OpenFF Evaluator Documentation

openff-evaluator

May 02, 2024






GETTING STARTED

1 Calculation Approaches 3
2 Supported Physical Properties 5
2.1 Installation . . . . .. L. e e e e 6
2.2 Architecture . . . . . . . e e e e e e e e e e e 7
2.3 Evaluator Client . . . . . . . . L e e e e e e e e e 7
2.4 EBvaluator SErver . . . . . .. e e e e e e e e 9
2.5 Tutorial 01 - Loading Data Sets . . . . . . . . . . . . . e 11
2.6 Tutorial 02 - Estimating Data Sets . . . . . . . . . . . . e e e e e 15
2.7 Tutorial 03 - Analysing Data Sets . . . . . . . . . . e e e e 20
2.8 Tutorial 04 - Optimizing Force Fields . . . . . .. . ... ... ... ... .. ... . .... 22
29 Property DataSets . . . . . . . ... 29
2.10 ThermoML Archive . . . . . . . . . . . e 31
201 Taproom . . . . . . e e e e e e e e e e e e e e e e e e e 33
2.12 DataSet Curation . . . . . . . . ... e e e e e e e e 34
2.13 Physical Properties . . . . . . . . .. L. 40
2.14 Common Workflows . . . . . . . . e e e e e 44
2.15 Gradients . . . . ... L. e e 46
2.16 Calculation Layers . . . . . . . . o e e e e 47
217 Workflow Layers . . . . . . o . e e e e e e e e e e e e 50
2.18 The Direct Simulation Layer . . . . . . . . . . . . o e e e e 52
2.19 The MBAR Reweighting Layer . . . . . . . . .. . ... . e 52
220 Workflows . . . L .o e e e e e 53
221 Replicators . . . . . . . . e e e e e 55
2.22 Workflow Graphs . . . . . . . . o e e e e e e e e 59
223 Protocols . . . . . e e e 60
224 Protocol Groups . . . . . . i i e e e e e e e e e 63
2.25 Observables . . . . . .. e e e e e 64
2.26 Calculation Backends . . . . . . . . . .. 66
227 DaskBackends . . . . . ... e e 67
2.28 Storage Backends . . . . . . .. e e e e e e 69
2.29 DataClasses and QUETIES . . . . . . . . 0 i i i i e e e e e e e e e e e e e e 70
2.30 Local File Storage . . . . . . . o o L e e e e e e 72
2.31 Buildingthe Docs . . . . . . . e e e e 73
232 APL . 73
2.33 Release History . . . . . . o o o o e e e e e e e 110
234 Release Process . . . . . . . . o e e e 124
Bibliography 127




Index 129




OpenFF Evaluator Documentation

An automated and scalable framework for curating, manipulating, and computing data sets of physical properties from
molecular simulation and simulation data.

The framework is built around four central ideas:

* Flexibility: New physical properties, data sources and calculation approaches are easily added via an extensible
plug-in system and a flexible workflow engine.

* Automation: Physical property measurements are readily importable from open data sources (such as the NIST
ThermoML Archive) through the data set APIs, and automatically calculated using either the built-in or user
specified calculation schemas.

* Scalability: Calculations are readily scalable from single machines and laptops up to large HPC clusters and
supercomputers through seamless integration with libraries such as dask.

« Efficiency: Properties are estimated using the fastest approach available to the framework, whether that be
through evaluating a trained surrogate model, re-evaluating cached simulation data, or by running simulations
directly.

GETTING STARTED 1


http://trc.nist.gov/ThermoML.html
http://trc.nist.gov/ThermoML.html
https://distributed.dask.org/en/latest/

OpenFF Evaluator Documentation

2 GETTING STARTED



CHAPTER
ONE

CALCULATION APPROACHES

The framework is designed around the idea of allowing multiple calculation approaches for estimating the same set of
properties, in addition to estimation directly from molecular simulation, all using a uniform APIL.

The primary purpose of this is to take advantage of the many techniques exist which are able to leverage data from
previous simulations to rapidly estimate sets of properties, such as reweighting cached simulation data, or evaluating
surrogate models trained upon cached data. The most rapid approach which may accurately estimate a set of properties
is automatically determined by the framework on the fly.

Each approach supported by the framework is implemented as a calculation layer. Two such layers are currently
supported (although new calculation layers can be readily added via the plug-in system):

* evaluating physical properties directly from molecular simulation using the SimulationLayer.

* reprocessing cached simulation data with MBAR reweighting using the ReweightingLayer.



http://www.alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00223
http://www.alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio

OpenFF Evaluator Documentation

4 Chapter 1. Calculation Approaches



CHAPTER
TWO

SUPPORTED PHYSICAL PROPERTIES

The framework has built-in support for evaluating a number of physical properties, ranging from relatively ‘cheap’ to
compute properties such as liquid densities, up to more computationally demanding properties such as solvation free
energies and host-guest binding affinities.

Included for most of these properties is the ability to calculate their derivatives with respect to force field parameters,
making the framework ideal for evaluating an objective function and it’s gradient as part of a force field optimisation.

Table 1: The physical properties which are natively supported by the

framework.

Direct Simulation MBAR Reweighting

Supported Gradients Supported Gradients
Density v v v v
Dielectric Constant | v VF v v'E
Hyaporization v v v v
Hiixing v v vE v
Vexcess v v v v
Gisolvation v v F X x
Ghost-guest (beta) VO X X X




OpenFF Evaluator Documentation

* Entries marked with an asterisk are supported but have not yet been extensively tested and validated.

See the physical properties overview page for more details.

2.1 Installation

The OpenFF Evaluator is currently installable either through conda or directly from the source code. Whichever route
is chosen, it is recommended to install the framework within a conda environment and allow the conda package manager
to install the required and optional dependencies.

More information about conda and instructions to perform a lightweight miniconda installation can be found here. It
will be assumed that these have been followed and conda is available on your machine.

2.1.1 Installation from Conda

To install the openff-evaluator from the conda-forge channel simply run:

conda install -c conda-forge openff-evaluator

If you do not have Conda installed, see the OpenFF installation guide.

2.1.2 Recommended Dependencies

If you have access to the fantastic OpenEye toolkit we recommend installing this to enable (among many other things)
the use of the BuildDockedCoordinates protocol and faster conformer generation / AM1BCC partial charge calcu-
lations:

conda install -c openeye openeye-toolkits

To parameterize systems with the Amber tleap tool using a TLeapForceFieldSource the ambertools package
must be installed:

conda install -c conda-forge 'ambertools >=19.0'

2.1.3 Installation from Source

To install the OpenFF Evaluator from source begin by cloning the repository from github:

git clone https://github.com/openforcefield/openff-evaluator.git
cd openff-evaluator

Create a custom conda environment which contains the required dependencies and activate it:

conda env create --name openff-evaluator --file devtools/conda-envs/test_env.yaml
conda activate openff-evaluator

Finally, install the estimator itself:

python setup.py develop

6 Chapter 2. Supported Physical Properties


https://docs.conda.io/en/latest/miniconda.html
openff.docs:install
https://docs.eyesopen.com/toolkits/python/index.html
https://github.com/openforcefield/openff-evaluator

OpenFF Evaluator Documentation

2.2 Architecture

The openff-evaluator framework is constructed as a collection of modular components, each performing a specific role
within the estimation of physical property data sets. These components are designed to be as extensible as possible,
with support for user created plug-ins built into their core.

Fig. 1: An overview of the openff-evaluators modular design. The framework is split into a ‘client-side’ which handles
the curation and preparation of data sets, and a ‘server-side’ which performs the estimation of the data sets.

The framework is implemented as a client-server architecture. This design allows users to spin up Evaluator Server
instances on whichever compute resources they may have available (from a single machine up to a large HPC cluster),
and to which Evaluator Client objects may connect to both request that data sets be estimated, and to query and retrieve
the results of those requests.

The client-side of the framework is predominantly responsible for providing APIs and objects for:
e curating data sets of physical properties from open data sources.
* specifing custom calculation schemas which describe how individual properties should be computed.
* requesting that data sets be estimated by a running Evaluator Server instance.
* retrieving the results of estimation requests from a running Evaluator Server instance.
while the server-side is responsible for:
* receiving estimation requests from an Evaluator Client object.
* automatically determining which calculation approach to use for each property in the request.

* executing those requests across the available compute resources following the calculation schemas provided by
the client

* caching data from any calculations which may be useful for future calculations.

All communication between servers and clients is handled through the TCP protocol.

2.3 Evaluator Client

The EvaluatorClient object is responsible for both submitting requests to estimate a data set of properties to a
running Evaluator Server instance, and for pulling back the results of those requests when complete.

An EvaluatorClient object may optionally be created using a set of ConnectionOptions which specifies the
network address of the running Evaluator Server instance to connect to:

# Specify the address of a server running on the local machine.

connection_options = ConnectionOptions(server_address="localhost", server_port=8000)
# Create the client object

evaluator_client = EvaluatorClient(connection_options)

2.2. Architecture 7


https://en.wikipedia.org/wiki/Transmission_Control_Protocol

OpenFF Evaluator Documentation

2.3.1 Requesting Estimates

The client can request the estimation of a data set of properties using the request_estimate() function:

# Specify the data set.
data_set = PhysicalPropertyDataSet()
data_set.add_properties(...)

# Specify the force field source.
force_field = SmirnoffForceFieldSource. from_path("openff-1.0.0.o0ffxml")

# Specify some estimation options (optional).
options = client.default_request_options(data_set, force_field)

# Specify the parameters to differentiate with respect to (optional).
gradient_keys = [

ParameterGradientKey(tag="vdW", smirks="[#6X4:1]", attribute="epsilon")
]

# Request the estimation of the data set.
request, errors = evaluator_client.request_estimate(
data_set,
force_field,
options,
gradient_keys

A request must at minimum specify:

e the data set of physical properties to estimate.

o the force field parameters to estimate the data set using.
and may also optionally specify:

* the options to use when estimating the property set.

* the parameters to differentiate each physical property estimate with respect to.

Note: Gradients can currently only be computed for requests using a SMIRNOFF based force field.

The request_estimate() function returns back two objects:
* a Request object which can be used to retrieve the results of the request and,
e an EvaluatorException object which will be populated if any errors occured while submitting the request.

The Request object is similar to a Future object, in that it is an object which can be used to query the current status
of a request either asynchronously:

results = request.results(synchronous=False)

or synchronously:

results = request.results(synchronous=True)

The results (which may currently be incomplete) are returned back as a RequestResult object.

8 Chapter 2. Supported Physical Properties


https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future

OpenFF Evaluator Documentation

The Request object is fully JSON serializable:

# Save the request to JSON

request. json(file_path="request.json", format=True)

# Load the request from JSON

request = Request.from_json(file_path="request.json")

making it easy to keep track of any open requests.

2.3.2 Request Options
The RequestOptions object allows greater control over how properties are estimated by the server. It currently allows
control over:

* calculation_layers: The calculation layers which the server should attempt to use when estimating the data
set. The order which the layers are specified in this list is the order which the server will attempt to use each
layer.

e calculation_schemas: The calculation schemas to use for each allowed calculation layer per class of property.
These will be automatically populated in the cases where no user specified schema is provided, and where a
default schema has been registered with the plugin system for the particular layer and property type.

