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An automated and scalable framework for curating, manipulating, and computing data sets of physical properties from
molecular simulation and simulation data.

The framework is built around four central ideas:

• Flexibility: New physical properties, data sources and calculation approaches are easily added via an extensible
plug-in system and a flexible workflow engine.

• Automation: Physical property measurements are readily importable from open data sources (such as the NIST
ThermoML Archive) through the data set APIs, and automatically calculated using either the built-in or user
specified calculation schemas.

• Scalability: Calculations are readily scalable from single machines and laptops up to large HPC clusters and
supercomputers through seamless integration with libraries such as dask.

• Efficiency: Properties are estimated using the fastest approach available to the framework, whether that be
through evaluating a trained surrogate model, re-evaluating cached simulation data, or by running simulations
directly.

GETTING STARTED 1
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2 GETTING STARTED



CHAPTER

ONE

CALCULATION APPROACHES

The framework is designed around the idea of allowing multiple calculation approaches for estimating the same set of
properties, in addition to estimation directly from molecular simulation, all using a uniform API.

The primary purpose of this is to take advantage of the many techniques exist which are able to leverage data from
previous simulations to rapidly estimate sets of properties, such as reweighting cached simulation data, or evaluating
surrogate models trained upon cached data. The most rapid approach which may accurately estimate a set of properties
is automatically determined by the framework on the fly.

Each approach supported by the framework is implemented as a calculation layer. Two such layers are currently
supported (although new calculation layers can be readily added via the plug-in system):

• evaluating physical properties directly from molecular simulation using the SimulationLayer.

• reprocessing cached simulation data with MBAR reweighting using the ReweightingLayer.

3
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4 Chapter 1. Calculation Approaches



CHAPTER

TWO

SUPPORTED PHYSICAL PROPERTIES

The framework has built-in support for evaluating a number of physical properties, ranging from relatively ‘cheap’ to
compute properties such as liquid densities, up to more computationally demanding properties such as solvation free
energies and host-guest binding affinities.

Included for most of these properties is the ability to calculate their derivatives with respect to force field parameters,
making the framework ideal for evaluating an objective function and it’s gradient as part of a force field optimisation.

Table 1: The physical properties which are natively supported by the
framework.

Direct Simulation MBAR Reweighting

Supported Gradients Supported Gradients

Density X X X X

Dielectric Constant X X* X X*

Hvaporization X X X X

Hmixing X X X* X

Vexcess X X X X

Gsolvation X X* × ×

Ghost-guest (beta) X* × × ×

5
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* Entries marked with an asterisk are supported but have not yet been extensively tested and validated.

See the physical properties overview page for more details.

2.1 Installation

The OpenFF Evaluator is currently installable either through conda or directly from the source code. Whichever route
is chosen, it is recommended to install the framework within a conda environment and allow the conda package manager
to install the required and optional dependencies.

More information about conda and instructions to perform a lightweight miniconda installation can be found here. It
will be assumed that these have been followed and conda is available on your machine.

2.1.1 Installation from Conda

To install the openff-evaluator from the conda-forge channel simply run:

conda install -c conda-forge openff-evaluator

If you do not have Conda installed, see the OpenFF installation guide.

2.1.2 Recommended Dependencies

If you have access to the fantastic OpenEye toolkit we recommend installing this to enable (among many other things)
the use of the BuildDockedCoordinates protocol and faster conformer generation / AM1BCC partial charge calcu-
lations:

conda install -c openeye openeye-toolkits

To parameterize systems with the Amber tleap tool using a TLeapForceFieldSource the ambertools package
must be installed:

conda install -c conda-forge 'ambertools >=19.0'

2.1.3 Installation from Source

To install the OpenFF Evaluator from source begin by cloning the repository from github:

git clone https://github.com/openforcefield/openff-evaluator.git
cd openff-evaluator

Create a custom conda environment which contains the required dependencies and activate it:

conda env create --name openff-evaluator --file devtools/conda-envs/test_env.yaml
conda activate openff-evaluator

Finally, install the estimator itself:

python setup.py develop

6 Chapter 2. Supported Physical Properties
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2.2 Architecture

The openff-evaluator framework is constructed as a collection of modular components, each performing a specific role
within the estimation of physical property data sets. These components are designed to be as extensible as possible,
with support for user created plug-ins built into their core.

Fig. 1: An overview of the openff-evaluators modular design. The framework is split into a ‘client-side’ which handles
the curation and preparation of data sets, and a ‘server-side’ which performs the estimation of the data sets.

The framework is implemented as a client-server architecture. This design allows users to spin up Evaluator Server
instances on whichever compute resources they may have available (from a single machine up to a large HPC cluster),
and to which Evaluator Client objects may connect to both request that data sets be estimated, and to query and retrieve
the results of those requests.

The client-side of the framework is predominantly responsible for providing APIs and objects for:

• curating data sets of physical properties from open data sources.

• specifing custom calculation schemas which describe how individual properties should be computed.

• requesting that data sets be estimated by a running Evaluator Server instance.

• retrieving the results of estimation requests from a running Evaluator Server instance.

while the server-side is responsible for:

• receiving estimation requests from an Evaluator Client object.

• automatically determining which calculation approach to use for each property in the request.

• executing those requests across the available compute resources following the calculation schemas provided by
the client

• caching data from any calculations which may be useful for future calculations.

All communication between servers and clients is handled through the TCP protocol.

2.3 Evaluator Client

The EvaluatorClient object is responsible for both submitting requests to estimate a data set of properties to a
running Evaluator Server instance, and for pulling back the results of those requests when complete.

An EvaluatorClient object may optionally be created using a set of ConnectionOptions which specifies the
network address of the running Evaluator Server instance to connect to:

# Specify the address of a server running on the local machine.
connection_options = ConnectionOptions(server_address="localhost", server_port=8000)
# Create the client object
evaluator_client = EvaluatorClient(connection_options)

2.2. Architecture 7
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2.3.1 Requesting Estimates

The client can request the estimation of a data set of properties using the request_estimate() function:

# Specify the data set.
data_set = PhysicalPropertyDataSet()
data_set.add_properties(...)

# Specify the force field source.
force_field = SmirnoffForceFieldSource.from_path("openff-1.0.0.offxml")

# Specify some estimation options (optional).
options = client.default_request_options(data_set, force_field)

# Specify the parameters to differentiate with respect to (optional).
gradient_keys = [

ParameterGradientKey(tag="vdW", smirks="[#6X4:1]", attribute="epsilon")
]

# Request the estimation of the data set.
request, errors = evaluator_client.request_estimate(

data_set,
force_field,
options,
gradient_keys

)

A request must at minimum specify:

• the data set of physical properties to estimate.

• the force field parameters to estimate the data set using.

and may also optionally specify:

• the options to use when estimating the property set.

• the parameters to differentiate each physical property estimate with respect to.

Note: Gradients can currently only be computed for requests using a SMIRNOFF based force field.

The request_estimate() function returns back two objects:

• a Request object which can be used to retrieve the results of the request and,

• an EvaluatorException object which will be populated if any errors occured while submitting the request.

The Request object is similar to a Future object, in that it is an object which can be used to query the current status
of a request either asynchronously:

results = request.results(synchronous=False)

or synchronously:

results = request.results(synchronous=True)

The results (which may currently be incomplete) are returned back as a RequestResult object.

8 Chapter 2. Supported Physical Properties
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The Request object is fully JSON serializable:

# Save the request to JSON
request.json(file_path="request.json", format=True)
# Load the request from JSON
request = Request.from_json(file_path="request.json")

making it easy to keep track of any open requests.

2.3.2 Request Options

The RequestOptions object allows greater control over how properties are estimated by the server. It currently allows
control over:

• calculation_layers: The calculation layers which the server should attempt to use when estimating the data
set. The order which the layers are specified in this list is the order which the server will attempt to use each
layer.

• calculation_schemas: The calculation schemas to use for each allowed calculation layer per class of property.
These will be automatically populated in the cases where no user specified schema is provided, and where a
default schema has been registered with the plugin system for the particular layer and property type.

If no options are passed to request_estimate() a default set will be generated through a call to
default_request_options(). For more information about how default calculation schemas are registered, see
the Default Schemas section.

2.3.3 Force Field Sources

Different force field representations (e.g. SMIRNOFF, TLeap, LigParGen) are defined within the framework as
ForceFieldSource objects. A force field source should specify all of the options which would be required by a
particular force field, such as the non-bonded cutoff or the charge scheme if not specified directly in the force field
itself.

Currently the framework has built in support for force fields applied via:

• the OpenFF toolkit (SmirnoffForceFieldSource).

• the tleap program from the AmberTools suite (LigParGenForceFieldSource).

• an instance of the LigParGen server (LigParGenForceFieldSource).

The client will automatically adapt any of the built-in calculation schemas which are based off of the
WorkflowCalculationSchema to use the correct workflow protocol (BuildSmirnoffSystem, BuildTLeapSystem
or BuildLigParGenSystem) for the requested force field.

2.4 Evaluator Server

The EvaluatorServer object is responsible for coordinating the estimation of physical property data sets as requested
by evaluator clients. Its primary responsibilities are to:

• recieve incoming requests from an evaluator clients to either estimate a dataset of properties, or to query the
status of a previous request.

• request that each specified calculation layers attempt to estimate the data set of properties, cascading unestimated
properties through the different layers.

2.4. Evaluator Server 9
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An EvaluatorServer must be created with an accompanying calculation backend which will be responsible for
distributing any calculations launched by the different calculation layers:

with DaskLocalCluster() as calculation_backend:

evaluator_server = EvaluatorServer(calculation_backend)
evaluator_server.start()

It may also be optionally created using a specific storage backend if the default LocalFileStorage is not sufficient:

with DaskLocalCluster() as calculation_backend:

storage_backend = LocalFileStorage()

evaluator_server = EvaluatorServer(calculation_backend, storage_backend)
evaluator_server.start()

By default the server will run synchronously until it is killed, however it may also be run asynchronously such that it
can be interacted with directly by a client in the same script:

with DaskLocalCluster() as calculation_backend:

with EvaluatorServer(calculation_backend) as evaluator_server:

# Specify the data set.
data_set = PhysicalPropertyDataSet()
data_set.add_properties(...)

# Specify the force field source.
force_field = SmirnoffForceFieldSource.from_path("openff-1.0.0.offxml")

# Request the estimation of the data set.
request, errors = evaluator_client.request_estimate(data_set,force_field)
# Wait for the results.
results = request.results(synchronous=True)

2.4.1 Estimation Batches

When a server recieves a request from a client, it will attempt to split the requested set of properties into smaller batches,
represented by the Batch object. The server is currently only able to mark entire batches of estimated properties as
being completed, as opposed to individual properties.

Currently the server supports two ways of batching properties:

• SameComponents: All properties measured for the substance containing the same components will be batched
together. As an example, the density of a 80:20 and a 20:80 mix of ethanol and water would be batched together,
but the density of pure ethanol and the density of pure water would be placed into separate batches.

• SharedComponents: All properties measured for substances containing at least one common component will
be batched together. As an example, the densities of 80:20 and 20:80 mixtures of ethanol and water, and the pure
densities of ethanol and water would be batched together.

The mode of batching is set by the client using the batch_mode attribute of the request options.

10 Chapter 2. Supported Physical Properties
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2.5 Tutorial 01 - Loading Data Sets

In this tutorial we will be exploring the frameworks utilities for loading and manipulating data sets of physical property
measurements. The tutorial will cover

• Loading a data set of density measurements from NISTs ThermoML Archive

• Filtering the data set down using a range of criteria, including temperature pressure, and composition.

• Supplementing the data set with enthalpy of vaporization (∆𝐻𝑣) data sourced directly from the literature

If you haven’t yet installed the OpenFF Evaluator framework on your machine, check out the installation instructions
here!

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

[ ]: # !wget https://raw.githubusercontent.com/openforcefield/openff-evaluator/main/docs/
→˓tutorials/colab_setup.ipynb
# %run colab_setup.ipynb

For the sake of clarity all warnings will be disabled in this tutorial:

[ ]: import warnings

warnings.filterwarnings("ignore")
import logging

logging.getLogger("openff.toolkit").setLevel(logging.ERROR)

2.5.1 Extracting Data from ThermoML

For anyone who is not familiar with the ThermoML archive - it is a fantastic database of physical property measurements
which have been extracted from data published in the

• Journal of Chemical and Engineering Data

• Journal of Chemical Thermodynamics

• Fluid Phase Equilibria

• Thermochimica Acta

• International Journal of Thermophysics

journals. It includes data for a wealth of different physical properties, from simple densities and melting points, to
activity coefficients and osmotic coefficients, all of which is freely available. As such, it serves as a fantastic resource
for benchmarking and optimising molecular force fields against.

