

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	psphere 0.5.2 documentation

psphere documentation contents

	Introduction
	Notes

	Installing psphere

	Developing psphere

	Usage

	Examples

	Alternatives

	First steps with psphere
	Vendor documentation

	The Client object

	Hello World in psphere

	General programming pattern

	Finding a ManagedEntity

	Lazy loading of properties and pre-loading properties

	Caching

	Error handling
	Handling exceptions

	Datastore examples
	Finding a datastore

	Finding all VMs attached to a datastore

	HostSystem examples
	Finding a single HostSystem by name

	Finding all HostSystem’s

	How many VirtualMachine’s on a HostSystem?

	Listing VirtualMachine’s on a HostSystem

	API Documentation
	psphere.client - A client for communicating with a vSphere server

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	psphere 0.5.2 documentation

Introduction

This is the documentation for psphere, native Python bindings for the
vSphere Web Services SDK/VMware Infrastructure SDK.

Notes

psphere implements the following VMware SDKs:

	VMware Infrastructure SDK 2.5

	VMware vSphere Web Services SDK 4.0 and later

I’m currently developing against vCenter 4.1 so please raise any bugs for
other versions.

See the vSphere Web Services SDK Documentation for further information on
VMware SDKs at http://www.vmware.com/support/developer/vc-sdk/.

Installing psphere

pip install -U psphere

Developing psphere

If you want to use the latest development branch:

$ git clone https://github.com/jkinred/psphere
$ cd psphere
$ sudo python setup.py install
$./examples/connect.py --server yourserver.esx.com --username youruser --password yourpass
Successfully connected to https://yourserver.esx.com/sdk
Server time is 2010-09-05 00:14:06.037575

Usage

See First steps with psphere for an introductory tutorial. It also contains links
to more advanced sections in this manual.

Examples

	HostSystem examples

	Datastore examples

Alternatives

	VMware VI Java API [http://vijava.sourceforge.net/]

	VMware VI Java API with Jython [http://www.doublecloud.org/2010/03/using-vsphere-java-api-in-jython-and-other-jvm-languages/]

	VMware vSphere SDK for Perl [http://www.vmware.com/support/developer/viperltoolkit/]

	VMware vSphere PowerCLI [http://www.vmware.com/support/pubs/ps_pubs.html]

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	psphere 0.5.2 documentation

First steps with psphere

This document is meant to give a tutorial-like overview of the main psphere
objects and the common tasks that psphere is used for.

The green arrows designate “more info” links leading to more detailed
sections about the described task.

Vendor documentation

VMware provides very good documentation for the VMware vSphere API. It is
suggested that you at least read the introductory documents to gain a conceptual
understanding of the API.

Throughout this documentation there are links to the API reference
documentation.

[image: more info] See useful references.

The Client object

The Client object is the entry point into psphere. Through it you can login to a
vSphere server and obtain Python objects representing managed objects. You can
then access information about and execute methods on those objects.

[image: more info] Read more about the Vim attributes and methods.

Hello World in psphere

Not quite, but logging into the server and printing the current time is close:

>>> from psphere.client import Client
>>> client = Client("your.esxserver.com", "Administrator", "strongpass")
>>> servertime = client.si.CurrentTime()
>>> print(servertime)
2010-09-04 18:35:12.062575
>>> client.logout()

General programming pattern

Create a new Client:

>>> from psphere.client import Client
>>> client = Client("your.esxserver.com", "Administrator", "strongpass")

...check out the rootFolder of the content attribute, it’s a Python object:

>>> client.si.content.rootFolder.__class__
<class 'psphere.managedobjects.Folder'>

...access properties of it:

>>> print(client.si.content.rootFolder.name)
Datacenters

...invoke a method:

>>> new_folder = client.si.content.rootFolder.CreateFolder(name="New")
>>> print(new_folder.name)
New
>>> task = new_folder.Destroy_Task()
>>> print(task.info.state)
success

