
PSAMM Documentation
Release 0.30

PSAMM developers

Jun 23, 2017

Contents

1 Overview 3
1.1 Citing PSAMM . 3
1.2 Software license . 3

2 PSAMM Tutorials 5
2.1 Installation and Materials . 5
2.2 Importing, Exporting, and working with Models with PSAMM . 9
2.3 Model Curation . 23
2.4 Constraint Based Analysis with PSAMM . 31

3 Install 39
3.1 Dependencies . 39
3.2 Cplex . 40
3.3 Gurobi . 40
3.4 GLPK . 40
3.5 QSopt_ex . 40

4 Model file format 43
4.1 Biomass . 44
4.2 Extracellular Compartment . 44
4.3 Default Compartment . 44
4.4 Compartments . 44
4.5 Compounds . 44
4.6 Reactions . 45
4.7 Exchange compounds . 46
4.8 Reaction flux limits . 47
4.9 Model Definition . 47

5 Command line interface 49
5.1 Linear programming solver . 49
5.2 Flux balance analysis (fba) . 50
5.3 Flux variability analysis (fva) . 50
5.4 Robustness (robustness) . 51
5.5 Random sparse network (randomsparse) . 51
5.6 Gene Deletion (genedelete) . 51
5.7 Flux coupling analysis (fluxcoupling) . 52
5.8 Stoichiometric consistency check (masscheck) . 53

i

5.9 Formula consistency check (formulacheck) . 54
5.10 Charge consistency check (chargecheck) . 54
5.11 Flux consistency check (fluxcheck) . 54
5.12 Reaction duplicates check (duplicatescheck) . 54
5.13 Gap check (gapcheck) . 55
5.14 GapFill (gapfill) . 55
5.15 FastGapFill (fastgapfill) . 56
5.16 Predict primary pairs (primarypairs) . 56
5.17 SBML Export (sbmlexport) . 56
5.18 Excel Export (excelexport) . 56
5.19 Table Export (tableexport) . 56
5.20 Search (search) . 57
5.21 Console (console) . 57

6 Development 59
6.1 Test suite . 59
6.2 Adding new tests . 60
6.3 Documentation tests . 60

7 FAQ 61

8 PSAMM API 63
8.1 psamm.balancecheck – check balance of charge and formula 63
8.2 psamm.command – Command line interface . 64
8.3 psamm.database – Reaction database . 65
8.4 psamm.datasource.context – File system contexts . 66
8.5 psamm.datasource.entry – Model entry representations . 66
8.6 psamm.datasource.kegg – KEGG data parser . 68
8.7 psamm.datasource.modelseed – ModelSEED data parser 69
8.8 psamm.datasource.native – Native data format parser . 69
8.9 psamm.datasource.reaction – Parser for reactions . 74
8.10 psamm.datasource.sbml – SBML model parser . 75
8.11 psamm.expression.affine – Affine expressions . 79
8.12 psamm.expression.boolean – Boolean expressions . 80
8.13 psamm.fastcore – Fastcore (approximate consistent subset) . 81
8.14 psamm.fastgapfill – FastGapFill algorithm . 83
8.15 psamm.fluxanalysis – Constraint-based reaction flux analysis 83
8.16 psamm.fluxcoupling – Flux coupling analysis . 86
8.17 psamm.formula – Chemical compound formula . 86
8.18 psamm.gapfill – GapFind/GapFill . 88
8.19 psamm.gapfilling – Gap-filling functions . 89
8.20 psamm.lpsolver.cplex – CPLEX LP solver . 90
8.21 psamm.lpsolver.generic – Generic linear programming solver 91
8.22 psamm.lpsolver.glpk – GLPK LP solver . 92
8.23 psamm.lpsolver.gurobi – Gurobi LP solver . 93
8.24 psamm.lpsolver.lp – Linear programming problems . 94
8.25 psamm.lpsolver.qsoptex – QSopt_ex LP solver . 98
8.26 psamm.massconsistency – Mass consistency check . 100
8.27 psamm.metabolicmodel – Metabolic model representation . 100
8.28 psamm.moma – Minimization of metabolic adjustments . 102
8.29 psamm.randomsparse – Find a random minimal network of model reactions 104
8.30 psamm.reaction – Reaction equations and compounds . 105
8.31 psamm.util – Internal utilities . 107

9 References 109

ii

10 Indices and tables 111

Bibliography 113

Python Module Index 115

iii

iv

PSAMM Documentation, Release 0.30

Contents:

Contents 1

PSAMM Documentation, Release 0.30

2 Contents

CHAPTER 1

Overview

PSAMM is an open source software that is designed for the curation and analysis of metabolic models. It supports
model version tracking, model annotation, data integration, data parsing and formatting, consistency checking, auto-
matic gap filling, and model simulations.

PSAMM is developed as an open source project, coordinated through Github. The PSAMM software is being devel-
oped in the Zhang Laboratory at the University of Rhode Island.

Citing PSAMM

If you use PSAMM in a publication, please cite:

Steffensen JL, Dufault-Thompson K, Zhang Y. PSAMM: A Portable System for the Analysis of Metabolic Models.
PLOS Comput Biol. Public Library of Science; 2016;12: e1004732. doi:10.1371/journal.pcbi.1004732.

Software license

PSAMM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http:
//www.gnu.org/licenses/.

3

https://github.com/zhanglab/psamm
http://zhanglab.uri.edu/
https://doi.org/10.1371/journal.pcbi.1004732
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

PSAMM Documentation, Release 0.30

4 Chapter 1. Overview

CHAPTER 2

PSAMM Tutorials

Installation and Materials

This tutorial will show you how to get PSAMM up and running on your computer, how to work with the PSAMM
YAML format, how to import published models into PSAMM, and how to apply the main tools included with PSAMM
to your models.

• Downloading the PSAMM Tutorial Data

• PSAMM Installation

• PSAMM Model Collection

Downloading the PSAMM Tutorial Data

The PSAMM tutorial materials are available in the psamm-tutorial GitHub repository

These files can be downloaded using the following command:

$ git clone https://github.com/zhanglab/psamm-tutorial.git

This will create a directory named psamm-tutorial in your current working folder. You can then navigate to this
directory using the following command:

$ cd psamm-tutorial

Now you should be in the psamm-tutorial folder and should see the following folders:

additional_files/
E_coli_sbml/
E_coli_excel/
E_coli_json/

5

PSAMM Documentation, Release 0.30

These directories include all of the files that will be needed to run the tutorial.

PSAMM Installation

PSAMM can be installed using the Python package installer pip. We recommend that all installations be performed
under a virtual Python environment. Major programs and dependencies include: psamm-model, which supports
model checking, model simulation, and model exports; Linear programming (LP) solvers (e.g. CPLEX, Gurobi,
QSopt_ex), which provide the solution of linear programming problems; psamm-import, which supports the import
of models from SBML, JSON, and Excel formats.

Setting up a Virtual Python Environment

It is recommended that the PSAMM software and dependencies should be installed under a virtual Python environ-
ment. This can be done by using the Virtualenv software. Virtualenv will set up a Python environment that permits
you to install Python packages in a local directory that will not interfere with other programs in the global Python. The
virtual environment can be set up at any local directory that you have write permission to. For example, here we will
set up the virtual environment under the main directory of this PSAMM tutorial. First, run the following command if
you are not in the psamm-tutorial folder:

$ cd <PATH>/psamm-tutorial

In this command, <PATH> should be substituted by the directory path to where you created the psamm-tutorial.
This will change your current directory to the psamm-tutorial directory. Then, you can create a virtual environ-
ment in the psamm-tutorial directory:

$ virtualenv psamm-env

That will set up the virtual environment in a folder called psamm-env/. The next step is to activate the virtual
environment so that the Python that is being used will be the one that is in the virtualenv. To do this use the following
command:

$ source psamm-env/bin/activate

This will change your command prompt to the following:

(psamm-env) $

This indicates that the virtual environment is activated, and any installation of Python packages will now be installed
in the virtual environment. It is important to note that when you leave the environment and return at a later time, you
will have to reactivate the environment (use the source command above) to be able to use any packages installed in
it.

Note: For Windows users, the virtual environment is installed in a different file structure. The activate script on
these systems will reside in a Scripts folder. To activate the environment on these systems use the command:

> psamm-env\Scripts\activate

Note: After activating the environment, the command pip list can be used to quickly get an overview of the
packages installed in the environment and the version of each package.

6 Chapter 2. PSAMM Tutorials

https://virtualenv.pypa.io/

PSAMM Documentation, Release 0.30

Installation of psamm-model and psamm-import

The next step will be to install psamm-model and psamm-import as well as their requirements. To do this, you
can use the Python Package Installer, pip. To install both psamm-import and psamm-model you can use the
following command:

(psamm-env) $ pip install git+https://github.com/zhanglab/psamm-import.git

This will install psamm-import from its Git repository and also install its Python dependencies automatically.
One of these dependencies is psamm-model, so when psamm-import is installed you will also be installing
psamm-model.

If you only want to install psamm-model in the environment you can run the following command:

(psamm-env) $ pip install psamm

It is important to note that if only psamm-model is installed you will be able to apply PSAMM only on models that
are represented in the YAML format which will be described later on in the tutorial.

Installation of LP Solvers

The LP (linear programming) solvers are necessary for analysis of metabolic fluxes using the constraint-based model-
ing approaches.

CPLEX is the recommended solver for PSAMM and is available with an academic license from IBM. Make sure that
you use at least CPLEX version 12.6. Instructions on how to install CPLEX can be found here.

Once CPLEX is installed, you need to install the Python bindings under the psamm-env virtual environment using the
following command:

(psamm-env) $ pip install <PATH>/IBM/ILOG/CPLEX_Studio<XXX>/cplex/python/<python_
→˓version>/<platform>

The directory path in the above command should be replaced with the path to the IBM CPLEX installation in your
computer. This will install the Python bindings for CPLEX into the virtual environment.

Note: While the CPLEX software will be installed globally, the Python bindings should be installed specifically
under the virtual environment with the PSAMM installation.

PSAMM also supports the use of two other linear programming solvers, Gurobi and QSopt_ex. To install the Gurobi
solver, Gurobi will first need to be installed on your computer. Gurobi can be obtained with an academic license from
here: Gurobi

Once Gurobi is installed the Python bindings will need to be installed in the virtual environment by using pip to install
them from the package directory. An example of how this could be done on a macOS is (on other platforms the path
will be different):

(psamm-env) $ pip install /Library/gurobi604/mac64/

The QSopt_ex solver can also be used with PSAMM. To install this solver you will first need to install Qsopt_ex on
your computer and afterwards the Python bindings (python-qsoptex) can be installed in the virtual environment:

(psamm-env) $ pip install python-qsoptex

Please see the python-qsoptex documentation for more information on installing both the library and the Python
bindings.

2.1. Installation and Materials 7

http://www-01.ibm.com/support/docview.wss?uid=swg21444285
http://www.gurobi.com/registration/download-reg
https://github.com/jonls/python-qsoptex

PSAMM Documentation, Release 0.30

Note: The QSopt_ex solver does not support Integer LP problems and as a result cannot be used to perform flux
analysis with thermodynamic constraints. If this solver is used thermodynamic constraints cannot be used during
simulation. By default psamm-model will not use these constraints.

Once a solver is installed you should now be able to fully use all of the psamm-model flux analysis functions. To
see a list of the installed solvers the use the psamm-list-lpsolvers command:

(psamm-env) $ psamm-list-lpsolvers

You will see the details on what solvers are installed currently and avaliable to PSAMM. For example if the Gurobi
and CPLEX solvers were both installed you would see the following output from psamm-list-lpsolvers:

Prioritized solvers:
Name: cplex
Priority: 10
MILP (integer) problem support: True
Rational solution: False
Class: <class 'psamm.lpsolver.cplex.Solver'>

Name: gurobi
Priority: 9
MILP (integer) problem support: True
Rational solution: False
Class: <class 'psamm.lpsolver.gurobi.Solver'>

Unavailable solvers:
qsoptex: Error loading solver: No module named qsoptex

By default the solver with the highest priority (highest priority number) is used in constraint based simulations. If you
want to use a solver with a lower priority you will need to specify it by using the --solver option. For example to
run FBA on a model while using the Gurobi solver the following command would be used:

(psamm-env) $ psamm-model fba --solver name=gurobi

PSAMM Model Collection

Converted versions of 57 published SBML metabolic models, 9 published Excel models and one MATLAB model
are available in the PSAMM Model Collection on GitHub. These models were converted to the YAML format and
then manually edited when needed to produce models that can generate non-zero biomass fluxes. The changes to the
models are tracked in the Git history of the repository so you can see exactly what changes needed to be made to
the models. To download and use these models with PSAMM you can clone the Git repository using the following
command:

$ git clone https://github.com/zhanglab/psamm-model-collection.git

This will create the directory psamm-model-collection in your current folder that contains one directory named
excelwith the converted Excel models, one directory named sbmlwith the converted SBML models and one named
matlab with the converted MATLAB model. These models can then be used for simulations with PSAMM using the
commands detailed in this tutorial.

8 Chapter 2. PSAMM Tutorials

https://github.com/zhanglab/psamm-model-collection

PSAMM Documentation, Release 0.30

Importing, Exporting, and working with Models with PSAMM

This part of the tutorial will focus on how to use PSAMM to convert files between the YAML format and other popular
formats. An additional description of the YAML model format and its features is also provided here.

• Import Functions in PSAMM

• Importing Existing Models (psamm-import)

• YAML Format and Model Organization

• Version Control with the YAML Format

• Using PSAMM to export the model to other Software

Import Functions in PSAMM

For information on how to install PSAMM and the associated requirements, as well how to download the materials
required for this tutorial you can reference the Installation and Materials section of the tutorial.

Importing Existing Models (psamm-import)

In order to work with a metabolic model in PSAMM the model must be in the PSAMM-specific YAML format. This
format allows for a human readable representation of the model components and allows for enhanced customization
with respect to the organization of the metabolic model. This enhanced organization will allow for a more direct
interaction with the metabolic model and make the model more accessible to both the modeler and experimental
biologists.

Import Formats

The psamm-import program supports the import of models in various formats. For the SBML format, it supports
the COBRA-compliant SBML specifications, the FBC specifications, and the basic SBML specifications in levels 1,
2, and 3; for the JSON format, it supports the import of JSON files directly from the BiGG database or from locally
downloaded versions; the support for importing from Excel file is model specific and are available for 17 published
models. There is also a generic Excel import for models produced by the ModelSEED pipeline. To see a list of these
models or model formats that are supported, use the command:

(psamm-env) $ psamm-import list

In the output, you will see a list of specific Excel models that are supported by psamm-import as well as the
different SBML parsers that are available in PSAMM:

Generic importers:
json COBRApy JSON
modelseed ModelSEED model (Excel format)
sbml SBML model (non-strict)
sbml-strict SBML model (strict)

Model-specific importers:
icce806 Cyanothece sp. ATCC 51142 iCce806 (Excel format), Vu et al., 2012
ecoli_textbook Escerichia coli Textbook (core) model (Excel format), Orth et al.,
→˓2010

2.2. Importing, Exporting, and working with Models with PSAMM 9

http://bigg.ucsd.edu

PSAMM Documentation, Release 0.30

ijo1366 Escerichia coli iJO1366 (Excel format), Orth et al., 2011
gsmn-tb Mycobacterium tuberculosis GSMN-TB (Excel format), Beste et al., 2007
inj661 Mycobacterium tuberculosis iNJ661 (Excel format), Jamshidi et al., 2007
inj661m Mycobacterium tuberculosis iNJ661m (Excel format), Fang et al., 2010
inj661v Mycobacterium tuberculosis iNJ661v (Excel format), Fang et al., 2010
ijn746 Pseudomonas putida iJN746 (Excel format), Nogales et al., 2011
ijp815 Pseudomonas putida iJP815 (Excel format), Puchalka et al., 2008
stm_v1.0 Salmonella enterica STM_v1.0 (Excel format), Thiele et al., 2011
ima945 Salmonella enterica iMA945 (Excel format), AbuOun et al., 2009
irr1083 Salmonella enterica iRR1083 (Excel format), Raghunathan et al., 2009
ios217_672 Shewanella denitrificans OS217 iOS217_672 (Excel format), Ong et al.,
→˓2014
imr1_799 Shewanella oneidensis MR-1 iMR1_799 (Excel format), Ong et al., 2014
imr4_812 Shewanella sp. MR-4 iMR4_812 (Excel format), Ong et al., 2014
iw3181_789 Shewanella sp. W3-18-1 iW3181_789 (Excel format), Ong et al., 2014
isyn731 Synechocystis sp. PCC 6803 iSyn731 (Excel format), Saha et al., 2012

Now the model can be imported using the psamm-import functions. Return to the psamm-tutorial folder if
you have left it using the following command:

(psamm-env) $ cd <PATH>/tutorial-part-1

Importing an SBML Model

In this tutorial, we will use the E. coli textbook core model [Orth13] as an example to demonstrate these functions
in PSAMM. First, we will convert the model from the SBML model. To import the E_coli_core.xml model to
YAML format run the following command:

(psamm-env) $ psamm-import sbml --source E_coli_sbml/ecoli_core_model.xml --dest E_
→˓coli_yaml

This will convert the SBML file in the E_coli_sbml directory into the YAML format that will be stored in the
E_coli_yaml/ directory. The output will give the basic statistics of the model and should look like this:

...
WARNING: Species M_pyr_b was converted to boundary condition because of "_b" suffix
WARNING: Species M_succ_b was converted to boundary condition because of "_b" suffix
INFO: Detected biomass reaction: R_Biomass_Ecoli_core_w_GAM
INFO: Removing compound prefix 'M_'
INFO: Removing reaction prefix 'R_'
INFO: Removing compartment prefix 'C_'
Model: Ecoli_core_model
- Biomass reaction: Biomass_Ecoli_core_w_GAM
- Compartments: 2
- Compounds: 72
- Reactions: 95
- Genes: 137
INFO: e is extracellular compartment
INFO: Using default flux limit of 1000.0
INFO: Converting exchange reactions to exchange file

psamm-importwill produce some warnings if there are any aspects of the model that are going to be changed during
import. In this case the warnings are notifying you that the metabolites with a _b suffix have been converted to the
boundary conditions of the model. There will also be information on what prefixes were removed from the metabolite
IDs and if the importer was able to identify the Biomass Reaction in the model. This information is important to check

10 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

to make sure that the model was imported correctly. After the import the model will be available and ready to use for
any other PSAMM functions.

Importing an Excel Model

The process of importing an Excel model is the same as importing an SBML model except that you will need to specify
the specific model name in the command. The list of supported models can be seen using the list function above. An
example of an Excel model import is below:

(psamm-env) $ psamm-import ecoli_textbook --source E_coli_excel/ecoli_core_model.xls -
→˓-dest converted_excel_model

This will produce a YAML version of the Excel model in the converted_excel_model/ directory.

Since the Excel models are not in a standardized format these parsers need to be developed on a model-by-model basis
in order to parse all of the relevant information out of the model. This means that the parser can only be used for the
listed models and not for a general import.

Importing a JSON Model

psamm-import also supports the conversion of JSON format models that follows the conventions in COBRApy. If
the JSON model is stored locally, it can be converted with the following command:

(psamm-env) $ psamm-import json --source E_coli_json/e_coli_core.json --dest
→˓converted_json_model/

Alternatively, an extension of the JSON importer has been provided, psamm-import-bigg, which can be applied
to convert JSON models from BiGG database. To see the list of available models on the BiGG database the following
command can be used:

(psamm-env) $ psamm-import-bigg list

This will show the available models as well as their names. You can then import any of these models to YAML format.
For example, using the following command to import the E. coli iJO1366 [Orth11] model from the BiGG database:

(psamm-env) $ psamm-import-bigg iJO1366 --dest converted_json_model_bigg/

Note: To use psamm-import-bigg you must have internet access to download the models remotely.

YAML Format and Model Organization

Now that we have imported the models into the YAML format we can take a look at what the different files are and
what information they contain. The PSAMM YAML format stores individual models under a designated directory, in
which there will be a number of files that stores the information of the model and specifies the simulation conditions.
The entry point of the YAML model is a file named model.yaml, which points to additional files that store the
information of the model components, including compounds, reactions, flux limits, exchange conditions, etc. While
we recommend that you use the name model.yaml for the central reference file, the file names for the included files
are flexible and can be customized as you prefer. In this tutorial, we simply used the names: compounds.yaml,
reactions.yaml, limits.yaml, and exchange.yaml for the included files.

First change directory into E_coli_yaml:

2.2. Importing, Exporting, and working with Models with PSAMM 11

http://bigg.ucsd.edu

PSAMM Documentation, Release 0.30

(psamm-env) $ cd E_coli_yaml/

The directory contains the main model.yaml file as well as the other files that contain the model data:

(psamm-env) $ ls
compounds.yaml
exchange.yaml
limits.yaml
model.yaml
reactions.yaml

These files can be opened using any standard text editor. We highly recommend using an editor that includes syntax
highlighting for the YAML language (one such editor is the Atom editor which includes built-in support for YAML
and is available for macOS, Linux and Windows). You can also use commands like less and editors like vi or nano
to quickly inspect and edit the files from the command line:

(psamm-env) $ less <file_name>.yaml

The central file in this organization is the model.yaml file. The following is an example of the model.yaml file
that is obtained from the import of the E. coli textbook model. The model.yaml file for this imported SBML model
should look like the following:

name: Ecoli_core_model
biomass: Biomass_Ecoli_core_w_GAM
default_flux_limit: 1000.0
compartments:
- id: c

adjacent_to: e
name: Cytoplasm

- id: e
adjacent_to: c
name: Extracellular

compounds:
- include: compounds.yaml
reactions:
- include: reactions.yaml
exchange:
- include: exchange.yaml
limits:
- include: limits.yaml

The model.yaml file defines the basic components of a metabolic model, including the model name
(Ecoli_core_model), the biomass function (Biomass_Ecoli_core_w_GAM), the compound files (compounds.
yaml), the reaction files (reactions.yaml), the flux boundaries (limits.yaml), and the exchange conditions
(exchange.yaml). The additional files are defined using include functions. This organization allows you to easily
change aspects of the model like the exchange reactions by simply referencing a different exchange file in the central
model.yaml definition. In addition to the information on the other components of the model there will also be
details on the compartment information for the model. This will provide an overview of how compartments are related
to each other and what their abbreviations and names are. For this small model there is only an e and a c compartment
representing the cytoplasm and extracellular space but more complex cells with multiple compartments can also be
represented.

This format can also be used to include multiple files in the list of reactions and compounds. This feature can be useful,
for example, if you want to name different reaction files based on the subsystem designations or cellular compartments,
or if you want to separate the temporary reactions that are used to fill reaction gaps from the main model. An example
of how you could designate multiple reaction files is found below. This file can be found in the additional files folder
in the file complex_model.yaml.

12 Chapter 2. PSAMM Tutorials

https://atom.io/

PSAMM Documentation, Release 0.30

name: Ecoli_core_model
biomass: Biomass_Ecoli_core_w_GAM
default_flux_limit: 1000.0
compartments:
- id: c

adjacent_to: e
name: Cytoplasm

- id: e
adjacent_to: c
name: Extracellular

model:
- include: core_model_definition.tsv
compounds:
- include: compounds.yaml
reactions:
- include: reactions/cytoplasm.yaml
- include: reactions/periplasm.yaml
- include: reactions/transporters.yaml
- include: reactions/extracellular.yaml
exchange:
- include: exchange.yaml
limits:
- include: limits.yaml

As can be seen here the modeler chose to distribute their reaction database files into different files representing various
cellular compartments and roles. This organization can be customized to suit your preferred workflow.

There are also situations where you may wish to designate only a subset of the reaction database in a metabolic
simulation. In these situations it is possible to use a model definition file to identify which subset of reactions will be
used from the larger database. The model definition file is simply a list of reaction IDs that will be included in the
simulation.

An example of how to include a model definition file can be found below.

name: Ecoli_core_model
biomass: Biomass_Ecoli_core_w_GAM
default_flux_limit: 1000.0
compartments:
- id: c

adjacent_to: e
name: Cytoplasm

- id: e
adjacent_to: c
name: Extracellular

model:
- include: subset.tsv
compounds:
- include: compounds.yaml
reactions:
- include: reactions.yaml
exchange:
- include: exchange.yaml
limits:
- include: limits.yaml

Note: When the model definition file is not identified, PSAMM will include the entire reaction database in the model.
However, when it is identified, PSAMM will only include the reactions that are listed in the model definition file in the

2.2. Importing, Exporting, and working with Models with PSAMM 13

PSAMM Documentation, Release 0.30

model. This design can be useful when you want to make targeted tests on a subset of the model or when you want to
include a larger database for use with the gap filling functions.

Reactions

The reactions.yaml file is where the reaction information is stored in the model. A sample from this file can be
seen below:

- id: ACALD
name: acetaldehyde dehydrogenase (acetylating)
genes: b0351 or b1241
equation: '|acald[c]| + |coa[c]| + |nad[c]| <=> |accoa[c]| + |h[c]| +
|nadh[c]|'

subsystem: Pyruvate Metabolism
- id: ACALDt

name: acetaldehyde reversible transport
genes: s0001
equation: '|acald[e]| <=> |acald[c]|'
subsystem: Transport, Extracellular

Each reaction entry is designated with the reaction ID first. Then the various properties of the reaction can be listed
below it. The required properties for a reaction are ID and equation. Along with these required attributes others can
be included as needed in a specific project. These can include but are not limited to EC numbers, subsystems, names,
and genes associated with the reaction. For example, in a collaborative reconstruction you may want to include a field
named authors to identify which authors have contributed to the curation of a particular reaction.

Reaction equations can be formatted in multiple ways to allow for more flexibility during the modeling process.
The reactions can be formatted in a string format based on the ModelSEED reaction format. In this representation
individual compounds in the reaction are represented as compound IDs followed by the cellular compartment in
brackets, bordered on both sides by single pipes. For example if a hydrogen compound, Hydr, in a cytosol
compartment was going to be in an equation it would be represented as follows:

|Hydr[cytosol]|

These individual compounds can be assigned stoichiometric coefficients by adding a number in parentheses before the
compound. For example if a reaction contained two hydrogens it could appear as follows:

(2) |Hydr[cytosol]|

These individual components are separated by + signs in the reaction string. The separation of the reactants and
products is through the use of an equal sign with greater than or less than signs designating directionality. These could
include => or <= for reactions that can only progress in one direction or <=> for reactions that can progress in both
directions. An example of a correctly formatted reaction could be as follows:

'|ac[c]| + |atp[c]| <=> |actp[c]| + |adp[c]|'

For longer reactions the YAML format provides a way to list each reaction component on a single line. For example a
reaction could be represented as follows:

- id: ACKr
name: acetate kinase
equation:
compartment: c
reversible: yes
left:

14 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

- id: ac_c
value: 1

- id: atp_c
value: 1

right:
- id: actp_c

value: 1
- id: adp_c

value: 1
subsystem: Pyruvate Metabolism

This line based format can be especially helpful when dealing with larger equations like biomass reactions where there
can be dozens of components in a single reaction.

Gene associations for the reactions in a model can also be included in the reaction definitions so that gene essentiality
experiments can be performed with the model. These genes associations are included by adding the genes property
to the reaction like follows:

- id: ACALDt
name: acetaldehyde reversible transport
equation: '|acald[e]| <=> |acald[c]|'
subsystem: Transport, Extracellular
genes: gene_0001

More complex gene associations can also be included by using logical and/or statements in the genes property. When
performing gene essentiality simulations this logic will be taken into account. Some examples of using this logic with
the genes property can be seen below:

genes: gene_0001 or gene_0002

genes: gene_0003 and gene_0004

genes: gene_0003 and gene_0004 or gene_0005 and gene_0006

genes: gene_0001 and (gene_0002 or gene_0003)

Compounds

The compounds.yaml file is organized in a similar way as the reactions.yaml. An example can be seen
below.

- id: 13dpg_c
name: 3-Phospho-D-glyceroyl-phosphate
formula: C3H4O10P2

- id: 2pg_c
name: D-Glycerate-2-phosphate
formula: C3H4O7P

- id: 3pg_c
name: 3-Phospho-D-glycerate
formula: C3H4O7P

The compound entries begin with a compound ID which is then followed by the compound properties. These properties
can include a name, chemical formula, and charge of the compound.

2.2. Importing, Exporting, and working with Models with PSAMM 15

PSAMM Documentation, Release 0.30

Limits

The limits file is used to designate reaction flux limits when it is different from the defaults in PSAMM. By default,
PSAMM would assign the lower and upper bounds to reactions based on their reversibility, i.e. the boundary of
reversible reactions are −1000 ≤ 𝑣𝑗 ≤ 1000, and the boundary for irreversible reactions are 0 ≤ 𝑣𝑗 ≤ 1000.
Therefore, the limits.yaml file will consist of only the reaction boundaries that are different from these default
values. For example, if you want to force flux through an artificial reaction like the ATP maintenance reaction ATPM
you can add in a lower limit for the reaction in the limits file like this:

- reaction: ATPM
lower: 8.39

Each entry in the limits file includes a reaction ID followed by upper and lower limits. Note that when a model is
imported only the non-default flux limits are explicitly stated, so some of the imported models will not contain a
predefined limits file. In the E. coli core model, only one reaction has a non-default limit. This reaction is an ATP
maintenance reaction and the modelers chose to force a certain level of flux through it to simulate the general energy
cost of cellular maintenance processes.

