how ls will list the files in the current directory).

> screen -ls
There is a screen on:
 19250.pts-8.rocks (Detached)
1 Socket in /var/run/screen/S-bcomnes.

This lists the running screen sessions. Each session has a number associated with it. To reconnect to a particular screen session type:

screen -r 19250

where 19250 is the number associated with the screen session you want to connect to.

To end a screen session, reconnect to it, and just exit out of all the processes running and then end the session by typing:

exit

There are lots of cool screen features. Here is a quick rundown of screen window management:

	Ctl-a c

	Create a window in the current screen session

	Ctl-a n

	Go to the next window in the current screen session

	Ctl-a d

	Disconnect from current screen session.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

Slurm Cluster Scheduler

This section contains information on general slurm use. If this is your first time running slurm, it is recommended that you read over some of the basics on the official Slurm Website [http://slurm.schedmd.com/documentation.html] and watch this introductory video: Introduction to slurm tools video [https://www.youtube.com/watch?v=U42qlYkzP9k]

[image: A video on launching slurm jobs]
 [https://www.youtube.com/watch?v=U42qlYkzP9k]

Example Job Submission

To submit a job to the scheduler, first figure out what kind of resource allocation you need. Once you have that set up a launching script similar to the following:

Download example.sh [https://raw.githubusercontent.com/PSU-OIT-ARC/arc-docs/master/source/examples/slurm/example.sh]

#!/bin/sh

Run this file with the command line "sbatch example.sh" for a working demo.

See http://slurm.schedmd.com/sbatch.html for all options
The SBATCH lines are commented out but are still read by the Slurm scheduler
Leave them commented out with a single hash mark!

To disable SBATCH commands, start the line with anything other than "#SBATCH"
##SBATCH # this is disabled
####SBATCH # so is this
SBATCH # disabled
 #SBATCH # disabled

##
Slurm SBATCH configuration options
##

The name of the job that will appear in the output of squeue, qstat, etc.
#
#SBATCH --job-name=this-is-the-job-name

max run time HH:MM:SS
#
#SBATCH --time=10:00:00

-N, --nodes=<minnodes[-maxnodes]>
Request that a minimum of minnodes nodes (servers) be allocated to this job.
A maximum node count may also be specified with maxnodes.
#
#SBATCH --nodes 1-3

-n, --ntasks=<number>
The ntasks option is used to allocate resources for parallel jobs (OpenMPI, FreeMPI, etc.).
Regular shell commands can also be run in parrallel by toggling the ntasks option and prefixing the command with 'srun'
ntasks default value is 1
THIS OPTION IS NOT USED TO RESERVE CPUS FOR MULTITHREADED JOBS; See --cpus-per-task
Mulithreaded jobs only use one task. Asking for more tasks will make it harder for your job to schedule and run.
#
#SBATCH -n 1

--cpus-per-task=<number>
The cpus-per-task option reserves a set number of CPUs (cores) for each task you request.
The cpus-per-task option can be used to reserve CPUs for a multithreaded job
The default value is 1
#
#SBATCH --cpus-per-task=1

For hydra, main and main2 are the available partitions. This line is safe to omit
on gravel as CLUSTER is the only partition. Check /etc/partitions.conf for currently
defined partitions.
#
#SBATCH --partition main2,main

Command(s) to run.
You specify what commands to run in your batch below.
All commands will be run sequentially unless prefixed with the 'srun' command
To run this example in sbatch enter the command: 'sbatch ./example.sh'
The output from this example would be written to a file called slurm-XXX.out where XXX is the jobid
The slurm out file will be located in the directory where sbatch was executed.

MESSAGE='Hello, world!'
echo ${MESSAGE}

Another example command
my_computation_worker /home/user/computation_worker.conf

Once you write a launcher script with the correct resource allocations, you can launch your script using the following command:

> sbatch ./example.sh
Submitted batch job 440

This submits your job to the scheduler. You can check the status of the job queue by running:

> squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 433 main2 trinity- arom2 R 3-00:47:07 1 compute-1-9
 439 main2 tip_plan jblac2 R 2:24:55 8 compute-1-[7-8,10,12-16]
 438 main2 fdtd_job jblac2 R 2:37:18 8 compute-1-[0-6,11]