...log out of the server:

>>> client.logout()

Finding a ManagedEntity

Managed Object’s which extend the ManagedEntity class are the most
commonly used objects in the vSphere API. These include Managed Object’s
such as HostSystem’s and VirtualMachine’s.

psphere makes it easy to find Managed Entity’s by providing a get()
classmethod to find them:

>>> from psphere.client import Client
>>> from psphere.managedobjects import VirtualMachine
>>> client = Client("your.esxserver.com", "Administrator", "strongpass")
>>> vm = VirtualMachine.get(client, name="genesis")
>>> vm.__class__
<class 'psphere.managedobjects.VirtualMachine'>
>>> vm.name
bennevis
>>> vm.summary.guest.ipAddress
10.183.11.85
>>> vm.config.hardware.memoryMB
4096

There is also the all() method to get all entities of that type:

>>> vms = VirtualMachine.all(client)

Lazy loading of properties and pre-loading properties

At this point we have to delve into a more complicated aspect of vSphere and
how psphere handles it. You do not need to worry about this, psphere will just
work for you – albeit inefficiently in some cases.

The vSphere SDK architecture provides abstract “views” of server side objects,
some of these objects can be quite substantial, both in size and server
resources required to collect them.

If you retrieve substantial objects then your scripts will be slow and you
will generate load on your vSphere server.

psphere deals with this by lazily loading objects on access. In most cases
this is fine, but you can achieve substantial speed-ups – especially for
lists of managed objects – by pre-loading objects you know that you are
going to access.

For example, a HostSystem has a “vm” property which is a list of
VirtualMachine objects on that host. If you know you are going to loop
over all those VM’s and print their name, you can preload the name property
using the preload method:

>>> hs = HostSystem.get(client, name="myhost")
>>> hs.preload("vm", properties=["name"])
>>> for vm in hs.vm:
>>> print(vm.name)
>>> ...

Caching

Once lazily loaded or pre-loaded, attributes will be cached for a pre-defined
time (5 minutes, which is not configurable but will be in the next release).

To update the cache for a specific property of an object, use the update()
method with the properties parameter:

>>> hs.update(properties=["name"])

To update the cache for all cached properties of an object, use the update()
method with no parameters:

>>> hs.update()

To clear the property cache for an object, use the flush_cache() method:

>>> hs.flush_cache()

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	psphere 0.5.2 documentation

Error handling

At time of writing, the vSphere SDK raises 435 types of exception. Rather
than duplicate these in psphere, the API instead raises a single fault
called VimFault when any vSphere related fault is detected. The VimFault
exception contains the following attributes:

	fault: The fault object

	fault_type: The class name of the fault (the name you will find in the vSphere documentation)

All other properties which are listed in the API reference will be available
as attributes of the fault object.

Handling exceptions

>>> try:
>>> operation()
>>> except VimFault, e:
>>> e.fault_code
InvalidProperty
>>> e.fault.name
name

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	psphere 0.5.2 documentation

Datastore examples

WARNING!!!! Not updated for new API!

This page provides examples for working with datastores.

Finding a datastore

You can find a datastore in a ComputeResource using the find_datastore
convenience method:

>>> from psphere.client import Client
>>> from psphere.managedobjects import Datastore
>>> client = Client("server.esx.com", "Administrator", "strongpass")
>>> datastore = Datastore.get(name="nas03")
>>> print(datastore.summary.name)
nas03
>>> print("%iGB" % (datastore.summary.freeSpace/1073741824))
13203GB

Finding all VMs attached to a datastore

Just look at the vm property of the Datastore managed object:

>>> for vm in datastore.vm:
>>> try:
>>> print(vm.name)
>>> print(vm.summary.config.guestId)
>>> except AttributeError:
>>> print("Unknown")
>>> print("----------")
sdi3extapp01
sles10_64Guest

sdi3ppcapp01
sles10_64Guest

sdi3oamapp01
sles10_64Guest

hudmas01
rhel5Guest

sandbox5
rhel5Guest

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	psphere 0.5.2 documentation

HostSystem examples

This page provides examples for working with HostSystem views. The
examples accumulate as they go so make sure you reference the previous examples.