If no options are passed to request_estimate() a default set will be generated through a call to
default_request_options(). For more information about how default calculation schemas are registered, see
the Default Schemas section.

2.3.3 Force Field Sources

Different force field representations (e.g. SMIRNOFF, TLeap, LigParGen) are defined within the framework as
ForceFieldSource objects. A force field source should specify all of the options which would be required by a
particular force field, such as the non-bonded cutoff or the charge scheme if not specified directly in the force field
itself.

Currently the framework has built in support for force fields applied via:
e the OpenFF toolkit (SmirnoffForceFieldSource).
¢ the tleap program from the AmberTools suite (LigParGenForceFieldSource).
¢ an instance of the LigParGen server (LigParGenForceFieldSource).

The client will automatically adapt any of the built-in calculation schemas which are based off of the
WorkflowCalculationSchema to use the correct workflow protocol (BuildSmirnoffSystem, BuildTLeapSystem
or BuildLigParGenSystem) for the requested force field.

2.4 Evaluator Server

The EvaluatorServer object is responsible for coordinating the estimation of physical property data sets as requested
by evaluator clients. Its primary responsibilities are to:

* recieve incoming requests from an evaluator clients to either estimate a dataset of properties, or to query the
status of a previous request.

* request that each specified calculation layers attempt to estimate the data set of properties, cascading unestimated
properties through the different layers.

2.4. Evaluator Server 9


https://open-forcefield-toolkit.readthedocs.io/en/latest/
https://ambermd.org/AmberTools.php
http://zarbi.chem.yale.edu/ligpargen/

OpenFF Evaluator Documentation

An EvaluatorServer must be created with an accompanying calculation backend which will be responsible for
distributing any calculations launched by the different calculation layers:

with DaskLocalCluster() as calculation_backend:

evaluator_server = EvaluatorServer(calculation_backend)
evaluator_server.start()

It may also be optionally created using a specific storage backend if the default LocalFileStorage is not sufficient:

with DaskLocalCluster() as calculation_backend:
storage_backend = LocalFileStorage()

evaluator_server = EvaluatorServer(calculation_backend, storage_backend)
evaluator_server.start()

By default the server will run synchronously until it is killed, however it may also be run asynchronously such that it
can be interacted with directly by a client in the same script:

with DaskLocalCluster() as calculation_backend:
with EvaluatorServer(calculation_backend) as evaluator_server:

# Specify the data set.
data_set = PhysicalPropertyDataSet()
data_set.add_properties(...)

# Specify the force field source.
force_field = SmirnoffForceFieldSource. from_path("openff-1.0.0.o0ffxml")

# Request the estimation of the data set.

request, errors = evaluator_client.request_estimate(data_set,force_field)
# Wait for the results.

results = request.results(synchronous=True)

2.4.1 Estimation Batches

When a server recieves a request from a client, it will attempt to split the requested set of properties into smaller batches,
represented by the Batch object. The server is currently only able to mark entire batches of estimated properties as
being completed, as opposed to individual properties.

Currently the server supports two ways of batching properties:

» SameComponents: All properties measured for the substance containing the same components will be batched
together. As an example, the density of a 80:20 and a 20:80 mix of ethanol and water would be batched together,
but the density of pure ethanol and the density of pure water would be placed into separate batches.

¢ SharedComponents: All properties measured for substances containing at least one common component will
be batched together. As an example, the densities of 80:20 and 20:80 mixtures of ethanol and water, and the pure
densities of ethanol and water would be batched together.

The mode of batching is set by the client using the batch_mode attribute of the request options.

10 Chapter 2. Supported Physical Properties



[ 1:

[ 1:

[1:

OpenFF Evaluator Documentation

2.5 Tutorial 01 - Loading Data Sets

In this tutorial we will be exploring the frameworks utilities for loading and manipulating data sets of physical property
measurements. The tutorial will cover

* Loading a data set of density measurements from NISTs ThermoML Archive
* Filtering the data set down using a range of criteria, including temperature pressure, and composition.
* Supplementing the data set with enthalpy of vaporization (A H,) data sourced directly from the literature

If you haven’t yet installed the OpenFF Evaluator framework on your machine, check out the installation instructions
here!

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

# lwget https://raw.githubusercontent.com/openforcefield/openff-evaluator/main/docs/
< tutorials/colab_setup.ipynb
# %run colab_setup.ipynb

For the sake of clarity all warnings will be disabled in this tutorial:

import warnings

warnings.filterwarnings("ignore")
import logging

logging.getLogger("openff.toolkit").setLevel (logging.ERROR)

2.5.1 Extracting Data from ThermoML
For anyone who is not familiar with the ThermoML archive - it is a fantastic database of physical property measurements
which have been extracted from data published in the

* Journal of Chemical and Engineering Data

* Journal of Chemical Thermodynamics

¢ Fluid Phase Equilibria

* Thermochimica Acta

¢ International Journal of Thermophysics

journals. It includes data for a wealth of different physical properties, from simple densities and melting points, to
activity coefficients and osmotic coefficients, all of which is freely available. As such, it serves as a fantastic resource
for benchmarking and optimising molecular force fields against.

The Evaluator framework has built-in support for extracting this wealth of data, storing the data in easy to manipulate
python objects, and for automatically re-computing those properties using an array of calculation techniques, such as
molecular simulations and, in future, from trained surrogate models.

This support is provided by the ThermoMLDataSet object:

from openff.evaluator.datasets.thermoml import ThermoMLDataSet

The ThermoMLDataSet object offers two main routes for extracting data the the archive:

2.5. Tutorial 01 - Loading Data Sets 11


https://colab.research.google.com/github/openforcefield/openff-evaluator/blob/main/docs/tutorials/tutorial01.ipynb

[1:

[ 1:

[ 1:

[ 1:

[1:

[ 1:

OpenFF Evaluator Documentation

* extracting data directly from the NIST ThermoML web server
* extracting data from a local ThermoML XML archive file

Here we will be extracting data directly from the web server. To pull data from the web server we need to specifiy the
digital object identifiers (DOIs) of the data we wish to extract - these correspond to the DOI of the publication that the
data was initially sourced from.

For this tutorial we will be extracting data using the following DOIs:

data_set = ThermoMLDataSet.from_doi (
"10.1016/j.fluid.2013.10.034",
"10.1021/je1013476",

We can inspect the data set to see how many properties were loaded:

len(data_set)

and for how many different substances those properties were measured for:

len(data_set.substances)

We can also easily check which types of properties were loaded in:

print(data_set.property_types)

2.5.2 Filtering the Data Set

The data set object we just created contains many different functions which will allow us to filter the data down, retaining
only those measurements which are of interest to us.

The first thing we will do is filter out all of the measurements which aren’t density measurements:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByPropertyTypes,
FilterByPropertyTypesSchema,

)

data_set = FilterByPropertyTypes.apply(
data_set, FilterByPropertyTypesSchema(property_types=["Density"])
)

print(data_set.property_types)

Next we will filter out all measurements which were made away from atmospheric conditions:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByPressure,
FilterByPressureSchema,
FilterByTemperature,
FilterByTemperatureSchema,

)

print (f"There were {len(data_set)} properties before filtering")

(continues on next page)

12 Chapter 2. Supported Physical Properties



[ 1:

[ 1:

OpenFF Evaluator Documentation

(continued from previous page)

# First filter by temperature.
data_set = FilterByTemperature.apply(
data_set,
FilterByTemperatureSchema(minimum_temperature=298.0, maximum_temperature=298.2),
)
# and then by pressure
data_set = FilterByPressure.apply(
data_set, FilterByPressureSchema(minimum_pressure=101.224, maximum_pressure=101.426)

)

print (f"There are now {len(data_set)} properties after filtering")

Finally, we will filter out all measurements which were not measured for either ethanol (CCO) or isopropanol (CC(C)O):

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmiles,
FilterBySmilesSchema,

)

data_set = FilterBySmiles.apply(
data_set, FilterBySmilesSchema(smiles_to_include=["CCO", "CC(C)0"])

)

print(f"There are now {len(data_set)} properties after filtering")

We will convert the filtered data to a pandas DataFrame to more easily visualize the final data set:

pandas_data_set = data_set.to_pandas()
pandas_data_set[

[
"Temperature (K)",
"Pressure (kPa)",
"Component 1",
"Density Value (g / ml)",
"Source",

]

].head(Q)

Through filtering, we have now cut down from over 250 property measurements down to just 2. There are many more
possible filters which can be applied. All of these and more information about the data set object can be found in the
PhysicalPropertyDataSet (from which the ThermoMLDataSet class inherits) API documentation.

2.5. Tutorial 01 - Loading Data Sets 13



[ 1:

[1:

[ 1:

[1:

OpenFF Evaluator Documentation

2.5.3 Adding Extra Data

For the final part of this tutorial, we will be supplementing our newly filtered data set with some enthalpy of vaporization
(A H,) measurements sourced directly from the literature (as opposed to from the ThermoML archive).

We will be sourcing values of the A H,, of ethanol and isopropanol, summarised in the table below, from the Enthalpies
of vaporization of some aliphatic alcohols publication:

Compound | Temperature / K | AH, / kJmol™' | §AH, [ kJmol™!
Ethanol 298.15 42.26 0.02
Isopropanol | 298.15 45.34 0.02

In order to create a new A H,, measurements, we will first define the state (namely temperature and pressure) that the
measurements were recorded at:

from openff.units import unit
from openff.evaluator.thermodynamics import ThermodynamicState

thermodynamic_state = ThermodynamicState(
temperature=298.15 * unit.kelvin, pressure=1.0 * unit.atmosphere

)

Note: Here we have made use of the “‘openff.units.unit** module to attach units to the temperatures and pressures we
are filtering by. This module simply exposes a *“UnitRegistry *" from the fantastic pintlibrary. Pint provides full support
for attaching to units to values and is used extensively throughout this framework.

the substances that the measurements were recorded for:

from openff.evaluator.substances import Substance

ethanol = Substance. from_components("CC0")
isopropanol = Substance.from_components("CC(C)0")

and the source of this measurement (defined as the DOI of the publication):

from openff.evaluator.datasets import MeasurementSource
source = MeasurementSource(doi="10.1016/S0021-9614(71)80108-8")

We will combine this information with the values of the measurements to create an object which encodes each of the
A H, measurements

from openff.evaluator.datasets import PropertyPhase
from openff.evaluator.properties import EnthalpyOfVaporization

ethanol_hvap = EnthalpyOfVaporization(
thermodynamic_state=thermodynamic_state,
phase=PropertyPhase.Liquid | PropertyPhase.Gas,
substance=ethanol,
value=42.26 * unit.kilojoule / unit.mole,
uncertainty=0.02 * unit.kilojoule / unit.mole,
source=source,

(continues on next page)

14 Chapter 2. Supported Physical Properties


https://www.sciencedirect.com/science/article/pii/S0021961471801088
https://www.sciencedirect.com/science/article/pii/S0021961471801088
https://pint.readthedocs.io/en/stable/

[ 1:

[ 1:

[ 1:

OpenFF Evaluator Documentation

(continued from previous page)

isopropanol_hvap = EnthalpyOfVaporization(
thermodynamic_state=thermodynamic_state,
phase=PropertyPhase.Liquid | PropertyPhase.Gas,
substance=isopropanol,
value=45.34 * unit.kilojoule / unit.mole,
uncertainty=0.02 * unit.kilojoule / unit.mole,
source=source,

These properties can then be added to our data set:

data_set.add_properties(ethanol_hvap, isopropanol_hvap)

If we print the data set again using pandas we should see that our new measurements have been added:

pandas_data_set = data_set.to_pandas()
pandas_data_set[

[
"Temperature (K)",
"Pressure (kPa)",
"Component 1",
"Density Value (g / ml)",
"EnthalpyOfVaporization Value (kJ / mol)",
"Source",

]

].head()

2.5.4 Conclusion

We will finish off this tutorial by saving the data set we have created as a JSON file for future use:

data_set.json("filtered_data_set.json", format=True);

And that concludes the first tutorial. For more information about data sets in the Evaluator framework check out the

data set and ThermoML documentation.
In the next tutorial we will be estimating the data set we have created here using molecular simulation.