Useful Slurm Commands

Here are a list of useful slurm commands.

scancel is the tool for canceling your jobs:

> scancel [jobid]

scontrol shows information about running jobs:

> scontrol show job [jobid]
 UserId=jblac2(169223) GroupId=jblac2(54419)
 Priority=10220 Nice=0 Account=jblac2 QOS=normal WCKey=*default
 JobState=RUNNING Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 ExitCode=0:0
 RunTime=02:40:04 TimeLimit=4-04:00:00 TimeMin=N/A
 SubmitTime=2014-08-25T13:46:37 EligibleTime=2014-08-25T13:46:37
 StartTime=2014-08-25T13:46:37 EndTime=2014-08-29T17:46:37
 PreemptTime=None SuspendTime=None SecsPreSuspend=0
 Partition=main2 AllocNode:Sid=hydra:1704
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=compute-1-[0-6,11]
 BatchHost=compute-1-0
 NumNodes=8 NumCPUs=128 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
 Socks/Node=* NtasksPerN:B:S:C=16:0:*:* CoreSpec=0
 MinCPUsNode=16 MinMemoryNode=0 MinTmpDiskNode=0
 Features=(null) Gres=(null) Reservation=(null)
 Shared=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=/home/jblac2/job.sh tip_3d_trial_2/geometry.fsp
 WorkDir=/home/jblac2
 StdErr=/home/jblac2/slurm-438.out
 StdIn=/dev/null
 StdOut=/home/jblac2/slurm-438.out

sinfo show information about the state of the cluster:

> sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
DEBUG up infinite 0 n/a
main up infinite 14 idle compute-0-[0-13]
main2* up infinite 17 alloc compgute-1-[0-16]
main2* up infinite 1 idle compute-1-17

smap shows a visual representation of the cluster:

[image: A screenshot of the smap view running on hydra.]

Useful Slurm Links

	Slurm Documentation [http://slurm.schedmd.com/documentation.html]

	Slurm Tutorials [http://slurm.schedmd.com/tutorials.html]

	Slurm Publications [http://slurm.schedmd.com/publications.html]

	Slurm At Harvard [https://rc.fas.harvard.edu/resources/running-jobs/]

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

ssh

SSH Tutorials

Set up SSH keys and config files

You can enable secure, password-free authentication to the ARC servers using SSH keys. SSH keys are a public/private key system that is more secure than traditional passwords, and offers a more convenient login mechanism than typing in your password every time you connect.

SSH Keys work by generating two cryptographic key files. One of the files is private (keep it a secret!) and the other is public (it doesn’t matter if someone gets a copy of it, but don’t unnecessarily distribute it).

Generating Keypair

On your computer create a ssh RSA keypair by typing:

$ ssh-keygen -t rsa

This creates a pair of keys (public id_rsa.pub and private id_rsa).

Should I set a Passphrase for my Private Key?

Yes!

Because it is really bad if someone gets a copy of your private key (id_rsa) you should set a passphrase for your private key. This passphrase is used to encrypt the private key so that it cannot simply be used if a copy is made by a bad actor. It also means that a password must be used every time your private key is needed. In order to avoid this anoyance, most modern operating systems will provide a keychain system that can keep track of and auto submit this private key passphrase. On OS X, the Keychain.app will be your passphrase manager and will prompt you save the passphrase. Most Linux distributions will automatically offer to save the password using it’s flavor of passphrase manager. You should accept the offer and let your system remember this.

On windows, you can use a program such as pageant [http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html] or keepass [http://keepass.info/download.html] with the KeeAgent [http://keepass.info/plugins.html#keeagent] plugin.

Set folder permissions on server

Because of some existing configuration errors, home folders are created with incorrect permissions. In order for ssh keys to work, you must set these correct permissions on the appropriate folders and files.

Open a ssh connection to the server and run the following:

$ touch ~/.ssh/authorized_keys
$ chmod 711 ~ && chmod 711 ~/.ssh && chmod 600 ~/.ssh/authorized_keys

Upload public key to server

On your computer run the following:

$ cat ~/.ssh/id_rsa.pub | ssh [user]@[server]:~/.ssh/authorized_keys

(change user and server as appropriate)

The password-free login should now work. Connect by $ ssh [user]@[server]

Note

You can create a single public/private key per device you connect from, or create a single key pair that is used on all your devices. Each method has it’s pros and cons relating to key invalidation. If you generate a key per device, you can simple append additional public keys on new lines in the ~/.ssh/authorized_keys file.

