

 Navigation

 	
 index

 	
 next |

 	Protar 0.1 documentation

Welcome to Protar’s Documentation

Protar is a Django [https://docs.djangoproject.com] based web application to explore Natura 2000 protected
areas.

You can visit the app at http://www.protar.org/

The Protar repository is hosted on GitHub [https://github.com/geodesign/protar].

	Data Management Plan
	Data Sources
	Natura 2000

	Corine Land cover

	Regional Summary Boundaries

	Base Maps

	Protar Analysis Results

	Protar logo

	Build Database
	Configure Database

	Download and decompress

	Parse Corine Data

	Parse Natura Data

	Compute Intersection

	Dump the data

	Load raster data

	Legal
	Funding

	License and Copyright

	Disclaimer

	App Stores

 Copyright 2016 JRC.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Protar 0.1 documentation

Data Management Plan

This section describes the data sources used for analysis in Protar, as well as
the data access policies for the results of the same.

Data Sources

The Protar web application has two main data sources: The Natura 2000 protected
area database and the Corine Land Cover dataset. Both datasets are published
under a full and open access policy.

In addition to these two main datasets, statistical area boundaries are used to
aggregate historic land cover in protected areas to regional and country
levels. Finally, a base map layer is used to support the visualization of the
data.

All data sources are described in some more detail below.

Natura 2000

The Natura 2000 [http://ec.europa.eu/environment/nature/natura2000/index_en.htm] dataset is a network of protected areas throughout Europe. It
was established under the 1992 Habitats Directive and is the centrepiece of EU
nature & biodiversity policy. The network currently covers about 18% of Europe’s
territory and consists of 27372 protected areas.

The data is contributed by regional authorities to a centralized database,
which is managed by the European Environment Agency (EEA). The database
consists of Geographic data and tabular data. The geographic data is available
in two Geographic Information System (GIS) formats (sqlite and shapefile), and
the tabular data as csv or excel tables.

According to the EEA terms of use [http://www.eea.europa.eu/legal/copyright], the re-use of the Natura 2000 dataset is
permitted free of charge for commercial or non-commercial purposes, provided
that the source is acknowledged and that the entire item is reproduced. The EEA
policy follows the Directive 2003/98/EC of the European Parliament. The data
can be accessed here [http://www.eea.europa.eu/data-and-maps/data/ds_resolveuid/52E54BF3-ACDB-4959-9165-F3E4469BE610].

Corine Land cover

The Corine Land Cover (CLC) dataset is a comprehensive and consistent land
cover data layer for all of Europe.

It is available for four years: 1990, 2000, 2006, and 2012. Landcover change
layers are available. In addition to these land cover layers. These represent the
land cover change between each of the above years. The 2012 version of the
dataset is still in production hand has not been finalized. Nevertheless, to
take advantage of the most up to date data, the latest available version
(v18.4) is used in Protar. The data can be updated once the final version of
the 2012 CLC is available.

The CLC dataset is published in various GIS formats, including both vector and
raster files. The data is published under a full and open access policy and is
distributed by the Copernicus Land Monitoring Programme. The data can be
accessed here [http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/].

Regional Summary Boundaries

The analysis conducted in Protar intersects the Natura 2000 protected area
boundaries with the CLC dataset to compute landcover and landcover change
statistics for the available years. These values are computed for each of the
roughly 27 thousand protected areas.

While this detailed information might be relevant for managing protected areas
and learning more about them, the data is also aggregated to give overviews
over broad trends on a regional and country level.

The geographical boundaries used for aggregation are derived from the
boundaries of the statistical areas of the Nomenclature of Territorial Units
for Statistics (NUTS) [https://en.wikipedia.org/wiki/Nomenclature_of_Territorial_Units_for_Statistics] geographical boundaries. These boundaries are
distributed through the EEA data portal under the same open access policy as
the CLC dataset. It can be used free of charge for commercial and
non-commercial purposes. The data can be accessed here [http://www.eea.europa.eu/data-and-maps/data/administrative-land-accounting-units].

Base Maps

The geographical data used in Protar will be displayed on online maps in
various parts of the web application. In these visualizations, basemaps are
used to give context to the protected areas and the land cover data.

The basemaps used in Protar have been produced in a collaboration between
CartoDB [https://cartodb.com/] and Stamen Design [http://stamen.com/], and are described here [https://cartodb.com/basemaps/]. The
basemaps are designed specifically for data overlays and are therefore ideal
for Protar’s purpose.

The source code to reproduce the maps is available on GitHub [https://github.com/cartodb/cartodb-basemaps], the source
code and the basemap tiles are released under a Creative Commons CC3.0 [https://creativecommons.org/licenses/by/3.0/]
License and have been derived from OpenStreetMap (OSM) data.