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.6 Tutorial 02 - Estimating Data Sets

In this tutorial we will be estimating the data set we created in the first rutorial using molecular simulation. The tutorial

will cover:
* loading in the data set to estimate, and the force field parameters to use in the calculations.
* defining custom calculation schemas for the properties in our data set.
* estimating the data set of properties using an Evaluator server instance.

* retrieving the results from the server and storing them on disk.

2.6. Tutorial 02 - Estimating Data Sets

15


https://github.com/openforcefield/openff-evaluator/issues
https://colab.research.google.com/github/openforcefield/openff-evaluator/blob/main/docs/tutorials/tutorial02.ipynb

[1:

[ 1:

[ 1:

[ 1:

[ 1:

OpenFF Evaluator Documentation

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

# lwget https://raw.githubusercontent.com/openforcefield/openff-evaluator/main/docs/
—tutorials/colab_setup.ipynb
# %run colab_setup.ipynb

For this tutorial make sure that you are using a GPU accelerated runtime.

For the sake of clarity all warnings will be disabled in this tutorial:

import warnings

warnings.filterwarnings("ignore")
import logging

logging.getLogger("openff.toolkit").setLevel (1ogging.ERROR)

We will also enable time-stamped logging to help track the progress of our calculations:

from openff.evaluator.utils import setup_timestamp_logging

setup_timestamp_logging()

2.6.1 Loading the Data Set and Force Field Parameters

We will begin by loading in the data set which we created in the previous tutorial:

import pathlib

from openff.evaluator.datasets import PhysicalPropertyDataSet

data_set_path = "filtered_data_set.json"

# If you have not yet completed that tutorial or do not have the data set file
# available, this tutorial will use a copies provided by the framework

if not pathlib.Path(data_set_path).exists():
from openff.evaluator.utils import get_data_filename

data_set_path = get_data_filename("tutorials/tutorial®@1/filtered_data_set.json")
data_set = PhysicalPropertyDataSet.from_json(data_set_path)

As a reminder, this data contains the experimentally measured density and H,,;, measurements for ethanol and iso-
propanol at ambient conditions:

data_set.to_pandas() .head()

We will also define the set of force field parameters which we wish to use to estimate this data set of properties. The
framework has support for estimating force field parameters from a range of sources, including those in the OpenFF
SMIRNOFF format, those which can be applied by AmberTools, and more.

16 Chapter 2. Supported Physical Properties


https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html
https://ambermd.org/AmberTools.php

[1:

[ 1:

[1:

OpenFF Evaluator Documentation

Each source of a force field has a corresponding source object in the framework. In this tutorial we will be using the
OpenFF Parsley force field which is based off of the SMIRNOFF format:

from openff.evaluator.forcefield import SmirnoffForceFieldSource

force_field_path = "openff-1.0.0.o0ffxml"
force_field_source = SmirnoffForceFieldSource.from_path(force_field_path)

2.6.2 Defining the Calculation Schemas

The next step we will take will be to define a custom calculation schema for each type of property in our data set.

A calculation schema is the blueprint for how a type of property should be calculated using a particular calculation
approach, such as directly by simulation, by reprocessing cached simulation data or, in future, a range of other options.

The framework has built-in schemas defining how densities and H,,,;, should be estimated from molecular simulation,
covering all aspects from coordinate generation, force field assignment, energy minimisation, equilibration and finally
the production simulation and data analysis. All of this functionality is implemented via the frameworks built-in,
lightweight workflow engine, however we won’t dive into the details of this until a later tutorial.

For the purpose of this tutorial, we will simply modify the default calculation schemas to reduce the number of
molecules to include in our simulations to speed up the calculations. This step can be skipped entirely if the default
options (which we recommend using for ‘real-world’ calculations) are to be used:

from openff.evaluator.properties import Density, EnthalpyOfVaporization

density_schema = Density.default_simulation_schema(n_molecules=256)
h_vap_schema = EnthalpyOfVaporization.default_simulation_schema(n_molecules=256)

We could further use this method to set either the absolute or the relative uncertainty that the property should be
estimated to within. If either of these are set, the simulations will automatically be extended until the target uncertainty
in the property has been met.

For our purposes however we won’t set any targets, leaving the simulations to run for the default 1 ns.

To use these custom schemas, we need to add them to the a request options object which defines all of the options for
estimating our data set:

from openff.evaluator.client import RequestOptions

# Create an options object which defines how the data set should be estimated.
estimation_options = RequestOptions()

# Specify that we only wish to use molecular simulation to estimate the data set.
estimation_options.calculation_layers = ["SimulationLayer"]

# Add our custom schemas, specifying that the should be used by the 'SimulationLayer’
estimation_options.add_schema("SimulationLayer", "Density", density_schema)
estimation_options.add_schema("SimulationLayer", "EnthalpyOfVaporization", h_vap_schema)

2.6. Tutorial 02 - Estimating Data Sets 17



[1:

[1:

OpenFF Evaluator Documentation

2.6.3 Launching the Server

The framework is split into two main applications - an EvaluatorServer and an EvaluatorClient.

The EvaluatorServer is the main object which will perform any and all calculations needed to estimate sets of
properties. It is design to run on whichever compute resources you may have available (whether that be a single
machine or a high performance cluster), wait until a user requests a set of properties be estimated, and then handle that
request.

The EvaluatorClient is the object used by the user to send requests to estimate data sets to running server instances
over a TCP connection. It is also used to query the server to see when that request has been fulfilled, and to pull back
any results.

Let us begin by spawning a new server instance.
To launch a server, we need to define how this object is going to interact with the compute resource it is running on.

This is accomplished using a calculation backend. While there are several to choose from depending on your needs,
well will go with a simple dask based one designed to run on a single machine:

import os

from openff.evaluator.backends import ComputeResources
from openff.evaluator.backends.dask import DaskLocalCluster

os.environ["CUDA_VISIBLE_DEVICES"] = "@"

calculation_backend = DaskLocalCluster(
number_of_workers=1,
resources_per_worker=ComputeResources(
number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.CUDA,
),
)

calculation_backend.start()

Here we have specified that we want to run our calculations on a single worker which has access to a single GPU.

With that defined, we can go ahead and spin up the server:

from openff.evaluator.server import EvaluatorServer

evaluator_server = EvaluatorServer(calculation_backend=calculation_backend)
evaluator_server.start (asynchronous=True)

The server will run asynchronously in the background waiting until a client connects and requests that a data set be
estimated.

18 Chapter 2. Supported Physical Properties



[ 1:

[ 1:

[ 1:

[1:

OpenFF Evaluator Documentation

2.6.4 Estimating the Data Set

With the server spun up we can go ahead and connect to it using an EvaluatorClient and request that it estimate our
data set using the custom options we defined earlier:

from openff.evaluator.client import EvaluatorClient
evaluator_client = EvaluatorClient()

request, exception = evaluator_client.request_estimate(
property_set=data_set,
force_field_source=force_field_source,
options=estimation_options,

assert exception is None

The server will now receive the requests and begin whirring away fulfilling it. It should be noted that the
request_estimate() function returns two values - a request object, and an exception object. If all went well (as
it should do here) the exception object will be None.

The request object represents the request which we just sent to the server. It stores the unique id which the server
assigned to the request, as well as the address of the server that the request was sent to.

The request object is primarily used to query the current state of our request, and to pull down the results when it the
request finishes. Here we will use it it synchronously query the server every 30 seconds until our request has completed.

# Wait for the results.
results, exception = request.results(synchronous=True, polling_interval=30)
assert exception is None

Note: we could also asynchronously query for the results of the request. The resultant results object would then contain
the partial results of any completed estimates, as well as any exceptions raised during the estimation.

2.6.5 Inspecting the Results

Now that the server has finished estimating our data set and returned the results to us, we can begin to inspect the results
of the calculations:

print(len(results.queued_properties))
print(len(results.estimated_properties))

print(len(results.unsuccessful_properties))
print(len(results.exceptions))

We can (hopefully) see here that there were no exceptions raised during the calculation, and that all of our properties
were successfully estimated.

We will extract the estimated data set and save this to disk:

results.estimated_properties. json("estimated_data_set.json", format=True);

2.6. Tutorial 02 - Estimating Data Sets 19



[ 1:

[ 1:

[ 1:

OpenFF Evaluator Documentation

2.6.6 Conclusion

And that concludes the second tutorial. In the next tutorial we will be performing some basic analysis on our estimated
results.

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.7 Tutorial 03 - Analysing Data Sets

In this tutorial we will be analysing the results of the calculations which we performed in the second tutorial. The
tutorial will cover:

e comparing the estimated data set with the experimental data set.
* plotting the two data sets.

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

# lwget https://raw.githubusercontent.com/openforcefield/openff-evaluator/main/docs/
—tutorials/colab_setup.ipynb
# %run colab_setup.ipynb

For the sake of clarity all warnings will be disabled in this tutorial:

import warnings

warnings.filterwarnings("ignore")
import logging

logging.getLogger("openff.toolkit").setLevel (1ogging.ERROR)

2.7.1 Loading the Data Sets

We will begin by loading both the experimental data set and the estimated data set:

import pathlib
from openff.evaluator.datasets import PhysicalPropertyDataSet

experimental_data_set_path = "filtered_data_set.json"
estimated_data_set_path = "estimated_data_set.json"

# If you have not yet completed the previous tutorials or do not have the data set files
# available, this tutorial will use copies provided by the framework

if not (
pathlib.Path(experimental_data_set_path).exists()
and pathlib.Path(estimated_data_set_path).exists()

from openff.evaluator.utils import get_data_filename

(continues on next page)

20 Chapter 2. Supported Physical Properties


https://github.com/openforcefield/openff-evaluator/issues
https://colab.research.google.com/github/openforcefield/openff-evaluator/blob/main/docs/tutorials/tutorial03.ipynb

[1:

[ 1:

[ 1:

[ 1:

OpenFF Evaluator Documentation

(continued from previous page)

experimental_data_set_path = get_data_filename(
"tutorials/tutorial®1/filtered_data_set.json"
)

estimated_data_set_path = get_data_filename(
"tutorials/tutorial@2/estimated_data_set.json"

)

experimental_data_set = PhysicalPropertyDataSet.from_json(experimental_data_set_path)
estimated_data_set = PhysicalPropertyDataSet.from_json(estimated_data_set_path)

if everything went well from the previous tutorials, these data sets will contain the density and H,,), of ethanol and
isopropanol:

experimental_data_set.to_pandas() .head()

estimated_data_set.to_pandas() .head()

2.7.2 Extracting the Results

We will now compare how the value of each property estimated by simulation deviates from the experimental mea-
surement.