Create aliases for servers

Creating an ssh config file will let you create shortcut names to servers you frequently ssh into.

Create a file in ~/.ssh/ called ‘config’ and add servers with the following format:

host [hostname]
 hostname [server]
 user [username]

Example:

host example
 hostname example.com
 user odinusername

Now you can connect to the server running:

ssh example

Which will connect to odinusername@example.com

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Unix Software

stow

Stow is a simple program that lets you automatically create symlinks between subfolders in a stow directory to the parent directory of the stow folder. It is usful for managing built-from-srouce software. It is used in /vol/apps/ but it is also useful in your home directory.

Setting up programs in your home directory with stow

You can use a simple program called GNU stow to manage built-from-source applications in your home directory.

First, create a stow and src folder in your home directory:

> cd ~
> mkdir stow
> mkdir src

Next download the program you wish to build form source to the src folder:

> cd ~/src
> wget http://example.com/program-1.0.0.tar.gz
...
> tar xvzf program-1.0.0.tar.gz
...
> cd program-1.0.0

Create a folder in the stow folder where you want your program installed:

> mkdir ~/stow/program-1.0.0

Read about available build options and decide if you need to change any default options:

> cd ~/src/program-1.0.0
> ./configure --help
...
#Lots of options

Configure the program to install to the stow prefix that we just created and set any other options or flags that you need. This step may vary from program to program. You may encounter errors or warnings at this step so watch out and research any that come up:

> cd ~/src/program-1.0.0
> ./configure --prefix=~/stow/program-1.0.0
...
Lots of output

Next make the program from source. Watch for errors on this step and research them as the come up:

in ~/src/program-1.0.0
> make
...
lots of output

Once your program builds successfully, install it to the prefix directory that we set in the configure step. Watch for errors on this step:

in ~/src/program-1.0.0
> make install

If the install is successful, navigate to the program folder in the stow folder and inspect what was installed:

> cd ~/stow/program-1.0.0
> ls -a
bin lib
etc...

If you see files/folders not conforming to the standard Unix folder structure:

/bin
/include
/lib
/lib64
/local
/sbin
/share
/tmp

you should consider cleaning up the install as the install did not follow standard convention and may make a huge mess. If the program installed cleanly, you can stow the program:

> cd ~/stow
> stow -S program-1.0.0

Running this stow command with the -S flag (for save/stow?) symlinks the contents of ~/stow/program-1.0.0 into the directory above the ~/stow folder. In this case this is your home folder ~/. bash is configured to use the default Unix directories in the home folder by default, so now binaries from program-1.0.0 should be in your $PATH.

Lets say we want to un-stow a program to remove it from our environment or to stow a new version. We can simply run:

> cd ~/stow
> stow -D program-1.0.0

Running stow with the -D flag (for delete?) deletes the symlinks created by stow from the step above.

stow is intelligent enough to not overwrite files and keeps track of everything it installs. Its simple, but effective.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

Research Software

This section contains pages that give information and tutorials on how to use various research utilities used on the ARC research servers and clusters.

	Lumerical FDTD

	Gaussian g09
	Testing Gaussian

	Parallelization With Linda

	MPI and MPICH
	System MPI

	PGI Cluster Development Kit
	PGI Cluster Development Kit: Research Servers

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Research Software

Lumerical FDTD

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Research Software

Gaussian g09

Topics

	Gaussian g09
	Testing Gaussian

	Parallelization With Linda

See also

Gaussian Supports GPGPUs! Read about our Nvidia Tesla K20 GPGPU card.
Gaussian Supports Parallelization! Read the example: Parallelization With Linda

The Gaussian software is installed on linux clusters and is available for use if you are authorized to use the available license. You must be added to the gaussian unix group in order to run g09 which should be specifically requested when requesting a research account.

Setting up g09

g09 requires some simple modifications to your user environment. Add the following to to your ~/.bashrc file:

g09root="/share/apps"
GAUSS_SCRDIR=/scratch/$USER/gaussian_scratch
export g09root GAUSS_SCRDIR
source $g09root/g09/bsd/g09.profile

The $GAUSS_SCRDIR env variable is used as the Gaussian scratch folder. For now, leave this in your home directory and keep an eye on its size and clean up old files.