Protar Analysis Results

The main results of the analysis conducted in Protar are data on landcover and
landcover change in all protected areas of the Natura 2000 network. This
information is visualized in the web application which will be publicly
accessible.

The visualizations are driven by a REST API [https://en.wikipedia.org/wiki/Representational_state_transfer], a Representational State
Transfer Application Programming Interface. The API is also publicly
accessible and provides structured access to the results of the Protar
analysis. Protar’s API root can be found here [http://www.protar.org/api/].

The Protar api is setup with Cross- Origin Resource Sharing (CORS) headers
through the django-cors-headers [https://github.com/ottoyiu/django-cors-headers/] app, so it can readily be used from within
other applications anywhere on the web.

All results are published under the European Union Public License (EUPL)
Version 1.1 [https://github.com/geodesign/protar/blob/master/LICENSE].

Protar logo

The protar logo is a derivative work of the Natura 2000 logo [https://en.wikipedia.org/wiki/Natura_2000#/media/File:Natura_2000_logo.png], which is
released under the CC-BY-SA 3.0 [https://creativecommons.org/licenses/by-sa/3.0/] creative commons license. The protar logo
is therefore also released under the same license.

 Copyright 2016 JRC.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Protar 0.1 documentation

Build Database

This section describes how to re-build the Protar PostGIS database from
scratch. This presumes that the app and all its dependencies are installed
and that the database settings are configured to use a PostGIS backend as
specified below.

Building this database takes a substantial amount of resources, and the
result is publicly available. In most cases it is therefore not necessary
to rebuild this dataset. The description here is for documentation purposes
and will be a guidance for potential future updates.

Configure Database

The Protar app works only PostGIS as database backends. To point the app
to a specific database, specify the following environmental variables.

	Database name DB_NAME defaults to protar

	Database user DB_USER defaults to postgres

	Database host DB_HOST defaults to localhost

	Database port DB_PORT defaults to 5432

	Database password DB_PASSWORD defaults to an empty string

Download and decompress

The first step is to download the data from the EEA. The sources are described
in the Data Management Plan. After download, decompress all files for Corine
and Natura into separate folders. The corine data should have one subfolder with
the Legend information.

For the Natura data, download the shapefiles and the tabular data as csv.
Decompress both the spatial data and the tabluar data into a single folder.
For the Corine data, the sqlite versions are required. Download the Corine land
cover and change data for the four landcover periods as spatialite and decompress
all of those into one folder. Keep one of the Legend subfolders contained in the
zip files of the sqlite verion of the corine data. The legend folder will be used
to build the Corine data legend.

For Corine data, the version required is v18.5. For the Natura data, the
required version is 7.

Parse Corine Data

The next step is to parse the corine vector data. For this, build the
nomenclature and the legend objects first, then load the data into
the app using scripts built into protar. First, set an environmental
variable telling protar where the corine data sits (separate folders
for the legend and the landcover data). The legend folder should contain
a clc_legend.xls file which comes with the landcover sqlite files. The
data folder should contain spatialite files for all land cover and land cover
change steps. Then scripts can be called as follows:

export CORINE_DATA_DIRECTORY=/path/to/corine/data/Legend
./manage.py runscript corine.scripts.nomenclature
./manage.py runscript corine.scripts.rasterlegend

export CORINE_DATA_DIRECTORY=/path/to/corine/data
./manage.py runscript corine.scripts.load

The data volume of the vector format of the Corine land cover is quite
substantial. There are 8191080 polygons if counting all years and including
change data. The size of this table in PostGIS is about 30GB, and it requires
another 30GB for the index.

A part of the Corine landcover geometries are not valid geometries [http://postgis.net/docs/using_postgis_dbmanagement.html#OGC_Validity]. Before
computing the intersection, it is therefore necessary to clean the Coine data.
The script to clean the data calls ST_MakeValid [http://postgis.net/docs/ST_MakeValid.html] on all geometries of the
dataset. Run the script using the following command:

./manage.py runscript corine.scripts.clean

Parse Natura Data

To load the Natura 2000 protected areas into the database, specify the Natura
data directory through an environment variable. The Natura data folder should
contain one shapefile with the Natura data and a series of CSV files with the
Natura tabular data. Then the spatial and tabular data can be loaded using the
following command:

export NATURA_DATA_DIRECTORY=/path/to/natura/data
./manage.py runscript natura.scripts.load

The natura data consists of 27372 protected areas, the size of the table and
index is around 1GB.

Compute Intersection

Once all load scrips have completed successfully, the intersection data can
be built with a script as well.

The intersection script computes the landcover statistics for all protected
areas. This geoprocessing step takes many hours of computations. Therefore,
the asynchronous task manager Celery [http://www.celeryproject.org/] is used to do the geoprocessing of
the data. The computations are split into small batches of Natura sites, each
of which is a separate Celery task.