To do this we will extract a list which contains pairs of experimental and evaluated properties. We can easily match
properties based on the unique ids which were automatically assigned to them on their creation:

properties_by_type = {"Density": [], "EnthalpyOfVaporization": []}

for experimental_property in experimental_data_set:
# Find the estimated property which has the same id as the
# experimental property.
estimated_property = next(
x for x in estimated_data_set if x.id == experimental_property.id

)

# Add this pair of properties to the list of pairs

property_type = experimental_property.__class__.__name__

properties_by_type[property_type] .append(
(experimental_property, estimated_property)

)

2.7.3 Plotting the Results

We will now compare the experimental results to the estimated ones by plotting them using matplotlib:

from matplotlib import pyplot

# Create the figure we will plot to.
figure, axes = pyplot.subplots(nrows=1, ncols=2, figsize=(8.0, 4.0))

(continues on next page)

2.7. Tutorial 03 - Analysing Data Sets 21



OpenFF Evaluator Documentation

(continued from previous page)

# Set the axis titles
axes[0].set_xlabel ("OpenFF 1.0.0")
axes[0].set_ylabel ("Experimental')
axes[0].set_title("Density $kg mA{-3}$")

axes[1].set_xlabel ("OpenFF 1.0.0")
axes[1].set_ylabel ("Experimental')
axes[1].set_title("$H_ $ $kJ molAr{-1}$")

# Define the preferred units of the properties
from openff.units import unit

preferred_units = {
"Density": unit.kilogram / unit.meter**3,
"EnthalpyOfVaporization”: unit.kilojoule / unit.mole,

¥

for index, property_type in enumerate(properties_by_type):
experimental_values = []
estimated_values = []

preferred_unit = preferred_units[property_typel

# Convert the values of our properties to the preferred units.
for experimental_property, estimated_property in properties_by_type[property_type]:
experimental_values.append(
experimental_property.value.to(preferred_unit) .magnitude

)

estimated_values.append(estimated_property.value.to(preferred_unit) .magnitude)

axes[index] .plot(
estimated_values, experimental_values, marker="x", linestyle="None"

)

2.7.4 Conclusion

And that concludes the third tutorial!

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.8 Tutorial 04 - Optimizing Force Fields

In this tutorial we will be using the OpenFF Evaluator framework in combination with the fantastic ForceBalance
software to optimize a molecular force field against the physical property data set we created in the first tutorial.

ForceBalance offers a suite of tools for optimizing molecular force fields against a set of target data. Perhaps one of
the most fundamental targets to fit against is experimental physical property data. Physical property data has been
used extensively for decades to inform the values of non-bonded Van der Waals (VdW) interaction parameters (often
referred to as Lennard-Jones parameters).

22 Chapter 2. Supported Physical Properties


https://github.com/openforcefield/openff-evaluator/issues
https://colab.research.google.com/github/openforcefield/openff-evaluator/blob/main/docs/tutorials/tutorial04.ipynb
https://github.com/leeping/forcebalance

[1:

[ 1:

[ 1:

[ 1:

[ 1:

OpenFF Evaluator Documentation

ForceBalance is seamlessly integrated with the evaluator framework, using it to evaluate the deviations between target
experimentally measured data points and those evaluated using the force field being optimized (as well as the gradient
of those deviations with respect to the force field parameters being optimized).

The tutorial will cover:
* setting up the input files and directory structure required by ForceBalace.
e setting up an EvaluatorServer for ForceBalance to connect to.
* running ForceBalance using those input files.
* extracting and plotting a number of statistics output during the optimization.

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

# lwget https://raw.githubusercontent.com/openforcefield/openff-evaluator/main/docs/
—tutorials/colab_setup.ipynb
# %run colab_setup.ipynb

For this tutorial make sure that you are using a GPU accelerated runtime.

For the sake of clarity all warnings will be disabled in this tutorial:

import warnings

warnings.filterwarnings("ignore")
import logging

logging.getLogger("openff.toolkit").setLevel (logging.ERROR)

We will also enable time-stamped logging to help track the progress of our calculations:

from openff.evaluator.utils import setup_timestamp_logging

setup_timestamp_logging()

2.8.1 Setting up the ForceBalance Inputs

In this section we will be creating the directory structure required by ForceBalance, and populating it with the required
input files.

Creating the Directory Structure

To begin with, we will create a directory to store the starting force field parameters in:

Imkdir forcefield

and one to store the input parameters for our ‘fitting target’ - in this case a data set of physical properties:

Imkdir -p targets/pure_data

2.8. Tutorial 04 - Optimizing Force Fields 23



[ 1:

[ 1:

[ 1:

[1:

OpenFF Evaluator Documentation

Defining the Training Data Set

With the directories created, we will next specify the data set of physical properties which we will be training the force
field against:

# For convenience we will use the copy shipped with the framework
from openff.evaluator.utils import get_data_filename

data_set_path = get_data_filename("tutorials/tutorial®1l/filtered_data_set.json")

# Load the data set.
from openff.evaluator.datasets import PhysicalPropertyDataSet

data_set = PhysicalPropertyDataSet.from_json(data_set_path)

# Due to a small bug in ForceBalance we need to zero out any uncertainties
# which are undefined. This will be fixed in future versions.
from openff.evaluator.attributes import UNDEFINED

for physical_property in data_set:
if physical_property.uncertainty != UNDEFINED:
continue

physical_property.uncertainty = 0.0 * physical_property.default_unit()

To speed up the runtime of this tutorial, we will only train the force field against measurements made for ethanol

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmiles,
FilterBySmilesSchema,

D)

data_set = FilterBySmiles.apply(
data_set,
FilterBySmilesSchema(smiles_to_include=["CC0"]),

in real optimizations however the data set should be much larger than two data points!

With those changes made, we can save the data set in our targets directory:

# Store the data set in the ‘pure_data  targets folder:
data_set.json("targets/pure_data/training_set.json");

Defining the Starting Force Field Parameters

We will use the OpenFF Parsley 1.0.0 force field as the starting parameters for the optimization. These can be loaded
directly into an OpenFF ForceField object using the OpenFF toolkit:

from openff.toolkit.typing.engines.smirnoff import ForceField

force_field = ForceField("openff-1.0.0.o0ffxml")

24 Chapter 2. Supported Physical Properties



[1:

[ 1:

[ 1:

[ 1:

OpenFF Evaluator Documentation

In order to use these parameters in ForceBalance, we need to ‘tag’ the individual parameters in the force field that we
wish to optimize. The toolkit easily enables us to add these tags using cosmetic attributes:

# Extract the smiles of all unique components in our data set.
from openff.toolkit.topology import Molecule, Topology

all_smiles = {
component .smiles
for substance in data_set.substances
for component in substance.components

for smiles in all_smiles:
# Find those VdW parameters which would be applied to those components.
molecule = Molecule.from_smiles(smiles)
topology = Topology.from_molecules([molecule])

labels = force_field.label_molecules(topology) [0]

# Tag the exercised parameters as to be optimized.
for parameter in labels["vdW"].values():
parameter.add_cosmetic_attribute("parameterize", "epsilon, rmin_half")

Here we have made use of the toolkit’s handy label_molecules function to see which VAW parameters will be
assigned to the molecules in our data set, and tagged them to be parameterized.

With those tags added, we can save the parameters in the forcefield directory:

# Save the annotated force field file.
force_field.to_file("forcefield/openff-1.0.0-tagged.offxml")

Note: The force field parameters are stored in the OpenFF SMIRNOFF XML format.

Creating the Main Input File

Next, we will create the main ForceBalance input file. For the sake of brevity a default input file which ships with this
framework will be used:

input_file_path = get_data_filename("'tutorials/tutorial®4/optimize.in")

# Copy the input file into our directory structure
import shutil

shutil.copyfile(input_file_path, "optimize.in")

While there are many options that can be set within this file, the main options of interest for our purposes appear at the
bottom of the file:

Itail -n 6 optimize.in
Here we have specified that we wish to create a new ForceBalance Evaluator_SMIRNOFF target called pure_data
(corresponding to the name of the directory we created in the earlier step).

The main input to this target is the file path to an options. json file - it is this file which will specify all the options
which should be used when ForceBalance requests that our target data set be estimated using the current sets of force

2.8. Tutorial 04 - Optimizing Force Fields 25


https://open-forcefield-toolkit.readthedocs.io/en/0.6.0/smirnoff.html

[1:

[1:

[ 1:

OpenFF Evaluator Documentation

field parameters.
We will create this file in the targets/pure_data directory later in this section.

The data set is the JSON serialized representation of the PhysicalPropertyDataSet we created during the first
tutorial.

Defining the Estimation Options
The final step before we can start the optimization is to create the set of options which will govern how our data set is
estimated using the Evaluator framework.

These options will be stored in an Evaluator_SMIRNOFF object:

from forcebalance.evaluator_io import Evaluator_SMIRNOFF

# Create the ForceBalance options object
target_options = Evaluator_SMIRNOFF.OptionsFile()
# Set the path to the data set
target_options.data_set_path = "training_set.json"

This object exposes both a set of ForceBalance specific options, as well as the set of Evaluator options.

The ForceBalance specific options allow us to define how each type of property will contribute to the optimization
objective function (the value which we are trying to minimize):

N . M 2
weight, = el — Y (0
AO) = 3 ( ©)

M, denominator,,

n

where N is the number of types of properties (e.g. density, enthalpy of vaporization, etc.), M,, is the number of data
points of type n, y"¢/ is the experimental value of data point m and y,, (6) is the estimated value of data point m using
the current force field parameters

In particular, the options object allows us to specify both an amount to scale each type of properties contribution to
the objective function by (wetght,), and the amount to scale the difference between the experimental and estimated
properties (denominator,,):

from openff.units import unit

target_options.weights = {"Density": 1.0, "EnthalpyOfVaporization": 1.0}
target_options.denominators = {
"Density": 30.0 * unit.kilogram / unit.meter**3,
"EnthalpyOfVaporization": 3.0 * unit.kilojoule / unit.mole,

where here we have chosen values that ensure that both types of properties contribute roughly equally to the total
objective function.