The Evaluator framework has built-in support for extracting this wealth of data, storing the data in easy to manipulate
python objects, and for automatically re-computing those properties using an array of calculation techniques, such as
molecular simulations and, in future, from trained surrogate models.

This support is provided by the ThermoMLDataSet object:

[ ]: from openff.evaluator.datasets.thermoml import ThermoMLDataSet

The ThermoMLDataSet object offers two main routes for extracting data the the archive:

2.5. Tutorial 01 - Loading Data Sets 11
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• extracting data directly from the NIST ThermoML web server

• extracting data from a local ThermoML XML archive file

Here we will be extracting data directly from the web server. To pull data from the web server we need to specifiy the
digital object identifiers (DOIs) of the data we wish to extract - these correspond to the DOI of the publication that the
data was initially sourced from.

For this tutorial we will be extracting data using the following DOIs:

[ ]: data_set = ThermoMLDataSet.from_doi(
"10.1016/j.fluid.2013.10.034",
"10.1021/je1013476",

)

We can inspect the data set to see how many properties were loaded:

[ ]: len(data_set)

and for how many different substances those properties were measured for:

[ ]: len(data_set.substances)

We can also easily check which types of properties were loaded in:

[ ]: print(data_set.property_types)

2.5.2 Filtering the Data Set

The data set object we just created contains many different functions which will allow us to filter the data down, retaining
only those measurements which are of interest to us.

The first thing we will do is filter out all of the measurements which aren’t density measurements:

[ ]: from openff.evaluator.datasets.curation.components.filtering import (
FilterByPropertyTypes,
FilterByPropertyTypesSchema,

)

data_set = FilterByPropertyTypes.apply(
data_set, FilterByPropertyTypesSchema(property_types=["Density"])

)

print(data_set.property_types)

Next we will filter out all measurements which were made away from atmospheric conditions:

[ ]: from openff.evaluator.datasets.curation.components.filtering import (
FilterByPressure,
FilterByPressureSchema,
FilterByTemperature,
FilterByTemperatureSchema,

)

print(f"There were {len(data_set)} properties before filtering")
(continues on next page)
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(continued from previous page)

# First filter by temperature.
data_set = FilterByTemperature.apply(

data_set,
FilterByTemperatureSchema(minimum_temperature=298.0, maximum_temperature=298.2),

)
# and then by pressure
data_set = FilterByPressure.apply(

data_set, FilterByPressureSchema(minimum_pressure=101.224, maximum_pressure=101.426)
)

print(f"There are now {len(data_set)} properties after filtering")

Finally, we will filter out all measurements which were not measured for either ethanol (CCO) or isopropanol (CC(C)O):

[ ]: from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmiles,
FilterBySmilesSchema,

)

data_set = FilterBySmiles.apply(
data_set, FilterBySmilesSchema(smiles_to_include=["CCO", "CC(C)O"])

)

print(f"There are now {len(data_set)} properties after filtering")

We will convert the filtered data to a pandas DataFrame to more easily visualize the final data set:

[ ]: pandas_data_set = data_set.to_pandas()
pandas_data_set[

[
"Temperature (K)",
"Pressure (kPa)",
"Component 1",
"Density Value (g / ml)",
"Source",

]
].head()

Through filtering, we have now cut down from over 250 property measurements down to just 2. There are many more
possible filters which can be applied. All of these and more information about the data set object can be found in the
PhysicalPropertyDataSet (from which the ThermoMLDataSet class inherits) API documentation.

2.5. Tutorial 01 - Loading Data Sets 13
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2.5.3 Adding Extra Data

For the final part of this tutorial, we will be supplementing our newly filtered data set with some enthalpy of vaporization
(∆𝐻𝑣) measurements sourced directly from the literature (as opposed to from the ThermoML archive).

We will be sourcing values of the ∆𝐻𝑣 of ethanol and isopropanol, summarised in the table below, from the Enthalpies
of vaporization of some aliphatic alcohols publication:

Compound Temperature / 𝐾 ∆𝐻𝑣 / 𝑘𝐽𝑚𝑜𝑙−1 𝛿∆𝐻𝑣 / 𝑘𝐽𝑚𝑜𝑙−1

Ethanol 298.15 42.26 0.02
Isopropanol 298.15 45.34 0.02

In order to create a new ∆𝐻𝑣 measurements, we will first define the state (namely temperature and pressure) that the
measurements were recorded at:

[ ]: from openff.units import unit

from openff.evaluator.thermodynamics import ThermodynamicState

thermodynamic_state = ThermodynamicState(
temperature=298.15 * unit.kelvin, pressure=1.0 * unit.atmosphere

)

Note: Here we have made use of the ``openff.units.unit`` module to attach units to the temperatures and pressures we
are filtering by. This module simply exposes a ``UnitRegistry`` from the fantastic pintlibrary. Pint provides full support
for attaching to units to values and is used extensively throughout this framework.

the substances that the measurements were recorded for:

[ ]: from openff.evaluator.substances import Substance

ethanol = Substance.from_components("CCO")
isopropanol = Substance.from_components("CC(C)O")

and the source of this measurement (defined as the DOI of the publication):

[ ]: from openff.evaluator.datasets import MeasurementSource

source = MeasurementSource(doi="10.1016/S0021-9614(71)80108-8")

We will combine this information with the values of the measurements to create an object which encodes each of the
∆𝐻𝑣 measurements

[ ]: from openff.evaluator.datasets import PropertyPhase
from openff.evaluator.properties import EnthalpyOfVaporization

ethanol_hvap = EnthalpyOfVaporization(
thermodynamic_state=thermodynamic_state,
phase=PropertyPhase.Liquid | PropertyPhase.Gas,
substance=ethanol,
value=42.26 * unit.kilojoule / unit.mole,
uncertainty=0.02 * unit.kilojoule / unit.mole,
source=source,

)
(continues on next page)

14 Chapter 2. Supported Physical Properties
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(continued from previous page)

isopropanol_hvap = EnthalpyOfVaporization(
thermodynamic_state=thermodynamic_state,
phase=PropertyPhase.Liquid | PropertyPhase.Gas,
substance=isopropanol,
value=45.34 * unit.kilojoule / unit.mole,
uncertainty=0.02 * unit.kilojoule / unit.mole,
source=source,

)

These properties can then be added to our data set:

[ ]: data_set.add_properties(ethanol_hvap, isopropanol_hvap)

If we print the data set again using pandas we should see that our new measurements have been added:

[ ]: pandas_data_set = data_set.to_pandas()
pandas_data_set[

[
"Temperature (K)",
"Pressure (kPa)",
"Component 1",
"Density Value (g / ml)",
"EnthalpyOfVaporization Value (kJ / mol)",
"Source",

]
].head()

2.5.4 Conclusion

We will finish off this tutorial by saving the data set we have created as a JSON file for future use:

[ ]: data_set.json("filtered_data_set.json", format=True);

And that concludes the first tutorial. For more information about data sets in the Evaluator framework check out the
data set and ThermoML documentation.

In the next tutorial we will be estimating the data set we have created here using molecular simulation.

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.6 Tutorial 02 - Estimating Data Sets

In this tutorial we will be estimating the data set we created in the first tutorial using molecular simulation. The tutorial
will cover:

• loading in the data set to estimate, and the force field parameters to use in the calculations.

• defining custom calculation schemas for the properties in our data set.

• estimating the data set of properties using an Evaluator server instance.

• retrieving the results from the server and storing them on disk.
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Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

[ ]: # !wget https://raw.githubusercontent.com/openforcefield/openff-evaluator/main/docs/
→˓tutorials/colab_setup.ipynb
# %run colab_setup.ipynb

For this tutorial make sure that you are using a GPU accelerated runtime.

For the sake of clarity all warnings will be disabled in this tutorial:

[ ]: import warnings

warnings.filterwarnings("ignore")
import logging

logging.getLogger("openff.toolkit").setLevel(logging.ERROR)

We will also enable time-stamped logging to help track the progress of our calculations:

[ ]: from openff.evaluator.utils import setup_timestamp_logging

setup_timestamp_logging()

2.6.1 Loading the Data Set and Force Field Parameters

We will begin by loading in the data set which we created in the previous tutorial:

[ ]: import pathlib

from openff.evaluator.datasets import PhysicalPropertyDataSet

data_set_path = "filtered_data_set.json"

# If you have not yet completed that tutorial or do not have the data set file
# available, this tutorial will use a copies provided by the framework

if not pathlib.Path(data_set_path).exists():
from openff.evaluator.utils import get_data_filename

data_set_path = get_data_filename("tutorials/tutorial01/filtered_data_set.json")

data_set = PhysicalPropertyDataSet.from_json(data_set_path)

As a reminder, this data contains the experimentally measured density and 𝐻𝑣𝑎𝑝 measurements for ethanol and iso-
propanol at ambient conditions:

[ ]: data_set.to_pandas().head()

We will also define the set of force field parameters which we wish to use to estimate this data set of properties. The
framework has support for estimating force field parameters from a range of sources, including those in the OpenFF
SMIRNOFF format, those which can be applied by AmberTools, and more.
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Each source of a force field has a corresponding source object in the framework. In this tutorial we will be using the
OpenFF Parsley force field which is based off of the SMIRNOFF format:

[ ]: from openff.evaluator.forcefield import SmirnoffForceFieldSource

force_field_path = "openff-1.0.0.offxml"
force_field_source = SmirnoffForceFieldSource.from_path(force_field_path)

2.6.2 Defining the Calculation Schemas

The next step we will take will be to define a custom calculation schema for each type of property in our data set.

A calculation schema is the blueprint for how a type of property should be calculated using a particular calculation
approach, such as directly by simulation, by reprocessing cached simulation data or, in future, a range of other options.

The framework has built-in schemas defining how densities and 𝐻𝑣𝑎𝑝 should be estimated from molecular simulation,
covering all aspects from coordinate generation, force field assignment, energy minimisation, equilibration and finally
the production simulation and data analysis. All of this functionality is implemented via the frameworks built-in,
lightweight workflow engine, however we won’t dive into the details of this until a later tutorial.

For the purpose of this tutorial, we will simply modify the default calculation schemas to reduce the number of
molecules to include in our simulations to speed up the calculations. This step can be skipped entirely if the default
options (which we recommend using for ‘real-world’ calculations) are to be used:

[ ]: from openff.evaluator.properties import Density, EnthalpyOfVaporization

density_schema = Density.default_simulation_schema(n_molecules=256)
h_vap_schema = EnthalpyOfVaporization.default_simulation_schema(n_molecules=256)

We could further use this method to set either the absolute or the relative uncertainty that the property should be
estimated to within. If either of these are set, the simulations will automatically be extended until the target uncertainty
in the property has been met.

For our purposes however we won’t set any targets, leaving the simulations to run for the default 1 ns.

To use these custom schemas, we need to add them to the a request options object which defines all of the options for
estimating our data set:

[ ]: from openff.evaluator.client import RequestOptions

# Create an options object which defines how the data set should be estimated.
estimation_options = RequestOptions()
# Specify that we only wish to use molecular simulation to estimate the data set.
estimation_options.calculation_layers = ["SimulationLayer"]

# Add our custom schemas, specifying that the should be used by the 'SimulationLayer'
estimation_options.add_schema("SimulationLayer", "Density", density_schema)
estimation_options.add_schema("SimulationLayer", "EnthalpyOfVaporization", h_vap_schema)
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2.6.3 Launching the Server

The framework is split into two main applications - an EvaluatorServer and an EvaluatorClient.

The EvaluatorServer is the main object which will perform any and all calculations needed to estimate sets of
properties. It is design to run on whichever compute resources you may have available (whether that be a single
machine or a high performance cluster), wait until a user requests a set of properties be estimated, and then handle that
request.

The EvaluatorClient is the object used by the user to send requests to estimate data sets to running server instances
over a TCP connection. It is also used to query the server to see when that request has been fulfilled, and to pull back
any results.

Let us begin by spawning a new server instance.

To launch a server, we need to define how this object is going to interact with the compute resource it is running on.

This is accomplished using a calculation backend. While there are several to choose from depending on your needs,
well will go with a simple dask based one designed to run on a single machine:

[ ]: import os

from openff.evaluator.backends import ComputeResources
from openff.evaluator.backends.dask import DaskLocalCluster

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

calculation_backend = DaskLocalCluster(
number_of_workers=1,
resources_per_worker=ComputeResources(

number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.CUDA,

),
)
calculation_backend.start()

Here we have specified that we want to run our calculations on a single worker which has access to a single GPU.