Exchange

The exchange file is where you can designate the boundary conditions for the model. The compartment of the exchange
compounds can be designated using the compartment tag, and if omitted, the extracellular compartment (e) will be
assumed. An example of the exchange file can be seen below.

compounds:
- id: ac_e

reaction: EX_ac_e
lower: 0.0

- id: acald_e
reaction: EX_acald_e
lower: 0.0

- id: akg_e
reaction: EX_akg_e
lower: 0.0

- id: co2_e
reaction: EX_co2_e

Each entry starts with the ID of the boundary compound and followed by lines that defines the lower and upper
limits of the compound flux. Internally, PSAMM will translate these boundary compounds into exchange reactions in
metabolic models. Additional properties can be designated for the exchange reactions including an ID for the reaction,
the compartment for the reaction, and lower and upper flux bounds for the reaction. In the same way that only non-
standard limits need to be specified in the limits file, only non-standard exchange limits need to be specified in the
exchange file. This can be seen with the example above where the upper limits are not set since they should just be the
default limit of 1000.

Model Format Customization

The YAML model format is highly customizable to suit your preferences. File names can be changed according to
your own design. These customizations are all allowed by PSAMM as long as the central model.yaml file is also
updated to reflect the different file names referred. While all the file names can be changed it is recommended that the
central model.yaml file name does not change. PSAMM will automatically detect and read the information from
the file if it is named model.yaml. If you do wish to also alter the name of this file you will need to specify the path
of your model file using the --model option whenever any PSAMM commands are run. For example, to run FBA
with a different central model file named ecoli_model.yaml, you could run the command like this:

16 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

(psamm-env) $ psamm-model --model ecoli_model.yaml fba

Version Control with the YAML Format

The YAML format contains a logical division of the model information and allows for easier modification and in-
teraction with the model. Moreover, the text-based representation of YAML files can enable the tracking of model
modifications using version control systems. In this tutorial we will demonstrate the use of the Git version control
system during model development to track the changes that have been added to an existing model. This feature will
improve the documentation of the model development process and improve collaborative annotations during model
curation.

A broad overview of how to use various Git features can be found here: Git

Initiate a Git Repository for the YAML Model

Throughout this tutorial version tracking using Git will be highlighted in various sections. As you follow along with
the tutorial you can try to run the Git commands to get a sense of how Git and PSAMM work together. We will also
highlight how the features of Git help with model curation and development when using the YAML format.

To start using Git to track the changes in this git model the folder must first be initialized as a Git repository. To do
this first enter the YAML model directory and use the following command:

(psamm-env) $ git init
Initialized empty Git repository in <...>/psamm-tutorial/E_coli_yaml/.git/

After the folder is initialized as a Git repository the files that were initially imported from the SBML version can be
added to the repository using the following command:

(psamm-env) $ git add *.yaml

this will stage all of the files with the yaml extension to be committed. Then the addition of these files can be added
to the repository to be tracked by using the following command:

(psamm-env) $ git commit -m 'Initial import of E. coli Core Model'

Now these files will be tracked by Git and any changes that are made will be easily viewable using various Git
commands. PSAMM will also print out the Git commit ID when any commands are run. This makes it easier for you
to track exactly what version of the model a past simulation was done on.

The next step in the tutorial will be to add in a new carbon utilization pathway to the E. coli core model and Git will
be used to track these new additions and manage the curation in an easy to track manner. The tutorial will return to the
version tracking at various points in order to show how this can be used during model development.

FBA on Model Before Expansion

Now that the model is imported and being tracked by Git it will be helpful to do a quick simulation to confirm that the
model is complete and able to generate flux. To do this you can run the FBA command in the model directory:

(psamm-env) $ psamm-model fba

The following is a sample of the output from this initial flux balance analysis. It can be seen that the model is generating
flux through the objective function and seems to be a complete working model. Now that this is known any future
changes that are made to the model can be made with the knowledge that the unchanged model was able to generate
biomass flux.

2.2. Importing, Exporting, and working with Models with PSAMM 17

https://git-scm.com

PSAMM Documentation, Release 0.30

ACONTa 6.00724957535 |Citrate[c]| <=> |cis-Aconitate[c]| + |H2O[c]| b0118 or
→˓b1276
ACONTb 6.00724957535 |cis-Aconitate[c]| + |H2O[c]| <=> |Isocitrate[c]|
→˓b0118 or b1276
...
INFO: Objective flux: 0.873921506968

Adding a new Pathway to the Model

The E. coli textbook model that was imported above is a small model representing the core metabolism of E. coli.
This model is great for small tests and demonstrations due to its size and excellent curation. For the purposes of this
tutorial this textbook model will be modified to include a new metabolic pathway for the utilization of D-Mannitol
by E. coli. This is a simple pathway which involves the transport of D-Mannitol via the PTS system and then the
conversion of D-Mannitol 1-Phosphate to D-Fructose 6-Phosphate. Theoretically the inclusion of this pathway should
allow the model to utilize D-Mannitol as a sole carbon source. Along with this direct pathway another set of reactions
will be added that remove the phosphate from the mannitol 1-phosphate to create cytoplasmic mannitol which can
then be converted to fructose and then to fructose 6-phosphate.

To add these reactions, there will need to be three components added to the model. First the new reactions will be
added to the model, then the relevant exchange reactions, and finally the compound information.

The new reactions in the database can be added directly to the already generated reactions file but for this case they
will be added to a separate database file that can then be added to the model through the include function in the
model.yaml file.

18 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

A reaction database file named mannitol_path.yaml is supplied in additional_files folder. This file can
be added into the model.yaml file by copying it to your working folder using the following command:

(psamm-env) $ cp ../additional_files/mannitol_pathway.yaml .

And then specifying it in the model.yaml file by adding the following line in the reactions section:

reactions:
- include: reactions.yaml
- include: mannitol_pathway.yaml

Alternatively you can copy an already changed model.yaml file from the additional files folder using the following
command:

(psamm-env) $ cp ../additional_files/model.yaml .

This line tells PSAMM that these reactions are also going to be included in the model simulations.

Now you can test the model again to see if there were any effects from these new reactions added in. To run an FBA
simulation you can use the following command:

(psamm-env) $ psamm-model fba --all-reactions

The --all-reactions option makes the command write out all reactions in the model even if they have a flux of
zero in the simulation result. It can be seen that the newly added reactions are being read into the model since they do
appear in the output. For example the MANNI1DEH reaction can be seen in the FBA output and it can be seen that
this reaction is not carrying any flux. This is because there is no exchange reaction added into the model that would
provide mannitol.

FRUKIN 0.0 |fru[c]| + |ATP[c]| => |D-Fructose-6-phosphate[c]| + |ADP[c]| +
→˓|H[c]|
...
MANNI1PDEH 0.0 |Nicotinamide-adenine-dinucleotide[c]| + |manni1p[c]| => |D-
→˓Fructose-6-phosphate[c]| + |H[c]| + |Nicotinamide-adenine-dinucleotide-reduced[c]|
MANNI1PPHOS 0.0 |manni1p[c]| + |H2O[c]| => |manni[c]| + |Phosphate[c]|
MANNIDEH 0.0 |Nicotinamide-adenine-dinucleotide[c]| + |manni[c]| =>
→˓|Nicotinamide-adenine-dinucleotide-reduced[c]| + |fru[c]|
MANNIPTS 0.0 |manni[e]| + |Phosphoenolpyruvate[c]| => |manni1p[c]| +
→˓|Pyruvate[c]|
...

Changing the Boundary Definitions Through the Exchange File

To add new exchange reactions to the model a modified exchange.yaml file has been included in the additional
files. This new boundary condition could be added by creating a new entry in the existing exchange.yaml file but
for this tutorial the exchange file can be changed by running the following command:

(psamm-env) $ cp ../additional_files/exchange.yaml .

This will simulate adding in the new mannitol compound into the exchange file as well as setting the uptake of glucose
to be zero.

Now you can track changes to the exchange file using the Git command:

(psamm-env) $ git diff exchange.yaml

2.2. Importing, Exporting, and working with Models with PSAMM 19

PSAMM Documentation, Release 0.30

From the output, it can be seen that a new entry was added in the exchange file to add the mannitol exchange reaction
and that the lower flux limit for glucose uptake was changed to zero. This will ensure that any future simulations done
with the model in these conditions will only have mannitol available as a carbon source.

@@ -1,5 +1,7 @@
name: Default medium
compounds:

+- id: manni
+ lower: -10
- id: ac_e
reaction: EX_ac
lower: 0.0

@@ -25,7 +27,7 @@
lower: 0.0

- id: glc_D_e
reaction: EX_glc

- lower: -10.0
+ lower: 0.0
- id: gln_L_e
reaction: EX_gln_L
lower: 0.0

In this case the Git output indicates what lines were added or removed from the previous version. Added lines are
indicated with a plus sign next to them. These are the new lines in the new version of the file. The lines with a minus
sign next to them are the line versions from the old format of the file. This makes it easy to figure out exactly what
changed between the new and old version of the file.

Now you can test out if the new reactions are functioning in the model. Since there is no other carbon source, if the
model sustains flux through the biomass reaction it must be from the supplied mannitol. The following command can
be used to run FBA on the model:

(psamm-env) $ psamm-model fba --all-reactions

From the output it can be seen that there is flux through the biomass reaction and that the mannitol utilization reactions
are being used. In this situation it can also be seen that the pathway that converts mannitol to fructose first is not being
used.

FRUKIN 0.0 |fru[c]| + |ATP[c]| => |D-Fructose-6-phosphate[c]| + |ADP[c]| +
→˓|H[c]|
...
MANNI1PDEH 10.0 |Nicotinamide-adenine-dinucleotide[c]| + |manni1p[c]| => |D-
→˓Fructose-6-phosphate[c]| + |H[c]| + |Nicotinamide-adenine-dinucleotide-reduced[c]|
MANNI1PPHOS 0.0 |manni1p[c]| + |H2O[c]| => |manni[c]| + |Phosphate[c]|
MANNIDEH 0.0 |Nicotinamide-adenine-dinucleotide[c]| + |manni[c]| =>
→˓|Nicotinamide-adenine-dinucleotide-reduced[c]| + |fru[c]|
MANNIPTS 10.0 |manni[e]| + |Phosphoenolpyruvate[c]| => |manni1p[c]| +
→˓|Pyruvate[c]|

You can also choose to maximize other reactions in the network. For example this could be used to analyze the network
when production of a certain metabolite is maximized or to quickly change between different objective functions that
are in the model. To do this you will just need to specify a reaction ID in the command and that will be used as the
objective function for that simulation. For example if you wanted to analyze the network when the FRUKIN reaction
is maximized the following command can be used:

(psamm-env) $ psamm-model fba --objective=FRUKIN --all-reactions

It can be seen from this simulation that the FRUKIN reaction is now being used and that the fluxes through the network
have changed from when the biomass function was used as the objective function.

20 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

...
EX_lac_D_e 20.0 |D-Lactate[e]| <=>
EX_manni_e -10.0 |manni[e]| <=>
EX_o2_e -5.0 |O2[e]| <=>
EX_pi_e 0.0 |Phosphate[e]| <=>
EX_pyr_e 0.0 |Pyruvate[e]| <=>
EX_succ_e 0.0 |Succinate[e]| <=>
FBA 10.0 |D-Fructose-1-6-bisphosphate[c]| <=> |Dihydroxyacetone-phosphate[c]| +
→˓|Glyceraldehyde-3-phosphate[c]| b2097 or b1773 or b2925
FBP 0.0 |D-Fructose-1-6-bisphosphate[c]| + |H2O[c]| => |D-Fructose-6-
→˓phosphate[c]| + |Phosphate[c]| b3925 or b4232
FORt2 0.0 |Formate[e]| + |H[e]| => |Formate[c]| + |H[c]| b0904 or b2492
FORti 0.0 |Formate[c]| => |Formate[e]| b0904 or b2492
FRD7 0.0 |Fumarate[c]| + |Ubiquinol-8[c]| => |Ubiquinone-8[c]| +
→˓|Succinate[c]| b4151 and b4152 and b4153 and b4154
FRUKIN 10.0 |fru[c]| + |ATP[c]| => |D-Fructose-6-phosphate[c]| + |ADP[c]| +
→˓|H[c]|
...

Adding new Compounds to the Model

In the previous two steps the reactions and boundary conditions were added into the model. There was no information
added in about what the compounds in these reactions actually are but PSAMM is still able to treat them as metabolites
in the network and utilize them accordingly. It will be helpful if there is information on these compounds in the model.
This will allow you to use the various curation tools and will allow PSAMM to use the new compound names in the
output of these various simulations. To add the new compounds to the model a modified compounds.yaml file has
been provided in the additional_files folder. These compounds can be entered into the existing compounds.
yaml file but for this tutorial the new version can be copied over by running the following command.

(psamm-env) $ cp ../additional_files/compounds.yaml .

Using the diff command in Git, you will be able to identify changes in the new compounds.yaml file:

(psamm-env) $ git diff compounds.yaml

It can be seen that the new compound entries added to the model were the various new compounds involved in this
new pathway.

@@ -1,3 +1,12 @@
+- id: fru_c
+ name: Fructose
+ formula: C6H12O6
+- id: manni
+ name: Mannitol
+ formula: C6H14O6
+- id: manni1p
+ name: Mannitol 1-phosphate
+ formula: C6H13O9P
- id: 13dpg_c
name: 3-Phospho-D-glyceroyl-phosphate
formula: C3H4O10P2

This will simulate adding in the new compounds to the existing database. Now you can run another FBA simulation to
check if these new compound properties are being incorporated into the model. To do this run the following command:

2.2. Importing, Exporting, and working with Models with PSAMM 21

PSAMM Documentation, Release 0.30

(psamm-env) $ psamm-model fba --all-reactions

It can be seen that the reactions are no longer represented with compound IDs but are now represented with the
compound names. This is because the new compound features are now being added to the model.

EX_manni_e -10.0 |Mannitol[e]| <=>
...
FRUKIN 0.0 |Fructose[c]| + |ATP[c]| => |D-Fructose-6-phosphate[c]| +
→˓|ADP[c]| + |H[c]|
...
MANNI1PDEH 10.0 |Nicotinamide-adenine-dinucleotide[c]| + |Mannitol 1-
→˓phosphate[c]| => |D-Fructose-6-phosphate[c]| + |H[c]| + |Nicotinamide-adenine-
→˓dinucleotide-reduced[c]|
MANNI1PPHOS 0.0 |Mannitol 1-phosphate[c]| + |H2O[c]| => |Mannitol[c]| +
→˓|Phosphate[c]|
MANNIDEH 0.0 |Nicotinamide-adenine-dinucleotide[c]| + |Mannitol[c]| =>
→˓|Nicotinamide-adenine-dinucleotide-reduced[c]| + |Fructose[c]|
MANNIPTS 10.0 |Mannitol[e]| + |Phosphoenolpyruvate[c]| => |Mannitol 1-
→˓phosphate[c]| + |Pyruvate[c]|

Checking File Changes with Git

Now that the model has been updated it will be useful to track the changes that have been made.

First it will be helpful to get a summary of all the files have been modified in the model. Since the changes have been
tracked with Git the files that have changed can be viewed by using the following Git command:

(psamm-env) $ git status

The output of this command should show that the exchange, compound, and model.yaml files have changed and
that there is a new file that is not being tracked named mannitol_pathway.yaml. First the new mannitol pathway
file can be added to the Git repository so that future changes can be tracked using the following commands:

(psmam-env) $ git add mannitol_pathway.yaml

Then specific changes in individual files can be viewed by using the git diff command followed by the file name.
For example to view the changes in the compounds.yaml file the following command can be run.

(psamm-env) $ git diff model.yaml

The output should look like the following:

@@ -5,6 +5,7 @@ compounds:
- include: compounds.yaml
reactions:
- include: reactions.yaml

+ - include: mannitol_pathway.yaml
exchange:
- include: exchange.yaml
limits:

This can be done with any file that had changes to make sure that no accidental changes are added in along with
whatever the desired changes are. In this example there should be one line added in the model.yaml file, three
compounds added into the compounds.yaml file, and one exchange reaction added into the exchange.yaml file
along with one change that removed glucose from the list of carbon sources in the exchange settings (by changing the
lower bound of its exchange reaction to zero).

22 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

Once the changes are confirmed these files can be added with the Git add command.

(psamm-env) $ git add compounds.yaml
(psamm-env) $ git add exchange.yaml
(psamm-env) $ git add model.yaml

These changes can then be committed to the repository using the following command:

(psamm-env) $ git commit -m 'Addition of mannitol utilization pathway and associated
→˓compounds'

Now the model has been updated and the changes have been committed. The Git log command can be used to view
what commits have been made in the repository. This allows you to track the overall progress as well as examine
what specific changes have been made. More detailed information between the commits can be viewed using the
git diff command along with the commit ID that you want to compare the current version to. This will tell you
specifically what changes occurred between that commit and the current version.

You can also view a log of the commits in the model by using the following command:

(psamm-env) $ git log

This can be helpful for getting an overall view of what changes have been made to a repository.

The Git version tracking can also be used with GitHub, BitBucket, GitLab or any other Git hosting provider to share
repositories with other people. This can enable you to collaborate on different aspects of the modeling process while
still tracking the changes made by different groups and maintaining a functional model.

Using PSAMM to export the model to other Software

If you want to export the model in a format to use with other software, that is also possible using PSAMM. The YAML
formatted model can be easily exported as an SBML file using the following command:

(psamm-env) $ psamm-model sbmlexport Modified_core_ecoli.xml

This will export the model in SBML level 3 version 1 format which can then be used in other software that support
this format.

Model Curation

This tutorial will go over how to utilize the curation functions in PSAMM to correct common errors and ensure that
metabolic reconstructions are accurate representations of the metabolism of an organism.

• Materials

• Common Errors in Metabolic Reconstructions

• PSAMM Warnings

• Reaction Consistency in PSAMM

• Gap Identification in PSAMM

• Search Functions in PSAMM

• Duplicate Reaction Checks

2.3. Model Curation 23

https://github.com/
https://bitbucket.org/
https://gitlab.com/

PSAMM Documentation, Release 0.30

Materials

For information on how to install PSAMM and the associated requirements, as well how to download the materials
required for this tutorial you can reference the Installation and Materials section of the tutorial.

For this part of the tutorial we will be using a modified version of the E. coli core metabolic models that has been
used in the other sections of the tutorial. This model has been modified to add in a new pathways for the utilization of
mannitol as a carbon source. To access this model and the other files needed you will need to go into the tutorial-part-2
folder located in the psamm-tutorial folder.

(psamm-env) $ cd <PATH>/tutorial-part-2/

Once in this folder you should see two directories. One is the E_coli_yaml folder which contains the version of the
model we will use. The other is called additional_files, which contains some files we will use during the tutorial.

Common Errors in Metabolic Reconstructions

Many types of errors can be introduced into metabolic models. Some errors can be introduced during manual editing
of model files while others can result from inconsistent representations of the biology of the system. Various features
in PSAMM are designed ot help identify and fix these problems to ensure that the reconstruction does not contain
these kinds of errors.

Some errors cannot be easily identified without extensive manual inspection of the model data files. These PSAMM
functions are designed to help identify these errors and make the correction process easier.

PSAMM Warnings

The most basic way to identify possible errors in a model will be through reading the warning messages printed out by
PSAMM when any functions are run on a model. These warning messages can be an easy way to identify if something
in the reconstruction is not set up the way that was intended. The following are examples of the types of warnings that
PSAMM will provide and what kinds of errors they might indicate.

The first type of warning that PSAMM can provide is a waning that there is a compound that is in a reaction but is not
defined in the compound information of the model. While PSAMM doesn’t necessarily know if this is an error, these
warning can help identify compound ids in the reconstruction that may have typos in them or that need to be defined
in the compounds data for the reconstruction. For example in the warning below it would appear that the compound
id for ATP had been mistyped and included two extra t’s in it. These types of errors can make reactions in a model
inconsistent and may lead to incorrect conclusions from the model if they are not corrected.

WARNING: The compound cpd_atttp was not defined in the list of compounds

The second type of warning will similarly help identify if there was an error introduced in one of the reconstruction’s
reactions. This warning will indicate that there is a compound present in the reconstruction that has a compartment
that is not defined elsewhere in the model. In the example below a compound was added in a reaction as being in
the compartment ‘X’. Since this compartment was not used in the model the reaction involving this instance of the
compound would become flux inconsistent.

WARNING: The compartment X was not defined in the list of compartments.

The third and fourth types of warnings can be useful in identify that the exchange file is set up correctly for the
reconstruction. These two kinds of errors will help identify if there are compounds that are present in the extracellular
compartment but do not have a corresponding exchange reaction in the boundary conditions. This can be problematic
for some models that require certain sinks for overproduced compounds in the boundary. The other kind of warning
will indicate if there are compounds in the exchange reactions that cannot be utilized by any reactions in the model.

24 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

This could indicate that a transport reaction is missing from the model or that the compound could be removed from
the exchange file.

WARNING: The compound cpd_chitob was in the extracellular compartment but not defined
→˓in the medium
WARNING: The compound cpd_etoh was defined in the medium but is not in the
→˓extracellular compartment

Reaction Consistency in PSAMM

The previous examples of warning messages produced by PSAMM can be helpful as a first step in identifying possible
errors in a model but there are various other types of errors that may be present in models that specific PSAMM
functions can help identify. The first kind of errors are ones related to the balancing of reactions in model. It is
important that metabolic models be balanced in terms of elements, charge, and stoichiometry. PSAMM has three
functions available to identify reactions that are not balanced in these properties which can help correct them and lead
to more accurate and true representations of metabolism.

Stoichiometric Checking

PSAMM’s masscheck tool can be used to check if the reactions in the model are stoichiometrically consistent and
the compounds that are causing the imbalance. This can be useful when curating the model because it can assist in
easily identify missing compounds in reactions. A common problem that can be identified using this tool is a loss of
hydrogen atoms during a metabolic reaction. This can occur due to modeling choices or incomplete reaction equations
but is generally easy to identify using masscheck.

To report on the compounds that are not balanced use the following masscheck command:

(psamm-env) $ psamm-model masscheck

This command will produce an output like the following:

...
accoa_c 1.0 Acetyl-CoA
acald_e 1.0 Acetaldehyde
acald_c 1.0 Acetaldehyde
h_e 0.0 H
h_c 0.0 H
INFO: Consistent compounds: 73/75

The masscheck command will first try to assign a positive mass to all of the compounds in the model while balancing
the masses such that the left-hand side and right-hand side add up in every model reaction. All the compound masses
are reported, and the compounds that have been assigned a zero value for the mass are the ones causing imbalances.

In certain cases a metabolic model can contain compounds that represent electrons, photons, or some other artificial
compound. These compounds can cause problems with the stoichiometric balance of a reaction because of their unique
functions. In order to deal with this an additional property can be added to the compound entry that will designate it as
a compound with zero mass. This designation will tell PSAMM to consider these compounds to have no mass during
the stoichiometric checking which will prevent them from causing imbalances in the reactions. An example of how to
add that property to a compound entry can be seen below:

- id: phot
name: Photon
zeromass: yes

To report on the specific reactions that may be causing the imbalance, the following command can be used:

2.3. Model Curation 25

PSAMM Documentation, Release 0.30

(psamm-env) $ psamm-model masscheck --type=reaction
...
FRUKIN 1.0 |Fructose[c]| + |ATP[c]| => |D-Fructose-6-phosphate[c]| +
→˓|ADP[c]| + |H[c]|
INFO: Consistent reactions: 100/101

This check is performed similarly to the compound check. In addition, mass residual values are introduced for each
metabolic reaction in the network. These mass residuals are then minimized and any reactions that result in a non-zero
mass residual value after minimization are reported as being stoichiometrically inconsistent. A non-zero residual value
after minimization tells you that the reaction in question may be unbalanced and missing some mass from it.

Sometimes the residue minimization problem may have multiple solutions. In these cases the residue value may be
reallocated among a few connected reactions. In this example the unbalanced reaction is the MANNIDEH reaction:

MANNIDEH |manni[c]| + |nad[c]| => |fru[c]| + |nadh[c]|

In this reaction equation the right hand side is missing a proton. However minimization problem can result in the
residue being placed on either the fru_c or the nadh_c compounds in an attempt to balance the reaction. Because
nadh_c occurs in thirteen other reactions in the network, the program has already determined that that compound
is stoichiometrically consistent. On the other hand fru_c only occurs one other time. Since this compound is less
connected the minimization problem will assign the non-zero residual to this compound. This process results in the
FRUKIN reaction which contains this compound as being identified as being stoichiometrically inconsistent.

In these cases you will need to manually check the reaction and then use the --checked option for the masscheck
command to force the non-zero residual to be placed on a different reaction. This will rerun the consistency check and
force the residual to be placed on a different reaction. To do this we would run the following command.

(psamm-env) $ psamm-model masscheck --type=reaction --checked FRUKIN

Now, the output should report the MANNIDEH reaction and it can be seen that the reaction equation of MANNIDEH
is specified incorrectly. It appears that a hydrogen compound was left out of the reaction for MANNIDEH. This would
be an easy problem to correct by simply adding in a hydrogen compound to correct the lost atom in the equation.

The stoichiometric consistency checking allows for the easy identification of stoichiometrically inconsistent com-
pounds while providing a more targeted subset of reactions to check to fix the problem. This allows you to quickly
identify problematic reactions rather than having to manually go through the whole reaction database in an attempt to
find the problem.

In some cases there are reactions that are going to be inherently unbalanced and might cause problems with using these
methods. If you know that this is the case for a specific reaction they can specify that the reaction be excluded from
the mass check so that the rest of the network can be analyzed. To do this the --exclude option can be used. For
example if you wanted to exclude the reaction FRUKIN from the mass check they could use the following command:

(psamm-env) $ psamm-model masscheck --exclude FRUKIN

This exclude option can be helpful in removing inherently unbalanced reactions like macromolecule synthesis reations
or incomplete reactions that would be identified as being stoichiometrically inconsistent. It is also possible to create a
file that lists multiple reactions to exclude. Put each reaction identifier on a separate line in the file and refer to the file
be prefixing the file name with a @:

(psamm-env) $ psamm-model masscheck --exclude @excluded_reactions.txt

Before we fix the model with the correction to the MANNIDEH reaction, let us first check the model for formula
inconsistencies to show how this can also be used in conjunction with mass checking and other methods to correct
model inconsistencies.

26 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

Formula Consistency Checking

Formula checking will check that each reaction in the model is balanced with respect to the chemical formulas of each
compound. To check the model for formula consistencies run the formula check command:

(psamm-env) $ psamm-model formulacheck

The output should appear as follows:

INFO: Model: Ecoli_core_model
INFO: Model Git version: 9812080
MANNIDEH C27H40N7O20P2 C27H39N7O20P2 H
Biomass_Ecoli_core_w_GAM C1088.0232H1471.1810N446.7617O1236.7018P240.5298S3.7478
→˓C1045.4677H1395.2089N441.3089O1189.0281P236.8511S3.7478 C42.5555H75.9721N5.
→˓4528O47.6737P3.6787
INFO: Unbalanced reactions: 2/80
INFO: Unchecked reactions due to missing formula: 0/80

In this case two reactions are identified in the model as being unbalanced. The biomass objective function,
Biomass_Ecoli_core_w_GAM, and the reaction that was previously identified through masscheck as being unbal-
anced, MANNIDEH. In the case of the objective function this is imbalanced due to the formulation of the objective
function. The reaction functions as a sink for the compounds required for growth and only outputs depleted energy
compounds. This leads to it being inherently formula imbalanced but it is a necessary feature of the model. The other
reaction is MANNIDEH. It can be seen that the total number of atoms on each side does not match up. PSAMM also
outputs what atoms would be needed to balance the reaction on both sides. In this case there is a missing hydrogen
atom on the right side of the equation. This can be easily rectified by adding in the missing hydrogen. To do this
correction in this tutorial, you can copy a fixed version of the mannitol pathway from the additional files folder using
the following command:

(psamm-env) $ cp ../additional_files/mannitol_pathway_v2.yaml mannitol_pathway.yaml

Once that problem with the new reaction is fixed the model will pass both the formula check and mass check.

Charge Consistency Checking

The charge consistency function is similar to the formula consistency function but instead of using the chemical
formulas for the compounds, PSAMM will use the assigned charges that are designated in the compounds file and
check that these charges are balanced on both sides of the reaction.

To run a charge consistency check on the model use the chargecheck command:

(psamm-env) $ psamm-model chargecheck

This E. coli SBML model does not contain charge information for the compounds. A sample output is provided below
to show what the results would look like for a charge imbalanced model. The output from the charge check will
display any reactions that are charge imbalanced and show what the imbalance is and then show the reaction equation.
This can be used to quickly check for any missed inconsistencies and identify reactions and compounds that should be
looked at more closely to confirm their correctness.

...
rxn12510 1.0 |ATP[c]| + |Pantothenate[c]| => |4-phosphopantothenate[c]| +
→˓|H+[c]| + |ADP[c]|
rxn12825 4.0 |hemeO[c]| + |H2O[c]| => |Heme[c]| + (4) |H+[c]|
rxn13643 1.0 |ADP-glucose[c]| => |Glycogen[c]| + |H+[c]| + |ADP[c]|
rxn13710 6.0 (5) |D-Glucose[c]| + (4) |ATP[c]| => |Glycogen[c]| + (4) |H+[c]|
→˓+ (4) |Phosphate[c]| + (4) |H2O[c]| + |ADP[c]|

2.3. Model Curation 27

PSAMM Documentation, Release 0.30

INFO: Unbalanced reactions: 94/1093
INFO: Unchecked reactions due to missing charge: 0/1093

Flux Consistency Checking

The flux consistency checking function can be used to identify reactions that cannot carry flux in the model. This tool
can be used as a curation tool as well as an analysis tool. In this tutorial it will be highlighted for the curation aspects
and later its use in flux analysis will be demonstrated.

To run a flux consistency check on the model use the fluxcheck command:

(psamm-env) $ psamm-model fluxcheck --unrestricted

The unrestricted option with the command will tell PSAMM to remove any limits on the exchange reactions. This
will tell you which reactions in the model can carry flux if the model is given all compounds in the media freely. This
can be helpful for identifying which reactions may not be linked to other parts of the metabolism and can be helpful
in identifying gaps in the model. In this case it can be seen that no reactions were identified as being inconsistent.