The Evaluator specific options correspond to a standard RequestOptions object:

from openff.evaluator.client import RequestOptions

# Create the options which evaluator should use.
evaluator_options = RequestOptions()

# Choose which calculation layers to make available.
evaluator_options.calculation_layers = ["SimulationLayer"]

(continues on next page)

26 Chapter 2. Supported Physical Properties



[ 1:

[ 1:

OpenFF Evaluator Documentation

(continued from previous page)

# Reduce the default number of molecules
from openff.evaluator.properties import Density, EnthalpyOfVaporization

density_schema = Density.default_simulation_schema(n_molecules=256)
h_vap_schema = EnthalpyOfVaporization.default_simulation_schema(n_molecules=256)

evaluator_options.add_schema("SimulationLayer", "Density", density_schema)
evaluator_options.add_schema("SimulationLayer", "EnthalpyOfVaporization", h_vap_schema)

target_options.estimation_options = evaluator_options

These options allow us to control exactly how each type of property should be estimated, which calculation approaches
should be used and more. Here we use the same options are were used in the second tutorial

Note: more information about the different estimation options can be found here

And that’s the options created! We will finish off by serializing the options into our target directory:

# Save the options to file.
with open("targets/pure_data/options.json", "w") as file:
file.write(target_options.to_json())

2.8.2 Launching an Evaluator Server

With the ForceBalance options created, we can now move onto launching the EvaluatorServer which ForceBalance
will call out to when it needs the data set to be evaluated:

import os

# Launch the calculation backend which will distribute any calculations.
from openff.evaluator.backends import ComputeResources
from openff.evaluator.backends.dask import DaskLocalCluster

os.environ["CUDA_VISIBLE_DEVICES"] = "O"

calculation_backend = DaskLocalCluster(
number_of_workers=1,
resources_per_worker=ComputeResources(
number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.CUDA,
)
)

calculation_backend.start()

# Launch the server object which will listen for estimation requests and schedule any
# required calculations.
from openff.evaluator.server import EvaluatorServer

evaluator_server = EvaluatorServer(calculation_backend=calculation_backend)
evaluator_server.start (asynchronous=True)

2.8. Tutorial 04 - Optimizing Force Fields 27



[ 1:

[1:

[1:

[1:

OpenFF Evaluator Documentation

We will not go into the details of this here as this was already covered in the second tutorial

2.8.3 Running ForceBalance

With the inputs created and an Evaluator server spun up, we are finally ready to run the optimization! This can be
accomplished with a single command:

IForceBalance optimize.in

If everything went well ForceBalance should exit cleanly, and will have stored out newly optimized force field in the
results directory.

Ils result/optimize

2.8.4 Plotting the results

As a last step in this tutorial, we will extract the objective function at each iteration from the ForceBalance output files
and plot this using matplotlib.

First, we will extract the objective function from the pickle serialized output files which can be found in the
optimize.tmp/pure_data/iter_***%*/ directories:

# Determine how many iterations ForceBalance has completed.
from glob import glob

from forcebalance.nifty import lp_load
n_iterations = len(glob("optimize.tmp/pure_data/iter*"))

# Extract the objective function at each iteration.
objective_function = []

for iteration in range(n_iterations):
folder_name = "iter_" + str(iteration).zfill(4)

file_path = f"optimize.tmp/pure_data/{folder_name}/objective.p"

statistics = 1lp_load(file_path)
objective_function.append(statistics["X"])

print (objective_function)

The objective function is then easily plotted:

from matplotlib import pyplot
figure, axis = pyplot.subplots(l, 1, figsize=(4, 4))

axis.set_xlabel("Iteration")
axis.set_ylabel("Objective Function")

axis.plot(range(n_iterations), objective_function, marker="o0")

figure.tight_layout()

28 Chapter 2. Supported Physical Properties



OpenFF Evaluator Documentation

2.8.5 Conclusion

And that concludes the fourth tutorial!

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.9 Property Data Sets

A PhysicalPropertyDataSet is a collection of measured physical properties encapsulated as physical property
objects. They may be created from scratch:

# Define a density measurement

density = Density(
substance=Substance. from_components("'0"),
thermodynamic_state=ThermodynamicState(

pressure=1.0%unit.atmospheres, temperature=298.15*unit.kelvin

)
phase=PropertyPhase.Liquid,
value=1.0*unit.gram/unit.millilitre,
uncertainty=0.0001*unit.gram/unit.millilitre

# Add the property to a data set
data_set = PhysicalPropertyDataset()
data_set.add_properties(density)

are readily JSON (de)serializable:

# Save the data set as a JSON file.
data_set.json(file_path="data_set.json", format=True)

# Load the data set from a JSON file

data_set = PhysicalPropertyDataset.from_json(file_path="data_set.json")

and may be converted to pandas DataFrame objects:

data_set.to_pandas()

The framework implements specific data set objects for extracting data measurements directly from a number of open
data sources, such as the ThermoMLDataSet (see ThermoML Archive) which provides utilities for extracting the data
from the NIST ThermoML Archive and converting it into the standard framework objects.

Data set objects are directly iterable:

for physical_property in data_set:

or can be iterated over for a specific substance:

for physical_property in data_set.properties_by_substance(substance):

or for a specific type of property:

2.9. Property Data Sets 29


https://github.com/openforcefield/openff-evaluator/issues
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
http://trc.nist.gov/ThermoML.html

OpenFF Evaluator Documentation

for physical_property in data_set.properties_by_type("Density"):

2.9.1 Physical Properties
The PhysicalProperty object is a base class for any object which describes a measured property of substance, and
is defined by a combination of:

* the observed value of the property.

* Substance specifying the substance that the measurement was collected for.

* PropertyPhase specifying the phase that the measurement was collected in.

e ThermodynamicState specifying the thermodynamic conditions under which the measurement was performed
as well as optionally

* the uncertainty in the value of the property.

* alist of ParameterGradient which defines the gradient of the property with respect to the model parameters
if it was computationally estimated.

* a Source specifying the source (either experimental or computational) and provenance of the measurement.

Each type of property supported by the framework, such as a density of an enthalpy of vaporization, must have it’s own
class representation which inherits from PhysicalProperty:

# Define a density measurement

density = Density(
substance=Substance. from_components("'0"),
thermodynamic_state=ThermodynamicState(

pressure=1.0*unit.atmospheres, temperature=298.15*unit.kelvin

P
phase=PropertyPhase.Liquid,
value=1.0%unit.gram/unit.millilitre,
uncertainty=0.0001*unit.gram/unit.millilitre

2.9.2 Substances

A Substance is defined by a number of components (which may have specific roles assigned to them such as being
solutes in the system) and the amount of each component in the substance.

To create a pure substance containing only water:

water_substance = Substance.from_components("0")

To create binary mixture of water and methanol in a 20:80 ratio:

binary_mixture = Substance()
binary_mixture.add_component (Component(smiles="0"), MoleFraction(value=0.2))
binary_mixture.add_component (Component(smiles="C0"), MoleFraction(value=0.8))

To create a substance of an infinitely dilute paracetamol solute dissolved in water:

30 Chapter 2. Supported Physical Properties



OpenFF Evaluator Documentation

solution = Substance()
solution.add_component (
Component (smiles="0", role=Component.Role.Solvent), MoleFraction(value=1.0)

)
solution.add_component (
Component (smiles="CC(=0)Nclccc(0)ccl", role=Component.Role.Solute),..
—ExactAmount (value=1)

)

2.9.3 Property Phases

The PropertyPhase enum describes the possible phases which a measurement was performed in.

While the enum only has three defined phases (Solid, Liquid and Gas), multiple phases can be formed by OR’ing (|)
multiple phases together. As an example, to define a phase for a liquid and gas coexisting:

liquid_gas_phase = PropertyPhase.Liquid | PropertyPhase.Gas

2.9.4 Thermodynamic States

A ThermodynamicState specifies a combination of the temperature and (optionally) the pressure at which a measure-
ment is performed:

thermodynamic_state = ThermodynamicState(
temperature=298.15*unit.kelvin, pressure=1.0*unit.atmosphere

)

2.10 ThermoML Archive

The ThermoMLDataSet object offers an API for extracting physical properties from the NIST ThermoML Archive,
both directly from the archive itself or from files stored in the IUPAC- standard ThermoML format.

The API only supports extracting those properties which have been registered with the frameworks plug-in system, and
does not currently load the full set of metadata available in the archive files.

Note: If the metadata you require is not currently exposed, please open an issue on the GitHub issue tracker to request
it.

Currently the framework has built-in support for extracting:
* Mass density, kg/m3 (Density)
* Excess molar volume, m3/mol (ExcessMolarVolume)
* Relative permittivity at zero frequency (DielectricConstant)
» Excess molar enthalpy (molar enthalpy of mixing), kJ/mol (EnthalpyOfMixing)
* Molar enthalpy of vaporization or sublimation, kJ/mol (EnthalpyOfVaporization)

where here both the ThermoML property name (as defined by the [UPAC XML schema) and the built-in framework
class are listed.

2.10. ThermoML Archive 31


http://trc.nist.gov/ThermoML.html
http://trc.nist.gov/ThermoMLRecommendations.pdf
https://github.com/openforcefield/openff-evaluator/issues
https://trc.nist.gov/ThermoML.xsd

OpenFF Evaluator Documentation

2.10.1 Registering Properties

Properties to be extracted from ThermoML archives must have a corresponding class representation to be loading into.
This class representation must both:

e inherit from the frameworks PhysicalProperty class and

* be registered with the frameworks plug-in system using either the thermoml_property () decorator or the
register_thermoml_property() method.

As an example, a class representation of the ThermoML ‘Mass density, kg/m3’ property could be defined and registered
with the plug-in system using:

@thermoml_property("Mass density, kg/m3", supported_phases=PropertyPhase.Liquid)
class Density(PhysicalProperty):

"""A class representation of a mass density property"""
The thermoml_property () decorator takes in the name of the ThermoML property (as defined by the [UPAC schema)
as well as the phases which the framework will be able to estimate this property in.

Multiple = ThermoML  properties can be mapped onto a single class wusing the flexible
register_thermoml_property() function. For example, the ‘Specific volume, m3/kg’ property (which is simply
the reciprocal of mass density) may be mapped onto the Density object by providing a conversion_function:

def specific_volume_to_mass_density(specific_volume):
"""Converts a specific volume measurement into a mass
density.

Parameters

specific_volume: ThermoMLProperty
The specific volume measurement to convert.

e

mass_density = Density()
mass_density.value = 1.0 / specific_volume.value

if mass_density.uncertainty is not None:
mass_density.uncertainty = 1.0 / mass_density.uncertainty

mass_density.phase = specific_volume.phase

mass_density.thermodynamic_state = specific_volume.thermodynamic_state
mass_density.substance = specific_volume.substance

return mass_density

# Register the ThermoML property using the conversion function.
register_thermoml_property(
thermoml_string="Specific volume, m3/kg",
supported_phases=PropertyPhase.Liquid,
property_class=Density,
conversion_function=specific_volume_to_mass_density

Converting the different density derivatives into a single density class removes the need to produce many very similar

32 Chapter 2. Supported Physical Properties


https://trc.nist.gov/ThermoML.xsd

OpenFF Evaluator Documentation

class representations of density measurements, and allows a single calculation schema to be defined for all variants.

2.10.2 Loading Data Sets

Data sets are most easily loaded using their digital object identifiers (DOI). For example, to retrieve the ThermoML
data set that accompanies this paper, we can simply use the DOI 10.1016/j.jct.2005.03.012:

data_set = ThermoMLDataset.from_doi('10.1016/j.jct.2005.03.012")

Data can be pulled from multiple sources at once by specifying multiple identifiers:

identifiers = ['10.1021/acs.jced.5b00365', '10.1021/acs.jced.5b00474']
dataset = ThermoMLDataset.from_doi(*identifiers)

Entire archives of properties can be downloaded directly from the ThermoML website and parsed by the framework.
For example, to create a data set object containing all of the measurements recorded from the International Journal of
Thermophysics:

# Download the archive of all properties from the IJT journal.
import requests
request = requests.get("https://trc.nist.gov/ThermoML/IJT.tgz", stream=True)

# Make sure the request went ok.
assert request

# Unzip the files into a new 'ijt_files' directory.

import io, tarfile

tar_file = tarfile.open(fileobj=io.BytesIO(request.content))
tar_file.extractall("ijt_files")

# Get the names of the extracted files
import glob
file_names = glob.glob("ijt_files/*.xml")

# Create the data set object
from openff.evaluator.datasets.thermoml import ThermoMLDataSet

data_set = ThermoMLDataSet.from_file(*file_names)

# Save the data set to a JSON object
data_set.json(file_path="ijt.json", format=True)

2.11 Taproom

The TaproomDataSet object offers an API for retrieving host-guest binding affinity measurements from the curated
taproom repository.