With that defined, we can go ahead and spin up the server:

[ ]: from openff.evaluator.server import EvaluatorServer

evaluator_server = EvaluatorServer(calculation_backend=calculation_backend)
evaluator_server.start(asynchronous=True)

The server will run asynchronously in the background waiting until a client connects and requests that a data set be
estimated.
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2.6.4 Estimating the Data Set

With the server spun up we can go ahead and connect to it using an EvaluatorClient and request that it estimate our
data set using the custom options we defined earlier:

[ ]: from openff.evaluator.client import EvaluatorClient

evaluator_client = EvaluatorClient()

request, exception = evaluator_client.request_estimate(
property_set=data_set,
force_field_source=force_field_source,
options=estimation_options,

)

assert exception is None

The server will now receive the requests and begin whirring away fulfilling it. It should be noted that the
request_estimate() function returns two values - a request object, and an exception object. If all went well (as
it should do here) the exception object will be None.

The request object represents the request which we just sent to the server. It stores the unique id which the server
assigned to the request, as well as the address of the server that the request was sent to.

The request object is primarily used to query the current state of our request, and to pull down the results when it the
request finishes. Here we will use it it synchronously query the server every 30 seconds until our request has completed.

[ ]: # Wait for the results.
results, exception = request.results(synchronous=True, polling_interval=30)
assert exception is None

Note: we could also asynchronously query for the results of the request. The resultant results object would then contain
the partial results of any completed estimates, as well as any exceptions raised during the estimation.

2.6.5 Inspecting the Results

Now that the server has finished estimating our data set and returned the results to us, we can begin to inspect the results
of the calculations:

[ ]: print(len(results.queued_properties))

print(len(results.estimated_properties))

print(len(results.unsuccessful_properties))
print(len(results.exceptions))

We can (hopefully) see here that there were no exceptions raised during the calculation, and that all of our properties
were successfully estimated.

We will extract the estimated data set and save this to disk:

[ ]: results.estimated_properties.json("estimated_data_set.json", format=True);
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2.6.6 Conclusion

And that concludes the second tutorial. In the next tutorial we will be performing some basic analysis on our estimated
results.

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.7 Tutorial 03 - Analysing Data Sets

In this tutorial we will be analysing the results of the calculations which we performed in the second tutorial. The
tutorial will cover:

• comparing the estimated data set with the experimental data set.

• plotting the two data sets.

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

[ ]: # !wget https://raw.githubusercontent.com/openforcefield/openff-evaluator/main/docs/
→˓tutorials/colab_setup.ipynb
# %run colab_setup.ipynb

For the sake of clarity all warnings will be disabled in this tutorial:

[ ]: import warnings

warnings.filterwarnings("ignore")
import logging

logging.getLogger("openff.toolkit").setLevel(logging.ERROR)

2.7.1 Loading the Data Sets

We will begin by loading both the experimental data set and the estimated data set:

[ ]: import pathlib

from openff.evaluator.datasets import PhysicalPropertyDataSet

experimental_data_set_path = "filtered_data_set.json"
estimated_data_set_path = "estimated_data_set.json"

# If you have not yet completed the previous tutorials or do not have the data set files
# available, this tutorial will use copies provided by the framework

if not (
pathlib.Path(experimental_data_set_path).exists()
and pathlib.Path(estimated_data_set_path).exists()

):
from openff.evaluator.utils import get_data_filename

(continues on next page)
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(continued from previous page)

experimental_data_set_path = get_data_filename(
"tutorials/tutorial01/filtered_data_set.json"

)
estimated_data_set_path = get_data_filename(

"tutorials/tutorial02/estimated_data_set.json"
)

experimental_data_set = PhysicalPropertyDataSet.from_json(experimental_data_set_path)
estimated_data_set = PhysicalPropertyDataSet.from_json(estimated_data_set_path)

if everything went well from the previous tutorials, these data sets will contain the density and 𝐻𝑣𝑎𝑝 of ethanol and
isopropanol:

[ ]: experimental_data_set.to_pandas().head()

[ ]: estimated_data_set.to_pandas().head()

2.7.2 Extracting the Results

We will now compare how the value of each property estimated by simulation deviates from the experimental mea-
surement.

To do this we will extract a list which contains pairs of experimental and evaluated properties. We can easily match
properties based on the unique ids which were automatically assigned to them on their creation:

[ ]: properties_by_type = {"Density": [], "EnthalpyOfVaporization": []}

for experimental_property in experimental_data_set:
# Find the estimated property which has the same id as the
# experimental property.
estimated_property = next(

x for x in estimated_data_set if x.id == experimental_property.id
)

# Add this pair of properties to the list of pairs
property_type = experimental_property.__class__.__name__
properties_by_type[property_type].append(

(experimental_property, estimated_property)
)

2.7.3 Plotting the Results

We will now compare the experimental results to the estimated ones by plotting them using matplotlib:

[ ]: from matplotlib import pyplot

# Create the figure we will plot to.
figure, axes = pyplot.subplots(nrows=1, ncols=2, figsize=(8.0, 4.0))

(continues on next page)
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# Set the axis titles
axes[0].set_xlabel("OpenFF 1.0.0")
axes[0].set_ylabel("Experimental")
axes[0].set_title("Density $kg m^{-3}$")

axes[1].set_xlabel("OpenFF 1.0.0")
axes[1].set_ylabel("Experimental")
axes[1].set_title("$H_{vap}$ $kJ mol^{-1}$")

# Define the preferred units of the properties
from openff.units import unit

preferred_units = {
"Density": unit.kilogram / unit.meter**3,
"EnthalpyOfVaporization": unit.kilojoule / unit.mole,

}

for index, property_type in enumerate(properties_by_type):
experimental_values = []
estimated_values = []

preferred_unit = preferred_units[property_type]

# Convert the values of our properties to the preferred units.
for experimental_property, estimated_property in properties_by_type[property_type]:

experimental_values.append(
experimental_property.value.to(preferred_unit).magnitude

)
estimated_values.append(estimated_property.value.to(preferred_unit).magnitude)

axes[index].plot(
estimated_values, experimental_values, marker="x", linestyle="None"

)

2.7.4 Conclusion

And that concludes the third tutorial!

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.8 Tutorial 04 - Optimizing Force Fields

In this tutorial we will be using the OpenFF Evaluator framework in combination with the fantastic ForceBalance
software to optimize a molecular force field against the physical property data set we created in the first tutorial.

ForceBalance offers a suite of tools for optimizing molecular force fields against a set of target data. Perhaps one of
the most fundamental targets to fit against is experimental physical property data. Physical property data has been
used extensively for decades to inform the values of non-bonded Van der Waals (VdW) interaction parameters (often
referred to as Lennard-Jones parameters).
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ForceBalance is seamlessly integrated with the evaluator framework, using it to evaluate the deviations between target
experimentally measured data points and those evaluated using the force field being optimized (as well as the gradient
of those deviations with respect to the force field parameters being optimized).

The tutorial will cover:

• setting up the input files and directory structure required by ForceBalace.

• setting up an EvaluatorServer for ForceBalance to connect to.

• running ForceBalance using those input files.

• extracting and plotting a number of statistics output during the optimization.

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

[ ]: # !wget https://raw.githubusercontent.com/openforcefield/openff-evaluator/main/docs/
→˓tutorials/colab_setup.ipynb
# %run colab_setup.ipynb

For this tutorial make sure that you are using a GPU accelerated runtime.

For the sake of clarity all warnings will be disabled in this tutorial:

[ ]: import warnings

warnings.filterwarnings("ignore")
import logging

logging.getLogger("openff.toolkit").setLevel(logging.ERROR)

We will also enable time-stamped logging to help track the progress of our calculations:

[ ]: from openff.evaluator.utils import setup_timestamp_logging

setup_timestamp_logging()

2.8.1 Setting up the ForceBalance Inputs

In this section we will be creating the directory structure required by ForceBalance, and populating it with the required
input files.

Creating the Directory Structure

To begin with, we will create a directory to store the starting force field parameters in:

[ ]: !mkdir forcefield

and one to store the input parameters for our ‘fitting target’ - in this case a data set of physical properties:

[ ]: !mkdir -p targets/pure_data

2.8. Tutorial 04 - Optimizing Force Fields 23



OpenFF Evaluator Documentation

Defining the Training Data Set

With the directories created, we will next specify the data set of physical properties which we will be training the force
field against:

[ ]: # For convenience we will use the copy shipped with the framework
from openff.evaluator.utils import get_data_filename

data_set_path = get_data_filename("tutorials/tutorial01/filtered_data_set.json")

# Load the data set.
from openff.evaluator.datasets import PhysicalPropertyDataSet

data_set = PhysicalPropertyDataSet.from_json(data_set_path)

# Due to a small bug in ForceBalance we need to zero out any uncertainties
# which are undefined. This will be fixed in future versions.
from openff.evaluator.attributes import UNDEFINED

for physical_property in data_set:
if physical_property.uncertainty != UNDEFINED:

continue

physical_property.uncertainty = 0.0 * physical_property.default_unit()

To speed up the runtime of this tutorial, we will only train the force field against measurements made for ethanol

[ ]: from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmiles,
FilterBySmilesSchema,

)

data_set = FilterBySmiles.apply(
data_set,
FilterBySmilesSchema(smiles_to_include=["CCO"]),

)

in real optimizations however the data set should be much larger than two data points!

With those changes made, we can save the data set in our targets directory:

[ ]: # Store the data set in the `pure_data` targets folder:
data_set.json("targets/pure_data/training_set.json");

Defining the Starting Force Field Parameters

We will use the OpenFF Parsley 1.0.0 force field as the starting parameters for the optimization. These can be loaded
directly into an OpenFF ForceField object using the OpenFF toolkit:

[ ]: from openff.toolkit.typing.engines.smirnoff import ForceField

force_field = ForceField("openff-1.0.0.offxml")
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In order to use these parameters in ForceBalance, we need to ‘tag’ the individual parameters in the force field that we
wish to optimize. The toolkit easily enables us to add these tags using cosmetic attributes:

[ ]: # Extract the smiles of all unique components in our data set.
from openff.toolkit.topology import Molecule, Topology

all_smiles = {
component.smiles
for substance in data_set.substances
for component in substance.components

}

for smiles in all_smiles:
# Find those VdW parameters which would be applied to those components.
molecule = Molecule.from_smiles(smiles)
topology = Topology.from_molecules([molecule])

labels = force_field.label_molecules(topology)[0]

# Tag the exercised parameters as to be optimized.
for parameter in labels["vdW"].values():

parameter.add_cosmetic_attribute("parameterize", "epsilon, rmin_half")

Here we have made use of the toolkit’s handy label_molecules function to see which VdW parameters will be
assigned to the molecules in our data set, and tagged them to be parameterized.

With those tags added, we can save the parameters in the forcefield directory:

[ ]: # Save the annotated force field file.
force_field.to_file("forcefield/openff-1.0.0-tagged.offxml")

Note: The force field parameters are stored in the OpenFF SMIRNOFF XML format.

Creating the Main Input File

Next, we will create the main ForceBalance input file. For the sake of brevity a default input file which ships with this
framework will be used:

[ ]: input_file_path = get_data_filename("tutorials/tutorial04/optimize.in")

# Copy the input file into our directory structure
import shutil

shutil.copyfile(input_file_path, "optimize.in")

While there are many options that can be set within this file, the main options of interest for our purposes appear at the
bottom of the file:

[ ]: !tail -n 6 optimize.in

Here we have specified that we wish to create a new ForceBalance Evaluator_SMIRNOFF target called pure_data
(corresponding to the name of the directory we created in the earlier step).

The main input to this target is the file path to an options.json file - it is this file which will specify all the options
which should be used when ForceBalance requests that our target data set be estimated using the current sets of force
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field parameters.

We will create this file in the targets/pure_data directory later in this section.

The data set is the JSON serialized representation of the PhysicalPropertyDataSet we created during the first
tutorial.

Defining the Estimation Options

The final step before we can start the optimization is to create the set of options which will govern how our data set is
estimated using the Evaluator framework.

These options will be stored in an Evaluator_SMIRNOFF object:

[ ]: from forcebalance.evaluator_io import Evaluator_SMIRNOFF

# Create the ForceBalance options object
target_options = Evaluator_SMIRNOFF.OptionsFile()
# Set the path to the data set
target_options.data_set_path = "training_set.json"

This object exposes both a set of ForceBalance specific options, as well as the set of Evaluator options.

The ForceBalance specific options allow us to define how each type of property will contribute to the optimization
objective function (the value which we are trying to minimize):

∆(𝜃) =

𝑁∑︁
𝑛

𝑤𝑒𝑖𝑔ℎ𝑡𝑛
𝑀𝑛

𝑀𝑛∑︁
𝑚

(︂
𝑦𝑟𝑒𝑓𝑚 − 𝑦𝑚(𝜃)

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑛

)︂2

where 𝑁 is the number of types of properties (e.g. density, enthalpy of vaporization, etc.), 𝑀𝑛 is the number of data
points of type 𝑛, 𝑦𝑟𝑒𝑓𝑚 is the experimental value of data point 𝑚 and 𝑦𝑚(𝜃) is the estimated value of data point 𝑚 using
the current force field parameters

In particular, the options object allows us to specify both an amount to scale each type of properties contribution to
the objective function by (𝑤𝑒𝑖𝑔ℎ𝑡𝑛), and the amount to scale the difference between the experimental and estimated
properties (𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑛):

[ ]: from openff.units import unit

target_options.weights = {"Density": 1.0, "EnthalpyOfVaporization": 1.0}
target_options.denominators = {

"Density": 30.0 * unit.kilogram / unit.meter**3,
"EnthalpyOfVaporization": 3.0 * unit.kilojoule / unit.mole,

}

where here we have chosen values that ensure that both types of properties contribute roughly equally to the total
objective function.