In some situations there are pathways that might be modeled but not necessarily connected to the other aspects of
metabolism. A common occurrence of this is with vitamin biosynthesis pathways that are not incorporated into the
biomass in the model. fluxcheck will identify these as being flux inconsistent but the modeler will need to identify
if this is due to incomplete information on the pathways or if it is due to some error in the formulation of the reactions.

PSAMM will tell you how many exchange reactions cannot be used as well as how many internal model reactions
cannot carry flux. PSAMM will also list the reactions and the equations for the reactions to make curation of these
reactions easier.

Above the fluxcheck command was used with the –unrestricted option which allowed the exchange reactions to all
be active. This command can also be used to see what reactions cannot carry flux when specific media are supplied.
To run this command on the network with the media that is specified in the media file run the following command:

(psamm-env) $ psamm-model fluxcheck
INFO: Model: Ecoli_core_model
INFO: Model Git version: 9812080
INFO: Using flux bounds to determine consistency.
...
EX_fru_e |D-Fructose[e]| <=>
EX_fum_e |Fumarate[e]| <=>
EX_glc_e |D-Glucose[e]| <=>
EX_gln_L_e |L-Glutamine[e]| <=>
EX_mal_L_e |L-Malate[e]| <=>
FRUpts2 |D-Fructose[e]| + |Phosphoenolpyruvate[c]| => |D-Fructose-6-phosphate[c]|
→˓+ |Pyruvate[c]|
FUMt2_2 (2) |H[e]| + |Fumarate[e]| => (2) |H[c]| + |Fumarate[c]|
GLCpts |Phosphoenolpyruvate[c]| + |D-Glucose[e]| => |Pyruvate[c]| + |D-Glucose-6-
→˓phosphate[c]|
GLNabc |ATP[c]| + |L-Glutamine[e]| + |H2O[c]| => |L-Glutamine[c]| + |ADP[c]| +
→˓|H[c]| + |Phosphate[c]|
MALt2_2 |L-Malate[e]| + (2) |H[e]| => |L-Malate[c]| + (2) |H[c]|
INFO: Model has 5/80 inconsistent internal reactions (0 disabled by user)
INFO: Model has 5/21 inconsistent exchange reactions (0 disabled by user)

In this case it can be seen that there are various exchange reactions blocked as well as various internal reactions related
to other carbon metabolic pathways. The current model should only be supplying mannitol as a carbon source and
this would mean that these other carbon pathways would be blocked in this condition. In this way, you can use the
fluxcheck command to see what reactions are specific to certain metabolic pathways and environmental conditions.

28 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

Gap Identification in PSAMM

In addition to inconsistencies found within individual reactions there can also be global inconsistencies for the reac-
tions within a metabolic network. These include metabolites that can be produced but not consumed, ones that can be
consumed by reactions but are not produced, and reactions that cannot carry flux in a model. PSAMM includes various
functions for the identification of these features in a network including the functions gapcheck and fluxcheck.
Additionally the functions gapfill and fastgapfill can be used to help fill these gaps that are present through
the introduction of additional reactions into the network.

Gapcheck in PSAMM

The gapcheck function in PSAMM can be used to identify dead end metabolites in a metabolic network. These dead
end metabolites are compounds in the metabolic model that can either be produced but not consumed or ones that
can be consumed but not produced. Reactions that contain these compounds cannot carry flux within a model and are
often the result of knowledge gaps in our understanding of metabolic networks.

The gapcheck function allows the use of three methods for the identification of these dead end metabolites within a
metabolic network. These are the prodcheck, sinkcheck, and gapfind methods.

The prodcheck method is the most straightforward of these methods and can be used to identify any compounds
that cannot be produced in the metabolic network. It will iterate through the reactions in a network and maximize each
one. If the reaction can carry a flux then the metabolites involved in the reaction are not considered to be blocked.

To use this function the following command can be run:

(psamm-env) $ psamm-model gapcheck --method prodcheck

The function will produce output like the following that lists out any metabolites in the model that cannot be produced
in this condition:

fru[e] D-Fructose
fum[e] Fumarate
glc_D[e] D-Glucose
gln_L[e] L-Glutamine
mal_L[e] L-Malate
INFO: Blocked compounds: 5

This result indicates that the following metabolites currently cannot be produced in the model. This only tells part
of the story though, as this function was run with the defined media that was set for the model. As a result there are
gaps identified like, ‘D-Glucose’, that will not be considered gaps in other conditions. To do a global check using this
function on the model without restrictions on the media the following command can be used:

(psamm-env) $ psamm-model gapcheck --method prodcheck --unrestricted-exchange

The unrestricted tag in this function will temporarily set all of the exchange reaction bounds to be -1000 to 1000
allowing all nutrients to be either taken up or produced. Gap-checking in this condition will allow for the identification
of gaps that are not media dependent and may instead be the result of incomplete pathways and knowledge gaps.

The second method implemented in the gapcheck function is the sinkcheck method. This method is similar to
prodcheck but is implemented in a way where the flux through each introduced sink for a compound is maximized.
This ensures that the metabolite can be produced in excess from the network for it to not be considered a dead end
metabolite.

(psamm-env) $ psamm-model gapcheck --method sinkcheck --unrestricted-exchange

2.3. Model Curation 29

PSAMM Documentation, Release 0.30

The last method implemented in the gapcheck function is the gapfind method. This method is an implementation
of a previously published method to identify gaps in metabolic networks [Kumar07]. This method will use a network
based optimization to identify metabolites with no production pathways present.

(psamm-env) $ psamm-model gapcheck --method gapfind --unrestricted-exchange

These methods included in the gapcheck function can be used to identify various kinds of ‘gaps’ in a metabolic
model network. PSAMM also includes two functions for filling these gaps through the addition of artificial reactions
or reactions from a supplied database. The functions gapfill and fastgapfill can be used to perform these
gapfilling procedures during the process of generating and curating a model.

Search Functions in PSAMM

psamm-model includes a search function that can be used to search the model information for specific compounds
or reactions. To do this the search function can be used. This can be used for various search methods. For example to
search for the compound named fructose the following command can be used:

(psamm-env) $ psamm-model search compound --name 'Fructose'
INFO: Model: Ecoli_core_model
INFO: Model Git version: db22229
id: fru_c
formula: C6H12O6
name: Fructose
Defined in ./compounds.yaml:?:?

To do the same search but instead use the compound ID the following command can be used:

(psamm-env) $ psamm-model search compound --id 'fru_c'

These searches will result in a printout of the relevant information contained within the model about these compounds.
In a similar way reactions can also be searched. For example to search for a reaction by a specific ID the following
command can be used:

(psamm-env) $ psamm-model search reaction --id 'FRUKIN'

Or to search for all reactions that include a specific compound the following command can be used:

(psamm-env) $ psamm-model search reaction --compound 'manni[c]'

Duplicate Reaction Checks

An additional searching function called duplicatescheck is also included in PSAMM. This function will search
through a model and compare all of the reactions in the network to each other. Any reactions that have all of the same
metabolites consumed and produced will then be reported. This can be a helpful function to use if there a multiple
people working on the construction of a model as it allows for an automated checking that two individuals did not
add the same reaction to the reconstruction. The duplicatescheck function can be run through the following
command:

(psamm-env) $ psamm-model duplicatescheck

The additional tags --compare-direction and --compare-stoichiometry can be added to the command
to take into account the reaction directionality and metabolite stoichiometry when comparing two different reactions.

30 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

Constraint Based Analysis with PSAMM

This tutorial will go over how to use the constraint based analysis methods that are included in PSAMM. These
methods can be used to perform various simulations of growth with metabolic models. These simulations can be used
to explore growth phenotypes, nutrient utilization, and gene essentiality.

• Tutorial Materials

• Constraint-based Flux Analysis with PSAMM

• FBA in PSAMM

Tutorial Materials

The materials used in the part of the tutorial can be found in the tutorial-part-3 directory in the psamm-tutorial
repository. This directory contains a copy of the E. coli core metabolic model that has been used in the other tutorials.
This model can be used to run all of the simulations in this part of the tutorial. In addition to the model the virtual
environment where PSAMM has been installed will need to be activated to run the psamm-model commands. For
instructions on how to install or activate PSAMM in a virtual environment reference the Installation and Materials
section of the tutorial.

To access the materials needed to run the following commands go to the E_coli_yaml folder in the tutorial-part-3
folder.

(psamm-env) $ cd <PATH>/tutorial-part-3/E_coli_yaml

Constraint-based Flux Analysis with PSAMM

Along with the various curation tools that are included with PSAMM there are also various flux analysis tools that
can be used to perform simulations on the model. This allows for a seamless integration of the model development,
curation, and simulation processes.

There are various options that you can change in these different flux analysis commands. Before introducing the
specific commands these options will be detailed here.

Loop Minimization in PSAMM

First, you can choose the options for loop minimization when running constraint-based analyses. This can be done
by using the --loop-removal option. There are three options for loop removal when performing constraint based
analysis:

none No removal of loops

tfba Removes loops by applying thermodynamic constraints

l1min Removes loops by minimizing the L1 norm (the sum of absolute flux values)

For example, you could run flux balance analysis with thermodynamic constraints:

(psamm-env) $ psamm-model fba --loop-removal=tfba

or without:

2.4. Constraint Based Analysis with PSAMM 31

PSAMM Documentation, Release 0.30

(psamm-env) $ psamm-model fba --loop-removal=none

Choosing Linear Programming Solvers

You also have the option to set which solver you want to use for the linear programming problems. To view the solvers
that are currently installed the following command can be used:

(psamm-env) $ psamm-list-lpsolvers

By default PSAMM will use CPLEX if it available but if you want to specify a different solver you can do so using
the --solver option. For example to select the Gurobi solver during an FBA simulation you can use the following
command:

(psamm-env) $ psamm-model fba --solver name=gurobi

If multiple solvers are installed and you do not want to use the default solver, you will need to set this option for every
simulation run.

Note: The QSopt_ex solver does not support integer linear programming problems. This solver can be used with any
commands but you will not be able to run the simulation with thermodynamic constraints.

Other Global Options

Another option that can be used with the various flux analysis commands is the --epsilon option. This option can
be used to set the minimum value that a flux needs to be above to be considered non-zero. By default PSAMM will
consider any number above 10−5 to be non-zero. An example of changing the epsilon value with this option during
an FBA simulation is:

(psamm-env) $ psamm-model fba --epsilon 0.0001

These various options can be used for any of the flux analysis functions in PSAMM by adding them to the command
that is being run. A list of the functions available in PSAMM can be viewed by using the command:

(psamm-env) $ psamm-model --help

The options for a specific function can be viewed by using the command:

(psamm-env) $ psamm-model <command> --help

FBA in PSAMM

PSAMM allows for the integration of the model development and curation process with the simulation process. In
this way changes to a metabolic model can be immediately tested using the various flux analysis tools that are present
in PSAMM. In this tutorial, aspects of the E. coli core model [Orth11] will be expanded to demonstrate the various
functions available in PSAMM and throughout these changes the model will be analyzed with PSAMM’s simulation
functions to make sure that these changes are resulting in a functional model.

32 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

Flux Balance Analysis

Flux Balance Analysis (FBA) is one of the basic methods that allows you to quickly examine if the model is viable
(i.e. can produce biomass). PSAMM provides the fba function in the psamm-model command to perform FBA on
metabolic models. For example, to run FBA on the E. coli core model first make sure that the current directory is the
E_coli_yaml/ directory using the following command:

(psamm-env) $ cd <PATH>/psamm-tutorial/E_coli_yaml/

Then run FBA on the model with the following command.

(psamm-env) $ psamm-model fba

Note that the command above should be executed within the folder that stores the model.yaml file. Alternatively,
you could run the following command anywhere in your file system:

(psamm-env) $ psamm-model --model <PATH-TO-MODEL.YAML> fba

The following is a sample of some output from the FBA command:

INFO: Model: Ecoli_core_model
INFO: Model Git version: 9812080
INFO: Using Biomass_Ecoli_core_w_GAM as objective
INFO: Loop removal disabled; spurious loops are allowed
INFO: Setting feasibility tolerance to 1e-09
INFO: Setting optimality tolerance to 1e-09
INFO: Solving took 0.05 seconds
ACONTa 6.00724957535 |Citrate[c]| <=> |cis-Aconitate[c]| + |H2O[c]| b0118 or
→˓b1276
ACONTb 6.00724957535 |cis-Aconitate[c]| + |H2O[c]| <=> |Isocitrate[c]|
→˓b0118 or b1276
AKGDH 5.06437566148 |2-Oxoglutarate[c]| + |Coenzyme-A[c]|...
...
INFO: Objective flux: 0.873921506968
INFO: Reactions at zero flux: 47/95

At the beginning of the output of psamm-model commands information about the model as well as information
about simulation settings will be printed. At the end of the output PSAMM will print the maximized flux of the
designated objective function. The rest of the output is a list of the reaction IDs in the model along with their fluxes,
and the reaction equations represented with the compound names. This output is human readable because the reactions
equations are represented with the full names of compound. It can be saved as a tab separated file that can be sorted
and analyzed quickly allowing for easy analysis and comparison between FBA in different conditions.

By default, PSAMM fba will use the biomass function designated in the central model file as the objective function.
If the biomass tag is not defined in a model.yaml file or if you want to use a different reaction as the objective
function, you can simply specify it using the --objective option. For example to maximize the citrate synthase
reactions, CS, the command would be as follows:

(psamm-env) $ psamm-model fba --objective=CS

Flux balance analysis will be used throughout this tutorial as both a checking tool during model curation and an
analysis tool. PSAMM allows you to easily integrate analysis tools like this into the various steps during model
development.

2.4. Constraint Based Analysis with PSAMM 33

PSAMM Documentation, Release 0.30

Flux Variability Analysis

Another flux analysis tool that can be used in PSAMM is flux variability analysis. This analysis will maximize the
objective function that is designated and provide a lower and upper bound of the various reactions in the model that
would still allow the model to sustain the same objective function flux. This can provide insights into alternative
pathways in the model and allow the identification of reactions that can vary in use.

To run FVA on the model use the following command:

(psamm-env) $ psamm-model fva
...
EX_pi_e -3.44906664664 -3.44906664664 |Phosphate[e]| <=>
EX_pyr_e -0.0 -0.0 |Pyruvate[e]| <=>
EX_succ_e -0.0 -0.0 |Succinate[e]| <=>
FBA 7.00227721609 7.00227721609 |D-Fructose-1-6-bisphosphate[c]| <=>
→˓|Dihydroxyacetone-phosphate[c]| + |Glyceraldehyde-3-phosphate[c]|
FBP 0.0 0.0 |D-Fructose-1-6-bisphosphate[c]| + |H2O[c]| => |D-Fructose-6-
→˓phosphate[c]| + |Phosphate[c]|
FORt2 0.0 0.0 |Formate[e]| + |H[e]| => |Formate[c]| + |H[c]|
...

The output shows the reaction IDs in the first column and then shows the lower bound of the flux, the upper bound of
the flux, and the reaction equations. With the current conditions the flux is not variable through the equations in the
model. It can be seen that the upper and lower bounds of each reaction are the same. If another carbon source was
added in though it would allow for more reactions to be variable. For example if glucose was added into the media
along with mannitol then the results might appear as follows:

EX_glc_e -10.0 -2.0 |D-Glucose[e]| <=>
EX_manni_e -9.0 -3.0 |Mannitol[e]| <=>
MANNIPTS 3.0 9.0 |Mannitol[e]| + |Phosphoenolpyruvate[c]| => |Mannitol 1-
→˓phosphate[c]| + |Pyruvate[c]|
GLCpts 2.0 10.0 |D-Glucose[e]| + |Phosphoenolpyruvate[c]| =>
→˓|Pyruvate[c]| + |D-Glucose-6-phosphate[c]|

It can be seen that in this situation the lower and upper bounds of some reactions are different indicating that their flux
can be variable. This indicates that there is some variability in the model as to how certain reactions can be used while
still maintaining the same objective function flux.

Robustness Analysis

Robustness analysis can be used to analyze the model under varying conditions. Robustness analysis will maximize
a designated reaction while varying another designated reaction. For example, you could vary the amount of oxygen
present while trying to maximize the biomass production to see how the model responds to different oxygen supply.
You can specify the number of steps that will be performed in the robustness as well as the reaction that will be varied
during the steps.

By default, the reaction that is maximized will be the biomass reaction defined in the model.yaml file but a different
reaction can be designated with the optional --objective option. The flux bounds of this reaction will then be
obtained to determine the lower and upper value for the robustness analysis. These values will then be used as the
starting and stopping points for the robustness analysis. You can also set a customized upper and lower flux value of
the varying reaction using the --lower and --upper options.

For this model the robustness command will be used to see how the model responds to various oxygen conditions with
mannitol as the supplied carbon source. To run the robustness command use the following command:

(psamm-env) $ psamm-model robustness --steps 1000 EX_o2_e

34 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

The output will contain two columns. The first column will be the flux of the varied reaction, in this case the EX_o2_e
reaction for oxygen exchange. The second shows the flux of the biomass reaction for the model. The output will look
like this:

-63.958958959 0.0238161275506
-63.8938938939 0.0253046355225
-63.8288288288 0.0267931434944
-63.7637637638 0.0282816514663
-63.6986986987 0.0297701594383
-63.6336336336 0.0312586674102
-63.5685685686 0.0327471753821
-63.5035035035 0.034235683354
-63.4384384384 0.0357241913259
...

If the biomass reaction flux is plotted against the oxygen uptake it can be seen that the biomass flux is low at the
highest oxygen uptake, reaches a maximum at an oxygen uptake of about 24, and then starts to decrease with low
oxygen uptake.

If a more detailed analysis of internal fluxes is desired the –all-reaction-fluxes tag can be added to the command. This
will print out all of the internal reaction fluxes for each step in the robustness analysis. The first column printed will
be the reaction ID. The second column will be the varying reaction’s flux and the last column will be the flux of the
reaction listed in the first column. This can be used to look at the effects of a reaction on internal fluxes in the network.
The command to run this would be the following:

(psamm-env) $ psamm-model robustness --all-reaction-fluxes --steps 1000 EX_o2_e

And the output for this command will look like the following:

G6PDH2r -63.958958959 0.0
AKGDH -63.958958959 0.0
GLNS -63.958958959 0.00608978381469
ADK1 -63.958958959 0.0
PYRt2r -63.958958959 0.0
EX_co2_e -63.958958959 58.986492784
ATPM -63.958958959 8.39
SUCCt2_2 -63.958958959 0.0
PIt2r -63.958958959 0.0876123884204

2.4. Constraint Based Analysis with PSAMM 35

PSAMM Documentation, Release 0.30

EX_lac_D_e -63.958958959 0.0

Deletion Simulations with PSAMM

Gene Deletion

The genedelete command can be used to perform gene deletions in a model and test what effects those deletions
have. This command can be used to quickly test if certain genes are essential in the network. The command will
take a list of genes in a separate file and will then go through all of the gene associations in the model to determine
what reactions require that gene to be present. This uses the gene association logic to determine if the removal of the
specified genes would knock out that function. For example if we had the following two reactions:

- id: RXN_1
genes: g0001 and g0002
equation: '|cpd_a[c]| <=> |cpd_b[c]|'

- id: RXN_2
genes: g0001 or g0003
equation: '|cpd_a[c]| <=> |cpd[c]|'

Both reactions are associated with the gene ‘g0001’ but RXN_1 has an ‘and’ association while RXN_2 has an ‘or’
association. If the gene ‘g0001’ were to be deleted from the network RXN_1 would no longer have the required genes
for it to be present since both genes are required. RXN_2 would still be satisfied since it would only require one of
the two genes to be present. The gene delete command will do this automatically and for the entire network making it
much easier to do these kinds of simulations. The gene delete command can be run with the following command.

(psamm-env) $ psamm-model genedelete --gene b1779

This will produce a flux balance analysis result with a model that has any reactions for which b0118 is necessary
limited to zero flux. The output will show a percentage of the biomass flux of the wild type model that can be
produced by the deletion model.

...
INFO: Objective reaction after gene deletion has flux 0.0
INFO: Objective reaction has 0.00% flux of wild type flux

Random Minimal Network Analysis

The randomsparse command can be used to look at gene essentiality in the metabolic network. To use this function
the model must contain gene associations for the model reactions. This function works by systematically deleting
genes from the network, then evaluating if the associated reaction would still be available after the gene deletion, and
finally testing the new network to see if the objective function flux is still above the threshold for viability. If the flux
falls too low then the gene is marked as essential and kept in the network. If the flux stays above the threshold then
the gene will be marked as non-essential and removed. The program will randomly do this for all genes until the only
ones left are marked as essential. This can be done using the --type=genes option with the randomsparse
command:

(psamm-env) $ psamm-model randomsparse --type=genes 90%

This will produce an output of the gene IDs with a 1 if the gene was kept in the simulation and a 0 if the gene was
deleted. Following the list of genes will be a summary of how many genes were kept out of the total as well as list of
the reaction IDs that made up the minimal network for that simulation. An example output can be seen as follows:

36 Chapter 2. PSAMM Tutorials

PSAMM Documentation, Release 0.30

INFO: Essential genes: 58/137
INFO: Deleted genes: 79/137
b0008 0
b0114 1
b0115 1
b0116 1
b0118 0
b0351 0
b0356 0
b0451 0
b0474 0
b0485 0
...

The random minimal network analysis can also be used to generate a random subset of reactions from the model that
will still allow the model to maintain an objective function flux above a user-defined threshold. This function works
on the same principle as the gene deletions but instead of removing individual genes, reactions will be removed. To
run random minimal network analysis on the model use the randomsparse command with the --type=reactions
option. The last parameter for the command is a percentage of the maximum objective flux that will be used as the
threshold for the simulation.

(psamm-env) $ psamm-model randomsparse --type=reactions 95%
...
FRUKIN 1
...
MANNI1PDEH 0
MANNI1PPHOS 1
MANNIDEH 1
MANNIPTS 1
...

The output will be a list of reaction IDs with either a 1 indicating that the reaction was essential or a zero indicating it
was removed.

Due to the random order of deletions during this simulation it may be helpful to run this command numerous times in
order to gain a statistically significant number of datapoints from which a minimal essential network of reactions can
be established.

In this case the program deleted the MANN1PDEH reaction blocking the mannitol 1-phosphate to fructose 6-phosphate
conversion. In this case the reactions in the other side of the mannitol utilization pathway should all be essential.

You can also use the randomsparse command to randomly sample the exchange reactions and generate pu-
tative minimal exchange reaction sets. This can be done by using the --type=exchange option with the
randomsparse command:

(psamm-env) $ psamm-model randomsparse --type=exchange 90%

It can be seen that when this is run on this small network the mannitol exchange as well as some other small molecules
are identified as being essential to the network:

EX_ac_e 0
EX_acald_e 0
EX_akg_e 0
EX_co2_e 1
EX_etoh_e 0
EX_for_e 0
EX_fru_e 0
EX_fum_e 0

2.4. Constraint Based Analysis with PSAMM 37

PSAMM Documentation, Release 0.30

EX_glc_e 0
EX_gln_L_e 0
EX_glu_L_e 0
EX_h2o_e 1
EX_h_e 1
EX_lac_D_e 0
EX_mal_L_e 0
EX_manni_e 1
EX_nh4_e 1
EX_o2_e 1
EX_pi_e 1
EX_pyr_e 0
EX_succ_e 0

38 Chapter 2. PSAMM Tutorials

CHAPTER 3

Install

PSAMM can be installed using the Python package installer pip. We recommend that you use a Virtualenv when
installing PSAMM. First, create a Virtualenv in your project directory and activate the environment. On Linux/OSX
the following terminal commands can be used:

$ virtualenv env
$ source env/bin/activate

Then, install PSAMM using the pip command:

(env) $ pip install psamm

When returning to the project from a new terminal window, simply reactivate the environment by running

$ source env/bin/activate

The psamm-import tool is developed in a separate Git repository. After installing PSAMM, the psamm-import tool
can be installed using:

(env) $ pip install git+https://github.com/zhanglab/psamm-import.git

Dependencies

• Linear programming solver (Cplex, Gurobi, GLPK or QSopt_ex)

• PyYAML (for reading the native model format)

• NumPy (optional; model matrix can be exported to NumPy matrix if available)

PyYAML is installed automatically when PSAMM is installed through pip. The linear programming solver is not
strictly required but most analyses require one to work. The LP solver Cplex is the preferred solver. We recently added
support for the LP solver Gurobi and GLPK.

39

https://virtualenv.pypa.io/

PSAMM Documentation, Release 0.30

The rational solver QSopt_ex does not support MILP problems which means that some analyses require one of the
other solvers. The MILP support in GLPK is still experimental so it is disabled by default.

Cplex

The Cplex Python bindings will have to be installed manually. Make sure that you are using at least Cplex version
12.6. If you are using a virtual environment (as described above) this should be done after activating the virtual
environment:

1. Locate the directory where Cplex was installed (e.g. /path/to/IBM/ILOG/CPLEX_StudioXXX).

2. Locate the appropriate subdirectory based on your platform and Python version: cplex/python/
<version>/<platform> (e.g. cplex/python/2.7/x86-64_osx).

3. Use pip to install the package from this directory using the following command.

(env) $ pip install \
/path/to/IBM/ILOG/CPLEX_Studio1262/cplex/python/<version>/<platform>

Further documentation on installing Cplex can be found in the Cplex documentation.

Note: Python 3 support was added in a recent release of Cplex. Older versions only support Python 2. If you are
using Python 3 make sure that you have the latest version of Cplex installed.

Gurobi

The Gurobi Python bindings will have to be installed into the virtualenv. After activating the virtualenv:

1. Locate the directory where the Guropi python bindings were installed. For example, on OSX this directory is
/Library/gurobiXXX/mac64 where XXX is a version code.

2. Use pip to install the package from this directory. For example:

(env) $ pip install /Library/gurobi604/mac64

GLPK

The GLPK solver requires the GLPK library to be installed. The swiglpk Python bindings are required for PSAMM
to use the GLPK library.

(env) $ pip install swiglpk

QSopt_ex

QSopt_ex is supported through python-qsoptex which requires GnuMP and the QSopt_ex library. After installing
these libraries the Python bindings can be installed using pip:

40 Chapter 3. Install

http://www-01.ibm.com/support/docview.wss?uid=swg21444285
https://pypi.python.org/pypi/python-qsoptex
https://gmplib.org/
https://github.com/jonls/qsopt-ex

PSAMM Documentation, Release 0.30

(env) $ pip install python-qsoptex

3.5. QSopt_ex 41

PSAMM Documentation, Release 0.30

42 Chapter 3. Install

CHAPTER 4

Model file format

The primary model definition file is the model.yaml file. When creating a new model this file should be placed in a
new directory. The following can be used as a template:

name: Escherichia coli test model
biomass: Biomass
extracellular: e

compartments:
- id: e
name: Extracellular

- id: p
name: Periplasm
adjacent_to: [e, c]

- id: c
name: Cytosol
adjacent_to: p

compounds:
- include: ../path/to/ModelSEED_cpds.tsv
format: modelseed

reactions:
- include: reactions/reactions.tsv
- include: reactions/biomass.yaml

exchange:
- include: exchange.yaml

limits:
- include: limits.yaml

model:
- include: model_def.tsv

43

PSAMM Documentation, Release 0.30

Biomass

The optional biomass key specifies the default reaction to use for various analyses (e.g. FBA, FVA, etc.)

Extracellular Compartment

The optional extracellular key specifies the default string for the extracellular compartment on compounds. If
this option is not specified it will be assumed that the extracellular compartment is called e.

Default Compartment

The optional default_compartment key specifies the default compartment that is used if a compound in a reac-
tion does not explicitly specify a compartment. For example, the reaction |x[e]| + |atp| => |x| + |adp|
+ |pi| does not specify a compartment on four of the compounds so those four would automatically be presumed
to be in the default compartment (or c if no default compartment is specified).

Compartments

The compartments key is a list of compartment information for the model. Compartments must always have an
id but can also have additional user defined properties. The adjacent_to property is used to define the boundaries
between compartments. Notice that the adjacency can be specified as a single compartment or a list of compartments.
Note that it is sufficient to specify that p is adjacent to e. It is then inferred that e is adjacent to p so it is optional to
specify both directions of adjacency.

Compounds

The optional compounds key is a list of compound information. For some of the model checks the compound
information is required. This section can also include external files that contain compound information. If the file is a
ModelSEED compound table, the format key must be set to modelseed. If the file is a YAML file, the file should
have a .yaml extension. The following fragment is an example of a YAML formatted compound file:

- id: ac
name: Acetate
formula: C2H3O2
charge: -1

- id: acac
name: Acetoacetate
...

The following compound properties are recognized:

44 Chapter 4. Model file format

PSAMM Documentation, Release 0.30

Property Type Description
id string Compound ID (required)
name string Name of compound
formula string Compound formula (e.g. C6H12O6)
charge integer Formal charge
kegg string KEGG ID (reference to compound in KEGG database)
cas string CAS number

Reactions

The key reactions specifies a list of files that will be used to define the reactions in the model. The reaction files
can be formatted as either tab-separated (.tsv) or YAML files (.yaml). The TSV file may be adequate for most of
the reaction definitions while certain particularly complex reactions (e.g. biomass reaction) may be specified using a
YAML file.

The TSV format is a tab-separated table where each row contains the reaction ID in addition to other data columns.
The header must specify the type of each column. The column equation will be parsed as ModelSEED reaction
equations.

id equation
ADE2t |ade[e]| + |h[e]| <=> |ade[c]| + |ade[c]|
ADK1 |amp| + |atp| <=> (2) |adp|

Any .yaml or .yml file in the reactions specification will be parsed as a reaction definition file but in YAML
format. This format is particularly useful for very long reactions containing many different compounds (e.g. the
biomass reaction). It also allows adding more annotations because of the structured nature of the YAML format. The
following snippet is an example of a YAML reaction file:

Biomass composition
- id: Biomass

equation:
reversible: no
left:

- id: cpd00032 # Oxaloacetate
value: 1

- id: cpd00022 # Acetyl-CoA
value: 1

- id: cpd00035 # L-Alanine
value: 0.02

...
right:

- id: Biomass
value: 1

...