Note: taproom may be installed by running conda install -c conda-forge taproom

This includes retrieving all of the data available:

2.11. Taproom 33


http://trc.boulder.nist.gov/ThermoML/10.1016/j.jct.2005.03.012
http://trc.boulder.nist.gov/ThermoML/10.1016/j.jct.2005.03.012
http://www.sciencedirect.com/science/article/pii/S0021961405000741
https://trc.nist.gov/RSS/
https://github.com/slochower/host-guest-benchmarks

OpenFF Evaluator Documentation

from openff.evaluator.datasets.taproom import TaproomDataSet
taproom_set = TaproomDataSet()

data measure for a single host molecule (e.g. alpha-cyclodextrin):

acd_taproom_set = TaproomDataSet (host_codes=["acd"])

or data for a particular host and guest pair:

acd_taproom_set = TaproomDataSet(host_codes=["acd"], guest_codes=["bam"])

All measurements in this data set have an associated TaproomSource as their source provenance. This tracks both the
original source of the measurement as well as the taproom identifier.

Note: Currently the data set object will assume a default set of buffer conditions (either no buffer, or a buffer of a
salt with a specified ionic strength) rather than reading the buffer from the taproom measurement directory. This is
consistent with previous applications of the data set.

2.12 Data Set Curation

The framework offers a full suite of features to facilitate the curation of data sets of physical properties, including:

* a significant amount of data filters, including to filter by state, substance composition and chemical functionali-
ties.

and components to
* easily download and import the full NIST ThermoML and FreeSolv archives .

* select data points which were measured close to a set of target states, and which were measured for a diverse
range of substances which contain specific functionalities.

» convert between different compatible property types (e.g. convert density <-> excess molar volume data).

These features are implemented as CurationComponent objects, which take as input an associated
CurationComponentSchema which controls how the curation components should be applied to a particular
data set (or a data set which is being stored as pandas DataFrame object).

An example of a curation component would be one that filters out data points which were measured outside of a
particular temperature range:

# Filter data points measured at less than 290.0 K or greater than 320.0 K
filtered_frame = FilterByTemperature.apply(

data_frame,

FilterByTemperatureSchema(minimum_temperature=290.0, maximum_temperature=320.0),

Curation components can be conveniently chained together using a CurationWorkflow and an associated
CurationWWorkflowSchema so as to easily curated full training and testing data sets:

curation_schema = WorkflowSchema (
component_schemas=[
# Import the ThermoML archive.
thermoml . ImportThermoMLDataSchema ()

(continues on next page)

34 Chapter 2. Supported Physical Properties


https://github.com/MobleyLab/FreeSolv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

OpenFF Evaluator Documentation

(continued from previous page)

# Filter out any measurements made for systems with more than two components
filtering.FilterByNComponentsSchema(n_components=[1, 2]),
# Remove any duplicate data.
filtering.FilterDuplicatesSchema(),
# Filter out data points measured away from ambient
# and biologically relevant temperatures.
filtering.FilterByTemperatureSchema (

minimum_temperature=298.0, maximum_temperature=320.0
)
# Retain only density and enthalpy of mixing data points.
filtering.FilterByPropertyTypesSchema(

property_types=["Density", "EnthalpyOfMixing"],
)
# Select data points measured for alcohols, esters or mixtures of both.
selection.SelectSubstancesSchema(

target_environments=[

ChemicalEnvironment.Alcohol,
ChemicalEnvironment.CarboxylicAcidEster,
g
n_per_environment=10,

),

data_frame = Workflow.apply(pandas.DataFrame(), curation)

2.12.1 Examples

Data Extraction

e ImportFreeSolv: A component which will download the latest, full FreeSolv data set from the GitHub repos-
itory:

from openff.evaluator.datasets.curation.components.freesolv import (
ImportFreeSolv,
ImportFreeSolvSchema,

# Import the full FreeSolv data set.
data_frame = ImportFreeSolv.apply(pandas.DataFrame(), ImportFreeSolvSchema())

e TImportThermoMLData: A component which will download all supported data from the NIST ThermoML
Archive:

from openff.evaluator.datasets.curation.components.thermoml import (
ImportThermoMLData,
ImportThermoMLDataSchema,

)

# Import all data collected from the IJT journal.
data_frame = ImportThermoMLData.apply(pandas.DataFrame(),.
—.ImportThermoliLDataSchema()) (continues on next page)

2.12. Data Set Curation 35



OpenFF Evaluator Documentation

(continued from previous page)

Filtration

e FilterDuplicates: A component to remove duplicate data points (within a specified precision) from a data

set:

from openff.evaluator.datasets.curation.components.filtering import (
FilterDuplicates,
FilterDuplicatesSchema,

)

filtered_frame = FilterDuplicates.apply(data_frame, FilterDuplicatesSchema())

FilterByTemperature: A component which will filter out data points which were measured outside of a
specified temperature range:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByTemperature,
FilterByTemperatureSchema,

)

filtered_frame = FilterByTemperature.apply(
data_frame,
FilterByTemperatureSchema(minimum_temperature=290.0, maximum_temperature=320.0),

FilterByPressure: A component which will filter out data points which were measured outside of a specified
pressure range:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByPressure,
FilterByPressureSchema,

)

filtered_frame = FilterByPressure.apply(
data_frame,
FilterByPressureSchema(minimum_pressure=100.0, maximum_pressure=140.0),

FilterByMoleFraction: A component which will filter out data points which were measured outside of a
specified mole fraction range:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByMoleFraction,
FilterByMoleFractionSchema,

filtered_frame = FilterBylMoleFraction.apply(
data_frame, FilterByMoleFractionSchema(mole_fraction_ranges={2: [[(0.1, 0.3)]11})

e FilterByRacemic: A component which will filter out data points which were measured for racemic mixtures:

36

Chapter 2. Supported Physical Properties



OpenFF Evaluator Documentation

from openff.evaluator.datasets.curation.components.filtering import (
FilterByRacemic,
FilterByRacemicSchema,

)

filtered_frame = FilterByRacemic.apply(data_frame, FilterByRacemicSchema())

e FilterByElements: A component which will filter out data points which were measured for systems which
contain specific elements:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByElements,
FilterByElementsSchema,

)

filtered_frame = FilterByElements.apply(
data_frame,
FilterByElementsSchema(allowed_elements=["C", "0", "H"1),

e FilterByPropertyTypes: A component which will apply a filter which only retains properties of specified
types:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByPropertyTypes,
FilterByPropertyTypesSchema,

)

# Retain only density measurements made for either pure or binary systems.
filtered_frame = FilterByPropertyTypes.apply(
data_frame,
FilterByPropertyTypesSchema(
property_types=["Density"],
n_components={"Density": [1, 2]},

),

e FilterByStereochemistry: A component which filters out data points measured for systems whereby the
stereochemistry of a number of components is undefined:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByStereochemistry,
FilterByStereochemistrySchema,

)

filtered_frame = FilterByStereochemistry.apply(
data_frame, FilterByStereochemistrySchema()

e FilterByCharged: A component which filters out data points measured for substance where any of the con-
stituent components have a net non-zero charge.:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByCharged,

(continues on next page)

2.12. Data Set Curation 37



OpenFF Evaluator Documentation

(continued from previous page)

FilterByChargedSchema,

filtered_frame = FilterByCharged.apply(data_frame, FilterByChargedSchema())

FilterByIonicLiquid: A component which filters out data points measured for substances which contain or
are classed as an ionic liquids:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByIonicLiquid,
FilterByIonicLiquidSchema,

filtered_frame = FilterByIonicLiquid.apply(data_frame, FilterBylIonicLiquidSchema())

FilterBySmiles: A component which filters the data set so that it only contains either a specific set of smiles,
or does not contain any of a set of specifically excluded smiles:

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmiles,
FilterBySmilesSchema,

filtered_frame = FilterBySmiles.apply(
data_frame, FilterBySmilesSchema(smiles_to_include=["CCC0"]),

FilterBySmirks: A component which filters a data set so that it only contains measurements made for
molecules which contain (or don’t) a set of chemical environments represented by SMIRKS patterns:

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmirks,
FilterBySmirksSchema,

)

filtered_frame = FilterBySmirks.apply(
data_frame, FilterBySmirksSchema(smirks_to_include=["[#6a]"]),

FilterByNComponents: A component which filters out data points measured for systems with specified number
of components:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByNComponents,
FilterByNComponentsSchema,

)

filtered_frame = FilterByNComponents.apply(
data_frame, FilterByNComponentsSchema(n_components=[1, 2])

FilterBySubstances: A component which filters the data set so that it only contains properties measured for
particular substances:

38

Chapter 2. Supported Physical Properties



OpenFF Evaluator Documentation

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySubstances,
FilterBySubstancesSchema,

)

filtered_frame = FilterBySubstances.apply(
data_frame, FilterBySubstancesSchema(substances_to_include=[("CO0", "C")])

)

* FilterByEnvironments: A component which filters a data set so that it only contains measurements made for
substances which contain specific chemical environments:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByEnvironments,
FilterByEnvironmentsSchema,

)

filtered_frame = FilterByEnvironments.apply(
data_frame,
FilterByEnvironmentsSchema (
environments=[
ChemicalEnvironment.Aqueous,
ChemicalEnvironment.Alcohol,
ChemicalEnvironment.Amine,

Data Selection

* SelectSubstances: A component for selecting data points which were measured for specified number of max-
imally diverse systems containing a specified set of chemical functionalities:

# Select (if possible) data points which were measured for 10 different (and
# structurally diverse) alcohols.
schema = SelectSubstancesSchema(
target_environments=[ChemicalEnvironment.Alcohol],
n_per_environment=10,

)

data_frame = ConvertExcessDensityData.apply(data_frame, schema)

* SelectDataPoints: A component for selecting a set of data points which are close to a particular set of states:

# Select (if possible) density data points which were measured for pure systems
# at close to 298.15 K and 308.15K
schema = SelectDataPointsSchema(
target_states=[
TargetState(
property_types=[("Density", 1)1,
states=[
State(temperature=298.15, pressure=101.325, mole_fractions=(1.0,),

(continues on next page)

2.12. Data Set Curation 39



OpenFF Evaluator Documentation

(continued from previous page)
State(temperature=308.15, pressure=101.325, mole_fractions=(1.0,),
1,

)

data_frame = ConvertExcessDensityData.apply(data_frame, schema)

Data Conversion

* ConvertExcessDensityData: A component for converting binary mass density data to excess molar volume
data and vice versa where pure density data measured for the components is available:

from openff.evaluator.datasets.curation.components.conversion import (
ConvertExcessDensityData,
ConvertExcessDensityDataSchema,

converted_data_frame = ConvertExcessDensityData.apply(
data_frame, ConvertExcessDensityDataSchema()

2.13 Physical Properties

A core philosophy of this framework is that users should be able to seamlessly curate data sets of physical properties
and then estimate that data set using computational methods without significant user intervention and using sensible,
well validated workflows.