The Evaluator specific options correspond to a standard RequestOptions object:

[ ]: from openff.evaluator.client import RequestOptions

# Create the options which evaluator should use.
evaluator_options = RequestOptions()
# Choose which calculation layers to make available.
evaluator_options.calculation_layers = ["SimulationLayer"]

(continues on next page)
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# Reduce the default number of molecules
from openff.evaluator.properties import Density, EnthalpyOfVaporization

density_schema = Density.default_simulation_schema(n_molecules=256)
h_vap_schema = EnthalpyOfVaporization.default_simulation_schema(n_molecules=256)

evaluator_options.add_schema("SimulationLayer", "Density", density_schema)
evaluator_options.add_schema("SimulationLayer", "EnthalpyOfVaporization", h_vap_schema)

target_options.estimation_options = evaluator_options

These options allow us to control exactly how each type of property should be estimated, which calculation approaches
should be used and more. Here we use the same options are were used in the second tutorial

Note: more information about the different estimation options can be found here

And that’s the options created! We will finish off by serializing the options into our target directory:

[ ]: # Save the options to file.
with open("targets/pure_data/options.json", "w") as file:

file.write(target_options.to_json())

2.8.2 Launching an Evaluator Server

With the ForceBalance options created, we can now move onto launching the EvaluatorServer which ForceBalance
will call out to when it needs the data set to be evaluated:

[ ]: import os

# Launch the calculation backend which will distribute any calculations.
from openff.evaluator.backends import ComputeResources
from openff.evaluator.backends.dask import DaskLocalCluster

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

calculation_backend = DaskLocalCluster(
number_of_workers=1,
resources_per_worker=ComputeResources(

number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.CUDA,

),
)
calculation_backend.start()

# Launch the server object which will listen for estimation requests and schedule any
# required calculations.
from openff.evaluator.server import EvaluatorServer

evaluator_server = EvaluatorServer(calculation_backend=calculation_backend)
evaluator_server.start(asynchronous=True)
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We will not go into the details of this here as this was already covered in the second tutorial

2.8.3 Running ForceBalance

With the inputs created and an Evaluator server spun up, we are finally ready to run the optimization! This can be
accomplished with a single command:

[ ]: !ForceBalance optimize.in

If everything went well ForceBalance should exit cleanly, and will have stored out newly optimized force field in the
results directory.

[ ]: !ls result/optimize

2.8.4 Plotting the results

As a last step in this tutorial, we will extract the objective function at each iteration from the ForceBalance output files
and plot this using matplotlib.

First, we will extract the objective function from the pickle serialized output files which can be found in the
optimize.tmp/pure_data/iter_****/ directories:

[ ]: # Determine how many iterations ForceBalance has completed.
from glob import glob

from forcebalance.nifty import lp_load

n_iterations = len(glob("optimize.tmp/pure_data/iter*"))

# Extract the objective function at each iteration.
objective_function = []

for iteration in range(n_iterations):
folder_name = "iter_" + str(iteration).zfill(4)
file_path = f"optimize.tmp/pure_data/{folder_name}/objective.p"

statistics = lp_load(file_path)
objective_function.append(statistics["X"])

print(objective_function)

The objective function is then easily plotted:

[ ]: from matplotlib import pyplot

figure, axis = pyplot.subplots(1, 1, figsize=(4, 4))

axis.set_xlabel("Iteration")
axis.set_ylabel("Objective Function")

axis.plot(range(n_iterations), objective_function, marker="o")

figure.tight_layout()
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2.8.5 Conclusion

And that concludes the fourth tutorial!

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.9 Property Data Sets

A PhysicalPropertyDataSet is a collection of measured physical properties encapsulated as physical property
objects. They may be created from scratch:

# Define a density measurement
density = Density(

substance=Substance.from_components("O"),
thermodynamic_state=ThermodynamicState(

pressure=1.0*unit.atmospheres, temperature=298.15*unit.kelvin
),
phase=PropertyPhase.Liquid,
value=1.0*unit.gram/unit.millilitre,
uncertainty=0.0001*unit.gram/unit.millilitre

)

# Add the property to a data set
data_set = PhysicalPropertyDataset()
data_set.add_properties(density)

are readily JSON (de)serializable:

# Save the data set as a JSON file.
data_set.json(file_path="data_set.json", format=True)
# Load the data set from a JSON file
data_set = PhysicalPropertyDataset.from_json(file_path="data_set.json")

and may be converted to pandas DataFrame objects:

data_set.to_pandas()

The framework implements specific data set objects for extracting data measurements directly from a number of open
data sources, such as the ThermoMLDataSet (see ThermoML Archive) which provides utilities for extracting the data
from the NIST ThermoML Archive and converting it into the standard framework objects.

Data set objects are directly iterable:

for physical_property in data_set:
...

or can be iterated over for a specific substance:

for physical_property in data_set.properties_by_substance(substance):
...

or for a specific type of property:
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for physical_property in data_set.properties_by_type("Density"):
...

2.9.1 Physical Properties

The PhysicalProperty object is a base class for any object which describes a measured property of substance, and
is defined by a combination of:

• the observed value of the property.

• Substance specifying the substance that the measurement was collected for.

• PropertyPhase specifying the phase that the measurement was collected in.

• ThermodynamicState specifying the thermodynamic conditions under which the measurement was performed

as well as optionally

• the uncertainty in the value of the property.

• a list of ParameterGradient which defines the gradient of the property with respect to the model parameters
if it was computationally estimated.

• a Source specifying the source (either experimental or computational) and provenance of the measurement.

Each type of property supported by the framework, such as a density of an enthalpy of vaporization, must have it’s own
class representation which inherits from PhysicalProperty:

# Define a density measurement
density = Density(

substance=Substance.from_components("O"),
thermodynamic_state=ThermodynamicState(

pressure=1.0*unit.atmospheres, temperature=298.15*unit.kelvin
),
phase=PropertyPhase.Liquid,
value=1.0*unit.gram/unit.millilitre,
uncertainty=0.0001*unit.gram/unit.millilitre

)

2.9.2 Substances

A Substance is defined by a number of components (which may have specific roles assigned to them such as being
solutes in the system) and the amount of each component in the substance.

To create a pure substance containing only water:

water_substance = Substance.from_components("O")

To create binary mixture of water and methanol in a 20:80 ratio:

binary_mixture = Substance()
binary_mixture.add_component(Component(smiles="O"), MoleFraction(value=0.2))
binary_mixture.add_component(Component(smiles="CO"), MoleFraction(value=0.8))

To create a substance of an infinitely dilute paracetamol solute dissolved in water:
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solution = Substance()
solution.add_component(

Component(smiles="O", role=Component.Role.Solvent), MoleFraction(value=1.0)
)
solution.add_component(

Component(smiles="CC(=O)Nc1ccc(O)cc1", role=Component.Role.Solute),␣
→˓ExactAmount(value=1)
)

2.9.3 Property Phases

The PropertyPhase enum describes the possible phases which a measurement was performed in.

While the enum only has three defined phases (Solid, Liquid and Gas), multiple phases can be formed by OR’ing (|)
multiple phases together. As an example, to define a phase for a liquid and gas coexisting:

liquid_gas_phase = PropertyPhase.Liquid | PropertyPhase.Gas

2.9.4 Thermodynamic States

A ThermodynamicState specifies a combination of the temperature and (optionally) the pressure at which a measure-
ment is performed:

thermodynamic_state = ThermodynamicState(
temperature=298.15*unit.kelvin, pressure=1.0*unit.atmosphere

)

2.10 ThermoML Archive

The ThermoMLDataSet object offers an API for extracting physical properties from the NIST ThermoML Archive,
both directly from the archive itself or from files stored in the IUPAC- standard ThermoML format.

The API only supports extracting those properties which have been registered with the frameworks plug-in system, and
does not currently load the full set of metadata available in the archive files.

Note: If the metadata you require is not currently exposed, please open an issue on the GitHub issue tracker to request
it.

Currently the framework has built-in support for extracting:

• Mass density, kg/m3 (Density)

• Excess molar volume, m3/mol (ExcessMolarVolume)

• Relative permittivity at zero frequency (DielectricConstant)

• Excess molar enthalpy (molar enthalpy of mixing), kJ/mol (EnthalpyOfMixing)

• Molar enthalpy of vaporization or sublimation, kJ/mol (EnthalpyOfVaporization)

where here both the ThermoML property name (as defined by the IUPAC XML schema) and the built-in framework
class are listed.
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2.10.1 Registering Properties

Properties to be extracted from ThermoML archives must have a corresponding class representation to be loading into.
This class representation must both:

• inherit from the frameworks PhysicalProperty class and

• be registered with the frameworks plug-in system using either the thermoml_property() decorator or the
register_thermoml_property() method.

As an example, a class representation of the ThermoML ‘Mass density, kg/m3’ property could be defined and registered
with the plug-in system using:

@thermoml_property("Mass density, kg/m3", supported_phases=PropertyPhase.Liquid)
class Density(PhysicalProperty):

"""A class representation of a mass density property"""

The thermoml_property() decorator takes in the name of the ThermoML property (as defined by the IUPAC schema)
as well as the phases which the framework will be able to estimate this property in.

Multiple ThermoML properties can be mapped onto a single class using the flexible
register_thermoml_property() function. For example, the ‘Specific volume, m3/kg’ property (which is simply
the reciprocal of mass density) may be mapped onto the Density object by providing a conversion_function:

def specific_volume_to_mass_density(specific_volume):
"""Converts a specific volume measurement into a mass
density.

Parameters
----------
specific_volume: ThermoMLProperty

The specific volume measurement to convert.
"""
mass_density = Density()

mass_density.value = 1.0 / specific_volume.value

if mass_density.uncertainty is not None:
mass_density.uncertainty = 1.0 / mass_density.uncertainty

mass_density.phase = specific_volume.phase

mass_density.thermodynamic_state = specific_volume.thermodynamic_state
mass_density.substance = specific_volume.substance

return mass_density

# Register the ThermoML property using the conversion function.
register_thermoml_property(

thermoml_string="Specific volume, m3/kg",
supported_phases=PropertyPhase.Liquid,
property_class=Density,
conversion_function=specific_volume_to_mass_density

)

Converting the different density derivatives into a single density class removes the need to produce many very similar
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class representations of density measurements, and allows a single calculation schema to be defined for all variants.

2.10.2 Loading Data Sets

Data sets are most easily loaded using their digital object identifiers (DOI). For example, to retrieve the ThermoML
data set that accompanies this paper, we can simply use the DOI 10.1016/j.jct.2005.03.012:

data_set = ThermoMLDataset.from_doi('10.1016/j.jct.2005.03.012')

Data can be pulled from multiple sources at once by specifying multiple identifiers:

identifiers = ['10.1021/acs.jced.5b00365', '10.1021/acs.jced.5b00474']
dataset = ThermoMLDataset.from_doi(*identifiers)

Entire archives of properties can be downloaded directly from the ThermoML website and parsed by the framework.
For example, to create a data set object containing all of the measurements recorded from the International Journal of
Thermophysics:

# Download the archive of all properties from the IJT journal.
import requests
request = requests.get("https://trc.nist.gov/ThermoML/IJT.tgz", stream=True)

# Make sure the request went ok.
assert request

# Unzip the files into a new 'ijt_files' directory.
import io, tarfile
tar_file = tarfile.open(fileobj=io.BytesIO(request.content))
tar_file.extractall("ijt_files")

# Get the names of the extracted files
import glob
file_names = glob.glob("ijt_files/*.xml")

# Create the data set object
from openff.evaluator.datasets.thermoml import ThermoMLDataSet
data_set = ThermoMLDataSet.from_file(*file_names)

# Save the data set to a JSON object
data_set.json(file_path="ijt.json", format=True)

2.11 Taproom

The TaproomDataSet object offers an API for retrieving host-guest binding affinity measurements from the curated
taproom repository.

Note: taproom may be installed by running conda install -c conda-forge taproom

This includes retrieving all of the data available:
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from openff.evaluator.datasets.taproom import TaproomDataSet
taproom_set = TaproomDataSet()

data measure for a single host molecule (e.g. alpha-cyclodextrin):

acd_taproom_set = TaproomDataSet(host_codes=["acd"])

or data for a particular host and guest pair:

acd_taproom_set = TaproomDataSet(host_codes=["acd"], guest_codes=["bam"])

All measurements in this data set have an associated TaproomSource as their source provenance. This tracks both the
original source of the measurement as well as the taproom identifier.