Reactions in YAML files can also be defined using ModelSEED formatted reaction equations. The | is a special
character in YAML so the reaction equations have to be quoted with ' or, alternatively, using the > for a multiline
quote:

- id: ADE2t
equation: >
|ade[e]| + |h[e]| <=>
|ade[c]| + |h[c]|

- id: ADK1
equation: '|amp| + |atp| <=> (2) |adp|'

4.6. Reactions 45

PSAMM Documentation, Release 0.30

The following reaction properties are recognized:

Property Type Description
id string Reaction ID (required)
name string Name of reaction
equation string or dict Reaction equation formula
ec string EC number
genes string Gene association rule

The genes property can be used to specifiy which genes enable a reaction. Complex gene association rules can be
used when a reaction is enabled by a group of genes or when multiple genes can independently enable a reaction:

- id: ADK1
equation: '|amp| + |atp| <=> (2) |adp|'
genes: gene_0001 or (gene_0002 and gene_0003)

Exchange compounds

The exchange key provides a way of defining the compounds that can enter and exit the model system (the boundary
conditions). This includes compounds that can enter the system (the medium) and compounds that are allowed to exit
the system, like metabolic byproducts. In most cases, all compounds that occur in the extracellular space should also
be defined in the exchange compounds (with lower limit of zero) so that they are allowed to leave the model system,
and PSAMM will generate a warning if this is not the case for some compounds. Compounds that are allowed to be
taken up (the medium) should in addition be specified with a negative lower limit indicating the maximum allowed
uptake.

The following fragment is an example of the exchange.yaml file:

compartment: e # default compartment
compounds:

- id: ac # Acetate
- id: co2
- id: o2
- id: glcD # D-Glucose with uptake limit of 10
lower: -10

...

When an exchange file is specified, the corresponding exchange reactions are automatically added. For example, if the
compounds o2 in compartment e is in the exchange file, the exchange reaction EX_o2_e is added to the model. The
desired ID for the exchange reaction can be set explicitly using the reaction attribute.

The exchange set can also be specified using a TSV-file as the following fragment shows. The second column specifies
the compartment while third and fourth columns specify the lower and upper bounds, respectively. Both can be omitted
or specified as - to use the default flux bounds:

Acetate exchange with default lower and upper bounds
ac e
D-Glucose with uptake limit of 10
glcD e -10
CO2 exchange with production limit of 50 and default uptake limit
co2 e - 50

Multiple exchange files can be included from the main exchange.yaml file, and these will be combined to form
the final set of exchange reactions used for the simulations.

46 Chapter 4. Model file format

PSAMM Documentation, Release 0.30

Reaction flux limits

The optional limits property lists the files that are to be combined and applied as the reaction flux limits. This can
be used to limit certain reactions in the model. The following fragment is an example of a limits file in the YAML
format. The lower and upper specifies the flux bounds and they are both optional. The fixed key is a shortcut to set
both lower and upper to its value:

- reaction: ADK1
upper: 10

- reaction: ADE2t
lower: -50
upper: 50

- reaction: DHPTDNRN
fixed: 0

The limits can also be specified using a TSV-file as shown in the following fragment:

Make ADE2t irreversible by imposing a lower bound of 0
ADE2t 0
Only allow limited flux on ADK1
ADK1 -10 10

Model Definition

The model property can be used to include a table file that specifies a subset of reactions that are used in the model.
If no model definition file is given then all the reactions in the model will be used:

ACALD
ACALDt
ACKr
...

4.8. Reaction flux limits 47

PSAMM Documentation, Release 0.30

48 Chapter 4. Model file format

CHAPTER 5

Command line interface

The tools that can be applied to metabolic models are run through the psamm-model program. To see the full help
text of the program use

$ psamm-model --help

This program allows you to specify a metabolic model and a command to apply to the given model. The available
commands can be seen using the help command given above, and are also described in more details below.

To run the program with a model, use

$ psamm-model --model model.yaml command [...]

In most cases you will probably be running the command from the same directory as where the model.yaml file is
located, and in that case you can simply run

$ psamm-model command [...]

To see the help text of a command use

$ psamm-model command --help

Linear programming solver

Many of the commands described below use a linear programming (LP) solver in order to perform the analysis. These
commands all take an option –solver which can be used to select which solver to use and to specify additional options
for the LP solver. For example, in order to run the fba command with the QSopt_ex solver, the option --solver
name=qsoptex can be added:

$ psamm-model fba --solver name=qsoptex

49

PSAMM Documentation, Release 0.30

The --solver option can also be used to specify additional options for the solver in use. For example, the Cplex
solver recognizes the threads option which can be used to adjust the maximum number of threads that Cplex will
use internally (by default, Cplex will use as many threads as there are cores on the computer):

$ psamm-model fba --solver threads=4

Flux balance analysis (fba)

This command will try to maximize the flux of the biomass reaction defined in the model. It is also possible to provide
a different reaction on the command line to maximize. [Orth10] [Fell86]

To run FBA use:

$ psamm-model fba

or with a specific reaction:

$ psamm-model fba --objective=ATPM

By default, this performs a standard FBA and the result is output as tab-separated values with the reaction ID, the reac-
tion flux and the reaction equation. If the parameter --loop-removal is given, the flux of the internal reactions is
further constrained to remove internal loops [Schilling00]. Loop removal is more time-consuming and under normal
circumstances the biomass reaction flux will not change in response to the loop removal (only internal reaction fluxes
may change). The --loop-removal option is followed by none (no loop removal), tfba (removal using thermo-
dynamic constraints), or l1min (L1 minimization of the fluxes). For example, the following command performs an
FBA with thermodynamic constraints:

$ psamm-model fba --loop-removal=tfba

Flux variability analysis (fva)

This command will find the possible flux range of each reaction when the biomass is at the maximum value
[Mahadevan03]. The command will use the biomass reaction specified in the model definition, or alternatively, a
reaction can be given on the command line following the --objective option.

$ psamm-model fva

The output of the command will show each reaction in the model along with the minimum and maximum possible flux
values as tab-separated values.

PPCK 0.0 135.266721627 [...]
PTAr 62.3091585921 1000.0 [...]

In this example the PPCK reaction has a minimum flux of zero and maximum flux of 135.3 units. The PTAr reaction
has a minimum flux of 62.3 and a maximum of 1000 units.

If the parameter --loop-removal=tfba is given, additonal thermodynamic constraints will be imposed when
evaluating model fluxes. This automatically removes internal flux loops [Schilling00] but is much more time-
consuming.

50 Chapter 5. Command line interface

PSAMM Documentation, Release 0.30

Robustness (robustness)

Given a reaction to maximize and a reaction to vary, the robustness analysis will run flux balance analysis and flux
minimization while fixing the reaction to vary at each iteration. The reaction will be fixed at a given number of steps
between the minimum and maximum flux value specified in the model [Edwards00].

$ psamm-model robustness \
--steps 200 --minimum -20 --maximum 160 EX_Oxygen

In the example above, the biomass reaction will be maximized while the EX_Oxygen (oxygen exchange) reaction is
fixed at a certain flux in each iteration. The fixed flux will vary between the minimum and maximum flux. The number
of iterations can be set using --steps. In each iteration, all reactions and the corresponding fluxes will be shown in
a table, as well as the value of the fixed flux. If the fixed flux results in an infeasible model, no output will be shown
for that iteration.

The output of the command is a list of tab-separated values indicating a reaction ID, the flux of the varying reaction,
and the flux of the reaction with the given ID.

If the parameter --loop-removal is given, additional constraints on the model can be imposed that remove internal
flux loops. See the section on the Flux balance analysis (fba) command for more information on this option.

Random sparse network (randomsparse)

Delete reactions randomly until the flux of the biomass reaction falls below the threshold. Keep deleting reactions until
no more reactions can be deleted. This can also be applied to other reactions than the biomass reaction by specifying
the reaction explicitly.

$ psamm-model randomsparse 95%

When the given reaction is the biomass reaction, this results in a smaller model which is still producing biomass within
the tolerance given by the threshold. The tolerance can be specified as a relative value (as above) or as an absolute flux.
Aggregating the results from multiple random sparse networks allows classifying reactions as essential, semi-essential
or non-essential.

If the option --exchange is given, the model will only try to delete exchange reactions. This can be used to provide
putative minimal media for the model.

The output of the command is a tab-separated list of reaction IDs and a value indicating whether the reaction was
eliminated (0 when eliminated, 1 otherwise). If multiple minimal networks are desired, the command can be run
again and it will sample another random minimal network.

Gene Deletion (genedelete)

Delete single and multiple genes from a model. Once gene(s) are given the command will delete reactions from the
model requiring the gene(s) specified. The reactions deleted will be returned as a set as well as the flux of the model
with the specified gene(s) removed.

$ psamm-model genedelete

To delete genes the option --gene must be entered followed by the desired gene ID specified in the model files. To
delete multiple genes, each new gene must first be followed by a --gene option. For example:

5.4. Robustness (robustness) 51

PSAMM Documentation, Release 0.30

$ psamm-model genedelete --gene ExGene1 --gene ExGene2

The list of genes to delete can also be specified in a text file. This allows to you perform many gene deletions by
simply specifying the file name when running the genedelete command. The text file must contain one gene ID
per line. For example:

$ psamm-model genedelete --gene @gene_file.txt

The file gene_file.txt would contain the following lines:

ExGene1
ExGene2

To delete genes using different algorithms use --method to specify which algorithm for the solver to use. The
default method for the command is FBA. To delete genes using the Minimization of Metabolic Adjustment (MOMA)
algorithm use the command line argument --method moma. MOMA is based on the assumption that the knockout
organism has not had time to adjust its gene regulation to maximize biomass production so fluxes will be close to
wildtype fluxes.

$ psamm-model genedelete --gene ExGene1 --method moma

There are four variations of MOMA available in PSAMM, defined in the following way (where 𝑣 is the wild type
fluxes and �̄� is the knockout fluxes):

MOMA (--method moma) Finds the reaction fluxes in the knockout, such that the difference in flux from the
wildtype is minimized. Minimization is performed with the Euclidean distance:

∑︀
𝑗(𝑣𝑗 − 𝑢𝑗)

2. The wildtype
fluxes are obtained from the wildtype model (i.e. before genes are deleted) by FBA with L1 minimization. L1
minimization is performed on the FBA result to remove loops and make the result disregard internal loop fluxes.
[Segre02]

Linear MOMA (--method lin_moma) Finds the reaction fluxes in the knockout, such that the difference in flux
from the wildtype is minimized. Minimization is performed with the Manhattan distance:

∑︀
𝑗 ‖𝑣𝑗 − 𝑢𝑗‖.

The wildtype fluxes are obtained from the wildtype model (i.e. before genes are deleted) by FBA with L1
minimization. L1 minimization is performed on the FBA result to remove loops and make the result disregard
internal loop fluxes. [Mo09]

Combined-model MOMA (--method moma2) (Experimental) Similar to moma, but this implementation solves
for the wild type fluxes at the same time as the knockout fluxes to ensure not to rely on the arbitrary flux vector
found with FBA.

Combined-model linear MOMA (--method lin_moma2) (Experimental) Similar to lin_moma, but this im-
plementation solves for the wild type fluxes at the same time as the knockout fluxes to ensure not to rely on the
arbitrary flux vector found with FBA.

Flux coupling analysis (fluxcoupling)

The flux coupling analysis identifies any reaction pairs where the flux of one reaction constrains the flux of another
reaction. The reactions can be coupled in three distinct ways depending on the ratio between the reaction fluxes
[Burgard04].

The reactions can be fully coupled (the ratio is static and non-zero); partially coupled (the ratio is bounded and non-
zero); or directionally coupled (the ratio is non-zero).

$ psamm-model fluxcoupling

52 Chapter 5. Command line interface

PSAMM Documentation, Release 0.30

Stoichiometric consistency check (masscheck)

A model or reaction database can be checked for stoichiometric inconsistencies (mass inconsistencies). The basic idea
is that we should be able to assign a positive mass to each compound in the model and have each reaction be balanced
with respect to these mass assignments. If it can be shown that assigning the masses is impossible, we have discovered
an inconsistency [Gevorgyan08].

Some variants of this idea is implemented in the psamm.massconsistency module. The mass consistency check
can be run using

$ psamm-model masscheck

This will first try to assign a positive mass to as many compounds as possible. This will indicate whether or not the
model is consistent but in case it is not consistent it is often hard to figure out how to fix the model from this list of
masses:

[...]
INFO: Checking stoichiometric consistency of reactions...
C0223 1.0 Dihydrobiopterin
C9779 1.0 2-hydroxy-Octadec-ACP(n-C18:1)
EC0065 0.0 H+[e]
C0065 0.0 H+
INFO: Consistent compounds: 832/834

In this case the H+ compounds were inconsistent because they were not assigned a non-zero mass. A different check
can be run where the residual mass is minimized for all reactions in the model. This will often give a better idea of
which reactions need fixing:

.. code-block:: shell

$ psamm-model masscheck –type=reaction

The following output might be generated from this command:

[...]
INFO: Checking stoichiometric consistency of reactions...
IR01815 7.0 (6) |H+[c]| + |Uroporphyrinogen III[c]| [...]
IR00307 1.0 |H+[c]| + |L-Arginine[c]| => [...]
IR00146 0.5 |UTP[c]| + |D-Glucose 1-phosphate[c]| => [...]
[...]
INFO: Consistent reactions: 946/959

This is a list of reactions with non-zero residuals and their residual values. In the example above the three reactions
that are shown have been assigned a non-zero residual (7, 1 and 0.5, respectively). This means that there is an issue
either with this reaction itself or a closely related one. In this example the first two reactions were missing a number
of H+ compounds for the reaction to balance.

Now the mass check can be run again marking the reactions above as checked:

$ psamm-model masscheck --type=reaction --checked IR01815 \
--checked IR00307 --checked IR00146

[...]
IR00149 0.5 |ATP[c]| + |D-Glucose[c]| => [...]

The output has now changed and the remaining residual has been shifted to another reaction. This iterative procedure
can be continued until all stoichiometric inconsistencies have been corrected. In this example the IR00149 reaction
also had a missing H+ for the reaction to balance. After fixing this error the model is consistent and the H+ compounds
can be assigned a non-zero mass:

5.8. Stoichiometric consistency check (masscheck) 53

PSAMM Documentation, Release 0.30

$ psamm-model masscheck
[...]
EC0065 1.0 H+[e]
C0065 1.0 H+
INFO: Consistent compounds: 834/834

Formula consistency check (formulacheck)

Similarly, a model or reaction database can be checked for formula inconsistencies when the chemical formulae of the
compounds in the model are known.

$ psamm-model formulacheck

For each inconsistent reaction, the reaction identifier will be printed followed by the elements (“atoms”) in, respec-
tively, the left- and right-hand side of the reaction, followed by the elements needed to balance the left- and right-hand
side, respectively.

Charge consistency check (chargecheck)

The charge check will evaluate whether the compound charge is balanced in all reactions of the model. Any reactions
that have an imbalance of charge will be reported along with the excess charge.

$ psamm-model chargecheck

Flux consistency check (fluxcheck)

The flux consistency check will report any reactions that are unable to take on a non-zero flux. This is useful for
finding any reactions that do not contribute anything to the model simulation. This may indicate that the reaction is
part of a pathway that is incompletely modeled.

$ psamm-model fluxcheck

If the parameter --loop-removal=tfba is given, additional thermodynamic constraints are imposed when con-
sidering whether reactions can take a non-zero flux. This automatically removes internal flux loops but is also much
more time-consuming.

Reaction duplicates check (duplicatescheck)

This command simply checks whether multiple reactions exist in the model that have the same or similar reaction equa-
tions. By default, this check will ignore reaction directionality and stoichiometric values when considering whether
reactions are identical. The options --compare-direction and --compare-stoichiometry can be used
to make the command consider these properties as well.

$ psamm-model duplicatescheck

54 Chapter 5. Command line interface

PSAMM Documentation, Release 0.30

Gap check (gapcheck)

This gap check command will try to identify the compounds in the model that cannot be produced. This is useful for
identifying incomplete pathways in the model. The command will report a list of all compounds in the model that are
blocked for production.

$ psamm-model gapcheck

When checking whether a compound can be produced, it is sufficient for production that all precursors can be produced
and it is not necessary for every compound to also be consumed by another reaction (in other words, for the purpose
of this analysis there are implicit sinks for every compound in the model). This means that even if this command
reports that no compounds are blocked, it may still not be possible for the model to be viable under the steady-state
assumption of FBA. The option --no-implicit-sinks can be used to perform the gap check without implicit
sinks.

The gap check is performed with the medium that is defined in the model. It may be useful to run the gap check with
every compound in the medium available. This can easily be done by specifying the --unrestricted-exchange
option which removes all limits on the exchange reactions during the check.

There are some additional gap checking methods that can be enabled with the --method option. The method
sinkcheck can be used to find compounds that cannot be synthesized from scratch. The standard gap check will
report compounds as produced if they can participate in a reaction, even if the compound itself cannot be synthesized
from precursors in the medium. To find such compounds use the sinkcheck. This check will generally indicate
more compounds as blocked. Lastly, the method gapfind can be used. This method should produce the same result
as the default method but is implemented in an alternative way that is specified in [Kumar07]. This method is not used
by default because it tends to result in difficulties for the solver when used with larger models.

GapFill (gapfill)

The GapFill algorithm will try to compute an extension of the model with reactions from the reaction database and
try to find a minimal subset that allows all blocked compounds to be produced. In addition to suggesting possible
database reactions to add to the model, the command will also suggest possible transport and exchange reactions. The
GapFill algorithm implemented in this command is a variant of the gap-filling procedure described in [Kumar07].

$ psamm-model gapfill

The command will first list the reactions in the model followed by the suggested reactions to add to the model in
order to unblock the blocked compounds. If --allow-bounds-expansion is specified, the procedure may also
suggest that existing model reactions have their flux bounds widened, e.g. making an existing irreversible reaction
reversible. To unblock only specific compounds, use the --compound option:

$ psamm-model gapfill --compound leu-L[c] --compound ile-L[c]

In this example, the procedure will try to add reactions so that leucine (leu-L) and isoleucine (ile-L) in the c
compartment can be produced. Multiple compounds can be unblocked at the same time and the list of compounds to
unblock can optionally be specified as a file by prefixing the file name with @.

$ psamm-model gapfill --compound @list_of_compounds_to_unblock.tsv

The GapFind algorithm is defined in terms of a MILP problem and can therefore be computationally expensive to run
for larger models.

The original GapFill algorithm uses a solution procedure which implicitly assumes that the model contains implicit
sinks for all compounds. This means that even with the reactions proposed by GapFill the model may need to produce

5.13. Gap check (gapcheck) 55

PSAMM Documentation, Release 0.30

compounds that cannot be used anywhere. The implicit sinks can be disabled with the --no-implicit-sinks
option.

FastGapFill (fastgapfill)

The FastGapFill algorithm tries to reconstruct a flux consistent model (i.e. a model where every reaction takes a non-
zero flux for at least one solutions). This is done by extending the model with reactions from the reaction database and
trying to find a minimal subset that is flux consistent. The solution is approximate [Thiele14].

The database reactions can be assigned a weight (or “cost”) using the --penalty option. These weights are taken
into account when determining the minimal solution.

$ psamm-model fastgapfill --penalty penalty.tsv

Predict primary pairs (primarypairs)

This command is used to predict element-transferring reactant/product pairs in the reactions of the model. This can
be used to determine the flow of elements through reactions. Two methods for predicting the pairs are available:
FindPrimaryPairs (fpp) [Steffensen17] and MapMaker (mapmaker) [Tervo16]. The --method option can used to
select which prediction method to use:

$ psamm-model primarypairs --method=fpp

The result is reported as a table of four columns. The first column is the reactions ID, the second and third columns
contain the compound ID of the reactant and product. The fourth column contains the predicted transfer of elements.

SBML Export (sbmlexport)

Exports the model to the SBML file format. This command exports the model as an SBML level 3 file with flux
bounds, objective and gene information encoded with Flux Balance Constraints version 2.

$ psamm-model sbmlexport model.xml

If the file name is omitted, the file contents will be output directly to the screen. Using the --pretty option makes
the output formatted for readability.

Excel Export (excelexport)

Exports the model to the Excel file format.

$ psamm-model excelexport model.xls

Table Export (tableexport)

Exports the model to the tsv file format.

56 Chapter 5. Command line interface

http://sbml.org/Documents/Specifications
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/fbc

PSAMM Documentation, Release 0.30

$ psamm-model tableexport reactions > model.tsv

Search (search)

This command can be used to search in a database for compounds or reactions. To search for a compound use

$ psamm-model search compound [...]

Use the --name option to search for a compound with a specific name or use the --id option to search for a
compound with a specific identifier.

To search for a reaction use

$ psamm-model search reaction [...]

Use the --id option to search for a reaction with a specific identifier. The --compound option can be used to search
for reactions that include a specific compound. If more that one compound identifier is given (comma-separated) this
will find reactions that include all of the given compounds.

Console (console)

This command will start a Python session where the model has been loaded into the corresponding Python object
representation.

$ psamm-model console

5.20. Search (search) 57

PSAMM Documentation, Release 0.30

58 Chapter 5. Command line interface

CHAPTER 6

Development

Test suite

The python modules have test suites that allows us to automatically test various aspects of the module implementation.
It is important to make sure that all tests run without failure before committing changes to any of the modules. The
test suite is run by changing to the project directory and running

$./setup.py test

To run the tests on all the supported Python platforms with additional tests for coding style (PEP8) and building
documentation, use tox:

$ tox

When testing with tox, the local path for the Cplex python module must be provided in the environment variables
CPLEX_PYTHON2_PACKAGE and CPLEX_PYTHON3_PACKAGE for Python 2 and Python 3, respectively. For ex-
ample:

$ export CPLEX_PYTHON2_PACKAGE=/path/to/IBM/ILOG/CPLEX_StudioXXX/cplex/python/2.7/x86-
→˓64_osx
$ export CPLEX_PYTHON3_PACKAGE=/path/to/IBM/ILOG/CPLEX_StudioXXX/cplex/python/3.4/x86-
→˓64_osx
$ tox -e py27-cplex,py34-cplex

Note: Python 3 support was added in a recent release of Cplex. Older versions only support Python 2.

Similarly, the local path to the Gurobi package must be specified in the environment variable
GUROBI_PYTHON_PACKAGE:

$ export GUROBI_PYTHON_PACKAGE=/Library/gurobi604/mac64
$ tox -e py27-gurobi

59

https://testrun.org/tox/

PSAMM Documentation, Release 0.30

Adding new tests

Adding or improving tests for python modules is highly encouraged. A test suite for a new module should be created
in tests/test_<modulename>.py. These test suites use the built-in unittest module.

Documentation tests

In addition, some modules have documentation that can be tested using the doctestmodule. These test suites should
also run without failure before any commits. They can be run by specifying the particular module (e.g the affine
module in expression) using

$ python -m psamm.expression.affine -v

60 Chapter 6. Development

https://docs.python.org/2.7/library/unittest.html#module-unittest
https://docs.python.org/2.7/library/doctest.html#module-doctest

CHAPTER 7

FAQ

When I run PSAMM it exits with the error “No solvers available”. How can I fix this?

This means that PSAMM is searching for a linear programming solver but was not able to find one. This can occur
even when the Cplex solver is installed because the Cplex Python-bindings have to be installed separately from the
main Cplex package (see Cplex). Also, if using a Virtualenv with Python, the Cplex Python-bindings must be installed
in the Virtualenv. The bindings will not be available in the Virtualenv if they are installed globally.

To check whether the Cplex Python-bindings are correctly installed use the following command:

(env) $ pip list

This will show a list of Python packages that are available. The package cplex will appear in this list if the Cplex
Python-bindings are correctly installed. If the package does not appear in the list, follow the instuctions at Cplex to
install the package.

61

PSAMM Documentation, Release 0.30

62 Chapter 7. FAQ

CHAPTER 8

PSAMM API

psamm.balancecheck – check balance of charge and formula

psamm.balancecheck.charge_balance(model)
Calculate the overall charge for all reactions in the model.

Yield (reaction, charge) pairs.

Parameters model – psamm.datasource.native.NativeModel.

psamm.balancecheck.formula_balance(model)
Calculate formula compositions for each reaction.

Call reaction_formula() for each reaction. Yield (reaction, result) pairs, where result has two formula
compositions or None.

Parameters model – psamm.datasource.native.NativeModel.

psamm.balancecheck.reaction_charge(reaction, compound_charge)
Calculate the overall charge for the specified reaction.

Parameters

• reaction – psamm.reaction.Reaction.

• compound_charge – a map from each compound to charge values.

psamm.balancecheck.reaction_formula(reaction, compound_formula)
Calculate formula compositions for both sides of the specified reaction.

If the compounds in the reaction all have formula, then calculate and return the chemical compositions for both
sides, otherwise return None.

Parameters

• reaction – psamm.reaction.Reaction.

• compound_formula – a map from compound id to formula.

63

PSAMM Documentation, Release 0.30

psamm.command – Command line interface

Command line interface.

Each command in the command line interface is implemented as a subclass of Command. Commands are also refer-
enced from setup.py using the entry point mechanism which allows the commands to be automatically discovered.

The main() function is the entry point of command line interface.

class psamm.command.Command(model, args)
Represents a command in the interface, operating on a model.

The constructor will be given the NativeModel and the command line namespace. The subclass must implement
run() to handle command execution. The doc string will be used as documentation for the command in the
command line interface.

In addition, init_parser() can be implemented as a classmethod which will allow the command to initialize
an instance of argparse.ArgumentParser as desired. The resulting argument namespace will be passed
to the constructor.

argument_error(msg)
Raise error indicating error parsing an argument.

fail(msg, exc=None)
Exit command as a result of a failure.

classmethod init_parser(parser)
Initialize command line parser (argparse.ArgumentParser)

run()
Execute command

exception psamm.command.CommandError
Error from running a command.

This should be raised from a Command.run() if any arguments are misspecified. When the command is
run and the CommandError is raised, the caller will exit with an error code and print appropriate usage
information.

exception psamm.command.ExecutorError
Error running tasks on executor.

class psamm.command.FilePrefixAppendAction(option_strings, dest, nargs=None, from-
file_prefix_chars=u’@’, **kwargs)

Action that appends one argument or multiple from a file.

If the argument starts with a character in fromfile_prefix_chars the remaining part of the argument is
taken to be a file path. The file is read and every line is appended. Otherwise, the argument is simply appended.

class psamm.command.LoopRemovalMixin
Mixin for commands that perform loop removal.

class psamm.command.MetabolicMixin(*args, **kwargs)
Mixin for commands that use a metabolic model representation.

class psamm.command.ObjectiveMixin
Mixin for commands that use biomass as objective.

Allows the user to override the default objective from the command line.

class psamm.command.ParallelTaskMixin
Mixin for commands that run parallel computation tasks.

64 Chapter 8. PSAMM API

https://docs.python.org/2.7/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/2.7/library/argparse.html#argparse.ArgumentParser

PSAMM Documentation, Release 0.30

class psamm.command.SolverCommandMixin(*args, **kwargs)
Mixin for commands that use an LP solver.

This adds a --solver parameter to the command that the user can use to select a specific solver. It also adds
the method _get_solver() which will return a solver with the specified default requirements. The user
requirements will override the default requirements.

psamm.command.main(command_class=None, args=None)
Run the command line interface with the given Command.

If no command class is specified the user will be able to select a specific command through the first command
line argument. If the args are provided, these should be a list of strings that will be used instead of sys.
argv[1]. This is mostly useful for testing.

psamm.command.main_sbml(command_class=None, args=None)
Run the SBML command line interface.

psamm.database – Reaction database

Representation of metabolic network databases.

class psamm.database.ChainedDatabase(*databases)
Links a number of databases so they can be treated a single database

This is a subclass of MetabolicDatabase.

class psamm.database.DictDatabase
Metabolic database backed by in-memory dictionaries

This is a subclass of MetabolicDatabase.

set_reaction(reaction_id, reaction)
Set the reaction ID to a reaction given by a Reaction

If an existing reaction exists with the given reaction ID it will be overwritten.

class psamm.database.MetabolicDatabase
Database of metabolic reactions.

compartments
Iterator of compartment IDs in the database.

compounds
Itertor of Compounds in the database.

get_compound_reactions(compound_id)
Return an iterator of reactions containing the compound.

Reactions are returned as IDs.

get_reaction(reaction_id)
Return reaction as a Reaction.

get_reaction_values(reaction_id)
Return an iterator of reaction compounds and stoichiometric values.

The returned iterator contains (Compound, value)-tuples. The value is negative for left-hand side com-
pounds and positive for right-hand side.

has_reaction(reaction_id)
Whether the given reaction exists in the database.

8.3. psamm.database – Reaction database 65

PSAMM Documentation, Release 0.30

is_reversible(reaction_id)
Whether the given reaction is reversible.

matrix
Mapping from compound, reaction to stoichiometric value.

This is an instance of StoichiometricMatrixView .

reactions
Iterator of reactions IDs in the database.

reversible
The set of reversible reactions.

class psamm.database.StoichiometricMatrixView(database)
Provides a sparse matrix view on the stoichiometry of a database.

This object is used internally in the database to expose a sparse matrix view of the model stoichiometry. This
class should not be instantied, instead use the MetabolicDatabase.matrix property. Any compound,
reaction-pair can be looked up to obtain the corresponding stoichiometric value. If the value is not defined
(implicitly zero) a KeyError will be raised.

In addition, instances also support the NumPy __array__ protocol which means that a numpy.array can by
created directly from the matrix.