This page aims to provide an overview of which physical properties are supported by the framework and how they are
computed using the different calculation layers.

In this document (X') will be used to denote the ensemble average of an observable X.

2.13.1 Density

The density (p) is computed according to

()

where M and V are the total molar mass and volume the system respectively.

40 Chapter 2. Supported Physical Properties



OpenFF Evaluator Documentation

Direct Simulation

The density is estimated using the default simulation workflow without modification. The estimation of liquid densities
is assumed.

MBAR Reweighting

The density is estimated using the default reweighting workflow without modification. The estimation of liquid densities
is assumed.

2.13.2 Dielectric Constant

The dielectric constant (¢) is computed from the fluctuations in a systems dipole moment (see Equation 7 of [1])
according to:
- )
3&‘0 <V> ka
where (i, V are the systems dipole moment and volume respectively, k; the Boltzmann constant, T the temperature,
and ¢¢ the permittivity of free space.

Note: Inv0.2.2 and earlier of the framework the variance was computed as <(ﬁ - <ﬁ>)2> in order to match the mdtraj

implementation which has been used in previous studies by the OpenFF Consortium (see for example [2]). The two
approaches should be numerically indistinguishable however.

Direct Simulation

The dielectric is estimated using the default simulation workflow which has been modified to use the specialized
AverageDielectricConstant protocol in place of the default AverageObservable protocol. The estimation of
liquid dielectric constants is assumed.

MBAR Reweighting

The dielectric is estimated using the default reweighting workflow which has been modified to use the specialized
ReweightDielectricConstant protocol in place of the default ReweightObservable protocol. It should be noted
that the ReweightDielectricConstant protocol employs bootstrapping to compute the uncertainty in the average
dielectric constant, rather than attempting to propagate uncertainties in the average dipole moments and volumes. The
estimation of liquid dielectric constants is assumed.

2.13.3 Enthalpy of Vaporization

The enthalpy of vaporization AH,,,, (see [3]) can be computed according to
AHvap = <Hgas> - <Hliquid> = <Egas> - <Eliquid> +p(<vgas> - <quuzd>)

where H, E, and V are the enthalpy, total energy and volume respectively.

Under the assumption that Vjqs >> Vji4u:qa and that the gas is ideal the above expression can be simplified to

AHvap = <Ugas> - <Uliquid> + RT

2.13. Physical Properties 41


http://mdtraj.org/

OpenFF Evaluator Documentation

where U is the potential energy, T the temperature and R the universal gas constant. This simplified expression is
computed by default by this framework.

Direct Simulation

* Liquid phase: The potential energy of the liquid phase is estimated using the default simulation workflow, and
divided by the number of molecules in the simulation box using the divisor input of the AverageObservable
protocol.

* Gas phase: The potential energy of the gas phase is estimated using the default simulation workflow, which has
been modified so that

— the simulation box only contains a single molecule.

— all periodic boundary conditions have been disabled.

— all simulations are performed in the NVT ensemble.

— the production simulation is run for 15000000 steps at a time (rather than 1000000 steps).

— all simulations are run using the OpenMM reference platform (CPU only) regardless of whether a GPU is
available. This is fastest platform to use when simulating a single molecule in vacuum with OpenMM.

The final enthalpy is then computed by subtracting the gas potential energy from the liquid potential energy
(SubtractValues) and adding the R7T term (AddValues). Uncertainties are propagated through the subtraction by
the normal means using the uncertainties package.

MBAR Reweighting
* Liquid phase: The potential energy of the liquid phase is estimated using the default reweighting workflow, and
divided by the number of molecules in the simulation box using an extra DivideValue protocol.

* Gas phase: The potential energy of the gas phase is estimated using the default reweighting workflow, which
has been modified so that all periodic boundary conditions have been disabled.

The final enthalpy is then computed by subtracting the gas potential energy from the liquid potential energy
(SubtractValues) and adding the RT term (AddValues). Uncertainties are propagated through the subtraction by
the normal means using the uncertainties package.

2.13.4 Enthalpy of Mixing

The enthalpy of mixing AH,,;. (xo,- -+ ,zap—1) for a system of M components is computed according to
M
AH i ($0» ce axM—l) = m - Z%Tl

where H,,;; is the enthalpy of the full mixture, and H;, x; are the enthalpy and the mole fraction of component
respectively. N,,;, and N; are the total number of molecules used in the full mixture simulations and the simulations
of each individual component respectively.

When re-weighting cached data to compute H,,;, we make the approximation that the kinetic energy contributions
cancel out between the mixture and each of the components, and hence can be computed by only re-weighting the NPT
reduced potential:

AH i (20, @ )zl <umw>7§$<ul>
miz 05 s UM —1 B Nmiz 7; 7 Ni

where uw = 8 (U + pV) is the NPT reduced potential, U the potential energy, p the pressure and V' the volume.

42 Chapter 2. Supported Physical Properties


https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/

OpenFF Evaluator Documentation

Direct Simulation

* Mixture: The enthalpy of the full mixture is estimated using the default simulation workflow and divided by the
number of molecules in the simulation box using the divisor input of the AverageObservable protocol.

e Components: The enthalpy of each of the components is estimated using the default simulation workflow, di-
vided by the number of molecules in the simulation box using the divisor input of the AverageObservable
protocol, and weighted by their mole fraction in the mixture simulation box using the WeightByMoleFraction
protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues) and subtracting these from
the mixture enthalpy (SubtractValues). Uncertainties are propagated through the summation and subtraction by the
normal means using the uncertainties package.

MBAR Reweighting

e Mixture: The reduced potential of the full mixture is estimated using the default reweighting workflow and
divided by the number of molecules in the reweighting box using an extra DivideValue protocol.

¢ Components: The reduced potential of each of the components is estimated using the default reweighting work-
flow, divided by the number of molecules in the reweighting box using an extra DivideValue protocol, and
weighted by their mole fraction using the WeightByMoleFraction protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues), subtracting these from the
mixture enthalpy (SubtractValues), and multiplying by 1/ (MultiplyValue). Uncertainties are propagated by the
normal means using the uncertainties package.

2.13.5 Excess Molar Volume

The excess molar volume AV, cess (o, - -+, xar—1) for a system of M components is computed according to
M
o <Vmir> <VZ>
AVeycess (mO; ce ’fol) =Na (wa - E %Tl

where Vi, is the volume of the full mixture, and V;, x; are the volume and the mole fraction of component ¢ respec-
tively. Ny, and IV, are the total number of molecules used in the full mixture simulations and the simulations of each
individual component respectively, and IV 4 is the Avogadro constant.

Direct Simulation

e Mixture: The molar volume of the full mixture is estimated using the default simulation workflow and divided
by the molar number of molecules in the simulation box using the divisor input of the AverageObservable
protocol.

¢ Components: The molar volume of each of the components is estimated using the default simulation work-
flow, divided by the molar number of molecules in the simulation box using the divisor input of the
AverageObservable protocol, and weighted by their mole fraction in the mixture simulation box using the
WeightByMoleFraction protocol.

The final excess molar volume is then computed by summing the component molar volumes (AddValues) and subtract-
ing these from the mixture molar volume (SubtractValues). Uncertainties are propagated through the summation
and subtraction by the normal means using the uncertainties package.

2.13. Physical Properties 43


https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/

OpenFF Evaluator Documentation

MBAR Reweighting
e Mixture: The enthalpy of the full mixture is estimated using the default reweighting workflow and divided by
the molar number of molecules in the reweighting box using an extra DivideValue protocol.

e Components: The enthalpy of each of the components is estimated using the default reweighting workflow,
divided by the molar number of molecules in the reweighting box using an extra DivideValue protocol, and
weighted by their mole fraction using the WeightByMoleFraction protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues) and subtracting these from
the mixture enthalpy (SubtractValues). Uncertainties are propagated through the summation and subtraction by the
normal means using the uncertainties package.

2.13.6 Solvation Free Energies

Solvation free energies are currently computed using the Yank free energy package using direct molecular simulations.
By default the calculations attempt to use 2000 solvent molecules, and the alchemical lambda spacings are selected
using the built-in ‘trailblazing’ algorithm.

See the Yank documentation for more details.

2.13.7 Host-Guest Binding Free Energy

Warning: The computation of this property is still in beta. Users are heavily recommended to validate any
calculations involving this property.

Host-guest binding free energies are currently computed using the attach-pull-release (APR) method [4] through inte-
gration with the pAPRika framework.

2.13.8 References
2.14 Common Workflows

As may be expected, most of the workflows used to estimate the physical properties within the framework make use of
very similar workflows. This page aims to document the built-in ‘template’ workflows from which the more complex
physical property estimation workflows are constructed.

2.14.1 Direct Simulation

Properties being estimated using the direct simulation calculation layer typically base their workflows off of the
generate_simulation_protocols() template.

Note: This template currently assumes that a liquid phase property is being computed.

The workflow produced by this template proceeds as follows:

1) 1000 molecules are inserted into a simulation box with an approximate density of 0.95 g / mL using packmol
(BuildCoordinatesPackmol).

44 Chapter 2. Supported Physical Properties


https://pythonhosted.org/uncertainties/
http://getyank.org/
http://getyank.org/latest/
https://github.com/slochower/pAPRika
http://m3g.iqm.unicamp.br/packmol/home.shtml

OpenFF Evaluator Documentation

2) the system is parameterized using either the OpenFF toolkit, TLeap or LigParGen depending on the force field
being employed (BuildSmirnoffSystem, BuildTLeapSystem or BuildLigParGenSystem).

3) an energy minimization is performed wusing the default OpenMM energy minimizer
(OpenMMEnergyMinimisation).

4) the system is equilibrated by running a short NPT simulation for 100000 steps using a timestep of 2 fs and using
the OpenMM simulation engine (OpenMMSimulation).

5) while the uncertainty in the average observable is greater than the requested tolerance (if specified):

5a) a longer NPT production simulation is run for 1000000 steps with a timestep of 2 fs and using the
OpenMM simulation protocol (OpenMMSimulation) with its default Langevin integrator and Monte
Carlo barostat.

5b) the correlated samples are removed from the simulation outputs and the average value of the
observable of interest and its uncertainty are computed by bootstrapping with replacement for 250
iterations (AverageObservable). See [1] for details of the decorrelation procedure.

5c) steps Sa) and 5b) are repeated until the uncertainty condition (if applicable) is met.

The decorrelated simulation outputs are then made available ready to be cached by a storage backend
(DecorrelateObservables, DecorrelateTrajectory).

2.14.2 MBAR Reweighting

Properties being estimated using the MBAR reweighting calculation layer typically base their workflows off of the
generate_reweighting_protocols() template.

The workflow produced by this template proceeds as follows:
1) for each stored simulation data:
1a) the cached data is retrieved from disk (UnpackStoredSimulationData)

2) the cached data from is concatenated together to form a single trajectory of configurations and observables
(ConcatenateTrajectories, ConcatenateStatistics).

3) for each stored simulation data:

3a) the system is parameterized using the force field parameters which were used when originally gen-
erating the cached datai.e. one of the reference states (BuildSmirnoffSystem, BuildTLeapSystem
or BuildLigParGenSystem).

3b) the reduced potential of each configuration in the concatenated trajectory is evaluated using the
parameterized system (OpenMMEvaluateEnergies).