Testing Gaussian

Warning

Guassian will not run on the gravel.rc.pdx.edu cluster due to the lack of the SSE4_2 CPU instruction set.

You can test to make sure g09 is working properly and your environment is set up correctly by setting up a simple g09 test and then writing a schelulings script to submit the job to slurm, the cluster scheduler. The following is a simple test:

Download g09-test.gjf [https://raw.githubusercontent.com/PSU-OIT-ARC/arc-docs/master/source/examples/g09/g09-test.gjf]

%nprocshared=8
%mem=2GB
%chk=test2.chk
opt hf/sto-3g nosymm

Title Card Required

0 1
 O -0.37773358 -0.54671967 0.00000000
 H 0.58226642 -0.54671967 0.00000000
 H -0.69818817 0.35821616 0.00000000

This test file will run a single g09 job using 8 threads and 4Gb of memory.

Next set up a simple slurm script to schedule your your g09 job. Set up a simple bash script with some special directives in the header to do this:

Download g09-slurm.sh [https://raw.githubusercontent.com/PSU-OIT-ARC/arc-docs/master/source/examples/g09/g09-slurm.sh]

#!/bin/sh
#SBATCH --job-name=g09-test

max run time
#SBATCH --time=10:00:00

The number of compute nodes to request
g09 only needs 1 node per job, but n tasks that you specify with %nprocshared
Figure out the optimal number of nprocshared per task for your
job through benchmarking. You can also request exclusive mode with the --exlusive
flag.

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8

Specify slurm partition
#SBATCH --partition main

command to run
srun g09 g09-test.gjf

To enqueue the job run:

sbatch g09-slurm.sh

Now check the queue to see if your job has been accepted:

squeue

We can keep an eye on activity using:

sinfo

or by visiting the ganglia monitoring tool [http://gravel.rc.pdx.edu].

For a more extensive test try the following g09 file which will fail on servers without the correct CPU instutions required by gaussian:

Download l2-PtCl-td.gjf [https://raw.githubusercontent.com/PSU-OIT-ARC/arc-docs/master/source/examples/g09/l2-PtCl-td.gjf]

%nprocshared=8
%mem=4GB
%chk=l2-PtCl-td.chk
td=(nstates=30) b3lyp/gen nosymm pseudo=read