>>> model = MetabolicModel()
>>> matrix = numpy.array(model.matrix)

psamm.datasource.context – File system contexts

Utilities for keeping track of parsing context.

exception psamm.datasource.context.ContextError
Raised when a context failure occurs.

class psamm.datasource.context.FileMark(filecontext, line, column)
Marks a position in a file.

This is used when parsing input files, to keep track of the position that generates an entry.

class psamm.datasource.context.FilePathContext(arg)
File context that keeps track of contextual information.

When a file is loaded, all files specified in that file must be loaded relative to the first file. This is made possible
by keeping a context that remembers where a file was loaded so that other files can be loaded relatively.

psamm.datasource.entry – Model entry representations

Representation of compound/reaction entries in models.

class psamm.datasource.entry.CompartmentEntry
Abstract compartment entry.

Entry subclass for representing compartments.

class psamm.datasource.entry.CompoundEntry
Abstract compound entry.

Entry subclass for representing compounds. This standardizes the properties formula and charge.

66 Chapter 8. PSAMM API

https://docs.python.org/2.7/library/exceptions.html#exceptions.KeyError

PSAMM Documentation, Release 0.30

charge
Compound charge value.

formula
Chemical formula of compound.

class psamm.datasource.entry.DictCompartmentEntry(*args, **kwargs)
Compartment entry backed by dictionary.

The given properties dictionary must contain a key id with the identifier.

Parameters

• properties – dict or CompartmentEntry to construct from.

• filemark – Where the entry was parsed from (optional)

class psamm.datasource.entry.DictCompoundEntry(*args, **kwargs)
Compound entry backed by dictionary.

The given properties dictionary must contain a key id with the identifier.

Parameters

• properties – dict or CompoundEntry to construct from.

• filemark – Where the entry was parsed from (optional)

charge
Compound charge value.

formula
Chemical formula of compound.

class psamm.datasource.entry.DictReactionEntry(*args, **kwargs)
Reaction entry backed by dictionary.

The given properties dictionary must contain a key id with the identifier.

Parameters

• properties – dict or ReactionEntry to construct from.

• filemark – Where the entry was parsed from (optional)

equation
Reaction equation.

genes
Gene association expression.

class psamm.datasource.entry.ModelEntry
Abstract model entry.

Provdides a base class for model entries which are representations of any entity (such as compound, reaction
or compartment) in a model. An entity has an ID, and may have a name and filemark. The ID is a unique
string identified within a model. The name is a string identifier for human consumption. The filemark indicates
where the entry originates from (e.g. file name and line number). Any additional properties for an entity exist in
properties which is any dict-like object mapping from string keys to any value type. The name entry in the
dictionary corresponds to the name. Entries can be mutable, where the properties can be modified, or immutable,
where the properties cannot be modified or where modifications are ignored. The ID is always immutable.

filemark
Position of entry in the source file (or None).

8.5. psamm.datasource.entry – Model entry representations 67

PSAMM Documentation, Release 0.30

id
Identifier of entry.

name
Name of entry (or None).

properties
Properties of entry as a Mapping subclass (e.g. dict).

Note that the properties are not generally mutable but may be mutable for specific subclasses. If the id
exists in this dictionary, it must never change the actual entry ID as obtained from the id property, even if
other properties are mutable.

class psamm.datasource.entry.ReactionEntry
Abstract reaction entry.

Entry subclass for representing compounds. This standardizes the properties equation and genes.

equation
Reaction equation.

genes
Gene association expression.

psamm.datasource.kegg – KEGG data parser

Module related to loading KEGG database files.

class psamm.datasource.kegg.CompoundEntry(entry)
KEGG entry with mapped compound properties.

class psamm.datasource.kegg.CompoundMapper
Mapper for raw KEGG compound properties to standard properties.

Public methods are automatically translated into cached properties by the metaclass.

class psamm.datasource.kegg.KEGGEntry(properties, filemark=None)
Base class for KEGG entry with raw values from KEGG.

exception psamm.datasource.kegg.ParseError
Exception used to signal errors while parsing

class psamm.datasource.kegg.ReactionEntry(entry)
KEGG entry with mapped reaction properties.

class psamm.datasource.kegg.ReactionMapper
Mapper for raw KEGG reaction properties to standard properties.

Methods are automatically translated into cached properties by the metaclass.

psamm.datasource.kegg.parse_compound_file(f, context=None)
Iterate over the compound entries in the given file.

psamm.datasource.kegg.parse_kegg_entries(f, context=None)
Iterate over entries in KEGG file.

psamm.datasource.kegg.parse_reaction(s)
Parse a KEGG reaction string

psamm.datasource.kegg.parse_reaction_file(f, context=None)
Iterate over the reaction entries in the given file.

68 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

psamm.datasource.modelseed – ModelSEED data parser

Module related to loading ModelSEED database files.

class psamm.datasource.modelseed.CompoundEntry(id, names, formula, filemark=None)
Representation of entry in a ModelSEED compound table

exception psamm.datasource.modelseed.ParseError
Exception used to signal errors while parsing

psamm.datasource.modelseed.decode_name(s)
Decode names in ModelSEED files

psamm.datasource.modelseed.parse_compound_file(f, context=None)
Iterate over the compound entries in the given file

psamm.datasource.native – Native data format parser

Module for reading and writing native formats.

These formats are either table-based or YAML-based. Table-based formats are space-separated and empty lines are
ignored. Comments starting with pound (#). YAML-based formats are structured data following the YAML specifica-
tion.

class psamm.datasource.native.ModelReader(model_from, context=None)
Reader of native YAML-based model format.

The reader can be created from a model YAML file or directly from a dict, string or File-like object. Use
reader_from_path() to read the model from a YAML file or directory and use the constructor to read
from other sources. Any externally referenced file (with include) will be read on demand by the parse
methods. To read the model fully into memory, use the create_model() to create a NativeModel.

biomass_reaction
Biomass reaction specified by the model.

create_model()
Return NativeModel fully loaded into memory.

default_compartment
Default compartment specified by the model.

The compartment that is implied when not specified. In some contexts (e.g. for exchange compounds) the
extracellular compartment may be implied instead. Defaults to ‘c’.

default_flux_limit
Default flux limit specified by the model.

When flux limits on reactions are not specified, this value will be used. Flux limit of [0;x] will be implied
for irreversible reactions and [-x;x] for reversible reactions, where x is this value. Defaults to 1000.

extracellular_compartment
Extracellular compartment specified by the model.

Defaults to ‘e’.

has_model_definition()
Return True when the list of model reactions is set in the model.

name
Name specified by the model.

8.7. psamm.datasource.modelseed – ModelSEED data parser 69

PSAMM Documentation, Release 0.30

parse_compartments()
Parse compartment information from model.

Return tuple of: 1) iterator of psamm.datasource.entry.CompartmentEntry; 2) Set of pairs
defining the compartment boundaries of the model.

parse_compounds()
Yield CompoundEntries for defined compounds

parse_exchange()
Yield tuples of exchange compounds.

Each exchange compound is a tuple of compound, reaction ID, lower and upper flux limits.

parse_limits()
Yield tuples of reaction ID, lower, and upper bound flux limits

parse_medium()
Yield tuples of exchange compounds.

Each exchange compound is a tuple of compound, reaction ID, lower and upper flux limits.

parse_model()
Yield reaction IDs of model reactions

parse_reactions()
Yield tuples of reaction ID and reactions defined in the model

classmethod reader_from_path(path)
Create a model from specified path.

Path can be a directory containing a model.yaml or model.yml file or it can be a path naming the
central model file directly.

class psamm.datasource.native.ModelWriter
Writer for native (YAML) format.

convert_compartment_entry(compartment, adjacencies)
Convert compartment entry to YAML dict.

Parameters

• compartment – psamm.datasource.entry.CompartmentEntry .

• adjacencies – Sequence of IDs or a single ID of adjacent compartments (or None).

convert_compound_entry(compound)
Convert compound entry to YAML dict.

convert_reaction_entry(reaction)
Convert reaction entry to YAML dict.

write_compartments(stream, compartments, adjacencies, properties=None)
Write iterable of compartments as YAML object to stream.

Parameters

• stream – File-like object.

• compartments – Iterable of compartment entries.

• adjacencies – Dictionary mapping IDs to adjacent compartment IDs.

• properties – Set of compartment properties to output (or None to output all).

70 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

write_compounds(stream, compounds, properties=None)
Write iterable of compounds as YAML object to stream.

Parameters

• stream – File-like object.

• compounds – Iterable of compound entries.

• properties – Set of compound properties to output (or None to output all).

write_reactions(stream, reactions, properties=None)
Write iterable of reactions as YAML object to stream.

Parameters

• stream – File-like object.

• compounds – Iterable of reaction entries.

• properties – Set of reaction properties to output (or None to output all).

class psamm.datasource.native.NativeModel(properties={})
Represents model in the native format.

biomass_reaction
Return biomass reaction property.

compartment_boundaries
Return set of compartment boundaries.

compartments
Return compartments entry set.

compounds
Return compound entry set.

create_metabolic_model()
Create a psamm.metabolicmodel.MetabolicModel.

default_compartment
Return default compartment property.

default_flux_limit
Return default flux limit property.

exchange
Return dict of exchange compounds and properties.

extracellular_compartment
Return extracellular compartment property.

limits
Return dict of reaction limits.

model
Return dict of model reactions.

name
Return model name property.

reactions
Return reaction entry set.

version_string
Return model version string.

8.8. psamm.datasource.native – Native data format parser 71

PSAMM Documentation, Release 0.30

exception psamm.datasource.native.ParseError
Exception used to signal errors while parsing

psamm.datasource.native.float_constructor(loader, node)
Construct Decimal from YAML float encoding.

psamm.datasource.native.parse_compound(compound_def, context=None)
Parse a structured compound definition as obtained from a YAML file

Returns a CompoundEntry.

psamm.datasource.native.parse_compound_file(path, format)
Open and parse reaction file based on file extension or given format

Path can be given as a string or a context.

psamm.datasource.native.parse_compound_list(path, compounds)
Parse a structured list of compounds as obtained from a YAML file

Yields CompoundEntries. Path can be given as a string or a context.

psamm.datasource.native.parse_compound_table_file(path, f)
Parse a tab-separated file containing compound IDs and properties

The compound properties are parsed according to the header which specifies which property is contained in each
column.

psamm.datasource.native.parse_compound_yaml_file(path, f)
Parse a file as a YAML-format list of compounds

Path can be given as a string or a context.

psamm.datasource.native.parse_exchange(exchange_def, default_compartment)
Parse a structured exchange definition as obtained from a YAML file.

Returns in iterator of compound, reaction, lower and upper bounds.

psamm.datasource.native.parse_exchange_file(path, default_compartment)
Parse a file as a list of exchange compounds with flux limits.

The file format is detected and the file is parsed accordingly. Path can be given as a string or a context.

psamm.datasource.native.parse_exchange_list(path, exchange, default_compartment)
Parse a structured exchange list as obtained from a YAML file.

Yields tuples of compound, reaction ID, lower and upper flux bounds. Path can be given as a string or a context.

psamm.datasource.native.parse_exchange_table_file(f)
Parse a space-separated file containing exchange compound flux limits.

The first two columns contain compound IDs and compartment while the third column contains the lower flux
limits. The fourth column is optional and contains the upper flux limit.

psamm.datasource.native.parse_exchange_yaml_file(path, f, default_compartment)
Parse a file as a YAML-format exchange definition.

Path can be given as a string or a context.

psamm.datasource.native.parse_limit(limit_def)
Parse a structured flux limit definition as obtained from a YAML file

Returns a tuple of reaction, lower and upper bound.

psamm.datasource.native.parse_limits_file(path)
Parse a file as a list of reaction flux limits

72 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

The file format is detected and the file is parsed accordingly. Path can be given as a string or a context.

psamm.datasource.native.parse_limits_list(path, limits)
Parse a structured list of flux limits as obtained from a YAML file

Yields tuples of reaction ID, lower and upper flux bounds. Path can be given as a string or a context.

psamm.datasource.native.parse_limits_table_file(f)
Parse a space-separated file containing reaction flux limits

The first column contains reaction IDs while the second column contains the lower flux limits. The third column
is optional and contains the upper flux limit.

psamm.datasource.native.parse_limits_yaml_file(path, f)
Parse a file as a YAML-format flux limits definition

Path can be given as a string or a context.

psamm.datasource.native.parse_medium(exchange_def, default_compartment)
Parse a structured exchange definition as obtained from a YAML file.

Returns in iterator of compound, reaction, lower and upper bounds.

psamm.datasource.native.parse_medium_file(path, default_compartment)
Parse a file as a list of exchange compounds with flux limits.

The file format is detected and the file is parsed accordingly. Path can be given as a string or a context.

psamm.datasource.native.parse_medium_list(path, exchange, default_compartment)
Parse a structured exchange list as obtained from a YAML file.

Yields tuples of compound, reaction ID, lower and upper flux bounds. Path can be given as a string or a context.

psamm.datasource.native.parse_medium_table_file(f)
Parse a space-separated file containing exchange compound flux limits.

The first two columns contain compound IDs and compartment while the third column contains the lower flux
limits. The fourth column is optional and contains the upper flux limit.

psamm.datasource.native.parse_medium_yaml_file(path, f, default_compartment)
Parse a file as a YAML-format exchange definition.

Path can be given as a string or a context.

psamm.datasource.native.parse_model_file(path)
Parse a file as a list of model reactions

The file format is detected and the file is parsed accordinly. The file is specified as a file path that will be opened
for reading. Path can be given as a string or a context.

psamm.datasource.native.parse_model_group(path, group)
Parse a structured model group as obtained from a YAML file

Path can be given as a string or a context.

psamm.datasource.native.parse_model_group_list(path, groups)
Parse a structured list of model groups as obtained from a YAML file

Yields reaction IDs. Path can be given as a string or a context.

psamm.datasource.native.parse_model_table_file(path, f)
Parse a file as a list of model reactions

Yields reactions IDs. Path can be given as a string or a context.

8.8. psamm.datasource.native – Native data format parser 73

PSAMM Documentation, Release 0.30

psamm.datasource.native.parse_model_yaml_file(path, f)
Parse a file as a YAML-format list of model reaction groups

Path can be given as a string or a context.

psamm.datasource.native.parse_reaction(reaction_def, default_compartment, context=None)
Parse a structured reaction definition as obtained from a YAML file

Returns a ReactionEntry.

psamm.datasource.native.parse_reaction_equation(equation_def, default_compartment)
Parse a structured reaction equation as obtained from a YAML file

Returns a Reaction.

psamm.datasource.native.parse_reaction_equation_string(equation, de-
fault_compartment)

Parse a string representation of a reaction equation.

Converts undefined compartments to the default compartment.

psamm.datasource.native.parse_reaction_file(path, default_compartment=None)
Open and parse reaction file based on file extension

Path can be given as a string or a context.

psamm.datasource.native.parse_reaction_list(path, reactions, de-
fault_compartment=None)

Parse a structured list of reactions as obtained from a YAML file

Yields tuples of reaction ID and reaction object. Path can be given as a string or a context.

psamm.datasource.native.parse_reaction_table_file(path, f, default_compartment)
Parse a tab-separated file containing reaction IDs and properties

The reaction properties are parsed according to the header which specifies which property is contained in each
column.

psamm.datasource.native.parse_reaction_yaml_file(path, f, default_compartment)
Parse a file as a YAML-format list of reactions

Path can be given as a string or a context.

psamm.datasource.native.resolve_format(format, path)
Looks at a file’s extension and format (if any) and returns format.

psamm.datasource.native.yaml_load(stream)
Load YAML file using safe loader.

psamm.datasource.reaction – Parser for reactions

Reaction parser.

exception psamm.datasource.reaction.ParseError(*args, **kwargs)
Error raised when parsing reaction fails.

class psamm.datasource.reaction.ReactionParser(arrows=None, parse_global=False)
Parser of reactions equations.

This parser recognizes:

•Global compartment specification as a prefix (when parse_global is True)

•Configurable reaction arrow tokens (arrows)

74 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

•Compounds quoted by pipe (|) (required only if the compound name includes a space)

•Compound counts that are affine expressions.

parse(s)
Parse reaction string.

psamm.datasource.reaction.parse_compound(s, global_compartment=None)
Parse a compound specification.

If no compartment is specified in the string, the global compartment will be used.

psamm.datasource.reaction.parse_compound_count(s)
Parse a compound count (number of compounds).

psamm.datasource.reaction.parse_reaction(s)
Parse reaction string using the default parser.

psamm.datasource.sbml – SBML model parser

Parser for SBML model files.

exception psamm.datasource.sbml.ParseError
Error parsing SBML file

class psamm.datasource.sbml.SBMLCompartmentEntry(reader, root, filemark=None)
Compartment entry in the SBML file

properties
All compartment properties as a dict.

class psamm.datasource.sbml.SBMLFluxBoundEntry(reader, namespace, root)
Flux bound defined with FBC V1.

Flux bounds defined with FBC V2 are instead encoded as upper_flux and lower_flux properties on the
ReactionEntry objects.

id
Return ID of flux bound.

name
Return name of flux bound.

operation
Return the operation of the flux bound.

Returns one of LESS_EQUAL, GREATER_EQUAL or EQUAL.

reaction
Return reaction ID that the flux bound pertains to.

value
Return the flux bound value.

class psamm.datasource.sbml.SBMLObjectiveEntry(reader, namespace, root)
Flux objective defined with FBC

class psamm.datasource.sbml.SBMLReactionEntry(reader, root, filemark=None)
Reaction entry in SBML file

equation
Reaction equation is a Reaction object

8.10. psamm.datasource.sbml – SBML model parser 75

PSAMM Documentation, Release 0.30

id
Reaction ID

kinetic_law_reaction_parameters
Iterator over the values of kinetic law reaction parameters

name
Reaction name

properties
All reaction properties as a dict

reversible
Whether the reaction is reversible

class psamm.datasource.sbml.SBMLReader(file, strict=False, ignore_boundary=True, con-
text=None)

Reader of SBML model files

The constructor takes a file-like object which will be parsed as XML and then as SBML according to the
specification. If the strict parameter is set to False, the parser will revert to a more lenient parsing which
is required for many older models. This tries to mimic the inconsistencies employed by COBRA when parsing
models.

If ignore_boundary is True, the species that are marked as boundary conditions will simply be dropped
from the species list and from the reaction equations, and any boundary compartment will be dropped too.
Otherwise the boundary species will be retained. Retaining these is only useful to extract specific information
from those species objects.

Parameters

• file – File-like object to parse XML SBML content from.

• strict – Indicating whether strict parsing is enabled.

• ignore_boundary – Indicating whether boundary species are dropped.

• context – Optional file parsing context from psamm.datasource.context.

compartments
Iterator over SBMLCompartmentEntry entries.

create_model()
Create model from reader.

Returns psamm.datasource.native.NativeModel.

flux_bounds
Iterator over SBMLFluxBoundEntry

get_compartment(compartment_id)
Return CompartmentEntry corresponding to id.

get_objective(objective_id)
Return SBMLObjectiveEntry corresponding to objective_id

get_reaction(reaction_id)
Return SBMLReactionEntry corresponding to reaction_id

get_species(species_id)
Return SBMLSpeciesEntry corresponding to species_id

id
Model ID

76 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

name
Model name

objectives
Iterator over SBMLObjectiveEntry

reactions
Iterator over ReactionEntries

species
Iterator over SpeciesEntries

This will not yield boundary condition species if those are ignored.

class psamm.datasource.sbml.SBMLSpeciesEntry(reader, root, filemark=None)
Species entry in the SBML file

boundary
Whether this compound is a boundary condition

charge
Species charge

compartment
Species compartment

formula
Species formula

name
Species name

properties
All species properties as a dict

class psamm.datasource.sbml.SBMLWriter(cobra_flux_bounds=False)
Writer of SBML files.

write_model(file, model, pretty=False)
Write a given model to file.

Parameters

• file – File-like object open for writing.

• model – Instance of NativeModel to write.

• pretty – Whether to format the XML output for readability.

psamm.datasource.sbml.convert_exchange_to_compounds(model)
Convert exchange reactions in model to exchange compounds.

Only exchange reactions in the extracellular compartment are converted. The extracelluar compartment must be
defined for the model.

Parameters model – NativeModel.

psamm.datasource.sbml.convert_model_entries(model, convert_id=<function con-
vert_sbml_id>, create_unique_id=None,
translate_compartment=<function
translate_sbml_compartment>,
translate_reaction=<function
translate_sbml_reaction>, trans-
late_compound=<function trans-
late_sbml_compound>)

8.10. psamm.datasource.sbml – SBML model parser 77

PSAMM Documentation, Release 0.30

Convert and decode model entries.

Model entries are converted to new entries using the translate functions and IDs are converted using the given
coversion function. If ID conversion would create a clash of IDs, the create_unique_id function is called
with a container of current IDs and the base ID to generate a unique ID from. The translation functions take an
existing entry and the new ID.

All references within the model are updated to use new IDs: compartment boundaries, limits, exchange, model,
biomass reaction, etc.

Parameters model – NativeModel.

psamm.datasource.sbml.convert_sbml_model(model)
Convert raw SBML model to extended model.

Parameters model – NativeModel obtained from SBMLReader.

psamm.datasource.sbml.create_convert_sbml_id_function(compartment_prefix=u’C_’,
reaction_prefix=u’R_’,
compound_prefix=u’M_’,
decode_id=<function en-
try_id_from_cobra_encoding>)

Create function for converting SBML IDs.

The returned function will strip prefixes, decode the ID using the provided function. These prefixes are common
on IDs in SBML models because the IDs live in a global namespace.

psamm.datasource.sbml.detect_extracellular_compartment(model)
Detect the identifier for equations with extracellular compartments.

Parameters model – NativeModel.

psamm.datasource.sbml.entry_id_from_cobra_encoding(cobra_id)
Convert COBRA-encoded ID string to decoded ID string.

psamm.datasource.sbml.merge_equivalent_compounds(model)
Merge equivalent compounds in various compartments.

Tries to detect and merge compound entries that represent the same compound in different compartments. The
entries are only merged if all properties are equivalent. Compound entries must have an ID with a suffix of an
underscore followed by the compartment ID. This suffix will be stripped and compounds with identical IDs are
merged if the properties are identical.

Parameters model – NativeModel.

psamm.datasource.sbml.parse_flux_bounds(entry)
Return flux bounds for reaction entry.

Detect flux bounds that are specified using the non-standardized kinetic law parameters which are used by many
pre-FBC SBML models. The flux bounds are returned as a pair of lower, upper bounds. The returned bound is
None if undefined.

Parameters entry – SBMLReactionEntry .

psamm.datasource.sbml.parse_objective_coefficient(entry)
Return objective value for reaction entry.

Detect objectives that are specified using the non-standardized kinetic law parameters which are used by many
pre-FBC SBML models. The objective coefficient is returned for the given reaction, or None if undefined.

Parameters entry – SBMLReactionEntry .

psamm.datasource.sbml.parse_xhtml_notes(entry)
Yield key, value pairs parsed from the XHTML notes section.

78 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

Each key, value pair must be defined in its own text block, e.g. <p>key: value</p><p>key2:
value2</p>. The key and value must be separated by a colon. Whitespace is stripped from both key and
value, and quotes are removed from values if present. The key is normalized by conversion to lower case and
spaces replaced with underscores.

Parameters entry – _SBMLEntry.

psamm.datasource.sbml.parse_xhtml_reaction_notes(entry)
Return reaction properties defined in the XHTML notes.

Older SBML models often define additional properties in the XHTML notes section because structured methods
for defining properties had not been developed. This will try to parse the following properties: SUBSYSTEM,
GENE ASSOCIATION, EC NUMBER, AUTHORS, CONFIDENCE.

Parameters entry – SBMLReactionEntry .

psamm.datasource.sbml.parse_xhtml_species_notes(entry)
Return species properties defined in the XHTML notes.

Older SBML models often define additional properties in the XHTML notes section because structured methods
for defining properties had not been developed. This will try to parse the following properties: PUBCHEM ID,
CHEBI ID, FORMULA, KEGG ID, CHARGE.

Parameters entry – SBMLSpeciesEntry .

psamm.datasource.sbml.translate_sbml_compartment(entry, new_id)
Translate SBML compartment entry.

psamm.datasource.sbml.translate_sbml_compound(entry, new_id, compartment_map)
Translate SBML compound entry.

psamm.datasource.sbml.translate_sbml_reaction(entry, new_id, compartment_map, com-
pound_map)

Translate SBML reaction entry.

psamm.expression.affine – Affine expressions

Representations of affine expressions and variables.

These classes can be used to represent affine expressions and do manipulation and evaluation with substitutions of
particular variables.

class psamm.expression.affine.Expression(*args)
Represents an affine expression (e.g. 2x + 3y - z + 5)

simplify()
Return simplified expression.

If the expression is of the form ‘x’, the variable will be returned, and if the expression contains no variables,
the offset will be returned as a number.

substitute(mapping)
Return expression with variables substituted

>>> Expression('x + 2y').substitute(
... lambda v: {'y': -3}.get(v.symbol, v))
Expression('x - 6')
>>> Expression('x + 2y').substitute(
... lambda v: {'y': Variable('z')}.get(v.symbol, v))
Expression('x + 2z')

8.11. psamm.expression.affine – Affine expressions 79

PSAMM Documentation, Release 0.30

variables()
Return iterator of variables in expression

class psamm.expression.affine.Variable(symbol)
Represents a variable in an expression

Equality of variables is based on the symbol.

simplify()
Return simplified expression

The simplified form of a variable is always the variable itself.

>>> Variable('x').simplify()
Variable('x')

substitute(mapping)
Return expression with variables substituted

>>> Variable('x').substitute(lambda v: {'x': 567}.get(v.symbol, v))
567
>>> Variable('x').substitute(lambda v: {'y': 42}.get(v.symbol, v))
Variable('x')
>>> Variable('x').substitute(
... lambda v: {'x': 123, 'y': 56}.get(v.symbol, v))
123

symbol
Symbol of variable

>>> Variable('x').symbol
'x'

psamm.expression.boolean – Boolean expressions

Representations of boolean expressions and variables.

These classes can be used to represent simple boolean expressions and do evaluation with substitutions of particular
variables.

class psamm.expression.boolean.And(*args)
Represents an AND term in an expression.

class psamm.expression.boolean.Expression(arg, _vars=None)
Boolean expression representation.

The expression can be constructed from an expression string of variables, operators (“and”, “or”) and parenthesis
groups. For example,

>>> e = Expression('a and (b or c)')

has_value()
Return True if the expression has no variables.

root
Return root term, variable or boolean of the expression.

substitute(mapping)
Substitute variables using mapping function.

80 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

value
The value of the expression if fully evaluated.

variables
Immutable set of variables in the expression.

class psamm.expression.boolean.Or(*args)
Represents an OR term in an expression.

exception psamm.expression.boolean.ParseError(*args, **kwargs)
Signals error parsing boolean expression.

exception psamm.expression.boolean.SubstitutionError
Error substituting into expression.

class psamm.expression.boolean.Variable(symbol)
Represents a variable in a boolean expression

psamm.fastcore – Fastcore (approximate consistent subset)

Fastcore module implementing the fastcore algorithm

This is an implementation of the algorithms described in [Vlassis14]. Use the functions fastcore() and
fastcc() to easily apply these algorithms to a MetabolicModel.

exception psamm.fastcore.FastcoreError
Indicates an error while running Fastcore

class psamm.fastcore.FastcoreProblem(*args, **kwargs)
Represents a FastCore extension of a flux balance problem.

Accepts the same arguments as FluxBalanceProblem, and an additional epsilon keyword argument.

Parameters

• model – MetabolicModel to solve.

• solver – LP solver instance to use.

• epsilon – Flux threshold value.

find_sparse_mode(core, additional, scaling, weights={})
Find a sparse mode containing reactions of the core subset.

Return an iterator of the support of a sparse mode that contains as many reactions from core as possible,
and as few reactions from additional as possible (approximately). A dictionary of weights can be supplied
which gives further penalties for including specific additional reactions.

flip(reactions)
Flip the specified reactions.

is_flipped(reaction)
Return true if reaction is flipped.

lp10(subset_k, subset_p, weights={})
Force reactions in K above epsilon while minimizing support of P.

This program forces reactions in subset K to attain flux > epsilon while minimizing the sum of absolute
flux values for reactions in subset P (L1-regularization).

8.13. psamm.fastcore – Fastcore (approximate consistent subset) 81

PSAMM Documentation, Release 0.30

lp7(reaction_subset)
Approximately maximize the number of reaction with flux.

This is similar to FBA but approximately maximizing the number of reactions in subset with flux > epsilon,
instead of just maximizing the flux of one particular reaction. LP7 prefers “flux splitting” over “flux
concentrating”.

psamm.fastcore.fastcc(model, epsilon, solver)
Check consistency of model reactions.

Yield all reactions in the model that are not part of the consistent subset.

Parameters

• model – MetabolicModel to solve.

• epsilon – Flux threshold value.

• solver – LP solver instance to use.

psamm.fastcore.fastcc_consistent_subset(model, epsilon, solver)
Return consistent subset of model.

The largest consistent subset is returned as a set of reaction names.

Parameters

• model – MetabolicModel to solve.

• epsilon – Flux threshold value.

• solver – LP solver instance to use.

Returns Set of reaction IDs in the consistent reaction subset.

psamm.fastcore.fastcc_is_consistent(model, epsilon, solver)
Quickly check whether model is consistent

Return true if the model is consistent. If it is only necessary to know whether a model is consistent, this function
is fast as it will return the result as soon as it finds a single inconsistent reaction.

Parameters

• model – MetabolicModel to solve.

• epsilon – Flux threshold value.

• solver – LP solver instance to use.

psamm.fastcore.fastcore(model, core, epsilon, solver, scaling=100000.0, weights={})
Find a flux consistent subnetwork containing the core subset.

The result will contain the core subset and as few of the additional reactions as possible.

Parameters

• model – MetabolicModel to solve.