4) the system is parameterized using the force field parameters with which the property of interest should be calcu-
lated using i.e. of the target state (BuildSmirnoffSystem, BuildTLeapSystem or BuildLigParGenSystem)
and the reduced potential of each configuration in the concatenated trajectory is evaluated using the parameter-
ized system (OpenMMEvaluateEnergies).

4a) (optional) if the observable of interest is a function of the force field parameters it is recomputed
using the target state parameters. These recomputed values then replace the original concatenated
observables loaded from the cached data.

5) the reference potentials, target potentials and the joined observables are sub-sampled to only retain equilibrated,
uncorrelated samples (AverageObservable, DecorrelateObservables, DecorrelateTrajectory). See
[1] for details of the decorrelation procedure.

2.14. Common Workflows 45



OpenFF Evaluator Documentation

6) the MBAR method is employed to compute the average value of the observable of interest and its uncertainty at
the target state, taking the reference state reduced potentials as input. See [2] for the theory behind this approach.
An exception is raised if there are not enough effective samples to reweight (ReweightObservable).

In more specialised cases the generate_base_reweighting_protocols() template  (which
generate_reweighting_protocols() is built off of) is instead used due to its greater flexibility.

2.14.3 References

2.15 Gradients

A most fundamental feature of this framework is its ability to rapidly compute the gradients of physical properties with
respect to the force field parameters used to estimate them.

Note: Prior to v0.3.0 of this framework a combination of re-weighting and the central finite difference was employed
to estimate the gradients of observables. From v(.3.0 onwards the fluctuation method [1] is instead used. The change
was made to, in future, enable better integration with automatic differentiation libraries such as jax, and differentiable
simulation engines such as timemachine.

2.15.1 Theory

The framework currently employs the fluctuation approach [1] to compute gradients of observables with respect to the
force field parameters used to estimate them.

This approach may be derived by direct differentiation of the ensemble average an observable X:
(X (0)) = ﬁg) / X (6) exp [~ 8 (U (7,V:6) + pV)] dFdV’
where
Q)= /exp -8 (U (7, V;0) + pV)] dFdV

is the isothermal-isobaric partion function, 6 are the force field parameters being used to estimate the observable, U the
systems potential energy, S = kT, k;, the Boltzmann constant, 7" the temperature, p the pressure and V' the volume.

The derivative of the ensemble average defined above with respect to a particular force field parameter of interest 6 is

given by:
d(X) /dX
; <d9i>_m

)~ (a)

46 Chapter 2. Supported Physical Properties


https://github.com/google/jax
https://github.com/proteneer/timemachine

OpenFF Evaluator Documentation

2.15.2 Computing dU/db;

While future integrations with differentiable simulation engines such as timemachine will allow dU/d#é; to be computed
directly from molecular simulation runs, currently most common simulation engines do not directly support computing
this quantity.

Until such an integration is complete, the framework currently employs a central finite difference approach, whereby

dU U ®;+h)—U(0; — h)
do; 2h

Although more expensive than computing either the forward or backwards derivative, the central difference method
should give a more accurate estimate of the gradient at the minima, maxima and transition points. By default a value
of h = 6; x 10~% is used. This has been found to yield finite differences which do not suffer from precision issues,
while being sufficiently small so as to yield an accurate estimate.

In practice the derivatives obtained by re-evaluating the energies of each configuration in a trajectory generated by a
molecular simulation (either after a simulation or after loading one from disk) at each of the perturbed parameters.

While there is an expense associated with extra evaluations of the potential energy function for each configuration,
this is mitigated by only computing those terms which depend upon (or may depend upon) 6;. As an example, when
computing derivatives with respect to a bond length the electrostatic and van der Waal contributions are not computed.
This significantly speeds up the computation of these derivatives.

The final derivatives are stored in ObservableArray objects for convenience and for easy propagation of gradients
through workflows. See the observables documentation for more information.

2.15.3 References

2.16 Calculation Layers

A CalculationLayer is an implementation of one calculation approach for estimating a set of physical properties,
such as via molecular simulation or evaluating some QSAR like model.

The framework stacks multiple layers together when estimating a data set of properties.

Fig. 2: A schematic of the layer system. A set of properties to estimate are fed into the first layer. Those which can be
calculated are returned back. Those that can’t are passed to the next layer until no layer are left.

Each layer will in turn attempt to evaluate the properties being estimated using the specific approach the layer represents,
such as by running a set of simulations. If the layer is unable to estimate a given property, for example if a layer does
not yet support a given property, or if the layer has insufficient data to reprocesses, the property will be passed to the
next layer for it to try and evaluate.

In practice, this allows the framework to attempt to estimate a data set using the most rapid calculation layer first, before
moving to successively slower yet more robust layers, and thus enabling as efficient as possible property estimation.

2.16. Calculation Layers 47


https://github.com/proteneer/timemachine
https://en.wikipedia.org/wiki/Quantitative_structure-activity_relationship

OpenFF Evaluator Documentation

2.16.1 Defining a Calculation Layer

A calculation layer is defined by two objects - a CalculationLayer object which implements the main layer logic,
and a CalculationLayerSchema which defines those settings and options exposed required by the layer.

One CalculationLayerSchema will be provided to the for each type of property that the layer is being asked to esti-
mate. The base CalculationLayerSchema currently only exposes options for optionally defining either the relative
or absolute uncertainty that the layer should attempt to estimate the associated property type to within, however custom
schemas can be defined per layer.

The structure of a CalculationLayer is relatively simple and permissive:

@calculation_layer()
class MyCalculationLayer(CalculationLayer):

@classmethod
def required_schema_type(cls):
return CalculationLayerSchema

@classmethod

def _schedule_calculation(
cls,
calculation_backend,
storage_backend,
layer_directory,
batch

The first thing to note is the calculation_layer () decorator which is being applied to the class. This registers the
calculation layer with the frameworks plug-in system, allowing it to be used in future calculations.

The only other requirements is that the class implement a required_schema_type class method, which returns
the type of CalculationLayerSchema that is associated with this layer, and a _schedule_calculation(). The
_schedule_calculation() is responsible for performing the actual property calculations.

The form of the _schedule_calculation() function is very flexible:

@classmethod

def _schedule_calculation(
cls,
calculation_backend,
storage_backend,
layer_directory,
batch

futures = []
for queued_property in batch.queued_properties:

futures.append(
calculation_backend. submit_task(
cls.process_property, queued_property, cls._ _name_ _

)

(continues on next page)

48 Chapter 2. Supported Physical Properties



OpenFF Evaluator Documentation

(continued from previous page)

)

return futures

It takes as arguments:

* a CalculationBackend which is used to asynchronously distribute any calculations across the available compute
resources.

* a StorageBackend which may be used to store / cache any data generated by the calculations.
* the path to the directory within which all of the calculation working files should be stored.

* the Batch of properties which this layer should attempt to estimate. This object includes the properties to esti-
mate, as well as the CalculationLayerSchema for each property type.

and must return a list of Future objects (which either must be or implement the same API as the asyncio Future object).
The easiest way to generate the futures is to perform any calculations using the calculation_backend which will
automatically return the results of any functions as such.

The future objects returned by _schedule_calculation() must return a CalculationLayerResult object, which
includes

* the estimated property if the calculation was successful (or UNDEFINED otherwise).
* alist of any exceptions (of type EvaluatorException) which were raised during the calculation.
* alist of any data to be stored by the storage backend.

As a minimal example of a method which returns one such object:

@classmethod
def process_property(cls, physical_property, **_):
"""Return a result as if the property had been successfully estimated.

e

# TODO: Do some calculations

# Set the property provenance
physical_property.source = CalculationSource(fidelity=cls._ _name__)

# Return the results object.

results = CalculationLayerResult()
results.physical_property = physical_property
return results

2.16.2 Default Schemas

Default schemas for each pair of a calculation layer and a type of physical property may be registered using the
register_calculation_schema() function:

# Register the default schema to use for density measurements being estimated
# by the direct simulation calculation layer.
register_calculation_schema(
property_class=Density,
layer_class=SimulationLayer,
(continues on next page)

2.16. Calculation Layers 49


https://docs.python.org/3/library/asyncio-future.html

OpenFF Evaluator Documentation

(continued from previous page)

schema=Density.default_simulation_schema

where the schema object should either be an instance of a CalculationLayerSchema, or a function with no required
arguments which returns a CalculationLayerSchema.

A list of the registered schemas is provided by the registered_calculation_schemas module attribute.

2.17 Workflow Layers

The WorkflowCalculationLayer and WorkflowCalculationSchema offer an abstract base implementation for
any calculation layers (and their associated schemas) which will perform their calculations using the built-in workflow
engine.

The WorkflowCalculationLayer takes as input from its calculation schema one WorkflowSchema object for each
type of property to be estimated by this layer. These schemas must at a minimum provide both the schemas of the
protocols in the workflow, and have the final_value_source attribute set to the value of the calculated observable. In
addition, the layer fully supports schemas which provide gradient information (see the gradients_sources attribute),
as well as storing any generated dataclasses (see the outputs_to_store attribute) to the available storage backend.

This layer implements three key methods which are available to be overridden by any subclass implementations:

e _get_workflow_metadata(): a method which returns the dictionary of meradata which will be made available
to the workflow (see the default metadata section for details).

e _build_workflow_graph(): the method which will construct the workflow graph to execute using the input
workflow schemas and the metadata generated by the layer.

e workflow_to_layer_result(): a method which will map any WorkflowResult objects generated by the
workflow graph into the CalculationLayerResult objects which the layer requires.

The workflow layer will by default tag each property estimated using it (or one of its derivatives) with a
CalculationSource with the fidelity attribute set to the name of the layer, and the provenance attribute set
to the schema of the workflow used to generate the property.

50 Chapter 2. Supported Physical Properties



OpenFF Evaluator Documentation

2.17.1 Default Metadata

The metadata provided to the workflows generated by this layer is generated on a per property to estimate basis mainly
using the generate_default_metadata() function. It includes:

Key Type Description

thermodynamic_state ThermodynamicState The state at which the to perform
any calculations .

substance Substance The substance to use in any
calculations.
components [Substance] The components present in the

main substance.

target_uncertainty Quantity The target uncertainty of any
calculations defined by the
calculation schema.

per_component_uncertainty Quantity The target_uncertainty
divided by
sqrt (substance.n_components
+ 1)

force_field_path str A file path to the force field

parameters to use.

parameter_gradient_keys [ParameterGradientKey] The parameters to differentiate any
observables with respect to (if any).

2.17. Workflow Layers 51


https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

2.18 The Direct Simulation Layer

The SimulationLayer is a calculation layer which employs molecular simulation to estimate data sets of physical
properties. It inherits the WorkflowCalculationLayer base layer, and primarily makes use of the built-in workflow
engine to perform the required calculations.

The simulation layer is expected to almost always be able to estimate any properties requested of it (with exceptions
being where a workflow schema has not yet been defined for a class of properties, or where an unexpected error occurs),
and can be thought of as a safe ‘fallback’ layer when no other calculation approach are able to estimate particular
properties.

It is expected that workflow schemas passed to the simulation layer should be able to estimate the gradients of the
observable they aim to calculate, as well as specify a set of storage/dataclasses which contain the data generated by the
molecular simulations.

2.18.1 Default Metadata

The simulation layer makes the same set of metadata available to its workflows as the parent workf