Title Card Required

0 1
 C -1.42605900 -1.78595500 4.47177600
 C -0.23700600 -1.48797500 3.81418000
 C -0.29248900 -0.27930700 3.09516400
 C -1.52624800 0.35385000 3.19048400
 H 0.62060900 -2.14434300 3.87326900
 C 0.66670500 0.52939000 2.22266900
 C -0.23501800 1.70545400 1.85006000
 C -0.10957800 2.87803500 1.08184600
 C -1.27206400 3.64213600 1.05907300
 C -1.49221900 1.56565900 2.42647200
 H 0.78006800 3.18781600 0.55060700
 C -1.75229000 -2.91978600 5.31788500
 C -0.85909500 -4.04433300 5.49068200
 C -2.94371100 -3.00911400 6.02677900
 C -1.21536400 -5.16654500 6.35238300
 C -3.28390500 -4.10205100 6.85863200
 H -3.65868200 -2.19379000 5.96631200
 C -2.46759200 -5.20170900 7.05831100
 H -4.22896400 -4.04680100 7.39045100
 C -1.54074000 4.89299300 0.37319500
 C -0.51768600 5.62641500 -0.33980000
 C -2.80041400 5.47825500 0.34518700
 C -0.82312000 6.87784500 -1.02697200
 C -3.08876900 6.69382500 -0.31880600
 H -3.62783800 4.98014700 0.84184100
 C -2.14911900 7.43416300 -1.01507200
 H -4.11795700 7.03898800 -0.29835400
 C -2.87063400 -6.32159500 7.93702000
 C -4.22691700 -6.68574900 8.03873200
 C -1.93719200 -7.03494100 8.71300700
 C -4.63955400 -7.70650100 8.89167000
 H -4.96623200 -6.18169500 7.42386500
 C -2.34468500 -8.05808000 9.56514400
 H -0.88544100 -6.78650800 8.64939500
 C -3.69744600 -8.39719900 9.66211300
 H -5.69139300 -7.97317500 8.95025200
 H -1.61842800 -8.59836600 10.16537700
 C -2.50499900 8.70175300 -1.68959300
 C -3.50199100 9.53591200 -1.14772800
 C -1.89430700 9.10280300 -2.89295100
 C -3.89244200 10.70928900 -1.78672900
 H -3.96281900 9.27711200 -0.19962400
 C -2.27833300 10.27867300 -3.53331000
 H -1.11376900 8.49118400 -3.32734000
 C -3.28359100 11.08486900 -2.98775600
 H -4.66050400 11.34575300 -1.35722400
 H -1.79639900 10.56850500 -4.46318100
 N -4.07171900 -9.46401200 10.56574500
 N -3.71840300 12.31202500 -3.61981100
 N 0.33329500 -4.19313600 4.90581000
 N -0.27926800 -6.12260300 6.38220100
 N 0.76660100 5.27319100 -0.44420800
 N 0.24485600 7.42269900 -1.62245700
 S 1.51690500 6.42886500 -1.33477900
 S 0.94299900 -5.63128500 5.40797100
 C -4.40664900 -9.12127000 11.89377000
 C -5.17687700 -7.97634800 12.14869900
 C -4.34283600 -9.60182700 14.18091500
 C -5.52467100 -7.65712900 13.45343900
 H -5.49773100 -7.35662900 11.32218300
 C -5.11585900 -8.49577900 14.49102200
 H -3.94932900 -10.26511200 14.93926400
 H -6.12431200 -6.77400000 13.65325000
 H -5.37415200 -8.29592600 15.52481600
 C -4.14362400 -10.77913600 10.05825100
 C -4.68450600 -11.01234700 8.78449100
 C -4.78242200 -12.31116700 8.30628300
 H -5.02587500 -10.17595000 8.18967400
 C -3.81232100 -13.07506900 10.35141900
 C -4.35769000 -13.36762500 9.11300500
 H -5.20418400 -12.49517500 7.32259600
 H -3.41484000 -13.83993100 11.00480500
 H -4.42850700 -14.39991700 8.78939000
 C -4.72718300 12.23479500 -4.60446800
 C -4.73955000 11.17103400 -5.51991100
 C -6.61586700 13.15471800 -5.63177100
 C -5.71757200 11.12029600 -6.50294900
 H -3.98134700 10.40268900 -5.45488900
 C -6.66488300 12.14225100 -6.57481300
 H -7.34871100 13.94933500 -5.59551200
 H -5.72584300 10.30085900 -7.21559900
 H -7.43919500 12.15381300 -7.33353800
 C -3.04183100 13.50639100 -3.28964600
 C -1.65018900 13.49879100 -3.10856300
 C -3.09417500 15.80897000 -2.88832600
 C -0.98894500 14.68226400 -2.81294000
 H -1.10503200 12.56981000 -3.20764500
 C -1.72118400 15.86649500 -2.71981700
 H -3.72850700 16.67813400 -2.77830800
 H 0.08841800 14.68018200 -2.67644900
 H -1.24743500 16.81777900 -2.50536000
 N -3.74790900 14.64913000 -3.13885600
 N -3.67841900 -11.80553800 10.80506300
 C 1.90408000 0.99546100 3.02272300
 H 1.60934300 1.56239600 3.91115000
 H 2.49848300 0.13329700 3.34569400
 H 2.54291900 1.63447500 2.40267500
 C 1.10500100 -0.26760300 0.97312800
 H 1.68603700 -1.14965400 1.26503600
 H 0.23864600 -0.60305700 0.39464700
 H 1.73363000 0.35254100 0.32412300
 N -5.68518500 13.18764500 -4.64808200
 N -3.97023600 -9.89597400 12.91206600
 S -2.54644600 2.87372600 2.03405300
 S -2.64337900 -0.52444300 4.16929700
 Cl -1.13350700 -13.17743500 12.06869000
 Cl -1.47762200 -10.95005100 14.54071300
 Cl -5.89484700 16.20066100 -1.42115400
 Cl -8.16395200 14.48562700 -3.18515200
 Pt -2.64648100 -11.43798500 12.55368200
 Pt -5.81082900 14.60832300 -3.15575700

Pt 0
Lanl2dz

C H Cl N S 0
6-31G(d)

Pt 0
Lanl2dz

Try editing or copying the g09-slurm.sh to point to the l2-PtCl-td.gjf file and launch a second job on the scheduler.