• core – Set of core reaction IDs.

• epsilon – Flux threshold value.

• solver – LP solver instance to use.

• scaling – Scaling value to apply (see [Vlassis14] for more information on this parameter).

• weights – Dictionary with reaction IDs as keys and values as weights. Weights specify
the cost of adding a reaction to the consistent subnetwork. Default value is 1.

82 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

Returns Set of reaction IDs in the consistent reaction subset.

psamm.fastgapfill – FastGapFill algorithm

Implementation of fastGapFill.

Described in [Thiele14].

psamm.fastgapfill.fastgapfill(model_extended, core, solver, weights={}, epsilon=1e-05)
Run FastGapFill gap-filling algorithm by calling psamm.fastcore.fastcore().

FastGapFill will try to find a minimum subset of reactions that includes the core reactions and it also has no
blocked reactions. Return the set of reactions in the minimum subset. An extended model that includes artificial
transport and exchange reactions can be generated by calling create_extended_model().

Parameters

• model – psamm.metabolicmodel.MetabolicModel.

• core – reactions in the original metabolic model.

• weights – a weight dictionary for reactions in the model.

• solver – linear programming library to use.

• epsilon – float number, threshold for Fastcore algorithm.

psamm.fluxanalysis – Constraint-based reaction flux analysis

Implementation of Flux Balance Analysis.

exception psamm.fluxanalysis.FluxBalanceError(*args, **kwargs)
Error indicating that a flux balance cannot be solved.

class psamm.fluxanalysis.FluxBalanceProblem(model, solver)
Model as a flux optimization problem with steady state assumption.

Create a representation of the model as an LP optimization problem with steady state assumption, i.e. the
concentrations of compounds are always zero.

The problem can be modified and solved as many times as needed. The flux of a reaction can be obtained after
solving using get_flux().

Parameters

• model – MetabolicModel to solve.

• solver – LP solver instance to use.

add_thermodynamic(em=1000)
Apply thermodynamic constraints to the model.

Adding these constraints restricts the solution space to only contain solutions that have no internal loops
[Schilling00]. This is solved as a MILP problem as described in [Muller13]. The time to solve a problem
with thermodynamic constraints is usually much longer than a normal FBA problem.

The em parameter is the upper bound on the delta mu reaction variables. This parameter has to be balanced
based on the model size since setting the value too low can result in the correct solutions being infeasible
and setting the value too high can result in numerical instability which again makes the correct solutions
infeasible. The default value should work in all cases as long as the model is not unusually large.

8.14. psamm.fastgapfill – FastGapFill algorithm 83

PSAMM Documentation, Release 0.30

check_constraints()
Optimize without objective to check that solution is possible.

Raises FluxBalanceError if no flux solution is possible.

flux_bound(reaction, direction)
Return the flux bound of the reaction.

Direction must be a positive number to obtain the upper bound or a negative number to obtain the lower
bound. A value of inf or -inf is returned if the problem is unbounded.

flux_expr(reaction)
Get LP expression representing the reaction flux.

get_flux(reaction)
Get resulting flux value for reaction.

get_flux_var(reaction)
Get LP variable representing the reaction flux.

max_min_l1(reaction, weights={})
Maximize flux of reaction then minimize the L1 norm.

During minimization the given reaction will be fixed at the maximum obtained from the first solution.
If reaction is a dictionary object, each entry is interpreted as a weight on the objective for that reaction
(non-existent reaction will have zero weight).

maximize(reaction)
Solve the model by maximizing the given reaction.

If reaction is a dictionary object, each entry is interpreted as a weight on the objective for that reaction
(non-existent reaction will have zero weight).

minimize_l1(weights={})
Solve the model by minimizing the L1 norm of the fluxes.

If the weights dictionary is given, the weighted L1 norm if minimized instead. The dictionary contains the
weights of each reaction (default 1).

prob
Return the underlying LP problem.

This can be used to add additional constraints on the problem. Calling solve on the underlying problem is
not guaranteed to work correctly, instead use the methods on this object that solves the problem or make a
subclass with a method that calls _solve().

psamm.fluxanalysis.consistency_check(model, subset, epsilon, tfba, solver)
Check that reaction subset of model is consistent using FBA.

Yields all reactions that are not flux consistent. A reaction is consistent if there is at least one flux solution to the
model that both respects the model constraints and also allows the reaction in question to have non-zero flux.

This can be determined by running FBA on each reaction in turn and checking whether the flux in the solution is
non-zero. Since FBA only tries to maximize the flux (and the flux can be negative for reversible reactions), we
have to try to both maximize and minimize the flux. An optimization to this method is implemented such that
if checking one reaction results in flux in another unchecked reaction, that reaction will immediately be marked
flux consistent.

Parameters

• model – MetabolicModel to check for consistency.

• subset – Subset of model reactions to check.

84 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

• epsilon – The threshold at which the flux is considered non-zero.

• tfba – If True enable thermodynamic constraints.

• solver – LP solver instance to use.

Returns An iterator of flux inconsistent reactions in the subset.

psamm.fluxanalysis.flux_balance(model, reaction, tfba, solver)
Run flux balance analysis on the given model.

Yields the reaction id and flux value for each reaction in the model.

This is a convenience function for sertting up and running the FluxBalanceProblem. If the FBA is solved for
more than one parameter it is recommended to setup and reuse the FluxBalanceProblem manually for a speed
up.

This is an implementation of flux balance analysis (FBA) as described in [Orth10] and [Fell86].

Parameters

• model – MetabolicModel to solve.

• reaction – Reaction to maximize. If a dict is given, this instead represents the objective
function weights on each reaction.

• tfba – If True enable thermodynamic constraints.

• solver – LP solver instance to use.

Returns Iterator over reaction ID and reaction flux pairs.

psamm.fluxanalysis.flux_minimization(model, fixed, solver, weights={})
Minimize flux of all reactions while keeping certain fluxes fixed.

The fixed reactions are given in a dictionary as reaction id to value mapping. The weighted L1-norm of the
fluxes is minimized.

Parameters

• model – MetabolicModel to solve.

• fixed – dict of additional lower bounds on reaction fluxes.

• solver – LP solver instance to use.

• weights – dict of weights on the L1-norm terms.

Returns An iterator of reaction ID and reaction flux pairs.

psamm.fluxanalysis.flux_randomization(model, threshold, tfba, solver)
Find a random flux solution on the boundary of the solution space.

The reactions in the threshold dictionary are constrained with the associated lower bound.

Parameters

• model – MetabolicModel to solve.

• threshold – dict of additional lower bounds on reaction fluxes.

• tfba – If True enable thermodynamic constraints.

• solver – LP solver instance to use.

Returns An iterator of reaction ID and reaction flux pairs.

8.15. psamm.fluxanalysis – Constraint-based reaction flux analysis 85

PSAMM Documentation, Release 0.30

psamm.fluxanalysis.flux_variability(model, reactions, fixed, tfba, solver)
Find the variability of each reaction while fixing certain fluxes.

Yields the reaction id, and a tuple of minimum and maximum value for each of the given reactions. The fixed
reactions are given in a dictionary as a reaction id to value mapping.

This is an implementation of flux variability analysis (FVA) as described in [Mahadevan03].

Parameters

• model – MetabolicModel to solve.

• reactions – Reactions on which to report variablity.

• fixed – dict of additional lower bounds on reaction fluxes.

• tfba – If True enable thermodynamic constraints.

• solver – LP solver instance to use.

Returns Iterator over pairs of reaction ID and bounds. Bounds are returned as pairs of lower and
upper values.

psamm.fluxcoupling – Flux coupling analysis

Flux coupling analysis

Described in [Burgard04].

class psamm.fluxcoupling.CouplingClass
Enumeration of coupling types.

class psamm.fluxcoupling.FluxCouplingProblem(model, bounded, solver)
A specific flux coupling analysis applied to a metabolic model.

Parameters

• model – MetabolicModel to apply the flux coupling problem to

• bounded – Dictionary of reactions with minimum flux values

• solver – LP solver instance to use.

solve(reaction_1, reaction_2)
Return the flux coupling between two reactions

The flux coupling is returned as a tuple indicating the minimum and maximum value of the v1/v2 reaction
flux ratio. A value of None as either the minimum or maximum indicates that the interval is unbounded in
that direction.

psamm.fluxcoupling.classify_coupling(coupling)
Return a constant indicating the type of coupling.

Depending on the type of coupling, one of the constants from CouplingClass is returned.

Parameters coupling – Tuple of minimum and maximum flux ratio

psamm.formula – Chemical compound formula

Parser and representation of chemical formulas.

86 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

Chemical formulas (Formula) are represented as a number of FormulaElements with associated counts. A
Formula is itself a FormulaElement so a formula can contain subformulas. This allows some simple structure to
be represented.

class psamm.formula.Atom(symbol)
Represent an atom in a chemical formula

>>> hydrogen = Atom.H
>>> oxygen = Atom.O
>>> str(oxygen | 2*hydrogen)
'H2O'

symbol
Atom symbol

>>> Atom.H.symbol
'H'

class psamm.formula.Formula(values={})
Representation of a chemial formula

This is represented as a number of FormulaElements with associated counts.

>>> f = Formula({Atom.C: 6, Atom.H: 12, Atom.O: 6})
>>> str(f)
'C6H12O6'

classmethod balance(lhs, rhs)
Return formulas that need to be added to balance given formulas

Given complete formulas for right side and left side of a reaction, calculate formulas for the missing
compounds on both sides. Return as a left, right tuple. Formulas can be flattened before balancing to
disregard grouping structure.

flattened()
Return formula where subformulas have been flattened

>>> str(Formula.parse('(CH2)(CH2)2').flattened())
'C3H6'

get(element, default=None)
Return value for element or default if not in the formula.

items()
Iterate over (FormulaElement, value)-pairs

classmethod parse(s)
Parse a formula string (e.g. C6H10O2).

class psamm.formula.FormulaElement
Base class representing elements of a formula

repeat(count)
Repeat formula element by creating a subformula

substitute(mapping)
Return formula element with substitutions performed

variables()
Iterator over variables in formula element

8.17. psamm.formula – Chemical compound formula 87

PSAMM Documentation, Release 0.30

exception psamm.formula.ParseError(*args, **kwargs)
Signals error parsing formula.

class psamm.formula.Radical(symbol)
Represents a radical or other unknown subformula

symbol
Radical symbol

>>> Radical('R1').symbol
'R1'

psamm.gapfill – GapFind/GapFill

Identify blocked metabolites and possible reconstructions.

This implements a variant of the algorithms described in [Kumar07].

exception psamm.gapfill.GapFillError
Indicates an error while running GapFind/GapFill

psamm.gapfill.gapfill(model, core, blocked, exclude, solver, epsilon=0.001, v_max=1000,
weights={}, implicit_sinks=True, allow_bounds_expansion=False)

Find a set of reactions to add such that no compounds are blocked.

Returns two iterators: first an iterator of reactions not in core, that were added to resolve the model. Second,
an iterator of reactions in core that had flux bounds expanded (i.e. irreversible reactions become reversible).
Similarly to GapFind, this method assumes, by default, implicit sinks for all compounds in the model so the
only factor that influences whether a compound can be produced is the presence of the compounds needed to
produce it. This means that the resulting model will not necessarily be flux consistent.

This method is implemented as a MILP-program. Therefore it may not be efficient for larger models.

Parameters

• model – MetabolicModel containing core reactions and reactions that can be added for
gap-filling.

• core – The set of core (already present) reactions in the model.

• blocked – The compounds to unblock.

• exclude – Set of reactions in core to be excluded from gap-filling (e.g. biomass reaction).

• solver – MILP solver instance.

• epsilon – Threshold amount of a compound produced for it to not be considered blocked.

• v_max – Maximum flux.

• weights – Dictionary of weights for reactions. Weight is the penalty score for adding the
reaction (non-core reactions) or expanding the flux bounds (all reactions).

• implicit_sinks – Whether implicit sinks for all compounds are included when gap-
filling (traditional GapFill uses implicit sinks).

• allow_bounds_expansion – Allow flux bounds to be expanded at the cost of a penalty
which can be specified using weights (traditional GapFill does not allow this). This includes
turning irreversible reactions reversible.

88 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

psamm.gapfill.gapfind(model, solver, epsilon=0.001, v_max=1000, implicit_sinks=True)
Identify compounds in the model that cannot be produced.

Yields all compounds that cannot be produced. This method assumes implicit sinks for all compounds in the
model so the only factor that influences whether a compound can be produced is the presence of the compounds
needed to produce it.

Epsilon indicates the threshold amount of reaction flux for the products to be considered non-blocked. V_max
indicates the maximum flux.

This method is implemented as a MILP-program. Therefore it may not be efficient for larger models.

Parameters

• model – MetabolicModel containing core reactions and reactions that can be added for
gap-filling.

• solver – MILP solver instance.

• epsilon – Threshold amount of a compound produced for it to not be considered blocked.

• v_max – Maximum flux.

• implicit_sinks – Whether implicit sinks for all compounds are included when gap-
filling (traditional GapFill uses implicit sinks).

psamm.gapfilling – Gap-filling functions

Functionality related to gap-filling in general.

This module contains some general functions for preparing models for gap-filling. Specific gap-filling methods are
implemented in the gapfill and fastgapfill modules.

psamm.gapfilling.add_all_database_reactions(model, compartments)
Add all reactions from database that occur in given compartments.

Parameters model – psamm.metabolicmodel.MetabolicModel.

psamm.gapfilling.add_all_exchange_reactions(model, compartment, al-
low_duplicates=False)

Add all exchange reactions to database and to model.

Parameters model – psamm.metabolicmodel.MetabolicModel.

psamm.gapfilling.add_all_transport_reactions(model, boundaries, al-
low_duplicates=False)

Add all transport reactions to database and to model.

Add transport reactions for all boundaries. Boundaries are defined by pairs (2-tuples) of compartment IDs.
Transport reactions are added for all compounds in the model, not just for compounds in the two boundary
compartments.

Parameters

• model – psamm.metabolicmodel.MetabolicModel.

• boundaries – Set of compartment boundary pairs.

Returns Set of IDs of reactions that were added.

psamm.gapfilling.create_extended_model(model, db_penalty=None, ex_penalty=None,
tp_penalty=None, penalties=None)

Create an extended model for gap-filling.

8.19. psamm.gapfilling – Gap-filling functions 89

PSAMM Documentation, Release 0.30

Create a psamm.metabolicmodel.MetabolicModel with all reactions added (the reaction database
in the model is taken to be the universal database) and also with artificial exchange and transport reactions
added. Return the extended psamm.metabolicmodel.MetabolicModel and a weight dictionary for
added reactions in that model.

Parameters

• model – psamm.datasource.native.NativeModel.

• db_penalty – penalty score for database reactions, default is None.

• ex_penalty – penalty score for exchange reactions, default is None.

• tb_penalty – penalty score for transport reactions, default is None.

• penalties – a dictionary of penalty scores for database reactions.

psamm.lpsolver.cplex – CPLEX LP solver

Linear programming solver using Cplex.

class psamm.lpsolver.cplex.Constraint(prob, name)
Represents a constraint in a cplex.Problem

class psamm.lpsolver.cplex.CplexRangedProperty(get_prop, doc=None)
Decorator for translating Cplex ranged properties.

class psamm.lpsolver.cplex.Problem(**kwargs)
Represents an LP-problem of a cplex.Solver

add_linear_constraints(*relations)
Add constraints to the problem

Each constraint is represented by a Relation, and the expression in that relation can be a set expression.

cplex
The underlying Cplex object

define(*names, **kwargs)
Define a variable in the problem.

Variables must be defined before they can be accessed by var() or set(). This function takes keyword
arguments lower and upper to define the bounds of the variable (default: -inf to inf). The keyword argument
types can be used to select the type of the variable (Continuous (default), Binary or Integer). Setting any
variables different than Continuous will turn the problem into an MILP problem. Raises ValueError if a
name is already defined.

feasibility_tolerance
Feasibility tolerance.

has_variable(name)
Check whether variable is defined in the model.

integrality_tolerance
Integrality tolerance.

optimality_tolerance
Optimality tolerance.

set_linear_objective(expression)
Set objective expression of the problem.

90 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

set_objective(expression)
Set objective expression of the problem.

set_objective_sense(sense)
Set type of problem (maximize or minimize)

solve_unchecked(sense=None)
Solve problem and return result.

The user must manually check the status of the result to determine whether an optimal solution was found.
A SolverError may still be raised if the underlying solver raises an exception.

class psamm.lpsolver.cplex.Result(prob)
Represents the solution to a cplex.Problem

This object will be returned from the cplex.Problem.solve() method or by accessing the cplex.Problem.result
property after solving a problem. This class should not be instantiated manually.

Result will evaluate to a boolean according to the success of the solution, so checking the truth value of the
result will immediately indicate whether solving was successful.

get_value(expression)
Return value of expression.

status
Return string indicating the error encountered on failure

success
Return boolean indicating whether a solution was found

unbounded
Whether solution is unbounded

class psamm.lpsolver.cplex.Solver
Represents an LP-solver using Cplex

create_problem(**kwargs)
Create a new LP-problem using the solver

psamm.lpsolver.generic – Generic linear programming solver

Generic interface to LP solver instantiation.

exception psamm.lpsolver.generic.RequirementsError
Error resolving solver requirements

class psamm.lpsolver.generic.Solver(**kwargs)
Generic solver interface based on requirements

Use the any of the following keyword arguments to restrict which underlying solver is used:

•integer: Use a solver that support integer variables (MILP)

•rational: Use a solver that returns rational results

•quadratic: Use a solver that supports quadratic objective/constraints

•name: Select a specific solver based on the name

create_problem()
Create a Problem instance

8.21. psamm.lpsolver.generic – Generic linear programming solver 91

PSAMM Documentation, Release 0.30

psamm.lpsolver.generic.filter_solvers(solvers, requirements)
Yield solvers that fullfil the requirements.

psamm.lpsolver.generic.list_solvers(args=None)
Entry point for listing available solvers.

psamm.lpsolver.generic.parse_solver_setting(s)
Parse a string containing a solver setting

psamm.lpsolver.glpk – GLPK LP solver

Linear programming solver using GLPK.

class psamm.lpsolver.glpk.Constraint(prob, name)
Represents a constraint in a Problem.

exception psamm.lpsolver.glpk.GLPKError
Error from calling GLPK library.

class psamm.lpsolver.glpk.MIPResult(prob, ret_val=0)
Specialization of Result for MIP problems.

class psamm.lpsolver.glpk.Problem(**kwargs)
Represents an LP-problem of a Solver.

add_linear_constraints(*relations)
Add constraints to the problem.

Each constraint is represented by a Relation, and the expression in that relation can be a set expression.

define(*names, **kwargs)
Define a variable in the problem.

Variables must be defined before they can be accessed by var() or set(). This function takes keyword
arguments lower and upper to define the bounds of the variable (default: -inf to inf). The keyword argument
types can be used to select the type of the variable (Continuous (default), Binary or Integer). Setting any
variables different than Continuous will turn the problem into an MILP problem. Raises ValueError if a
name is already defined.

feasibility_tolerance
Feasibility tolerance.

glpk
The underlying GLPK (SWIG) object.

has_variable(name)
Check whether variable is defined in the model.

integrality_tolerance
Integrality tolerance.

optimality_tolerance
Optimality tolerance.

set_linear_objective(expression)
Set objective of problem.

set_objective(expression)
Set objective of problem.

92 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

set_objective_sense(sense)
Set type of problem (maximize or minimize).

solve_unchecked(sense=None)
Solve problem and return result.

The user must manually check the status of the result to determine whether an optimal solution was found.
A SolverError may still be raised if the underlying solver raises an exception.

class psamm.lpsolver.glpk.Result(prob, ret_val=0)
Represents the solution to a Problem.

This object will be returned from the solve() method on Problem or by accessing the result property on
Problem after solving a problem. This class should not be instantiated manually.

Result will evaluate to a boolean according to the success of the solution, so checking the truth value of the
result will immediately indicate whether solving was successful.

get_value(expression)
Return value of expression.

status
Return string indicating the error encountered on failure.

success
Return boolean indicating whether a solution was found.

unbounded
Whether solution is unbounded

class psamm.lpsolver.glpk.Solver
Represents an LP-solver using GLPK.

create_problem(**kwargs)
Create a new LP-problem using the solver.

psamm.lpsolver.gurobi – Gurobi LP solver

Linear programming solver using Gurobi.

class psamm.lpsolver.gurobi.Constraint(prob, name)
Represents a constraint in a gurobi.Problem.

class psamm.lpsolver.gurobi.Problem(**kwargs)
Represents an LP-problem of a gurobi.Solver.

add_linear_constraints(*relations)
Add constraints to the problem.

Each constraint is represented by a Relation, and the expression in that relation can be a set expression.

define(*names, **kwargs)
Define a variable in the problem.

Variables must be defined before they can be accessed by var() or set(). This function takes keyword
arguments lower and upper to define the bounds of the variable (default: -inf to inf). The keyword argument
types can be used to select the type of the variable (Continuous (default), Binary or Integer). Setting any
variables different than Continuous will turn the problem into an MILP problem. Raises ValueError if a
name is already defined.

8.23. psamm.lpsolver.gurobi – Gurobi LP solver 93

PSAMM Documentation, Release 0.30

feasibility_tolerance
Feasibility tolerance.

gurobi
The underlying Gurobi Model object.

has_variable(name)
Check whether variable is defined in the model.

integrality_tolerance
Integrality tolerance.

optimality_tolerance
Optimality tolerance.

set_linear_objective(expression)
Set linear objective of problem.

set_objective(expression)
Set linear objective of problem.

set_objective_sense(sense)
Set type of problem (maximize or minimize).

solve_unchecked(sense=None)
Solve problem and return result.

The user must manually check the status of the result to determine whether an optimal solution was found.
A SolverError may still be raised if the underlying solver raises an exception.

class psamm.lpsolver.gurobi.Result(prob)
Represents the solution to a gurobi.Problem.

This object will be returned from the gurobi.Problem.solve() method or by accessing the gurobi.Problem.result
property after solving a problem. This class should not be instantiated manually.

Result will evaluate to a boolean according to the success of the solution, so checking the truth value of the
result will immediately indicate whether solving was successful.

get_value(expression)
Return value of expression.

status
Return string indicating the error encountered on failure.

success
Return boolean indicating whether a solution was found.

unbounded
Whether solution is unbounded

class psamm.lpsolver.gurobi.Solver
Represents an LP-solver using Gurobi.

create_problem(**kwargs)
Create a new LP-problem using the solver.

psamm.lpsolver.lp – Linear programming problems

Base objects for representation of LP problems.

94 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

A linear programming problem is built from a number of constraints and an objective function. The objective function
is a linear expression represented by Expression. The constraints are represented by Relation, created from a
linear expression and a relation sense (equals, greater, less).

Expressions are built from variables defined in the Problem instance. In addition, an expression can contain
a VariableSet instead of a single variable. This allows many similar expressions to be represented by one
Expression instance which means that the LP problem can be constructed faster.

class psamm.lpsolver.lp.Constraint
Represents a constraint within an LP Problem

delete()
Remove constraint from Problem instance

class psamm.lpsolver.lp.Expression(variables={}, offset=0)
Represents a linear expression

The variables can be any hashable objects. If one or more variables are instead VariableSets, this will be
taken to represent a set of expressions separately using a different element of the VariableSet.

>>> e = Expression({'x': 2, 'y': 3})
>>> str(e)
'2*x + 3*y'

In order to provide a more natural syntax for creating Relations the binary relation operators have been
overloaded to return Relation instances.

>>> rel = Expression({'x': 2}) >= Expression({'y': 3})
>>> str(rel)
'2*x - 3*y >= 0'

Warning: Chained relations cannot be converted to multiple relations, e.g. 4 <= e <= 10 will fail to
produce the intended relations!

offset
Value of the offset

value_sets()
Iterator of expression sets

This will yield an iterator of (variable, value)-pairs for each expression in the expression set (each equiva-
lent to values()). If none of the variables is a set variable then a single iterator will be yielded.

values()
Return immutable view of (variable, value)-pairs in expression.

variables()
Return immutable view of variables in expression.

exception psamm.lpsolver.lp.InvalidResultError(msg=None)
Raised when a result that has been invalidated is accessed

class psamm.lpsolver.lp.ObjectiveSense
Enumeration of objective sense values

class psamm.lpsolver.lp.Problem
Representation of LP Problem instance

Variable names in the problem can be any hashable object. It is the responsibility of the solver interface to
translate the object into a unique string if required by the underlying LP solver.

8.24. psamm.lpsolver.lp – Linear programming problems 95

PSAMM Documentation, Release 0.30

add_linear_constraints(*relations)
Add constraints to the problem.

Each constraint is given as a Relation, and the expression in that relation can be a set expression.
Returns a sequence of Constraints.

define(*names, **kwargs)
Define a variable in the problem.

Variables must be defined before they can be accessed by var() or set(). This function takes keyword
arguments lower and upper to define the bounds of the variable (default: -inf to inf). The keyword argument
types can be used to select the type of the variable (Continuous (default), Binary or Integer). Setting any
variables different than Continuous will turn the problem into an MILP problem. Raises ValueError if a
name is already defined.

expr(values, offset=0)
Return the given dictionary of values as an Expression.

has_variable(name)
Check whether a variable is defined in the problem.

namespace(names=None, **kwargs)
Return namespace for this problem.

If names is given it should be an iterable of names to define in the namespace. Other keyword arguments
can be specified which will be used to define the names given as well as being used as default parameters
for names that are defined later.

>>> v = prob.namespace(name='v')
>>> v.define([1, 2, 5], lower=0, upper=10)
>>> prob.set_objective(v[1] + 3*v[2] - 5 * v[5])

result
Result of solved problem

set(names)
Return variables as a set expression.

This returns an Expression containing a VariableSet.

set_linear_objective(expression)
Set objective of the problem to the given Expression.

set_objective(expression)
Set objective of the problem to the given Expression.

set_objective_sense(sense)
Set type of problem (minimize or maximize)

solve(sense=None)
Solve problem and return result.

Raises SolverError if the solution is not optimal.

solve_unchecked(sense=None)
Solve problem and return result.

The user must manually check the status of the result to determine whether an optimal solution was found.
A SolverError may still be raised if the underlying solver raises an exception.

var(name)
Return variable as an Expression.

96 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

class psamm.lpsolver.lp.Product
A tuple used to represent a variable product.

class psamm.lpsolver.lp.RangedProperty(fget=None, fset=None, fdel=None, fmin=None,
fmax=None, doc=None)

Numeric property with minimum and maximum values.

The value attribute is used to get/set the actual value of the propery. The min/max attributes are used to get the
bounds. The range is not automatically enforced when the value is set.

class psamm.lpsolver.lp.Relation(sense, expression)
Represents a binary relation (equation or inequality)

Relations can be equalities or inequalities. All relations of this type can be represented as a left-hand side
expression and the type of relation. In this representation, the right-hand side is always zero.

expression
Left-hand side expression

sense
Type of relation (equality or inequality)

Can be one of Equal, Greater or Less, or one of the strict relations, StrictlyGreater or StrictlyLess.

class psamm.lpsolver.lp.Result
Result of solving an LP problem

The result is tied to the solver instance and is valid at least until the problem is solved again. If the problem has
been solved again an InvalidResultError may be raised.

get_value(expression)
Get value of variable or expression in result

Expression can be an object defined as a name in the problem, in which case the corresponding value is
simply returned. If expression is an actual Expression object, it will be evaluated using the values from
the result.

status
String indicating the status of the problem result

success
Whether solution was optimal

unbounded
Whether solution is unbounded

class psamm.lpsolver.lp.Solver
Factory for LP Problem instances

create_problem()
Create a new Problem instance

exception psamm.lpsolver.lp.SolverError
Error wrapping solver specific errors.

class psamm.lpsolver.lp.VariableNamespace(problem, **kwargs)
Namespace for defining variables.

Namespaces are always unique even if two namespaces have the same name. Variables defined within a names-
pace will never clash with a global variable name or a name defined in another namespace. Namespaces should
be created using the Problem.namespace().

8.24. psamm.lpsolver.lp – Linear programming problems 97

PSAMM Documentation, Release 0.30

>>> v = prob.namespace(name='v')
>>> v.define([1, 2, 5], lower=0, upper=10)
>>> prob.set_objective(v[1] + 3*v[2] - 5 * v[5])

define(names, **kwargs)
Define variables within the namespace.

This is similar to Problem.define() except that names must be given as an iterable. This method
accepts the same keyword arguments as Problem.define().

expr(items)
Return the sum of each name multiplied by a coefficient.

>>> v = prob.namespace(name='v')
>>> v.define(['a', 'b', 'c'], lower=0, upper=10)
>>> prob.set_objective(v.expr([('a', 2), ('b', 1)]))

set(names)
Return a variable set of the given names in the namespace.

>>> v = prob.namespace(name='v')
>>> v.define([1, 2, 5], lower=0, upper=10)
>>> prob.add_linear_constraints(v.set([1, 2]) >= 4)

sum(names)
Return the sum of the given names in the namespace.

>>> v = prob.namespace(name='v')
>>> v.define([1, 2, 5], lower=0, upper=10)
>>> prob.set_objective(v.sum([2, 5])) # v[2] + v[5]

value(name)
Return value of given variable in namespace.

>>> v = prob.namespace(name='v')
>>> v.define([1, 2, 5], lower=0, upper=10)
>>> prob.solve()
>>> print(v.value(2))

class psamm.lpsolver.lp.VariableSet
A tuple used to represent sets of variables.

class psamm.lpsolver.lp.VariableType
Enumeration of variable types

psamm.lpsolver.lp.ranged_property(min=None, max=None)
Decorator for creating ranged property with fixed bounds.

psamm.lpsolver.qsoptex – QSopt_ex LP solver

Linear programming solver using QSopt_ex.

class psamm.lpsolver.qsoptex.Constraint(prob, name)
Represents a constraint in a qsoptex.Problem

class psamm.lpsolver.qsoptex.Problem(**kwargs)
Represents an LP-problem of a qsoptex.Solver

98 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

add_linear_constraints(*relations)
Add constraints to the problem

Each constraint is represented by a Relation, and the expression in that relation can be a set expression.

define(*names, **kwargs)
Define a variable in the problem.