To learn how to setup Celery, consult its documentation. Protar assumes a local
RabbitMQ [https://www.rabbitmq.com/] instance as broker and a Redis [http://redis.io/] instance setup for the result
backend. Both are expected to be running in the default locations. In that case,
celery should work automatically out of the box. To start Celery use:

celery worker -A protar --loglevel=INFO

The environment variables to specify a custom broker backend is BROKER_URL,
and CELERY_RESULT_BACKEND for the result backend. The concurrency of the
Celery workers defaults to the number of available CPUs, but can be manually
specified using the CELERYD_CONCURRENCY environment variable. A more
detailed description of how to use Celery goes beyond the scope of this
documentation, consult the Celery documentation for more details.

With Celery up and running, execute the following script to add tasks to the
queue that will build the intersection data squentially:

./manage.py runscript natura.scripts.intersect

Due to the data volume of both the Corine and the Natura data, this
intersection is a substantial task. On a server with 4 CPUs and SSD disks
the intersection took roughly 20 hours to complete.

Dump the data

The protar frontend does not make any use of the Corine landcover geometries
after computing the intersection. To use the data for running the app, it is
therefore sufficient to use a database without the corine_patch table. To
dump the data without the patches, use the following command:

pg_dump protar --exclude-table-data=corine_patch -F c -v -f protar.dump

Load raster data

The parsing of the raster version of the corine data is for visualization
purposes only. It is a more manual process that is done through the admin
utilities of the django-raster [http://github.com/geodesign/django-raster] package. To load the rasters, create one
RasterLayer object for each raster through the admin, and link it to one
CorineLayer object in the corine app. The raster layers span all of
europe, and hence the parsing takes about 4 hours per layer and significant
amounts of disk space are required during parsing.

If you want to use the Django shell to create those rasters, use something
like the following command, this will create the raster objects and trigger
the parsing through celery:

from raster.models import RasterLayer
from django.core.files import File
rst = File(open('/path/to/corine/data/g100_clc90_V18_5.tif', 'rb'))
lyr = RasterLayer.objects.create(
 name="CLC90 V18.5", datatype='ca', srid=3035, rasterfile=rst
)

With that, reference the raster layer as a corine layer in the corine app.
The frontend interface expects one CorineLayer object for each available
year (1990, 2000, 2006, and 2012):

from corine.models import CorineLayer
CorineLayer.objects.create(rasterlayer=lyr, year=1990)

 Copyright 2016 JRC.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Protar 0.1 documentation

Legal

Funding

This application has been developed within the MyGEOSS [http://digitalearthlab.jrc.ec.europa.eu/mygeoss] project, which has
received funding from the European Union’s Horizon 2020 research and innovation
programme.

License and Copyright

The European Joint Research Centre (JRC) is the copyright holder of all source
code and data output of the Protar project. All output is published under the
European Union Public License (EUPL) Version 1.1 [https://github.com/geodesign/protar/blob/master/LICENSE].

Disclaimer

The JRC, or as the case may be the European Commission, shall not be held
liable for any direct or indirect, incidental, consequential or other damages,
including but not limited to the loss of data, loss of profits, or any other
financial loss arising from the use of this application, or inability to use
it, even if the JRC is notified of the possibility of such damages.

App Stores

This is a web application not a mobile application. It is therefore not available on app stores.

 Copyright 2016 JRC.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Protar 0.1 documentation

Index

 Copyright 2016 JRC.
 Created using Sphinx 1.3.5.

 introduction.html

 Navigation

 		
 index

 		Protar 0.1 documentation »

Introduction

Installation

		git pull ..repository..

		pip install -r requirements.txt

		bower install

		Download data: sqlite format for GIS data for Natura2000 and Corine, and csv
for Natura2000.

		Set the path to the data directories as environment variables:
NATURA_DATA_DIRECTORY and CORINE_DATA_DIRECTORY

		Load natura data ./manage.py runscript natura.scripts.load

		Load corine data ./manage.py runscript corine.scripts.load

		Create superuser ./manage.py createsuperuser

		./manage.py runserver

		Open localhost

Env Vars

Required:

		DB_NAME

		SECRET_KEY

Optional:

		DEBUG

		AWS_STORAGE_BUCKET_NAME_STATIC

		STATIC_ROOT

		AWS_STORAGE_BUCKET_NAME_MEDIA

		AWS_ACCESS_KEY_ID

		AWS_SECRET_ACCESS_KEY

Loading Data

All data used in this app is loaded from the raw data files using scripts.
These scripts can be run as follows:

		Load natura data ./manage.py runscript natura.scripts.load

		Load corine data ./manage.py runscript corine.scripts.load

		Create corine nomenclature ./manage.py runscript corine.scripts.load

 © Copyright 2016 JRC.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Protar 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016 JRC.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