Parallelization With Linda

Gaussian g09 jobs can be run in parallel across multiple nodes which may increase performance and decrease runtime of jobs if done correctly. Documentation is spotty, but here is a sample to help you started. More information can be found in the dynamic hostfile example.

A few more notes from the developers:

	“%NProcs=” (short for “%NProcShared”) in the input file requests the number of cores (processors) to use via shared-memory parallelization (number per Linda worker)

	It is also possible to pass the number as an environment variable e.g. “GAUSS_PDEF=16” for 16 shared-memory cores.

	“%NProcShared=” in the input takes precedence over “GAUSS_PDEF”, so one could override the latter by setting “%NProcShared” in the input file.

Download g09-slurm.sh [https://raw.githubusercontent.com/PSU-OIT-ARC/arc-docs/master/source/examples/g09/linda.sh]

#!/bin/bash
#SBATCH --job-name=g09-test

max run time
#SBATCH --time=10:00:00

4 servers, 1 linda worker per server, 16 CPUs per linda worker
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=16

Specify slurm partition
#SBATCH --partition main

activate bash debugging from here
set -x

Name of your gjf file ie l2-PtCl-td.gjf
JobFile=l2-PtCl-td

This creates a list of nodes that you job received to run on
LindaList=./nodes_linda.$SLURM_JOBID
touch $LindaList

This creates a jobfile
JobName=./${JobFile}${SLURM_JOBID}.gjf
touch $JobName

Create a list of hostnames and save it to the LindaList machine file
srun hostname -s | sort -u > $LindaList

Tell linda to use ssh
export GAUSS_LFLAGS=' -opt "Tsnet.Node.lindarsharg: ssh"'

Read the contents of the machine file and put it in the job file
workers="%LindaWorkers="$(cat $LindaList | tr "\n" "," | sed "s/,$//")

Write that out to the job file
cat <(echo -e "${workers}\r") ./$JobFile.gjf > $JobName

Run gaussian using our job file and output to a matching results file
g09 /scratch/bcomnes/g09/linda/${JobFile}${SLURM_JOBID}.gjf /scratch/bcomnes/g09/linda/foo${SLURM_JOBID}.txt

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Research Software

MPI and MPICH

System MPI

Message passing has been installed on the research system, but has to be enabled using the module system. Here are examples on how to do that if you need those:

module load openmpi-x86_64
module load mpich2-x86_64

These commands can be added to your .bashrc if you need them routinely or dynamically loaded from shell scripts that launch your MPI jobs. You may be interested in running this on the Linux Clusters.

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PSURC Docs 0.1 documentation

 	Research Software

PGI Cluster Development Kit

Topics

	PGI Cluster Development Kit
	PGI Cluster Development Kit: Research Servers
	Portland Group Cluster Development Kit (PGICDK)

PGI Cluster Development Kit: Research Servers

To use the PGI compiler you have to enable it. While it it is worth reading through the PGI documentation on how to fully do this, here is a quick set of instructions to get you started.

PGI is installed in:

/vol/apps/system/pgicdk

You can gain access to its tools by adding the following to your .bashrc file:

export PGI=/vol/apps/system/pgi
export PATH=$PGI/linux86-64/2014/bin:$PATH
export MANPATH=$MANPATH:$PGI/linux86-64/2014/man
export LM_LICENSE_FILE=$LM_LICENSE_FILE:27005@pgi.license.pdx.edu:$PGI/license.dat

PGI comes with its own versions of openMPI and MPICH. You can enable MPICH for example, by these by adding this to your .bashrc file as well:

export PATH=$PGI/linux86-64/14.6/mpi/mpich/bin:$PATH
export MANPATH=$MANPATH:$PGI/linux86-64/14.6/mpi/mpich/man

ARC has a license for the cluster development kit.