Note: Currently the data set object will assume a default set of buffer conditions (either no buffer, or a buffer of a
salt with a specified ionic strength) rather than reading the buffer from the taproom measurement directory. This is
consistent with previous applications of the data set.

2.12 Data Set Curation

The framework offers a full suite of features to facilitate the curation of data sets of physical properties, including:

• a significant amount of data filters, including to filter by state, substance composition and chemical functionali-
ties.

and components to

• easily download and import the full NIST ThermoML and FreeSolv archives .

• select data points which were measured close to a set of target states, and which were measured for a diverse
range of substances which contain specific functionalities.

• convert between different compatible property types (e.g. convert density <-> excess molar volume data).

These features are implemented as CurationComponent objects, which take as input an associated
CurationComponentSchema which controls how the curation components should be applied to a particular
data set (or a data set which is being stored as pandas DataFrame object).

An example of a curation component would be one that filters out data points which were measured outside of a
particular temperature range:

# Filter data points measured at less than 290.0 K or greater than 320.0 K
filtered_frame = FilterByTemperature.apply(

data_frame,
FilterByTemperatureSchema(minimum_temperature=290.0, maximum_temperature=320.0),

)

Curation components can be conveniently chained together using a CurationWorkflow and an associated
CurationWorkflowSchema so as to easily curated full training and testing data sets:

curation_schema = WorkflowSchema(
component_schemas=[

# Import the ThermoML archive.
thermoml.ImportThermoMLDataSchema()

(continues on next page)
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(continued from previous page)

# Filter out any measurements made for systems with more than two components
filtering.FilterByNComponentsSchema(n_components=[1, 2]),
# Remove any duplicate data.
filtering.FilterDuplicatesSchema(),
# Filter out data points measured away from ambient
# and biologically relevant temperatures.
filtering.FilterByTemperatureSchema(

minimum_temperature=298.0, maximum_temperature=320.0
),
# Retain only density and enthalpy of mixing data points.
filtering.FilterByPropertyTypesSchema(

property_types=["Density", "EnthalpyOfMixing"],
),
# Select data points measured for alcohols, esters or mixtures of both.
selection.SelectSubstancesSchema(

target_environments=[
ChemicalEnvironment.Alcohol,
ChemicalEnvironment.CarboxylicAcidEster,

],
n_per_environment=10,

),
]

)

data_frame = Workflow.apply(pandas.DataFrame(), curation)

2.12.1 Examples

Data Extraction

• ImportFreeSolv: A component which will download the latest, full FreeSolv data set from the GitHub repos-
itory:

from openff.evaluator.datasets.curation.components.freesolv import (
ImportFreeSolv,
ImportFreeSolvSchema,

)

# Import the full FreeSolv data set.
data_frame = ImportFreeSolv.apply(pandas.DataFrame(), ImportFreeSolvSchema())

• ImportThermoMLData: A component which will download all supported data from the NIST ThermoML
Archive:

from openff.evaluator.datasets.curation.components.thermoml import (
ImportThermoMLData,
ImportThermoMLDataSchema,

)

# Import all data collected from the IJT journal.
data_frame = ImportThermoMLData.apply(pandas.DataFrame(),␣
→˓ImportThermoMLDataSchema()) (continues on next page)
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Filtration

• FilterDuplicates: A component to remove duplicate data points (within a specified precision) from a data
set:

from openff.evaluator.datasets.curation.components.filtering import (
FilterDuplicates,
FilterDuplicatesSchema,

)

filtered_frame = FilterDuplicates.apply(data_frame, FilterDuplicatesSchema())

• FilterByTemperature: A component which will filter out data points which were measured outside of a
specified temperature range:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByTemperature,
FilterByTemperatureSchema,

)

filtered_frame = FilterByTemperature.apply(
data_frame,
FilterByTemperatureSchema(minimum_temperature=290.0, maximum_temperature=320.0),

)

• FilterByPressure: A component which will filter out data points which were measured outside of a specified
pressure range:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByPressure,
FilterByPressureSchema,

)

filtered_frame = FilterByPressure.apply(
data_frame,
FilterByPressureSchema(minimum_pressure=100.0, maximum_pressure=140.0),

)

• FilterByMoleFraction: A component which will filter out data points which were measured outside of a
specified mole fraction range:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByMoleFraction,
FilterByMoleFractionSchema,

)

filtered_frame = FilterByMoleFraction.apply(
data_frame, FilterByMoleFractionSchema(mole_fraction_ranges={2: [[(0.1, 0.3)]]})

)

• FilterByRacemic: A component which will filter out data points which were measured for racemic mixtures:
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from openff.evaluator.datasets.curation.components.filtering import (
FilterByRacemic,
FilterByRacemicSchema,

)

filtered_frame = FilterByRacemic.apply(data_frame, FilterByRacemicSchema())

• FilterByElements: A component which will filter out data points which were measured for systems which
contain specific elements:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByElements,
FilterByElementsSchema,

)

filtered_frame = FilterByElements.apply(
data_frame,
FilterByElementsSchema(allowed_elements=["C", "O", "H"]),

)

• FilterByPropertyTypes: A component which will apply a filter which only retains properties of specified
types:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByPropertyTypes,
FilterByPropertyTypesSchema,

)

# Retain only density measurements made for either pure or binary systems.
filtered_frame = FilterByPropertyTypes.apply(

data_frame,
FilterByPropertyTypesSchema(

property_types=["Density"],
n_components={"Density": [1, 2]},

),
)

• FilterByStereochemistry: A component which filters out data points measured for systems whereby the
stereochemistry of a number of components is undefined:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByStereochemistry,
FilterByStereochemistrySchema,

)

filtered_frame = FilterByStereochemistry.apply(
data_frame, FilterByStereochemistrySchema()

)

• FilterByCharged: A component which filters out data points measured for substance where any of the con-
stituent components have a net non-zero charge.:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByCharged,

(continues on next page)
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FilterByChargedSchema,
)

filtered_frame = FilterByCharged.apply(data_frame, FilterByChargedSchema())

• FilterByIonicLiquid: A component which filters out data points measured for substances which contain or
are classed as an ionic liquids:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByIonicLiquid,
FilterByIonicLiquidSchema,

)

filtered_frame = FilterByIonicLiquid.apply(data_frame, FilterByIonicLiquidSchema())

• FilterBySmiles: A component which filters the data set so that it only contains either a specific set of smiles,
or does not contain any of a set of specifically excluded smiles:

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmiles,
FilterBySmilesSchema,

)

filtered_frame = FilterBySmiles.apply(
data_frame, FilterBySmilesSchema(smiles_to_include=["CCCO"]),

)

• FilterBySmirks: A component which filters a data set so that it only contains measurements made for
molecules which contain (or don’t) a set of chemical environments represented by SMIRKS patterns:

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmirks,
FilterBySmirksSchema,

)

filtered_frame = FilterBySmirks.apply(
data_frame, FilterBySmirksSchema(smirks_to_include=["[#6a]"]),

)

• FilterByNComponents: A component which filters out data points measured for systems with specified number
of components:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByNComponents,
FilterByNComponentsSchema,

)

filtered_frame = FilterByNComponents.apply(
data_frame, FilterByNComponentsSchema(n_components=[1, 2])

)

• FilterBySubstances: A component which filters the data set so that it only contains properties measured for
particular substances:
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from openff.evaluator.datasets.curation.components.filtering import (
FilterBySubstances,
FilterBySubstancesSchema,

)

filtered_frame = FilterBySubstances.apply(
data_frame, FilterBySubstancesSchema(substances_to_include=[("CO", "C")])

)

• FilterByEnvironments: A component which filters a data set so that it only contains measurements made for
substances which contain specific chemical environments:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByEnvironments,
FilterByEnvironmentsSchema,

)

filtered_frame = FilterByEnvironments.apply(
data_frame,
FilterByEnvironmentsSchema(

environments=[
ChemicalEnvironment.Aqueous,
ChemicalEnvironment.Alcohol,
ChemicalEnvironment.Amine,

]
),

)

Data Selection

• SelectSubstances: A component for selecting data points which were measured for specified number of max-
imally diverse systems containing a specified set of chemical functionalities:

# Select (if possible) data points which were measured for 10 different (and
# structurally diverse) alcohols.
schema = SelectSubstancesSchema(

target_environments=[ChemicalEnvironment.Alcohol],
n_per_environment=10,

)

data_frame = ConvertExcessDensityData.apply(data_frame, schema)

• SelectDataPoints: A component for selecting a set of data points which are close to a particular set of states:

# Select (if possible) density data points which were measured for pure systems
# at close to 298.15 K and 308.15K
schema = SelectDataPointsSchema(

target_states=[
TargetState(

property_types=[("Density", 1)],
states=[

State(temperature=298.15, pressure=101.325, mole_fractions=(1.0,),
(continues on next page)
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State(temperature=308.15, pressure=101.325, mole_fractions=(1.0,),
],

)
]

)

data_frame = ConvertExcessDensityData.apply(data_frame, schema)

Data Conversion

• ConvertExcessDensityData: A component for converting binary mass density data to excess molar volume
data and vice versa where pure density data measured for the components is available:

from openff.evaluator.datasets.curation.components.conversion import (
ConvertExcessDensityData,
ConvertExcessDensityDataSchema,

)

converted_data_frame = ConvertExcessDensityData.apply(
data_frame, ConvertExcessDensityDataSchema()

)

2.13 Physical Properties

A core philosophy of this framework is that users should be able to seamlessly curate data sets of physical properties
and then estimate that data set using computational methods without significant user intervention and using sensible,
well validated workflows.

This page aims to provide an overview of which physical properties are supported by the framework and how they are
computed using the different calculation layers.

In this document ⟨𝑋⟩ will be used to denote the ensemble average of an observable 𝑋 .

2.13.1 Density

The density (𝜌) is computed according to

𝜌 =

⟨
𝑀

𝑉

⟩
where 𝑀 and 𝑉 are the total molar mass and volume the system respectively.
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Direct Simulation

The density is estimated using the default simulation workflow without modification. The estimation of liquid densities
is assumed.

MBAR Reweighting

The density is estimated using the default reweighting workflow without modification. The estimation of liquid densities
is assumed.

2.13.2 Dielectric Constant

The dielectric constant (𝜀) is computed from the fluctuations in a systems dipole moment (see Equation 7 of [1])
according to:

𝜀 = 1 +

⟨︀
�⃗�2
⟩︀
− ⟨�⃗�⟩2

3𝜀0 ⟨𝑉 ⟩ 𝑘𝑏𝑇

where �⃗�, 𝑉 are the systems dipole moment and volume respectively, 𝑘𝑏 the Boltzmann constant, 𝑇 the temperature,
and 𝜀0 the permittivity of free space.

Note: In v0.2.2 and earlier of the framework the variance was computed as
⟨

(�⃗�− ⟨�⃗�⟩)2
⟩

in order to match the mdtraj
implementation which has been used in previous studies by the OpenFF Consortium (see for example [2]). The two
approaches should be numerically indistinguishable however.

Direct Simulation

The dielectric is estimated using the default simulation workflow which has been modified to use the specialized
AverageDielectricConstant protocol in place of the default AverageObservable protocol. The estimation of
liquid dielectric constants is assumed.

MBAR Reweighting

The dielectric is estimated using the default reweighting workflow which has been modified to use the specialized
ReweightDielectricConstant protocol in place of the default ReweightObservable protocol. It should be noted
that the ReweightDielectricConstant protocol employs bootstrapping to compute the uncertainty in the average
dielectric constant, rather than attempting to propagate uncertainties in the average dipole moments and volumes. The
estimation of liquid dielectric constants is assumed.

2.13.3 Enthalpy of Vaporization

The enthalpy of vaporization ∆𝐻𝑣𝑎𝑝 (see [3]) can be computed according to

∆𝐻𝑣𝑎𝑝 = ⟨𝐻𝑔𝑎𝑠⟩ − ⟨𝐻𝑙𝑖𝑞𝑢𝑖𝑑⟩ = ⟨𝐸𝑔𝑎𝑠⟩ − ⟨𝐸𝑙𝑖𝑞𝑢𝑖𝑑⟩ + 𝑝 (⟨𝑉𝑔𝑎𝑠⟩ − ⟨𝑉𝑙𝑖𝑞𝑢𝑖𝑑⟩)

where 𝐻 , 𝐸, and 𝑉 are the enthalpy, total energy and volume respectively.