Variables must be defined before they can be accessed by var() or set(). This function takes keyword
arguments lower and upper to define the bounds of the variable (default: -inf to inf). The keyword argument
types can be used to select the type of the variable (only Continuous is supported). Raises ValueError if a
name is already defined.

feasibility_tolerance
Feasibility tolerance.

has_variable(name)
Check whether variable is defined in the model.

optimality_tolerance
Optimality tolerance.

qsoptex
The underlying qsoptex.ExactProblem object

set_linear_objective(expression)
Set linear objective of problem

set_objective(expression)
Set linear objective of problem

set_objective_sense(sense)
Set type of problem (maximize or minimize)

solve_unchecked(sense=None)
Solve problem and return result.

The user must manually check the status of the result to determine whether an optimal solution was found.
A SolverError may still be raised if the underlying solver raises an exception.

class psamm.lpsolver.qsoptex.Result(prob)
Represents the solution to a qsoptex.Problem

This object will be returned from the Problem.solve() method or by accessing the Problem.result property after
solving a problem. This class should not be instantiated manually.

Result will evaluate to a boolean according to the success of the solution, so checking the truth value of the
result will immediately indicate whether solving was successful.

get_value(expression)
Return value of expression

status
Return string indicating the error encountered on failure

success
Return boolean indicating whether a solution was found

unbounded
Whether the solution is unbounded

class psamm.lpsolver.qsoptex.Solver
Represents an LP solver using QSopt_ex

8.25. psamm.lpsolver.qsoptex – QSopt_ex LP solver 99

PSAMM Documentation, Release 0.30

create_problem(**kwargs)
Create a new LP-problem using the solver

psamm.massconsistency – Mass consistency check

Mass consistency analysis of metabolic databases

A stoichiometric matrix, S, is said to be mass-consistent if S^Tm = 0 has a positive solution (m_i > 0). This corresponds
to assigning a positive mass to each compound in the stoichiometric matrix and having each reaction preserve mass.
Exchange reactions will have to be excluded from this check, as they are not able to preserve mass (by definition). In
addition some databases may contain pseudo-compounds (e.g. “photon”) that also has to be excluded.

exception psamm.massconsistency.MassConsistencyError
Indicates an error while checking for mass consistency

psamm.massconsistency.check_compound_consistency(database, solver, exchange=set([]),
zeromass=set([]))

Yield each compound in the database with assigned mass

Each compound will be assigned a mass and the number of compounds having a positive mass will be approxi-
mately maximized.

This is an implementation of the solution originally proposed by [Gevorgyan08] but using the new method
proposed by [Thiele14] to avoid MILP constraints. This is similar to the way Fastcore avoids MILP contraints.

psamm.massconsistency.check_reaction_consistency(database, solver, exchange=set([]),
checked=set([]), zeromass=set([]),
weights={})

Check inconsistent reactions by minimizing mass residuals

Return a reaction iterable, and compound iterable. The reaction iterable yields reaction ids and mass residuals.
The compound iterable yields compound ids and mass assignments.

Each compound is assigned a mass of at least one, and the masses are balanced using the stoichiometric matrix.
In addition, each reaction has a residual mass that is included in the mass balance equations. The L1-norm of the
residuals is minimized. Reactions in the checked set are assumed to have been manually checked and therefore
have the residual fixed at zero.

psamm.massconsistency.is_consistent(database, solver, exchange=set([]), zeromass=set([]))
Try to assign a positive mass to each compound

Return True if successful. The masses are simply constrained by m_i > 1 and finding a solution under these
conditions proves that the database is mass consistent.

psamm.metabolicmodel – Metabolic model representation

Representation of metabolic network models.

class psamm.metabolicmodel.FlipableFluxBounds(view, reaction)
FluxBounds object for a FlipableModelView.

This object is used internally in the FlipableModelView to represent the bounds of flux on a reaction that can be
flipped.

lower
Lower bound

100 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

upper
Upper bound

class psamm.metabolicmodel.FlipableLimitsView(view)
Provides a limits view that flips with the flipable model view.

This object is used internally in FlipableModelView to expose a limits view that flips the bounds of all flipped
reactions.

class psamm.metabolicmodel.FlipableModelView(model, flipped=set([]))
Proxy wrapper of model objects allowing a flipped set of reactions.

The proxy will forward all properties normally except that flipped reactions will appear to have stoichiometric
values negated in the matrix property, and have bounds in the limits property flipped. This view is needed for
some algorithms.

class psamm.metabolicmodel.FlipableStoichiometricMatrixView(view)
Provides a matrix view that flips with the flipable model view.

This object is used internally in FlipableModelView to expose a matrix view that negates the stoichiometric
values of flipped reactions.

class psamm.metabolicmodel.FluxBounds(model, reaction)
Represents lower and upper bounds of flux as a mutable object

This object is used internally in the model representation. Changing the state of the object will change the
underlying model parameters. Deleting a value will reset that value to the defaults.

bounds
Bounds as a tuple

lower
Lower bound

upper
Upper bound

class psamm.metabolicmodel.LimitsView(model)
Provides a view of the flux bounds defined in the model

This object is used internally in MetabolicModel to expose a dictonary view of the FluxBounds associated with
the model reactions.

class psamm.metabolicmodel.MetabolicModel(database, v_max=1000)
Represents a metabolic model containing a set of reactions

The model contains a list of reactions referencing the reactions in the associated database.

add_reaction(reaction_id)
Add reaction to model

copy()
Return copy of model

get_compound_reactions(compound_id)
Iterate over all reaction ids the includes the given compound

get_reaction_values(reaction_id)
Return stoichiometric values of reaction as a dictionary

is_exchange(reaction_id)
Whether the given reaction is an exchange reaction.

8.27. psamm.metabolicmodel – Metabolic model representation 101

PSAMM Documentation, Release 0.30

is_reversible(reaction_id)
Whether the given reaction is reversible

classmethod load_model(database, reaction_iter=None, exchange=None, limits=None,
v_max=None)

Get model from reaction name iterator.

The model will contain all reactions of the iterator.

remove_reaction(reaction)
Remove reaction from model

psamm.metabolicmodel.create_exchange_id(existing_ids, compound)
Create unique ID for exchange of compound.

psamm.metabolicmodel.create_transport_id(existing_ids, compound_1, compound_2)
Create unique ID for transport reaction of compounds.

psamm.moma – Minimization of metabolic adjustments

Implementation of Minimization of Metabolic Adjustments (MOMA).

class psamm.moma.ConstraintGroup(moma, *args)
Constraints that will be imposed on the model when solving.

Parameters

• moma – MOMAProblem object for the proposed constraints.

• *args – The constraints that are imposed on the model.

add(*args)
Add constraints to the model.

delete()
Set up the constraints to get deleted on the next solve.

exception psamm.moma.MOMAError
Error indicating an error solving MOMA.

class psamm.moma.MOMAProblem(model, solver)
Model as a flux optimization problem with minimal flux redistribution.

Create a representation of the model as an LP optimization problem with steady state assumption and a minimal
redistribution of metabolic fluxes with respect to the wild type configuration.

The problem can be solved using any of the four MOMA variants described in [Segre02] and [Mo09]. MOMA
is formulated to avoid the FBA assumption that that growth efficiency has evolved to an optimal point directly
following model perturbation. MOMA finds the optimal solution for a model with minimal flux redistribution
with respect to the wild type flux configuration.

MOMA is implemented with two variations of a linear optimization problem (lin_moma() and
lin_moma2()) and two variations of a quadratic optimization problem (moma() and moma2()). Further
information on these methods can be found within their respective documentation.

The problem can be modified and solved as many times as needed. The flux of a reaction can be obtained after
solving using get_flux().

Parameters

• model – MetabolicModel to solve.

102 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

• solver – LP solver instance to use.

constraints(*args)
Return a constraint object.

get_fba_flux(objective)
Return a dictionary of all the fluxes solved by FBA.

Dictionary of fluxes is used in lin_moma() and moma() to minimize changes in the flux distributions
following model perturbation.

Parameters objective – The objective reaction that is maximized.

Returns Dictionary of fluxes for each reaction in the model.

get_fba_obj_flux(objective)
Return the maximum objective flux solved by FBA.

get_flux(reaction)
Return the knockout flux for a specific reaction.

get_flux_var(reaction)
Return the LP variable for a specific reaction.

get_minimal_fba_flux(objective)
Find the FBA solution that minimizes all the flux values.

Maximize the objective flux then minimize all other fluxes while keeping the objective flux at the maxi-
mum.

Parameters objective – The objective reaction that is maximized.

Returns A dictionary of all the reactions and their minimized fluxes.

lin_moma(wt_fluxes)
Minimize the redistribution of fluxes using a linear objective.

The change in flux distribution is mimimized by minimizing the sum of the absolute values of the differ-
ences of wild type FBA solution and the knockout strain flux solution.

This formulation bases the solution on the wild type fluxes that are specified by the user. If these wild
type fluxes were calculated using FBA, then an arbitrary flux vector that optimizes the objective function
is used. See [Segre‘_02] for more information.

Parameters wt_fluxes – Dictionary of all the wild type fluxes. Use
get_fba_flux(objective)() to return a dictionary of fluxes found by FBA.

lin_moma2(objective, wt_obj)
Find the smallest redistribution vector using a linear objective.

The change in flux distribution is mimimized by minimizing the sum of the absolute values of the differ-
ences of wild type FBA solution and the knockout strain flux solution.

Creates the constraint that the we select the optimal flux vector that is closest to the wildtype. This might
still return an arbitrary flux vector the maximizes the objective function.

Parameters

• objective – Objective reaction for the model.

• wt_obj – The flux value for your wild type objective reactions. Can
either use an expiremental value or on determined by FBA by using
get_fba_obj_flux(objective)().

8.28. psamm.moma – Minimization of metabolic adjustments 103

PSAMM Documentation, Release 0.30

moma(wt_fluxes)
Minimize the redistribution of fluxes using Euclidean distance.

Minimizing the redistribution of fluxes using a quadratic objective function. The distance is minimized by
minimizing the sum of (wild type - knockout)^2.

Parameters wt_fluxes – Dictionary of all the wild type fluxes that will be used to
find a close MOMA solution. Fluxes can be expiremental or calculated using :meth:
get_fba_flux(objective).

moma2(objective, wt_obj)
Find the smallest redistribution vector using Euclidean distance.

Minimizing the redistribution of fluxes using a quadratic objective function. The distance is minimized by
minimizing the sum of (wild type - knockout)^2.

Creates the constraint that the we select the optimal flux vector that is closest to the wildtype. This might
still return an arbitrary flux vector the maximizes the objective function.

Parameters

• objective – Objective reaction for the model.

• wt_obj – The flux value for your wild type objective reactions. Can
either use an expiremental value or on determined by FBA by using
get_fba_obj_flux(objective)().

prob
Return the underlying LP problem.

solve_fba(objective)
Solve the wild type problem using FBA.

Parameters objective – The objective reaction to be maximized.

Returns The LP Result object for the solved FBA problem.

psamm.randomsparse – Find a random minimal network of model
reactions

class psamm.randomsparse.GeneDeletionStrategy(model, gene_assoc)
Deleting genes strategy class.

When initializing instances of this class, get_gene_associations() can be called to obtain the gene
association dict from the model.

class psamm.randomsparse.ReactionDeletionStrategy(model, reaction_set=None)
Deleting reactions strategy class.

When initializing instances of this class, get_exchange_reactions() can be useful if exchange reactions
are used as the test set.

psamm.randomsparse.get_exchange_reactions(model)
Yield IDs of all exchange reactions from model.

This helper function would be useful when creating ReactionDeletionStrategy objects.

Parameters model – psamm.metabolicmodel.MetabolicModel.

psamm.randomsparse.get_gene_associations(model)
Create gene association for class GeneDeletionStrategy .

104 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

Return a dict mapping reaction IDs to psamm.expression.boolean.Expression objects, represent-
ing relationships between reactions and related genes. This helper function should be called when creating
GeneDeletionStrategy objects.

Parameters model – psamm.datasource.native.NativeModel.

psamm.randomsparse.random_sparse(strategy, prob, obj_reaction, flux_threshold)
Find a random minimal network of model reactions.

Given a reaction to optimize and a threshold, delete entities randomly until the flux of the reaction to optimize
falls under the threshold. Keep deleting until no more entities can be deleted. It works with two strategies:
deleting reactions or deleting genes (reactions related to certain genes).

Parameters

• strategy – ReactionDeletionStrategy or GeneDeletionStrategy .

• prob – psamm.fluxanalysis.FluxBalanceProblem.

• obj_reaction – objective reactions to optimize.

• flux_threshold – threshold of max reaction flux.

psamm.reaction – Reaction equations and compounds

Definitions related to reaction equations and parsing of such equations.

class psamm.reaction.Compound(name, compartment=None, arguments=())
Represents a compound in a reaction equation

A compound is a named entity in the reaction equations representing a chemical compound. A compound can
represent a generalized chemical entity (e.g. polyphosphate) and the arguments can be used to instantiate a
specific chemical entity (e.g. polyphosphate(3)) by passing a number as an argument or a partially specified
entity by passing an expression (e.g. polyphosphate(n)).

arguments
Expression argument for generalized compounds

compartment
Compartment of compound

in_compartment(compartment)
Return an instance of this compound in the specified compartment

>>> Compound('H+').in_compartment('e')
Compound('H+', 'e')

name
Name of compound

translate(func)
Translate compound name using given function

>>> Compound('Pb').translate(lambda x: x.lower())
Compound('pb')

class psamm.reaction.Direction
Directionality of reaction equation.

flipped()
Return the flipped version of this direction.

8.30. psamm.reaction – Reaction equations and compounds 105

PSAMM Documentation, Release 0.30

forward
Whether this direction includes forward direction.

reverse
Whether this direction includes reverse direction.

symbol
Return string symbol for direction.

class psamm.reaction.Reaction(*args)
Reaction equation representation.

Each compound is associated with a stoichiometric value and the reaction has a Direction. The reaction is
created in one of the three following ways.

It can be created from a direction and two iterables of compound, value pairs representing the left-hand side and
the right-hand side of the reaction:

>>> r = Reaction(Direction.Both, [(Compound('A'), 1), (Compound('B', 2))],
[(Compound('C'), 1)])

>>> str(r)
'|A| + (2) |B| <=> |C|'

It can also be created from a single dict or iterable of compound, value pairs where the left-hand side compounds
have negative values and the right-hand side compounds have positive values:

>>> r = Reaction(Direction.Forward, {
Compound('A'): -1,
Compound('B'): -2,
Compound('C'): 1

})
>>> str(r)
'|A| + (2) |B| <=> |C|'

Lastly, the reaction can be created from an existing reaction object, creating a copy of that reaction.

>>> r = Reaction(Direction.Forward, {Compound('A'): -1, Compound('B'): 1})
>>> r2 = Reaction(r)
>>> str(r2)
'|A| => |B|'

Reactions can be added to produce combined reactions.

>>> r = Reaction(Direction.Forward, {Compound('A'): -1, Compound('B'): 1})
>>> s = Reaction(Direction.Forward, {Compound('B'): -1, Compound('C'): 1})
>>> str(r + s)
'|A| => |C|'

Reactions can also be multiplied by a number to produce a new reaction with scaled stoichiometry.

>>> r = Reaction(Direction.Forward, {Compound('A'): -1, Compound('B'): 2})
>>> str(2 * r)
'(2) |A| => (4) |B|'

Multiplying with a negative value will also flip the reaction, and as a special case, negating a reaction will simply
flip it.

>>> r = Reaction(Direction.Forward, {Compound('A'): -1, Compound('B'): 2})
>>> str(r)

106 Chapter 8. PSAMM API

PSAMM Documentation, Release 0.30

'|A| => (2) |B|'
>>> str(-r)
'(2) |B| <= |A|'

compounds
Sequence of compounds on both sides of the reaction equation

The sign of the stoichiometric values reflect whether the compound is on the left-hand side (negative) or
the right-hand side (positive).

direction
Direction of reaction equation

left
Compounds on the left-hand side of the reaction equation.

normalized()
Return normalized reaction

The normalized reaction will be bidirectional or a forward reaction (i.e. reverse reactions are flipped).

right
Compounds on the right-hand side of the reaction equation.

translated_compounds(translate)
Return reaction where compound names have been translated.

For each compound the translate function is called with the compound name and the returned value is used
as the new compound name. A new reaction is returned with the substituted compound names.

psamm.util – Internal utilities

Various utilities.

class psamm.util.DictView(d)
An immutable wrapper around another dict-like object.

class psamm.util.FrozenOrderedSet(seq=[])
An immutable set that retains insertion order.

class psamm.util.LoggerFile(logger, level)
File-like object that forwards to a logger.

The Cplex API takes a file-like object for writing log output. This class allows us to forward the Cplex messages
to the Python logging system.

flush()
Flush stream.

This is a noop.

write(s)
Write message to logger.

class psamm.util.MaybeRelative(s)
Helper type for parsing possibly relative parameters.

>>> arg = MaybeRelative('40%')
>>> arg.reference = 200.0

8.31. psamm.util – Internal utilities 107

PSAMM Documentation, Release 0.30

>>> float(arg)
80.0

>>> arg = MaybeRelative('24.5')
>>> arg.reference = 150.0
>>> float(arg)
24.5

reference
The reference used for converting to absolute value.

relative
Whether the parsed number was relative.

psamm.util.convex_cardinality_relaxed(f, epsilon=1e-05)
Transform L1-norm optimization function into cardinality optimization.

The given function must optimize a convex problem with a weighted L1-norm as the objective. The transformed
function will apply the iterated weighted L1 heuristic to approximately optimize the cardinality of the solution.
This method is described by S. Boyd, “L1-norm norm methods for convex cardinality problems.” Lecture Notes
for EE364b, Stanford University, 2007. Available online at www.stanford.edu/class/ee364b/.

The given function must take an optional keyword parameter weights (dictionary), and the weights must be
set to one if not specified. The function must return the non-weighted solution as an iterator over (identifier,
value)-tuples, either directly or as the first element of a tuple.

psamm.util.create_unique_id(prefix, existing_ids)
Return a unique string ID from the prefix.

First check if the prefix is itself a unique ID in the set-like parameter existing_ids. If not, try integers in ascending
order appended to the prefix until a unique ID is found.

psamm.util.git_try_describe(repo_path)
Try to describe the current commit of a Git repository.

Return a string containing a string with the commit ID and/or a base tag, if successful. Otherwise, return None.

108 Chapter 8. PSAMM API

CHAPTER 9

References

109

PSAMM Documentation, Release 0.30

110 Chapter 9. References

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

111

PSAMM Documentation, Release 0.30

112 Chapter 10. Indices and tables

Bibliography

[Burgard04] Burgard AP, Nikolaev E V, Schilling CH, Maranas CD. Flux coupling analysis of genome-scale
metabolic network reconstructions. Genome Res. 2004;14: 301–312. doi:10.1101/gr.1926504.

[Edwards00] Edwards JS, Palsson BO. Robustness Analysis of the Escherichia coli Metabolic Network. Biotechnol
Prog. American Chemical Society; 2000;16: 927–939. doi:10.1021/bp0000712.

[Fell86] Fell DA, Small JR. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem J.
1986;238. doi:10.1042/bj2380781.

[Gevorgyan08] Gevorgyan A, Poolman MG, Fell DA. Detection of stoichiometric inconsistencies in biomolecular
models. Bioinformatics. 2008;24: 2245–2251. doi:10.1093/bioinformatics/btn425.

[Kumar07] Satish Kumar V, Dasika MS, Maranas CD. Optimization based automated curation of metabolic recon-
structions. BMC Bioinformatics. 2007;8: 212. doi:10.1186/1471-2105-8-212.

[Mahadevan03] Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based genome-
scale metabolic models. Metab Eng. 2003;5: 264–276. doi:10.1016/j.ymben.2003.09.002.

[Mo09] Mo ML, Palsson BØ, Herrgård MJ. Connecting extracellular metabolomic measurements to intracellular flux
states in yeast. BMC Systems Biology. 2009;3(1):3-37. doi:10.1186/1752-0509-3-37.

[Muller13] Müller AC, Bockmayr A. Fast thermodynamically constrained flux variability analysis. Bioinformatics.
2013;29: 903–909. doi:10.1093/bioinformatics/btt059.

[Orth10] Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. Nature Publishing Group;
2010;28: 245–8. doi:10.1038/nbt.1614.

[Schilling00] Schilling CH, Letscher D, Palsson BO. Theory for the systemic definition of metabolic pathways and
their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol. 2000;203: 229–48.
doi:10.1006/jtbi.2000.1073.

[Segre02] Segrè D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks.
Proceedings of the National Academy of Sciences of the United States of America. 2002;99(23):15112-15117.
doi:10.1073/pnas.232349399.

[Steffensen17] Steffensen JL, Zhang Y. FindPrimaryPairs: An efficient algorithm for predicting element-transferring
reactant/product pairs in metabolic networks. Submitted

[Tervo16] Tervo CJ, Reed JL. MapMaker and PathTracer for tracking carbon in genome-scale metabolic models.
Biotechnol J. 2016; 1–23. doi:10.1002/biot.201400305.

113

https://doi.org/10.1101/gr.1926504
https://doi.org/10.1021/bp0000712
https://doi.org/10.1042/bj2380781
https://doi.org/10.1093/bioinformatics/btn425
https://doi.org/10.1186/1471-2105-8-212
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1186/1752-0509-3-37
https://doi.org/10.1093/bioinformatics/btt059
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1006/jtbi.2000.1073
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.1002/biot.201400305

PSAMM Documentation, Release 0.30

[Thiele14] Thiele I, Vlassis N, Fleming RMT. fastGapFill: efficient gap filling in metabolic networks. Bioinformatics.
2014;30: 2529–31. doi:10.1093/bioinformatics/btu321.

[Vlassis14] Vlassis N, Pacheco MP, Sauter T. Fast Reconstruction of Compact Context-Specific Metabolic Network
Models. PLoS Comput Biol. 2014;10: e1003424. doi:10.1371/journal.pcbi.1003424.

[Orth13] Orth JD, Palsson BØ, Fleming RMT. Reconstruction and Use of Microbial Metabolic Networks: the
Core Escherichia coli Metabolic Model as an Educational Guide. EcoSal Plus. asm Pub2Web; 2013;1.
doi:10.1128/ecosalplus.10.2.1.

[Orth11] Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale reconstruc-
tion of Escherichia coli metabolism–2011. Mol Syst Biol. EMBO Press; 2011;7: 535. doi:10.1038/msb.2011.65.

114 Bibliography

https://doi.org/10.1093/bioinformatics/btu321
https://doi.org/10.1371/journal.pcbi.1003424
https://doi.org/10.1128/ecosalplus.10.2.1
https://doi.org/10.1038/msb.2011.65

Python Module Index

p
psamm.balancecheck, 63
psamm.command, 64
psamm.database, 65
psamm.datasource.context, 66
psamm.datasource.entry, 66
psamm.datasource.kegg, 68
psamm.datasource.modelseed, 69
psamm.datasource.native, 69
psamm.datasource.reaction, 74
psamm.datasource.sbml, 75
psamm.expression.affine, 79
psamm.expression.boolean, 80
psamm.fastcore, 81
psamm.fastgapfill, 83
psamm.fluxanalysis, 83
psamm.fluxcoupling, 86
psamm.formula, 86
psamm.gapfill, 88
psamm.gapfilling, 89
psamm.lpsolver.cplex, 90
psamm.lpsolver.generic, 91
psamm.lpsolver.glpk, 92
psamm.lpsolver.gurobi, 93
psamm.lpsolver.lp, 94
psamm.lpsolver.qsoptex, 98
psamm.massconsistency, 100
psamm.metabolicmodel, 100
psamm.moma, 102
psamm.randomsparse, 104
psamm.reaction, 105
psamm.util, 107

115

PSAMM Documentation, Release 0.30

116 Python Module Index

Index

A
add() (psamm.moma.ConstraintGroup method), 102
add_all_database_reactions() (in module

psamm.gapfilling), 89
add_all_exchange_reactions() (in module

psamm.gapfilling), 89
add_all_transport_reactions() (in module

psamm.gapfilling), 89
add_linear_constraints() (psamm.lpsolver.cplex.Problem

method), 90
add_linear_constraints() (psamm.lpsolver.glpk.Problem

method), 92
add_linear_constraints() (psamm.lpsolver.gurobi.Problem

method), 93
add_linear_constraints() (psamm.lpsolver.lp.Problem

method), 95
add_linear_constraints() (psamm.lpsolver.qsoptex.Problem

method), 98
add_reaction() (psamm.metabolicmodel.MetabolicModel

method), 101
add_thermodynamic() (psamm.fluxanalysis.FluxBalanceProblem

method), 83
And (class in psamm.expression.boolean), 80
argument_error() (psamm.command.Command method),

64
arguments (psamm.reaction.Compound attribute), 105
Atom (class in psamm.formula), 87

B
balance() (psamm.formula.Formula class method), 87
biomass_reaction (psamm.datasource.native.ModelReader

attribute), 69
biomass_reaction (psamm.datasource.native.NativeModel

attribute), 71
boundary (psamm.datasource.sbml.SBMLSpeciesEntry

attribute), 77
bounds (psamm.metabolicmodel.FluxBounds attribute),

101

C
ChainedDatabase (class in psamm.database), 65
charge (psamm.datasource.entry.CompoundEntry at-

tribute), 66
charge (psamm.datasource.entry.DictCompoundEntry at-

tribute), 67
charge (psamm.datasource.sbml.SBMLSpeciesEntry at-

tribute), 77
charge_balance() (in module psamm.balancecheck), 63
check_compound_consistency() (in module

psamm.massconsistency), 100
check_constraints() (psamm.fluxanalysis.FluxBalanceProblem

method), 83
check_reaction_consistency() (in module

psamm.massconsistency), 100
classify_coupling() (in module psamm.fluxcoupling), 86
Command (class in psamm.command), 64
CommandError, 64
compartment (psamm.datasource.sbml.SBMLSpeciesEntry

attribute), 77
compartment (psamm.reaction.Compound attribute), 105
compartment_boundaries

(psamm.datasource.native.NativeModel at-
tribute), 71

CompartmentEntry (class in psamm.datasource.entry), 66
compartments (psamm.database.MetabolicDatabase at-

tribute), 65
compartments (psamm.datasource.native.NativeModel

attribute), 71
compartments (psamm.datasource.sbml.SBMLReader at-

tribute), 76
Compound (class in psamm.reaction), 105
CompoundEntry (class in psamm.datasource.entry), 66
CompoundEntry (class in psamm.datasource.kegg), 68
CompoundEntry (class in psamm.datasource.modelseed),

69
CompoundMapper (class in psamm.datasource.kegg), 68
compounds (psamm.database.MetabolicDatabase at-

tribute), 65

117

PSAMM Documentation, Release 0.30

compounds (psamm.datasource.native.NativeModel at-
tribute), 71

compounds (psamm.reaction.Reaction attribute), 107
consistency_check() (in module psamm.fluxanalysis), 84
Constraint (class in psamm.lpsolver.cplex), 90
Constraint (class in psamm.lpsolver.glpk), 92
Constraint (class in psamm.lpsolver.gurobi), 93
Constraint (class in psamm.lpsolver.lp), 95
Constraint (class in psamm.lpsolver.qsoptex), 98
ConstraintGroup (class in psamm.moma), 102
constraints() (psamm.moma.MOMAProblem method),

103
ContextError, 66
convert_compartment_entry()

(psamm.datasource.native.ModelWriter
method), 70

convert_compound_entry()
(psamm.datasource.native.ModelWriter
method), 70

convert_exchange_to_compounds() (in module
psamm.datasource.sbml), 77

convert_model_entries() (in module
psamm.datasource.sbml), 77

convert_reaction_entry() (psamm.datasource.native.ModelWriter
method), 70

convert_sbml_model() (in module
psamm.datasource.sbml), 78

convex_cardinality_relaxed() (in module psamm.util),
108

copy() (psamm.metabolicmodel.MetabolicModel
method), 101

CouplingClass (class in psamm.fluxcoupling), 86
cplex (psamm.lpsolver.cplex.Problem attribute), 90
CplexRangedProperty (class in psamm.lpsolver.cplex), 90
create_convert_sbml_id_function() (in module

psamm.datasource.sbml), 78
create_exchange_id() (in module

psamm.metabolicmodel), 102
create_extended_model() (in module psamm.gapfilling),

89
create_metabolic_model()

(psamm.datasource.native.NativeModel
method), 71

create_model() (psamm.datasource.native.ModelReader
method), 69

create_model() (psamm.datasource.sbml.SBMLReader
method), 76

create_problem() (psamm.lpsolver.cplex.Solver method),
91

create_problem() (psamm.lpsolver.generic.Solver
method), 91

create_problem() (psamm.lpsolver.glpk.Solver method),
93

create_problem() (psamm.lpsolver.gurobi.Solver

method), 94
create_problem() (psamm.lpsolver.lp.Solver method), 97
create_problem() (psamm.lpsolver.qsoptex.Solver

method), 99
create_transport_id() (in module

psamm.metabolicmodel), 102
create_unique_id() (in module psamm.util), 108

D
decode_name() (in module

psamm.datasource.modelseed), 69
default_compartment (psamm.datasource.native.ModelReader

attribute), 69
default_compartment (psamm.datasource.native.NativeModel

attribute), 71
default_flux_limit (psamm.datasource.native.ModelReader

attribute), 69
default_flux_limit (psamm.datasource.native.NativeModel

attribute), 71
define() (psamm.lpsolver.cplex.Problem method), 90
define() (psamm.lpsolver.glpk.Problem method), 92
define() (psamm.lpsolver.gurobi.Problem method), 93
define() (psamm.lpsolver.lp.Problem method), 96
define() (psamm.lpsolver.lp.VariableNamespace method),