Portland Group Cluster Development Kit (PGICDK)

ARC provides access to a Portland Group (PGI) Cluster Development Kit [https://www.pgroup.com/products/pgicdk.htm] license. Some of the popular tools in this software package include:

	PGFORTRAN

	PGCC

	PGC++

It also includes tools that can take advantage of NVIDIA CUDA running on supported devices such as the Nvidia Tesla K20 GPU installed in Circe. Using PGI requires that you set up the tools in your user environment. This varies from system to system so please refer to th specific system you wish to use PGI on.

	PGI Cluster Development Kit: Research Servers

	pgiCluster

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	PSURC Docs 0.1 documentation

How to Edit

Arc-docs is a set of documentation that is built and hosted on ReadTheDocs [http://readthedocs.org]. ReadTheDocs is a service builds the documentation from a git repository whenever it receives a webhook [https://developer.github.com/webhooks/`] event which is fired every time a new commit is made to that repo. The Arc-Docs repo is hosted on github: https://github.com/PSU-OIT-ARC/arc-docs

The easiest way to edit Arc-Docs is by navigating to the page you want to make a change to, then click the Edit on Github button in the top right corner of the page. This will take you to that files page on the github repo which will allow you to edit it in the browser.

Most changes can be made directly to the shared repo in the PSU-OIT-ARC organization, but you are free to use the fork, modify pull request pattern if you wish for larger changes or changes you want feedback on.

ReadTheDocs and Sphinx

ReadTheDocs fully supports the Sphinx [http://sphinx-doc.org] documentation tool, which has quickly become the standard tool for documenting python projects. Sphinx is a superset of reStructuredText [http://docutils.sourceforge.net/rst.html] which is largely a superset of Markdown. It tends to be a bit more strict syntactically, but allows for much greater control over complex references and included codeblocks.

Useful RST References

	reStructuredText Primer [http://sphinx-doc.org/rest.html]

	sublime-text-unofficial-documentation [http://sublime-text-unofficial-documentation.readthedocs.org/en/latest/reference/metadata.html] privides a nice model layout of RTD documents.

RST Tools

It benefits from a well configured technical text editor such as vim, emacs, or Sublime Text [http://www.sublimetext.com/3].

SublimeText RST Tools

	reStructuredText Improved [https://sublime.wbond.net/packages/RestructuredText%20Improved]

	Restructured Text (RST) Snippets [https://sublime.wbond.net/packages/Restructured%20Text%20(RST)%20Snippets]

	Table Editor [https://sublime.wbond.net/packages/Table%20Editor]

	SublimeLinter-rst [https://github.com/SublimeLinter/SublimeLinter-rst]

Online Tools

	Online Sphinx Editor [https://livesphinx.herokuapp.com]

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	PSURC Docs 0.1 documentation

Index

 Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_images/slurm-video.png

_static/up-pressed.png

_images/smap.png
)} bcomnes — bcomnes@hydra:/etc/modulefiles — ssh — 102x32

Mon Aug 25 16:28:50 2014
ID J0BID PARTITION USER NAME st TIME NODES NODELIST

getting_started/getting_started.html

 Navigation

 		
 index

 		PSURC Docs 0.1 documentation »

Getting Started

Server Resources:

There are two kinds of computing services for running jobs that ARC provides, Compute Servers and Clusters.

Compute Servers:

When you make a research account you will have access to our compute servers Circe and Hecate by default. These servers are just large linux computers that allow multiple users to run jobs at once. Once you are connected to one of the compute servers, you can run jobs in the command line like you would on a normal linux computer, just be mindful of other users.

Compute Clusters:

A compute cluster is a set of networked computers that act as one. Compute clusters provide much more power than the compute servers Circe and Hecate. We have two clusters here at ARC, Hydra and Gravel. If you want access to the compute clusters you will have to request access in addition to your regular research account.

Connecting to Our servers:

Use ssh to connect to our servers. ssh is included on Mac and Linux and can used via the command line. If you are on Windows you will need aditional software, most commonly PuTTY, to access our servers over ssh.

Connecting off campus:

If you are off the campus network you will have to use PSU’s vpn client OR ssh onto hera.rc.pdx.edu and then ssh onto the server you want to access from there.

Scratch Drives:

Each server has its own Scratch Drive or ‘scratch space’. Scratch Drives are fast storage devices that you can use to store the datayou want to run your jobs on. Scratch Drives are only intended to be used as short-term storage so please move your data off of scratch when you are done with your analysis.

 © Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		PSURC Docs 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

_images/hydra-ganglia.png
® 06

Ganglia: hydra Cluster Report

(<] [+

@ hydra.rc.pdx.edu/ganglia/7r—hourics—&ce—&c—h,

ragh=g&tat &

Stacked Graph - load_one

-

Metic osd_one

ydra load_one

2t hour sotec descending

] Show Host Sclec| auto | Some | None | Sie (Gmal_T8)
Cotumns (TTE) 0 = metic + repors)
Show oy nodes matening iter
Max raphs to show (G_T) Soted | ascending | descending | by name

getting_started/cluster_getting_started.html

 Navigation

 		
 index

 		PSURC Docs 0.1 documentation »

Getting Started With Clusters

Importance Of Scheduling Jobs:

A computer cluster is a group of connected computers that allow you to distrube parralel/multiprossing jobs accross multiple computers. The computer that manages all of the other computers (nodes) is called the head node. The head node uses software, called a scheduler, to manage and distrube jobs throughout the nodes.

All jobs must be run through the scheduler!!!! If your jobs are not run through the scheduler, they will run on the head node and potentailly overload and crash the entire system. If we find ANY large jobs on the head node they will be killed imideatly

Our systems use the scheduler slurm. Documentation on how to use slurm is provided below:

 © Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

_static/up.png

getting_started/requesting_software.html

 Navigation

 		
 index

 		PSURC Docs 0.1 documentation »

Requesting software

Once you have tested your software and you think your package should be installed system wide you can email consultants@pdx with all relevant details to the installation of your software. That includes

		Program Name

		Program Version

		Program website

		Link to download

		Dependencies

		Compilation Options

		Anything else needed to get the package up and running

 © Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

getting_started/monitor.html

 Navigation

 		
 index

 		PSURC Docs 0.1 documentation »

Monitoring Server Load

Before you start a new job, it is important to check to see what resources are currently in use. If you are using a general compute server, you can use htop. If you are using a cluster, you can use squeue (part of slurm) and Ganglia

Compute Servers (Circe/Hecate)

Since these are shared resources, other jobs may currently be using large amounts of RAM or processing threads.:

1. ``ssh`` to hecate and circe
2. Run command: ``$ htop``
3. the Current load will be on the upper-right.

 Eg. `Load average: 8.04 8.10 8.13`

Note

The first number is the 1 minute load, second is 5 minutes, and third is 15 minutes. A load of 8 means that, on average, 8 cores are 100% utilized. With 16 cores, 100% utilization is a load of 16. Anything above this means that processes are waiting for a core to be available. Ideally the load should be kept under 14.

If the load is high, it can cause runs to fail and, if left unchecked, can crash the server.

Compute Clusters

Visiting either hydra.rc.pdx.edu or gravel.rc.pdx.edu will take you to the ganglia view for either cluster.

You can also monitor the job queue using squeue and smap on either head node. Read about slurm for more inforamtion on this.

 © Copyright 2016, PSU:OIT:Research Computing.
 Created using Sphinx 1.3.5.

_images/htop.png
11111111160.0%]
1

ox]
9%]
12.9%]

£} bcomnes — bcomnes@hecate:~ — ssh — 94x37

%]

1]
111111199.4])
10.8%]

I
LELELELELETETT T 1] 1 60252/775374M8)

122/98303H8]
11111 s0.9%1

hecate.rc.pdx.edu

47246 arom2
47249 arom2
47257 arom2
46067 root
44582 root
4439 Josw
44391 Josw
36613 beomnes
37332 beomnes
37573 beomnes
36614 bcomnes
36283 root
34977 jfaz
34878 jfa2
33860 jfaz
33861 jfa2
30026 helatre
Fe F2

11111 33.8%]
1
22.4%]

1
1111157-1x]
74.4%)

1

5:19:21

- unzip
-/bin/
[bin/!
Jusr[bin], Jusr[bin/den
Jusr/bin/ruby [usr/sbin/pupp
~dnS trini
-bin/1

-/bin/!

-/bin/|
Juse/bin/perl -wT /usr/sbin/
-5 vol
/bin/!
- disk
/bin/!

cccconcucocolncos

F10]