Under the assumption that 𝑉𝑔𝑎𝑠 >> 𝑉𝑙𝑖𝑞𝑢𝑖𝑑 and that the gas is ideal the above expression can be simplified to

∆𝐻𝑣𝑎𝑝 = ⟨𝑈𝑔𝑎𝑠⟩ − ⟨𝑈𝑙𝑖𝑞𝑢𝑖𝑑⟩ + 𝑅𝑇
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where 𝑈 is the potential energy, 𝑇 the temperature and 𝑅 the universal gas constant. This simplified expression is
computed by default by this framework.

Direct Simulation

• Liquid phase: The potential energy of the liquid phase is estimated using the default simulation workflow, and
divided by the number of molecules in the simulation box using the divisor input of the AverageObservable
protocol.

• Gas phase: The potential energy of the gas phase is estimated using the default simulation workflow, which has
been modified so that

– the simulation box only contains a single molecule.

– all periodic boundary conditions have been disabled.

– all simulations are performed in the NVT ensemble.

– the production simulation is run for 15000000 steps at a time (rather than 1000000 steps).

– all simulations are run using the OpenMM reference platform (CPU only) regardless of whether a GPU is
available. This is fastest platform to use when simulating a single molecule in vacuum with OpenMM.

The final enthalpy is then computed by subtracting the gas potential energy from the liquid potential energy
(SubtractValues) and adding the 𝑅𝑇 term (AddValues). Uncertainties are propagated through the subtraction by
the normal means using the uncertainties package.

MBAR Reweighting

• Liquid phase: The potential energy of the liquid phase is estimated using the default reweighting workflow, and
divided by the number of molecules in the simulation box using an extra DivideValue protocol.

• Gas phase: The potential energy of the gas phase is estimated using the default reweighting workflow, which
has been modified so that all periodic boundary conditions have been disabled.

The final enthalpy is then computed by subtracting the gas potential energy from the liquid potential energy
(SubtractValues) and adding the 𝑅𝑇 term (AddValues). Uncertainties are propagated through the subtraction by
the normal means using the uncertainties package.

2.13.4 Enthalpy of Mixing

The enthalpy of mixing ∆𝐻𝑚𝑖𝑥 (𝑥0, · · · , 𝑥𝑀−1) for a system of 𝑀 components is computed according to

∆𝐻𝑚𝑖𝑥 (𝑥0, · · · , 𝑥𝑀−1) =
⟨𝐻𝑚𝑖𝑥⟩
𝑁𝑚𝑖𝑥

−
𝑀∑︁
𝑖

𝑥𝑖
⟨𝐻𝑖⟩
𝑁𝑖

where 𝐻𝑚𝑖𝑥 is the enthalpy of the full mixture, and 𝐻𝑖, 𝑥𝑖 are the enthalpy and the mole fraction of component 𝑖
respectively. 𝑁𝑚𝑖𝑥 and 𝑁𝑖 are the total number of molecules used in the full mixture simulations and the simulations
of each individual component respectively.

When re-weighting cached data to compute 𝐻𝑚𝑖𝑥 we make the approximation that the kinetic energy contributions
cancel out between the mixture and each of the components, and hence can be computed by only re-weighting the NPT
reduced potential:

∆𝐻𝑚𝑖𝑥 (𝑥0, · · · , 𝑥𝑀−1) ≈ 1

𝛽

(︃
⟨𝑢𝑚𝑖𝑥⟩
𝑁𝑚𝑖𝑥

−
𝑀∑︁
𝑖

𝑥𝑖
⟨𝑢𝑖⟩
𝑁𝑖

)︃
where 𝑢 ≡ 𝛽 (𝑈 + 𝑝𝑉 ) is the NPT reduced potential, 𝑈 the potential energy, 𝑝 the pressure and 𝑉 the volume.
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Direct Simulation

• Mixture: The enthalpy of the full mixture is estimated using the default simulation workflow and divided by the
number of molecules in the simulation box using the divisor input of the AverageObservable protocol.

• Components: The enthalpy of each of the components is estimated using the default simulation workflow, di-
vided by the number of molecules in the simulation box using the divisor input of the AverageObservable
protocol, and weighted by their mole fraction in the mixture simulation box using the WeightByMoleFraction
protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues) and subtracting these from
the mixture enthalpy (SubtractValues). Uncertainties are propagated through the summation and subtraction by the
normal means using the uncertainties package.

MBAR Reweighting

• Mixture: The reduced potential of the full mixture is estimated using the default reweighting workflow and
divided by the number of molecules in the reweighting box using an extra DivideValue protocol.

• Components: The reduced potential of each of the components is estimated using the default reweighting work-
flow, divided by the number of molecules in the reweighting box using an extra DivideValue protocol, and
weighted by their mole fraction using the WeightByMoleFraction protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues), subtracting these from the
mixture enthalpy (SubtractValues), and multiplying by 1/𝛽 (MultiplyValue). Uncertainties are propagated by the
normal means using the uncertainties package.

2.13.5 Excess Molar Volume

The excess molar volume ∆𝑉𝑒𝑥𝑐𝑒𝑠𝑠 (𝑥0, · · · , 𝑥𝑀−1) for a system of 𝑀 components is computed according to

∆𝑉𝑒𝑥𝑐𝑒𝑠𝑠 (𝑥0, · · · , 𝑥𝑀−1) = 𝑁𝐴

(︃
⟨𝑉𝑚𝑖𝑥⟩
𝑁𝑚𝑖𝑥

−
𝑀∑︁
𝑖

𝑥𝑖
⟨𝑉𝑖⟩
𝑁𝑖

)︃

where 𝑉𝑚𝑖𝑥 is the volume of the full mixture, and 𝑉𝑖, 𝑥𝑖 are the volume and the mole fraction of component 𝑖 respec-
tively. 𝑁𝑚𝑖𝑥 and 𝑁𝑖 are the total number of molecules used in the full mixture simulations and the simulations of each
individual component respectively, and 𝑁𝐴 is the Avogadro constant.

Direct Simulation

• Mixture: The molar volume of the full mixture is estimated using the default simulation workflow and divided
by the molar number of molecules in the simulation box using the divisor input of the AverageObservable
protocol.

• Components: The molar volume of each of the components is estimated using the default simulation work-
flow, divided by the molar number of molecules in the simulation box using the divisor input of the
AverageObservable protocol, and weighted by their mole fraction in the mixture simulation box using the
WeightByMoleFraction protocol.

The final excess molar volume is then computed by summing the component molar volumes (AddValues) and subtract-
ing these from the mixture molar volume (SubtractValues). Uncertainties are propagated through the summation
and subtraction by the normal means using the uncertainties package.
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MBAR Reweighting

• Mixture: The enthalpy of the full mixture is estimated using the default reweighting workflow and divided by
the molar number of molecules in the reweighting box using an extra DivideValue protocol.

• Components: The enthalpy of each of the components is estimated using the default reweighting workflow,
divided by the molar number of molecules in the reweighting box using an extra DivideValue protocol, and
weighted by their mole fraction using the WeightByMoleFraction protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues) and subtracting these from
the mixture enthalpy (SubtractValues). Uncertainties are propagated through the summation and subtraction by the
normal means using the uncertainties package.

2.13.6 Solvation Free Energies

Solvation free energies are currently computed using the Yank free energy package using direct molecular simulations.
By default the calculations attempt to use 2000 solvent molecules, and the alchemical lambda spacings are selected
using the built-in ‘trailblazing’ algorithm.

See the Yank documentation for more details.

2.13.7 Host-Guest Binding Free Energy

Warning: The computation of this property is still in beta. Users are heavily recommended to validate any
calculations involving this property.

Host-guest binding free energies are currently computed using the attach-pull-release (APR) method [4] through inte-
gration with the pAPRika framework.

2.13.8 References

2.14 Common Workflows

As may be expected, most of the workflows used to estimate the physical properties within the framework make use of
very similar workflows. This page aims to document the built-in ‘template’ workflows from which the more complex
physical property estimation workflows are constructed.

2.14.1 Direct Simulation

Properties being estimated using the direct simulation calculation layer typically base their workflows off of the
generate_simulation_protocols() template.

Note: This template currently assumes that a liquid phase property is being computed.

The workflow produced by this template proceeds as follows:

1) 1000 molecules are inserted into a simulation box with an approximate density of 0.95 g / mL using packmol
(BuildCoordinatesPackmol).
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2) the system is parameterized using either the OpenFF toolkit, TLeap or LigParGen depending on the force field
being employed (BuildSmirnoffSystem, BuildTLeapSystem or BuildLigParGenSystem).

3) an energy minimization is performed using the default OpenMM energy minimizer
(OpenMMEnergyMinimisation).

4) the system is equilibrated by running a short NPT simulation for 100000 steps using a timestep of 2 fs and using
the OpenMM simulation engine (OpenMMSimulation).

5) while the uncertainty in the average observable is greater than the requested tolerance (if specified):

5a) a longer NPT production simulation is run for 1000000 steps with a timestep of 2 fs and using the
OpenMM simulation protocol (OpenMMSimulation) with its default Langevin integrator and Monte
Carlo barostat.

5b) the correlated samples are removed from the simulation outputs and the average value of the
observable of interest and its uncertainty are computed by bootstrapping with replacement for 250
iterations (AverageObservable). See [1] for details of the decorrelation procedure.

5c) steps 5a) and 5b) are repeated until the uncertainty condition (if applicable) is met.

The decorrelated simulation outputs are then made available ready to be cached by a storage backend
(DecorrelateObservables, DecorrelateTrajectory).

2.14.2 MBAR Reweighting

Properties being estimated using the MBAR reweighting calculation layer typically base their workflows off of the
generate_reweighting_protocols() template.

The workflow produced by this template proceeds as follows:

1) for each stored simulation data:

1a) the cached data is retrieved from disk (UnpackStoredSimulationData)

2) the cached data from is concatenated together to form a single trajectory of configurations and observables
(ConcatenateTrajectories, ConcatenateStatistics).

3) for each stored simulation data:

3a) the system is parameterized using the force field parameters which were used when originally gen-
erating the cached data i.e. one of the reference states (BuildSmirnoffSystem, BuildTLeapSystem
or BuildLigParGenSystem).

3b) the reduced potential of each configuration in the concatenated trajectory is evaluated using the
parameterized system (OpenMMEvaluateEnergies).

4) the system is parameterized using the force field parameters with which the property of interest should be calcu-
lated using i.e. of the target state (BuildSmirnoffSystem, BuildTLeapSystem or BuildLigParGenSystem)
and the reduced potential of each configuration in the concatenated trajectory is evaluated using the parameter-
ized system (OpenMMEvaluateEnergies).

4a) (optional) if the observable of interest is a function of the force field parameters it is recomputed
using the target state parameters. These recomputed values then replace the original concatenated
observables loaded from the cached data.

5) the reference potentials, target potentials and the joined observables are sub-sampled to only retain equilibrated,
uncorrelated samples (AverageObservable, DecorrelateObservables, DecorrelateTrajectory). See
[1] for details of the decorrelation procedure.
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6) the MBAR method is employed to compute the average value of the observable of interest and its uncertainty at
the target state, taking the reference state reduced potentials as input. See [2] for the theory behind this approach.
An exception is raised if there are not enough effective samples to reweight (ReweightObservable).

In more specialised cases the generate_base_reweighting_protocols() template (which
generate_reweighting_protocols() is built off of) is instead used due to its greater flexibility.

2.14.3 References

2.15 Gradients

A most fundamental feature of this framework is its ability to rapidly compute the gradients of physical properties with
respect to the force field parameters used to estimate them.

Note: Prior to v0.3.0 of this framework a combination of re-weighting and the central finite difference was employed
to estimate the gradients of observables. From v0.3.0 onwards the fluctuation method [1] is instead used. The change
was made to, in future, enable better integration with automatic differentiation libraries such as jax, and differentiable
simulation engines such as timemachine.

2.15.1 Theory

The framework currently employs the fluctuation approach [1] to compute gradients of observables with respect to the
force field parameters used to estimate them.

This approach may be derived by direct differentiation of the ensemble average an observable 𝑋:

⟨𝑋 (𝜃)⟩ =
1

𝑄 (𝜃)

∫︁
𝑋 (𝜃) exp [−𝛽 (𝑈 (�⃗�, 𝑉 ; 𝜃) + 𝑝𝑉 )] d�⃗�d𝑉

where

𝑄 (𝜃) =

∫︁
exp [−𝛽 (𝑈 (�⃗�, 𝑉 ; 𝜃) + 𝑝𝑉 )] d�⃗�d𝑉

is the isothermal-isobaric partion function, 𝜃 are the force field parameters being used to estimate the observable, 𝑈 the
systems potential energy, 𝛽 ≡ 𝑘𝑏𝑇 , 𝑘𝑏 the Boltzmann constant, 𝑇 the temperature, 𝑝 the pressure and 𝑉 the volume.