98
define() (psamm.lpsolver.qsoptex.Problem method), 99
delete() (psamm.lpsolver.lp.Constraint method), 95
delete() (psamm.moma.ConstraintGroup method), 102
detect_extracellular_compartment() (in module

psamm.datasource.sbml), 78
DictCompartmentEntry (class in

psamm.datasource.entry), 67
DictCompoundEntry (class in psamm.datasource.entry),

67
DictDatabase (class in psamm.database), 65
DictReactionEntry (class in psamm.datasource.entry), 67
DictView (class in psamm.util), 107
Direction (class in psamm.reaction), 105
direction (psamm.reaction.Reaction attribute), 107

E
entry_id_from_cobra_encoding() (in module

psamm.datasource.sbml), 78
equation (psamm.datasource.entry.DictReactionEntry at-

tribute), 67
equation (psamm.datasource.entry.ReactionEntry at-

tribute), 68
equation (psamm.datasource.sbml.SBMLReactionEntry

attribute), 75
exchange (psamm.datasource.native.NativeModel at-

tribute), 71
ExecutorError, 64
expr() (psamm.lpsolver.lp.Problem method), 96

118 Index

PSAMM Documentation, Release 0.30

expr() (psamm.lpsolver.lp.VariableNamespace method),
98

Expression (class in psamm.expression.affine), 79
Expression (class in psamm.expression.boolean), 80
Expression (class in psamm.lpsolver.lp), 95
expression (psamm.lpsolver.lp.Relation attribute), 97
extracellular_compartment

(psamm.datasource.native.ModelReader at-
tribute), 69

extracellular_compartment
(psamm.datasource.native.NativeModel at-
tribute), 71

F
fail() (psamm.command.Command method), 64
fastcc() (in module psamm.fastcore), 82
fastcc_consistent_subset() (in module psamm.fastcore),

82
fastcc_is_consistent() (in module psamm.fastcore), 82
fastcore() (in module psamm.fastcore), 82
FastcoreError, 81
FastcoreProblem (class in psamm.fastcore), 81
fastgapfill() (in module psamm.fastgapfill), 83
feasibility_tolerance (psamm.lpsolver.cplex.Problem at-

tribute), 90
feasibility_tolerance (psamm.lpsolver.glpk.Problem at-

tribute), 92
feasibility_tolerance (psamm.lpsolver.gurobi.Problem at-

tribute), 93
feasibility_tolerance (psamm.lpsolver.qsoptex.Problem

attribute), 99
FileMark (class in psamm.datasource.context), 66
filemark (psamm.datasource.entry.ModelEntry attribute),

67
FilePathContext (class in psamm.datasource.context), 66
FilePrefixAppendAction (class in psamm.command), 64
filter_solvers() (in module psamm.lpsolver.generic), 91
find_sparse_mode() (psamm.fastcore.FastcoreProblem

method), 81
flattened() (psamm.formula.Formula method), 87
flip() (psamm.fastcore.FastcoreProblem method), 81
FlipableFluxBounds (class in psamm.metabolicmodel),

100
FlipableLimitsView (class in psamm.metabolicmodel),

101
FlipableModelView (class in psamm.metabolicmodel),

101
FlipableStoichiometricMatrixView (class in

psamm.metabolicmodel), 101
flipped() (psamm.reaction.Direction method), 105
float_constructor() (in module psamm.datasource.native),

72
flush() (psamm.util.LoggerFile method), 107
flux_balance() (in module psamm.fluxanalysis), 85

flux_bound() (psamm.fluxanalysis.FluxBalanceProblem
method), 84

flux_bounds (psamm.datasource.sbml.SBMLReader at-
tribute), 76

flux_expr() (psamm.fluxanalysis.FluxBalanceProblem
method), 84

flux_minimization() (in module psamm.fluxanalysis), 85
flux_randomization() (in module psamm.fluxanalysis), 85
flux_variability() (in module psamm.fluxanalysis), 85
FluxBalanceError, 83
FluxBalanceProblem (class in psamm.fluxanalysis), 83
FluxBounds (class in psamm.metabolicmodel), 101
FluxCouplingProblem (class in psamm.fluxcoupling), 86
Formula (class in psamm.formula), 87
formula (psamm.datasource.entry.CompoundEntry

attribute), 67
formula (psamm.datasource.entry.DictCompoundEntry

attribute), 67
formula (psamm.datasource.sbml.SBMLSpeciesEntry at-

tribute), 77
formula_balance() (in module psamm.balancecheck), 63
FormulaElement (class in psamm.formula), 87
forward (psamm.reaction.Direction attribute), 106
FrozenOrderedSet (class in psamm.util), 107

G
gapfill() (in module psamm.gapfill), 88
GapFillError, 88
gapfind() (in module psamm.gapfill), 88
GeneDeletionStrategy (class in psamm.randomsparse),

104
genes (psamm.datasource.entry.DictReactionEntry

attribute), 67
genes (psamm.datasource.entry.ReactionEntry attribute),

68
get() (psamm.formula.Formula method), 87
get_compartment() (psamm.datasource.sbml.SBMLReader

method), 76
get_compound_reactions()

(psamm.database.MetabolicDatabase method),
65

get_compound_reactions()
(psamm.metabolicmodel.MetabolicModel
method), 101

get_exchange_reactions() (in module
psamm.randomsparse), 104

get_fba_flux() (psamm.moma.MOMAProblem method),
103

get_fba_obj_flux() (psamm.moma.MOMAProblem
method), 103

get_flux() (psamm.fluxanalysis.FluxBalanceProblem
method), 84

get_flux() (psamm.moma.MOMAProblem method), 103

Index 119

PSAMM Documentation, Release 0.30

get_flux_var() (psamm.fluxanalysis.FluxBalanceProblem
method), 84

get_flux_var() (psamm.moma.MOMAProblem method),
103

get_gene_associations() (in module
psamm.randomsparse), 104

get_minimal_fba_flux() (psamm.moma.MOMAProblem
method), 103

get_objective() (psamm.datasource.sbml.SBMLReader
method), 76

get_reaction() (psamm.database.MetabolicDatabase
method), 65

get_reaction() (psamm.datasource.sbml.SBMLReader
method), 76

get_reaction_values() (psamm.database.MetabolicDatabase
method), 65

get_reaction_values() (psamm.metabolicmodel.MetabolicModel
method), 101

get_species() (psamm.datasource.sbml.SBMLReader
method), 76

get_value() (psamm.lpsolver.cplex.Result method), 91
get_value() (psamm.lpsolver.glpk.Result method), 93
get_value() (psamm.lpsolver.gurobi.Result method), 94
get_value() (psamm.lpsolver.lp.Result method), 97
get_value() (psamm.lpsolver.qsoptex.Result method), 99
git_try_describe() (in module psamm.util), 108
glpk (psamm.lpsolver.glpk.Problem attribute), 92
GLPKError, 92
gurobi (psamm.lpsolver.gurobi.Problem attribute), 94

H
has_model_definition() (psamm.datasource.native.ModelReader

method), 69
has_reaction() (psamm.database.MetabolicDatabase

method), 65
has_value() (psamm.expression.boolean.Expression

method), 80
has_variable() (psamm.lpsolver.cplex.Problem method),

90
has_variable() (psamm.lpsolver.glpk.Problem method),

92
has_variable() (psamm.lpsolver.gurobi.Problem method),

94
has_variable() (psamm.lpsolver.lp.Problem method), 96
has_variable() (psamm.lpsolver.qsoptex.Problem

method), 99

I
id (psamm.datasource.entry.ModelEntry attribute), 67
id (psamm.datasource.sbml.SBMLFluxBoundEntry at-

tribute), 75
id (psamm.datasource.sbml.SBMLReactionEntry at-

tribute), 75
id (psamm.datasource.sbml.SBMLReader attribute), 76

in_compartment() (psamm.reaction.Compound method),
105

init_parser() (psamm.command.Command class method),
64

integrality_tolerance (psamm.lpsolver.cplex.Problem at-
tribute), 90

integrality_tolerance (psamm.lpsolver.glpk.Problem at-
tribute), 92

integrality_tolerance (psamm.lpsolver.gurobi.Problem at-
tribute), 94

InvalidResultError, 95
is_consistent() (in module psamm.massconsistency), 100
is_exchange() (psamm.metabolicmodel.MetabolicModel

method), 101
is_flipped() (psamm.fastcore.FastcoreProblem method),

81
is_reversible() (psamm.database.MetabolicDatabase

method), 65
is_reversible() (psamm.metabolicmodel.MetabolicModel

method), 101
items() (psamm.formula.Formula method), 87

K
KEGGEntry (class in psamm.datasource.kegg), 68
kinetic_law_reaction_parameters

(psamm.datasource.sbml.SBMLReactionEntry
attribute), 76

L
left (psamm.reaction.Reaction attribute), 107
limits (psamm.datasource.native.NativeModel attribute),

71
LimitsView (class in psamm.metabolicmodel), 101
lin_moma() (psamm.moma.MOMAProblem method),

103
lin_moma2() (psamm.moma.MOMAProblem method),

103
list_solvers() (in module psamm.lpsolver.generic), 92
load_model() (psamm.metabolicmodel.MetabolicModel

class method), 102
LoggerFile (class in psamm.util), 107
LoopRemovalMixin (class in psamm.command), 64
lower (psamm.metabolicmodel.FlipableFluxBounds at-

tribute), 100
lower (psamm.metabolicmodel.FluxBounds attribute),

101
lp10() (psamm.fastcore.FastcoreProblem method), 81
lp7() (psamm.fastcore.FastcoreProblem method), 81

M
main() (in module psamm.command), 65
main_sbml() (in module psamm.command), 65
MassConsistencyError, 100
matrix (psamm.database.MetabolicDatabase attribute), 66

120 Index

PSAMM Documentation, Release 0.30

max_min_l1() (psamm.fluxanalysis.FluxBalanceProblem
method), 84

maximize() (psamm.fluxanalysis.FluxBalanceProblem
method), 84

MaybeRelative (class in psamm.util), 107
merge_equivalent_compounds() (in module

psamm.datasource.sbml), 78
MetabolicDatabase (class in psamm.database), 65
MetabolicMixin (class in psamm.command), 64
MetabolicModel (class in psamm.metabolicmodel), 101
minimize_l1() (psamm.fluxanalysis.FluxBalanceProblem

method), 84
MIPResult (class in psamm.lpsolver.glpk), 92
model (psamm.datasource.native.NativeModel attribute),

71
ModelEntry (class in psamm.datasource.entry), 67
ModelReader (class in psamm.datasource.native), 69
ModelWriter (class in psamm.datasource.native), 70
moma() (psamm.moma.MOMAProblem method), 103
moma2() (psamm.moma.MOMAProblem method), 104
MOMAError, 102
MOMAProblem (class in psamm.moma), 102

N
name (psamm.datasource.entry.ModelEntry attribute), 68
name (psamm.datasource.native.ModelReader attribute),

69
name (psamm.datasource.native.NativeModel attribute),

71
name (psamm.datasource.sbml.SBMLFluxBoundEntry

attribute), 75
name (psamm.datasource.sbml.SBMLReactionEntry at-

tribute), 76
name (psamm.datasource.sbml.SBMLReader attribute),

76
name (psamm.datasource.sbml.SBMLSpeciesEntry at-

tribute), 77
name (psamm.reaction.Compound attribute), 105
namespace() (psamm.lpsolver.lp.Problem method), 96
NativeModel (class in psamm.datasource.native), 71
normalized() (psamm.reaction.Reaction method), 107

O
ObjectiveMixin (class in psamm.command), 64
objectives (psamm.datasource.sbml.SBMLReader at-

tribute), 77
ObjectiveSense (class in psamm.lpsolver.lp), 95
offset (psamm.lpsolver.lp.Expression attribute), 95
operation (psamm.datasource.sbml.SBMLFluxBoundEntry

attribute), 75
optimality_tolerance (psamm.lpsolver.cplex.Problem at-

tribute), 90
optimality_tolerance (psamm.lpsolver.glpk.Problem at-

tribute), 92

optimality_tolerance (psamm.lpsolver.gurobi.Problem at-
tribute), 94

optimality_tolerance (psamm.lpsolver.qsoptex.Problem
attribute), 99

Or (class in psamm.expression.boolean), 81

P
ParallelTaskMixin (class in psamm.command), 64
parse() (psamm.datasource.reaction.ReactionParser

method), 75
parse() (psamm.formula.Formula class method), 87
parse_compartments() (psamm.datasource.native.ModelReader

method), 69
parse_compound() (in module psamm.datasource.native),

72
parse_compound() (in module

psamm.datasource.reaction), 75
parse_compound_count() (in module

psamm.datasource.reaction), 75
parse_compound_file() (in module

psamm.datasource.kegg), 68
parse_compound_file() (in module

psamm.datasource.modelseed), 69
parse_compound_file() (in module

psamm.datasource.native), 72
parse_compound_list() (in module

psamm.datasource.native), 72
parse_compound_table_file() (in module

psamm.datasource.native), 72
parse_compound_yaml_file() (in module

psamm.datasource.native), 72
parse_compounds() (psamm.datasource.native.ModelReader

method), 70
parse_exchange() (in module psamm.datasource.native),

72
parse_exchange() (psamm.datasource.native.ModelReader

method), 70
parse_exchange_file() (in module

psamm.datasource.native), 72
parse_exchange_list() (in module

psamm.datasource.native), 72
parse_exchange_table_file() (in module

psamm.datasource.native), 72
parse_exchange_yaml_file() (in module

psamm.datasource.native), 72
parse_flux_bounds() (in module

psamm.datasource.sbml), 78
parse_kegg_entries() (in module

psamm.datasource.kegg), 68
parse_limit() (in module psamm.datasource.native), 72
parse_limits() (psamm.datasource.native.ModelReader

method), 70
parse_limits_file() (in module psamm.datasource.native),

72

Index 121

PSAMM Documentation, Release 0.30

parse_limits_list() (in module psamm.datasource.native),
73

parse_limits_table_file() (in module
psamm.datasource.native), 73

parse_limits_yaml_file() (in module
psamm.datasource.native), 73

parse_medium() (in module psamm.datasource.native),
73

parse_medium() (psamm.datasource.native.ModelReader
method), 70

parse_medium_file() (in module
psamm.datasource.native), 73

parse_medium_list() (in module
psamm.datasource.native), 73

parse_medium_table_file() (in module
psamm.datasource.native), 73

parse_medium_yaml_file() (in module
psamm.datasource.native), 73

parse_model() (psamm.datasource.native.ModelReader
method), 70

parse_model_file() (in module psamm.datasource.native),
73

parse_model_group() (in module
psamm.datasource.native), 73

parse_model_group_list() (in module
psamm.datasource.native), 73

parse_model_table_file() (in module
psamm.datasource.native), 73

parse_model_yaml_file() (in module
psamm.datasource.native), 73

parse_objective_coefficient() (in module
psamm.datasource.sbml), 78

parse_reaction() (in module psamm.datasource.kegg), 68
parse_reaction() (in module psamm.datasource.native),

74
parse_reaction() (in module psamm.datasource.reaction),

75
parse_reaction_equation() (in module

psamm.datasource.native), 74
parse_reaction_equation_string() (in module

psamm.datasource.native), 74
parse_reaction_file() (in module

psamm.datasource.kegg), 68
parse_reaction_file() (in module

psamm.datasource.native), 74
parse_reaction_list() (in module

psamm.datasource.native), 74
parse_reaction_table_file() (in module

psamm.datasource.native), 74
parse_reaction_yaml_file() (in module

psamm.datasource.native), 74
parse_reactions() (psamm.datasource.native.ModelReader

method), 70
parse_solver_setting() (in module

psamm.lpsolver.generic), 92
parse_xhtml_notes() (in module

psamm.datasource.sbml), 78
parse_xhtml_reaction_notes() (in module

psamm.datasource.sbml), 79
parse_xhtml_species_notes() (in module

psamm.datasource.sbml), 79
ParseError, 68, 69, 71, 74, 75, 81, 87
prob (psamm.fluxanalysis.FluxBalanceProblem at-

tribute), 84
prob (psamm.moma.MOMAProblem attribute), 104
Problem (class in psamm.lpsolver.cplex), 90
Problem (class in psamm.lpsolver.glpk), 92
Problem (class in psamm.lpsolver.gurobi), 93
Problem (class in psamm.lpsolver.lp), 95
Problem (class in psamm.lpsolver.qsoptex), 98
Product (class in psamm.lpsolver.lp), 96
properties (psamm.datasource.entry.ModelEntry at-

tribute), 68
properties (psamm.datasource.sbml.SBMLCompartmentEntry

attribute), 75
properties (psamm.datasource.sbml.SBMLReactionEntry

attribute), 76
properties (psamm.datasource.sbml.SBMLSpeciesEntry

attribute), 77
psamm.balancecheck (module), 63
psamm.command (module), 64
psamm.database (module), 65
psamm.datasource.context (module), 66
psamm.datasource.entry (module), 66
psamm.datasource.kegg (module), 68
psamm.datasource.modelseed (module), 69
psamm.datasource.native (module), 69
psamm.datasource.reaction (module), 74
psamm.datasource.sbml (module), 75
psamm.expression.affine (module), 79
psamm.expression.boolean (module), 80
psamm.fastcore (module), 81
psamm.fastgapfill (module), 83
psamm.fluxanalysis (module), 83
psamm.fluxcoupling (module), 86
psamm.formula (module), 86
psamm.gapfill (module), 88
psamm.gapfilling (module), 89
psamm.lpsolver.cplex (module), 90
psamm.lpsolver.generic (module), 91
psamm.lpsolver.glpk (module), 92
psamm.lpsolver.gurobi (module), 93
psamm.lpsolver.lp (module), 94
psamm.lpsolver.qsoptex (module), 98
psamm.massconsistency (module), 100
psamm.metabolicmodel (module), 100
psamm.moma (module), 102
psamm.randomsparse (module), 104

122 Index

PSAMM Documentation, Release 0.30

psamm.reaction (module), 105
psamm.util (module), 107

Q
qsoptex (psamm.lpsolver.qsoptex.Problem attribute), 99

R
Radical (class in psamm.formula), 88
random_sparse() (in module psamm.randomsparse), 105
ranged_property() (in module psamm.lpsolver.lp), 98
RangedProperty (class in psamm.lpsolver.lp), 97
Reaction (class in psamm.reaction), 106
reaction (psamm.datasource.sbml.SBMLFluxBoundEntry

attribute), 75
reaction_charge() (in module psamm.balancecheck), 63
reaction_formula() (in module psamm.balancecheck), 63
ReactionDeletionStrategy (class in

psamm.randomsparse), 104
ReactionEntry (class in psamm.datasource.entry), 68
ReactionEntry (class in psamm.datasource.kegg), 68
ReactionMapper (class in psamm.datasource.kegg), 68
ReactionParser (class in psamm.datasource.reaction), 74
reactions (psamm.database.MetabolicDatabase attribute),

66
reactions (psamm.datasource.native.NativeModel at-

tribute), 71
reactions (psamm.datasource.sbml.SBMLReader at-

tribute), 77
reader_from_path() (psamm.datasource.native.ModelReader

class method), 70
reference (psamm.util.MaybeRelative attribute), 108
Relation (class in psamm.lpsolver.lp), 97
relative (psamm.util.MaybeRelative attribute), 108
remove_reaction() (psamm.metabolicmodel.MetabolicModel

method), 102
repeat() (psamm.formula.FormulaElement method), 87
RequirementsError, 91
resolve_format() (in module psamm.datasource.native),

74
Result (class in psamm.lpsolver.cplex), 91
Result (class in psamm.lpsolver.glpk), 93
Result (class in psamm.lpsolver.gurobi), 94
Result (class in psamm.lpsolver.lp), 97
Result (class in psamm.lpsolver.qsoptex), 99
result (psamm.lpsolver.lp.Problem attribute), 96
reverse (psamm.reaction.Direction attribute), 106
reversible (psamm.database.MetabolicDatabase at-

tribute), 66
reversible (psamm.datasource.sbml.SBMLReactionEntry

attribute), 76
right (psamm.reaction.Reaction attribute), 107
root (psamm.expression.boolean.Expression attribute), 80
run() (psamm.command.Command method), 64

S
SBMLCompartmentEntry (class in

psamm.datasource.sbml), 75
SBMLFluxBoundEntry (class in

psamm.datasource.sbml), 75
SBMLObjectiveEntry (class in psamm.datasource.sbml),

75
SBMLReactionEntry (class in psamm.datasource.sbml),

75
SBMLReader (class in psamm.datasource.sbml), 76
SBMLSpeciesEntry (class in psamm.datasource.sbml),

77
SBMLWriter (class in psamm.datasource.sbml), 77
sense (psamm.lpsolver.lp.Relation attribute), 97
set() (psamm.lpsolver.lp.Problem method), 96
set() (psamm.lpsolver.lp.VariableNamespace method), 98
set_linear_objective() (psamm.lpsolver.cplex.Problem

method), 90
set_linear_objective() (psamm.lpsolver.glpk.Problem

method), 92
set_linear_objective() (psamm.lpsolver.gurobi.Problem

method), 94
set_linear_objective() (psamm.lpsolver.lp.Problem

method), 96
set_linear_objective() (psamm.lpsolver.qsoptex.Problem

method), 99
set_objective() (psamm.lpsolver.cplex.Problem method),

90
set_objective() (psamm.lpsolver.glpk.Problem method),

92
set_objective() (psamm.lpsolver.gurobi.Problem

method), 94
set_objective() (psamm.lpsolver.lp.Problem method), 96
set_objective() (psamm.lpsolver.qsoptex.Problem

method), 99
set_objective_sense() (psamm.lpsolver.cplex.Problem

method), 91
set_objective_sense() (psamm.lpsolver.glpk.Problem

method), 92
set_objective_sense() (psamm.lpsolver.gurobi.Problem

method), 94
set_objective_sense() (psamm.lpsolver.lp.Problem

method), 96
set_objective_sense() (psamm.lpsolver.qsoptex.Problem

method), 99
set_reaction() (psamm.database.DictDatabase method),

65
simplify() (psamm.expression.affine.Expression method),

79
simplify() (psamm.expression.affine.Variable method), 80
solve() (psamm.fluxcoupling.FluxCouplingProblem

method), 86
solve() (psamm.lpsolver.lp.Problem method), 96

Index 123

PSAMM Documentation, Release 0.30

solve_fba() (psamm.moma.MOMAProblem method),
104

solve_unchecked() (psamm.lpsolver.cplex.Problem
method), 91

solve_unchecked() (psamm.lpsolver.glpk.Problem
method), 93

solve_unchecked() (psamm.lpsolver.gurobi.Problem
method), 94

solve_unchecked() (psamm.lpsolver.lp.Problem method),
96

solve_unchecked() (psamm.lpsolver.qsoptex.Problem
method), 99

Solver (class in psamm.lpsolver.cplex), 91
Solver (class in psamm.lpsolver.generic), 91
Solver (class in psamm.lpsolver.glpk), 93
Solver (class in psamm.lpsolver.gurobi), 94
Solver (class in psamm.lpsolver.lp), 97
Solver (class in psamm.lpsolver.qsoptex), 99
SolverCommandMixin (class in psamm.command), 64
SolverError, 97
species (psamm.datasource.sbml.SBMLReader attribute),

77
status (psamm.lpsolver.cplex.Result attribute), 91
status (psamm.lpsolver.glpk.Result attribute), 93
status (psamm.lpsolver.gurobi.Result attribute), 94
status (psamm.lpsolver.lp.Result attribute), 97
status (psamm.lpsolver.qsoptex.Result attribute), 99
StoichiometricMatrixView (class in psamm.database), 66
substitute() (psamm.expression.affine.Expression

method), 79
substitute() (psamm.expression.affine.Variable method),

80
substitute() (psamm.expression.boolean.Expression

method), 80
substitute() (psamm.formula.FormulaElement method),

87
SubstitutionError, 81
success (psamm.lpsolver.cplex.Result attribute), 91
success (psamm.lpsolver.glpk.Result attribute), 93
success (psamm.lpsolver.gurobi.Result attribute), 94
success (psamm.lpsolver.lp.Result attribute), 97
success (psamm.lpsolver.qsoptex.Result attribute), 99
sum() (psamm.lpsolver.lp.VariableNamespace method),

98
symbol (psamm.expression.affine.Variable attribute), 80
symbol (psamm.formula.Atom attribute), 87
symbol (psamm.formula.Radical attribute), 88
symbol (psamm.reaction.Direction attribute), 106

T
translate() (psamm.reaction.Compound method), 105
translate_sbml_compartment() (in module

psamm.datasource.sbml), 79

translate_sbml_compound() (in module
psamm.datasource.sbml), 79

translate_sbml_reaction() (in module
psamm.datasource.sbml), 79

translated_compounds() (psamm.reaction.Reaction
method), 107

U
unbounded (psamm.lpsolver.cplex.Result attribute), 91
unbounded (psamm.lpsolver.glpk.Result attribute), 93
unbounded (psamm.lpsolver.gurobi.Result attribute), 94
unbounded (psamm.lpsolver.lp.Result attribute), 97
unbounded (psamm.lpsolver.qsoptex.Result attribute), 99
upper (psamm.metabolicmodel.FlipableFluxBounds at-

tribute), 100
upper (psamm.metabolicmodel.FluxBounds attribute),

101

V
value (psamm.datasource.sbml.SBMLFluxBoundEntry

attribute), 75
value (psamm.expression.boolean.Expression attribute),

81
value() (psamm.lpsolver.lp.VariableNamespace method),

98
value_sets() (psamm.lpsolver.lp.Expression method), 95
values() (psamm.lpsolver.lp.Expression method), 95
var() (psamm.lpsolver.lp.Problem method), 96
Variable (class in psamm.expression.affine), 80
Variable (class in psamm.expression.boolean), 81
VariableNamespace (class in psamm.lpsolver.lp), 97
variables (psamm.expression.boolean.Expression at-

tribute), 81
variables() (psamm.expression.affine.Expression

method), 79
variables() (psamm.formula.FormulaElement method),

87
variables() (psamm.lpsolver.lp.Expression method), 95
VariableSet (class in psamm.lpsolver.lp), 98
VariableType (class in psamm.lpsolver.lp), 98
version_string (psamm.datasource.native.NativeModel

attribute), 71

W
write() (psamm.util.LoggerFile method), 107
write_compartments() (psamm.datasource.native.ModelWriter

method), 70
write_compounds() (psamm.datasource.native.ModelWriter

method), 70
write_model() (psamm.datasource.sbml.SBMLWriter

method), 77
write_reactions() (psamm.datasource.native.ModelWriter

method), 71

124 Index

PSAMM Documentation, Release 0.30

Y
yaml_load() (in module psamm.datasource.native), 74

Index 125

	Overview
	Citing PSAMM
	Software license

	PSAMM Tutorials
	Installation and Materials
	Importing, Exporting, and working with Models with PSAMM
	Model Curation
	Constraint Based Analysis with PSAMM

	Install
	Dependencies
	Cplex
	Gurobi
	GLPK
	QSopt_ex

	Model file format
	Biomass
	Extracellular Compartment
	Default Compartment
	Compartments
	Compounds
	Reactions
	Exchange compounds
	Reaction flux limits
	Model Definition

	Command line interface
	Linear programming solver
	Flux balance analysis (fba)
	Flux variability analysis (fva)
	Robustness (robustness)
	Random sparse network (randomsparse)
	Gene Deletion (genedelete)
	Flux coupling analysis (fluxcoupling)
	Stoichiometric consistency check (masscheck)
	Formula consistency check (formulacheck)
	Charge consistency check (chargecheck)
	Flux consistency check (fluxcheck)
	Reaction duplicates check (duplicatescheck)
	Gap check (gapcheck)
	GapFill (gapfill)
	FastGapFill (fastgapfill)
	Predict primary pairs (primarypairs)
	SBML Export (sbmlexport)
	Excel Export (excelexport)
	Table Export (tableexport)
	Search (search)
	Console (console)

	Development
	Test suite
	Adding new tests
	Documentation tests

	FAQ
	PSAMM API
	psamm.balancecheck – check balance of charge and formula
	psamm.command – Command line interface
	psamm.database – Reaction database
	psamm.datasource.context – File system contexts
	psamm.datasource.entry – Model entry representations
	psamm.datasource.kegg – KEGG data parser
	psamm.datasource.modelseed – ModelSEED data parser
	psamm.datasource.native – Native data format parser
	psamm.datasource.reaction – Parser for reactions
	psamm.datasource.sbml – SBML model parser
	psamm.expression.affine – Affine expressions
	psamm.expression.boolean – Boolean expressions
	psamm.fastcore – Fastcore (approximate consistent subset)
	psamm.fastgapfill – FastGapFill algorithm
	psamm.fluxanalysis – Constraint-based reaction flux analysis
	psamm.fluxcoupling – Flux coupling analysis
	psamm.formula – Chemical compound formula
	psamm.gapfill – GapFind/GapFill
	psamm.gapfilling – Gap-filling functions
	psamm.lpsolver.cplex – CPLEX LP solver
	psamm.lpsolver.generic – Generic linear programming solver
	psamm.lpsolver.glpk – GLPK LP solver
	psamm.lpsolver.gurobi – Gurobi LP solver
	psamm.lpsolver.lp – Linear programming problems
	psamm.lpsolver.qsoptex – QSopt_ex LP solver
	psamm.massconsistency – Mass consistency check
	psamm.metabolicmodel – Metabolic model representation
	psamm.moma – Minimization of metabolic adjustments
	psamm.randomsparse – Find a random minimal network of model reactions
	psamm.reaction – Reaction equations and compounds
	psamm.util – Internal utilities

	References
	Indices and tables
	Bibliography
	Python Module Index