Finding a single HostSystem by name

Connect to the server and find the HostSystem view:

>>> from psphere.client import Client
>>> from psphere.managedobjects import HostSystem
>>> client = Client("server.esx.com", "Administrator", "strongpass")
>>> hs = HostSystem.get(client, name="k2")
>>> print(hs.name)
k2
>>> print(hs.summary.hardware.model)
Sun Fire X4440

Finding all HostSystem’s

Use the .all() method which can be found on all objects extending
ManagedEntity:

>>> hs_list = HostSystem.all(client)
>>> len(hs_list)
3
>>> for hs in hs_list:
>>> print(hs.name)
host1
host2
host3

How many VirtualMachine’s on a HostSystem?

Just count the number of VirtualMachine‘s objects in the vm property:

>>> len(host_system.vm)
40

Listing VirtualMachine’s on a HostSystem

The HostSystem.vm attribute contains a list of VirtualMachine objects.

>>> for vm in host_system.vm:
>>> try:
>>> print(vm.name)
>>> print(vm.summary.config.memorySizeMB)
>>> except AttributeError:
>>> print('No value')
>>> print('---------')
genesis
2048

sdv1sdfsas04
'No value'

pelmo
4096

sdi2brmapp01
4096

ssi5oamapp01
4096

twynam
1024

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	psphere 0.5.2 documentation

API Documentation

This page documents the psphere API.

psphere.client - A client for communicating with a vSphere server

The main module for accessing a vSphere server.

Module author: Jonathan Kinred <jonathan.kinred@gmail.com>

	
class psphere.client.Client(server=None, username=None, password=None, wsdl_location='local', timeout=30, plugins=[])

	A client for communicating with a VirtualCenter/ESX/ESXi server

>>> from psphere.client import Client
>>> Client = Client(server="esx.foo.com", username="me", password="pass")

	Parameters:	
	server (str) – The server of the server. e.g. https://esx.foo.com/sdk

	username (str) – The username to connect with

	password (str) – The password to connect with

	wsdl_location (The string “local” (default) or “remote”) – Whether to use the provided WSDL or load the server WSDL

	timeout (int (default=30)) – The timeout to use when connecting to the server

	plugins (list of classes) – The plugins classes that will be used to process messages
before send them to the web service

	
create(type_, **kwargs)

	Create a SOAP object of the requested type.

>>> client.create('VirtualE1000')

	Parameters:	
	type (str) – The type of SOAP object to create.

	kwargs (TODO) – TODO

	
find_entity_view(view_type, begin_entity=None, filter={}, properties=None)

	Find a ManagedEntity of the requested type.

Traverses the MOB looking for an entity matching the filter.

	Parameters:	
	view_type (str) – The type of ManagedEntity to find.

	begin_entity (ManagedObjectReference or None) – The MOR to start searching for the entity. The default is to start the search at the root folder.

	filter (dict) – Key/value pairs to filter the results. The key is a valid parameter of the ManagedEntity type. The value is what that parameter should match.

	Returns:	If an entity is found, a ManagedEntity matching the search.

	Return type:	ManagedEntity

	
find_entity_views(view_type, begin_entity=None, properties=None)

	Find all ManagedEntity’s of the requested type.

	Parameters:	
	view_type (str) – The type of ManagedEntity’s to find.

	begin_entity (ManagedObjectReference or None) – The MOR to start searching for the entity. The default is to start the search at the root folder.

	Returns:	A list of ManagedEntity’s

	Return type:	list

	
get_search_filter_spec(begin_entity, property_spec)

	Build a PropertyFilterSpec capable of full inventory traversal.