The derivative of the ensemble average defined above with respect to a particular force field parameter of interest 𝜃 is
given by:

d ⟨𝑋⟩
d𝜃𝑖

=

⟨
d𝑋

d𝜃𝑖

⟩
− 𝛽 [⟨

𝑋
d𝑈

d𝜃𝑖

⟩
−
⟨

d𝑈

d𝜃𝑖

⟩
⟨𝑋⟩
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2.15.2 Computing d𝑈/d𝜃𝑖

While future integrations with differentiable simulation engines such as timemachine will allow d𝑈/d𝜃𝑖 to be computed
directly from molecular simulation runs, currently most common simulation engines do not directly support computing
this quantity.

Until such an integration is complete, the framework currently employs a central finite difference approach, whereby

d𝑈

d𝜃𝑖
≈ 𝑈 (𝜃𝑖 + ℎ) − 𝑈 (𝜃𝑖 − ℎ)

2ℎ

Although more expensive than computing either the forward or backwards derivative, the central difference method
should give a more accurate estimate of the gradient at the minima, maxima and transition points. By default a value
of ℎ = 𝜃𝑖 × 10−4 is used. This has been found to yield finite differences which do not suffer from precision issues,
while being sufficiently small so as to yield an accurate estimate.

In practice the derivatives obtained by re-evaluating the energies of each configuration in a trajectory generated by a
molecular simulation (either after a simulation or after loading one from disk) at each of the perturbed parameters.

While there is an expense associated with extra evaluations of the potential energy function for each configuration,
this is mitigated by only computing those terms which depend upon (or may depend upon) 𝜃𝑖. As an example, when
computing derivatives with respect to a bond length the electrostatic and van der Waal contributions are not computed.
This significantly speeds up the computation of these derivatives.

The final derivatives are stored in ObservableArray objects for convenience and for easy propagation of gradients
through workflows. See the observables documentation for more information.

2.15.3 References

2.16 Calculation Layers

A CalculationLayer is an implementation of one calculation approach for estimating a set of physical properties,
such as via molecular simulation or evaluating some QSAR like model.

The framework stacks multiple layers together when estimating a data set of properties.

Fig. 2: A schematic of the layer system. A set of properties to estimate are fed into the first layer. Those which can be
calculated are returned back. Those that can’t are passed to the next layer until no layer are left.

Each layer will in turn attempt to evaluate the properties being estimated using the specific approach the layer represents,
such as by running a set of simulations. If the layer is unable to estimate a given property, for example if a layer does
not yet support a given property, or if the layer has insufficient data to reprocesses, the property will be passed to the
next layer for it to try and evaluate.

In practice, this allows the framework to attempt to estimate a data set using the most rapid calculation layer first, before
moving to successively slower yet more robust layers, and thus enabling as efficient as possible property estimation.
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2.16.1 Defining a Calculation Layer

A calculation layer is defined by two objects - a CalculationLayer object which implements the main layer logic,
and a CalculationLayerSchema which defines those settings and options exposed required by the layer.

One CalculationLayerSchema will be provided to the for each type of property that the layer is being asked to esti-
mate. The base CalculationLayerSchema currently only exposes options for optionally defining either the relative
or absolute uncertainty that the layer should attempt to estimate the associated property type to within, however custom
schemas can be defined per layer.

The structure of a CalculationLayer is relatively simple and permissive:

@calculation_layer()
class MyCalculationLayer(CalculationLayer):

@classmethod
def required_schema_type(cls):

return CalculationLayerSchema

@classmethod
def _schedule_calculation(

cls,
calculation_backend,
storage_backend,
layer_directory,
batch

):
...

The first thing to note is the calculation_layer() decorator which is being applied to the class. This registers the
calculation layer with the frameworks plug-in system, allowing it to be used in future calculations.

The only other requirements is that the class implement a required_schema_type class method, which returns
the type of CalculationLayerSchema that is associated with this layer, and a _schedule_calculation(). The
_schedule_calculation() is responsible for performing the actual property calculations.

The form of the _schedule_calculation() function is very flexible:

@classmethod
def _schedule_calculation(

cls,
calculation_backend,
storage_backend,
layer_directory,
batch

):

futures = []

for queued_property in batch.queued_properties:

futures.append(
calculation_backend.submit_task(

cls.process_property, queued_property, cls.__name__
)

(continues on next page)
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(continued from previous page)

)

return futures

It takes as arguments:

• a CalculationBackend which is used to asynchronously distribute any calculations across the available compute
resources.

• a StorageBackend which may be used to store / cache any data generated by the calculations.

• the path to the directory within which all of the calculation working files should be stored.

• the Batch of properties which this layer should attempt to estimate. This object includes the properties to esti-
mate, as well as the CalculationLayerSchema for each property type.

and must return a list of Future objects (which either must be or implement the same API as the asyncio Future object).
The easiest way to generate the futures is to perform any calculations using the calculation_backend which will
automatically return the results of any functions as such.

The future objects returned by _schedule_calculation() must return a CalculationLayerResult object, which
includes

• the estimated property if the calculation was successful (or UNDEFINED otherwise).

• a list of any exceptions (of type EvaluatorException) which were raised during the calculation.

• a list of any data to be stored by the storage backend.

As a minimal example of a method which returns one such object:

@classmethod
def process_property(cls, physical_property, **_):

"""Return a result as if the property had been successfully estimated.
"""

# TODO: Do some calculations

# Set the property provenance
physical_property.source = CalculationSource(fidelity=cls.__name__)

# Return the results object.
results = CalculationLayerResult()
results.physical_property = physical_property
return results

2.16.2 Default Schemas

Default schemas for each pair of a calculation layer and a type of physical property may be registered using the
register_calculation_schema() function:

# Register the default schema to use for density measurements being estimated
# by the direct simulation calculation layer.
register_calculation_schema(

property_class=Density,
layer_class=SimulationLayer,

(continues on next page)

2.16. Calculation Layers 49

https://docs.python.org/3/library/asyncio-future.html


OpenFF Evaluator Documentation

(continued from previous page)

schema=Density.default_simulation_schema
)

where the schema object should either be an instance of a CalculationLayerSchema, or a function with no required
arguments which returns a CalculationLayerSchema.

A list of the registered schemas is provided by the registered_calculation_schemas module attribute.

2.17 Workflow Layers

The WorkflowCalculationLayer and WorkflowCalculationSchema offer an abstract base implementation for
any calculation layers (and their associated schemas) which will perform their calculations using the built-in workflow
engine.

The WorkflowCalculationLayer takes as input from its calculation schema one WorkflowSchema object for each
type of property to be estimated by this layer. These schemas must at a minimum provide both the schemas of the
protocols in the workflow, and have the final_value_source attribute set to the value of the calculated observable. In
addition, the layer fully supports schemas which provide gradient information (see the gradients_sources attribute),
as well as storing any generated dataclasses (see the outputs_to_store attribute) to the available storage backend.

This layer implements three key methods which are available to be overridden by any subclass implementations:

• _get_workflow_metadata(): a method which returns the dictionary of metadata which will be made available
to the workflow (see the default metadata section for details).

• _build_workflow_graph(): the method which will construct the workflow graph to execute using the input
workflow schemas and the metadata generated by the layer.

• workflow_to_layer_result(): a method which will map any WorkflowResult objects generated by the
workflow graph into the CalculationLayerResult objects which the layer requires.

The workflow layer will by default tag each property estimated using it (or one of its derivatives) with a
CalculationSource with the fidelity attribute set to the name of the layer, and the provenance attribute set
to the schema of the workflow used to generate the property.
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2.17.1 Default Metadata

The metadata provided to the workflows generated by this layer is generated on a per property to estimate basis mainly
using the generate_default_metadata() function. It includes:

Key Type Description

thermodynamic_state ThermodynamicState The state at which the to perform
any calculations .

substance Substance The substance to use in any
calculations.

components [Substance] The components present in the
main substance.

target_uncertainty Quantity The target uncertainty of any
calculations defined by the
calculation schema.

per_component_uncertainty Quantity The target_uncertainty
divided by
sqrt(substance.n_components
+ 1)

force_field_path str A file path to the force field
parameters to use.

parameter_gradient_keys [ParameterGradientKey] The parameters to differentiate any
observables with respect to (if any).
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2.18 The Direct Simulation Layer

The SimulationLayer is a calculation layer which employs molecular simulation to estimate data sets of physical
properties. It inherits the WorkflowCalculationLayer base layer, and primarily makes use of the built-in workflow
engine to perform the required calculations.

The simulation layer is expected to almost always be able to estimate any properties requested of it (with exceptions
being where a workflow schema has not yet been defined for a class of properties, or where an unexpected error occurs),
and can be thought of as a safe ‘fallback’ layer when no other calculation approach are able to estimate particular
properties.

It is expected that workflow schemas passed to the simulation layer should be able to estimate the gradients of the
observable they aim to calculate, as well as specify a set of storage/dataclasses which contain the data generated by the
molecular simulations.

2.18.1 Default Metadata

The simulation layer makes the same set of metadata available to its workflows as the parent workflow layer.

2.19 The MBAR Reweighting Layer

The ReweightingLayer is a calculation layer which employs the Multistate Bennett Acceptance Ratio (MBAR)
method to calculate observables at states which have not been previously simulated, but for which simulations have
been previously run at similar states and their data cached. It inherits the WorkflowCalculationLayer base layer,
and primarily makes use of the built-in workflow engine to perform the required calculations.

Because MBAR is a technique which reprocesses exisiting simulation data rather than re-running new simulations, it
is typically several fold faster than the simulation layer provided it has cached simulation data (made accessible via a
storage backend) available. Any properties for which the required data (see Calculation Schema) is not available will
be skipped.

2.19.1 Theory

The theory behind applying MBAR to reweighting observables from a simulated state to an unsimulated state is cov-
ered in detail in the publication Configuration-Sampling-Based Surrogate Models for Rapid Parameterization of Non-
Bonded Interactions.

2.19.2 Calculation Schema

The reweighting layer will be provided with one ReweightingSchema per type of property that it is being requested to
estimate. It builds off of the base WorkflowCalculationSchema schema providing an additional storage_queries
attribute.

The storage_queries attribute will contain a dictionary of SimulationDataQuery which will be used by the layer
to access the data required for each property from the storage backend. Each key in this dictionary will correspond to
the key of a piece of metadata made available to the property workflows.
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2.19.3 Default Metadata

The reweighting layer makes available the default metadata provided by the parent workflow layer in addition to any
cached data retrieved via the schemas storage_queries.

When building the metadata for each property, a copy of the query will be made and any of the supported attributes
(currently only substance) whose values are set as PlaceholderValue objects will have their values updated using
values directly from the property. This query will then be passed to the storage backend to retrieve any matching data.

The matching data will be stored as a list of tuples of the form:

(object_path, data_directory, force_field_path)

where object_path is the file path to the stored dataclass, the data_directory is the file path to the ancillary data
directory and force_field_path is the file path to the force field parameters which were used to generate the data
originally.

This list of tuples will be made available as metadata under the key that was associated with the query.

2.20 Workflows

The framework offers a lightweight workflow engine for executing graphs of tasks using the available calculation
backends. While lightweight, it offers a large amount of extensibility and flexibility, and is currently used by both the
simulation and reweighting layers to perform their required calculations.

A workflow is a wrapper around a collection of tasks that should be executed in succession, and whose outputs should
be made available as the input to others.

Fig. 3: A an example workflow which combines a protocol which will build a set of coordinates for a particular system,
assign parameters to that system, and then perform an energy minimisation.

The workflow engine offers a number of advanced features such as the automatic reduction of redundant tasks, and
looping over parts of a workflow

2.20.1 Building Workflows

At its core a workflow must define the tasks which need to be executed, and where the inputs to those tasks should be
sourced from. Each task to be executed is represented by a protocol object, with each protocol requiring a specific set
of user specified inputs:

# Define a protocol which will build some coordinates for a system.
build_coordinates = BuildCoordinatesPackmol("build_coordinates")
build_coordinates.max_molecules = 1000
build_coordinates.mass_density = 1.0 * unit.gram / unit.millilitre
build_coordinates.substance = Substance.from_components("O", "CO")

# Define a protocol which will assign force field parameters to the system.
assign_parameters = BuildSmirnoffSystem(f"assign_parameters")
assign_parameters.water_model = BuildSmirnoffSystem.WaterModel.TIP3P
assign_parameters.force_field_path = "openff-1.0.0.offxml"

# Set the `coordinate_file_path` input of the `assign_parameters` protocol
(continues on next page)
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# to the `coordinate_file_path` output of the `build_coordinates` protocol.
assign_parameters.coordinate_file_path = ProtocolPath(

"coordinate_file_path", build_coordinates.id
)

The ProtocolPath object is used to reference the output of another protocol in the workflow, and will be replaced by
the value of that output once that protocol has been executed by the workflow engine. It is constructed from two parts:

• the name of the output attribute to reference.

• the unique id of the protocol to take the output from.