By specifying all valid traversal specs we are creating a PFS that
can recursively select any object under the given entity.

	Parameters:	
	begin_entity (ManagedEntity) – The place in the MOB to start the search.

	property_spec (TODO) – TODO

	Returns:	A PropertyFilterSpec, suitable for recursively searching under the given ManagedEntity.

	Return type:	PropertyFilterSpec

	
get_view(mo_ref, properties=None)

	Get a view of a vSphere managed object.

	Parameters:	
	mo_ref (ManagedObjectReference) – The MOR to get a view of

	properties (list) – A list of properties to retrieve from the server

	Returns:	A view representing the ManagedObjectReference.

	Return type:	ManagedObject

	
get_views(mo_refs, properties=None)

	Get a list of local view’s for multiple managed objects.

	Parameters:	
	mo_refs (ManagedObjectReference) – The list of ManagedObjectReference’s that views are to be created for.

	properties (list) – The properties to retrieve in the views.

	Returns:	A list of local instances representing the server-side managed objects.

	Return type:	list of ManagedObject’s

	
invoke(method, _this, **kwargs)

	Invoke a method on the server.

>>> client.invoke('CurrentTime', client.si)

	Parameters:	
	method (str) – The method to invoke, as found in the SDK.

	_this (ManagedObject) – The managed object reference against which to invoke the method.

	kwargs (TODO) – The arguments to pass to the method, as found in the SDK.

	
invoke_task(method, **kwargs)

	Execute a *_Task method and wait for it to complete.

	Parameters:	
	method (str) – The *_Task method to invoke.

	kwargs (TODO) – The arguments to pass to the method.

	
login(username=None, password=None)

	Login to a vSphere server.

>>> client.login(username='Administrator', password='strongpass')

	Parameters:	
	username (str) – The username to authenticate as.

	password (str) – The password to authenticate with.

	
logout()

	Logout of a vSphere server.

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	psphere 0.5.2 documentation

 Python Module Index

 c

 			

 		
 c	

 	
 	
 client	

 	
 	
 psphere.client	

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	psphere 0.5.2 documentation

Index

 C
 | F
 | G
 | I
 | L
 | P

C

 	

 	Client (class in psphere.client)

 	client (module)

 	

 	create() (psphere.client.Client method)

F

 	

 	find_entity_view() (psphere.client.Client method)

 	

 	find_entity_views() (psphere.client.Client method)

G

 	

 	get_search_filter_spec() (psphere.client.Client method)

 	get_view() (psphere.client.Client method)

 	

 	get_views() (psphere.client.Client method)

I

 	

 	invoke() (psphere.client.Client method)

 	

 	invoke_task() (psphere.client.Client method)

L

 	

 	login() (psphere.client.Client method)

 	

 	logout() (psphere.client.Client method)

P

 	

 	psphere.client (module)

 Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/file.png

_images/more.png

_static/minus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

index.html

 Navigation

 		
 index

 		
 modules |

 		psphere 0.5.2 documentation »

 Welcome

 psphere provides native Python bindings for the vSphere Web Services SDK
 (formerly known as VMware Infrastructure SDK).

 The project is in its early phases but can already perform most query
 operations and virtual machine creation.

 psphere is in no way affiliated with VMware Inc.

 Documentation

 		
 Getting Started

 overview of basic tasks

 User Guide

 high level usage for end users

 Search page

 search the documentation

 		

 API Reference

 low level usage

 General Index

 all functions, classes, terms

 Get psphere

 psphere is available as an easy-installable
 package on the Python Package
 Index.

 Contribute

 The code can be found on GitHub

 Get in touch via GitHub if you would like to contribute to psphere.
 This is my first Python and open-source project so I would appreciate any
 feedback or advice!

 © Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		psphere 0.5.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Jonathan Kinred.
 Created using Sphinx 1.2.2.

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/plus.png

_static/up-pressed.png