To turn these tasks into a valid workflow which can be automatically executed, they must first be converted to a workflow
schema:

# Create the schema object.
schema = WorkflowSchema()
# Add the individual protocol's schema representations to the workflow schema.
schema.protocol_schemas = [build_coordinates.schema, assign_parameters.schema]

# Create the executable workflow object from its schema.
workflow = Workflow.from_schema(schema, metadata=None)

A Workflow may either be synchronously executed in place yielding a WorkflowResult object directly:

workflow_result = workflow.execute()

or asynchronously using a calculation backend yielding a Future like object which will eventually return a
WorkflowResult:

with DaskLocalCluster() as calculation_backend:
result_future = workflow.execute(calculation_backend=calculation_backend)

In addition, a workflow may be add to, and executed as part as a larger workflow graphs.

2.20.2 Workflow Schemas

A WorkflowSchema is a blueprint from which all Workflow objects are constructed. It will predominantly define the
tasks which compose the workflow, but may optionally define:

• final_value_source: A reference to the protocol output which corresponds to the value of the main observable
calculated by the workflow.

• gradients_sources: A list of references to the protocol outputs which correspond to the gradients of the main
observable with respect to a set of force field parameters.

• outputs_to_store: A list of data classes whose values will be populated from protocol outputs.

• protocol_replicators: A set of replicators which are used to flag parts of a workflow which should be
replicated.

Each of these attributes will control whether the value, gradients and data_to_store attributes of the
WorkflowResult results object will be populated respectively when executing a workflow.
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Metadata

Because a schema is purely a blueprint for a general workflow, it need not define the exact values of all of the inputs of its
constituent tasks. Consider the above example workflow for constructing a set of coordinates and assigning force field
parameters to them. Ideally this one schema could be reused for multiple substances. This is made possible through a
workflows metadata.

Each protocol within a workflow may access a dictionary of values unique to that workflow (termed here metadata)
which is defined when the Workflow object is created from its schema.

This metadata may be accessed by protocols via a fictitious "global" protocol whose outputs map to the metadata
dictionary:

build_coordinates = BuildCoordinatesPackmol("build_coordinates")
build_coordinates.substance = ProtocolPath("substance", "global")

# ...

substances = [
Substance.from_components("CO"),
Substance.from_components("CCO"),
Substance.from_components("CCCO"),

]

for substance in substances:

# Define the metadata to make available to the workflow protocols.
metadata = {"substance": substance}
# Create the executable workflow object from its schema.
workflow = Workflow.from_schema(schema, metadata=metadata)

# Execute the workflow ...

the created workflow will contain the build_coordinates protocol but with its substance input set to the value
from the metadata dictionary.

2.21 Replicators

A ProtocolReplicator is the workflow equivalent of a for loop. It is statically evaluated when a Workflow is
created from its schema. This is useful when parts of a workflow should be run multiple times but using different
values for certain protocol inputs.

Note: The syntax of replicators is still rather rough around the edges, and will be refined in future versions of the
framework.

Each ProtocolReplicator requires both a unique id and the set of template values which the replicator will ‘loop’
over to be defined. These values must either be a list of constant values or a reference to a list of values provided as
metadata.

The ‘loop variable’ is referenced by protocols in the workflow using the ReplicatorValue placeholder input, where
the value is linked to the replicator through the replicators unique id.

As an example, consider the case where a set of coordinates should be built for each component in a substance:
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# Create the replicator object, and assign it a unique id.
replicator = ProtocolReplicator(replicator_id="component_replicator")
# Instruct the replicator to loop over all of the components of the substance
# made available by the global metadata
replicator.template_values = ProtocolPath("substance.components", "global")

# Define a protocol which will build some coordinates for a system.
build_coords = BuildCoordinatesPackmol("build_coords_" + replicator.placeholder_id})
# Instruct the protocol to use the value specified by the replicator.
build_coords.substance = ReplicatorValue(replicator.id)

# Build the schema containing the protocol and the replicator
schema = WorkflowSchema()
schema.protocol_schemas = [build_coords.schema]
schema.protocol_replicators = [replicator]

The requirement for a protocol to be replicated by a replicator is that its id must contain the replicators placeholder_id
- this is a simple string which the workflow engine looks for when applying the replicator. The contents of this schema
can be easily inspected by printing its JSON representation:

{
"@type": "openff.evaluator.workflow.schemas.WorkflowSchema",
"protocol_replicators": [

{
"@type": "openff.evaluator.workflow.schemas.ProtocolReplicator",
"id": "component_replicator",
"template_values": {

"@type": "openff.evaluator.workflow.utils.ProtocolPath",
"full_path": "global.substance.components"

}
}

],
"protocol_schemas": [

{
"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coords_$(component_replicator)",
"inputs": {

".substance": {
"@type": "openff.evaluator.workflow.utils.ReplicatorValue",
"replicator_id": "component_replicator"

}
},
"type": "BuildCoordinatesPackmol"

}
]

}

It can be clearly seen that the schema only contains a single protocol entry, with the placeholder id present in its unique
id. Once a workflow is created from this schema however:

# Define some metadata
metadata = {"substance": Substance.from_components("O", "CO")}

(continues on next page)
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# Build the workflow from the schema.
workflow = Workflow.from_schema(schema, metadata)
# Output the contents of the workflow as JSON.
print(workflow.schema.json())

it can be seen that the replicator has been correctly been applied and the workflow now contains one protocol for each
component in the substance passed as metadata:

{
"@type": "openff.evaluator.workflow.schemas.WorkflowSchema",
"protocol_schemas": [

{
"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coords_0",
"inputs": {

".substance": {
"@type": "openff.evaluator.substances.components.Component",
"smiles": "O"

}
},
"type": "BuildCoordinatesPackmol"

},
{

"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coords_1",
"inputs": {

".substance": {
"@type": "openff.evaluator.substances.components.Component",
"smiles": "CO"

}
},
"type": "BuildCoordinatesPackmol"

}
]

}

In both cases the replicators placeholder_id has been replaced with the index of the value it was replicated for, and
the substance input has been correctly set to the actual array value.

2.21.1 Nested Replicators

Replicators can be applied to other replicators to achieve a result similar to a set of nested for loops. For example the
below loop:

components = [Component("O"), Component("CO")]
n_mols = [[1000], [500]]

for i, component in enumerate(components):

for component_n_mols in n_mols[i]:

...
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can readily be reproduced using replicators:

# Define a replicator which will loop over all components in the substance.
component_replicator = ProtocolReplicator(replicator_id="components")
component_replicator.template_values = ProtocolPath("components", "global")

# Define a replicator to loop over the number of each component to add.
n_mols_replicator_id = f"n_mols_{component_replicator.placeholder_id}"

n_mols_replicator = ProtocolReplicator(replicator_id=n_mols_replicator_id)
n_mols_replicator.template_values = ProtocolPath(

f"n_mols[{component_replicator.placeholder_id}]", "global"
)

# Define the suffix which must be applied to protocols to be replicated
id_suffix = f"{component_replicator.placeholder_id}_{n_mols_replicator.placeholder_id}"

# Define a protocol which will build some coordinates for a system.
build_coordinates = BuildCoordinatesPackmol(f"build_coordinates_{id_suffix}")
build_coordinates.substance = ReplicatorValue(component_replicator.id)
build_coordinates.max_molecules = ReplicatorValue(n_mols_replicator.id)

# Build the schema containing the protocol and the replicator
schema = WorkflowSchema()
schema.protocol_schemas = [build_coordinates.schema]
schema.protocol_replicators = [component_replicator, n_mols_replicator]

# Define some metadata
metadata = {

"components": [Component("O"), Component("CO")],
"n_mols": [[1000], [500]]

}

# Build the workflow from the created schema.
workflow = Workflow.from_schema(schema, metadata)
# Print the JSON representation of the workflow.
print(workflow.schema.json(format=True))

Here the component_replicator placeholder id has been appended to the n_mols_replicator id to inform the
workflow engine that the later is a child of the former. The component_replicator placeholder id is then used as an
index into the n_mols array. This results in the following schema as desired:

{
"@type": "openff.evaluator.workflow.schemas.WorkflowSchema",
"protocol_schemas": [

{
"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coordinates_0_0",
"inputs": {

".max_molecules": 1000,
".substance": {

"@type": "openff.evaluator.substances.components.Component",
"smiles": "O"

}
(continues on next page)
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},
"type": "BuildCoordinatesPackmol"

},
{

"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coordinates_1_0",
"inputs": {

".max_molecules": 500,
".substance": {

"@type": "openff.evaluator.substances.components.Component",
"smiles": "CO"

}
},
"type": "BuildCoordinatesPackmol"

}
]

}

2.22 Workflow Graphs

A WorkflowGraph is a collection of Workflow objects which should be executed together. The primary advantage of
executing workflows via the graph object is that the graph will automatically take advantage of the protocols built in
redundancy / merging support to collapse duplicate tasks across multiple workflows.

As an example, consider the case of executing workflows to estimate the density and the dielectric constant at the same
state point, for the same substance, and using the same force field parameters:

density_schema = Density.default_simulation_schema()
dielectric_schema = DielectricConstant.default_simulation_schema()

density_workflow = Workflow.from_schema(density_schema, metadata)
dielectric_workflow = Workflow.from_schema(dielectric_schema, metadata)

print(len(density_workflow.protocols), len(dielectric_workflow.protocols))

workflow_graph = WorkflowGraph()
workflow_graph.add_workflows(density_workflow, dielectric_workflow)

print(len(workflow_graph.protocols))

The final workflow graph has roughly half the total number of density and dielectric protocols to be executed. This is
expected as both the density and dielectric workflows are almost identical, except for the final analysis steps.

Graphs can be executed either in place without using a calculation backend in the same way that workflows can.
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2.23 Protocols

The Protocol class represents a single task to be executed, whether that be as a standalone task or as a task which
is part of some larger workflow. The task encoded by a protocol may be as simple as adding two numbers together or
even as complex as performing entire free energy simulations:

from openff.evaluator.protocols.miscellaneous import AddValues

# Create the protocol and assign it some unique name.
add_numbers = AddValues(protocol_id="add_values")
# Set the numbers to add together
add_numbers.values = [1, 2, 3, 4]

# Execute the protocol
add_numbers.execute()

# Retrieve the output
result = add_numbers.result

2.23.1 Inputs and Outputs

Each protocol exposes a set of the required inputs as well as the produced outputs. These inputs may either be set as a
constant directly, or if used as part of a workflow, can take their value from one of the outputs of another protocol.

Fig. 4: A selection of the inputs and outputs of the OpenMMSimulation protocol.

A surprisingly rich spectrum of workflows can be constructed by chaining together many relatively simple protocols.

The inputs and outputs of a protocol are defined using the custom InputAttribute and OutputAttribute descrip-
tors:

class AddValues(Protocol):

# Define the inputs that the protocol requires
values = InputAttribute(

docstring="The values to add together.",
type_hint=list, default_value=UNDEFINED

)

# Define the outputs that the protocol will produce
# once it is executed.
result = OutputAttribute(

docstring="The sum of the values.",
type_hint=typing.Union[int, float, unit.Measurement, unit.Quantity],

)

def _execute(self, directory, available_resources):
...

def validate(self, attribute_type=None):
...
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Here we have defined a values input to the protocol and a result output. Both descriptors require a docstring and
a type_hint to be provided.

The type_hint will be used by the workflow engine to ensure that a protocol which takes its input as the output of
another protocol is receiving values of the correct type. Currently the type_hint can be any type of python class, or
a Union of multiple types should the protocol allow for that.

In addition, the input attribute must specify a default_value for the attribute. This can either be a constant value, or
a value set by some function such as a lambda statement:

some_input = InputAttribute(
docstring="Takes it's default value from a function.",
type_hint=int,
default_value=lambda: return 1 + 1

)

In the above example we set the default value of values to UNDEFINED in order to specify that this input must be set by
the user. The custom UNDEFINED class is used in place of None as None may be a valid input value for some attributes.

2.23.2 Task Execution

In addition to defining its inputs and outputs, a protocol must also implement an _execute() function which handles
the main logic of the task:

def _execute(self, directory, available_resources):

self.result = self.values[0]

for value in self.values[1:]:
self.result += value

The function is passed the directory in which it should run and create any working files, as well as a ComputeResources
object which describes which compute resources are available to run on. This function must set all of the output
attributes of the protocol before returning.

The private _execute() function which must be implemented should not be confused with the public execute()
function. The public execute() function implements some common protocol logic (such as validating the inputs and
creating the directory to run in if needed) before calling the private _execute() function.

2.23.3 Protocol Validation

The protocols inputs will automatically be validated before _execute() is called - this validation includes making
sure that all of the non-optional inputs have been set, as well as ensuring they have been set to a value of the correct
type. Protocols may implement additional validation logic by implementing a execute() function:

def validate(self, attribute_type=None):

super(AddValues, self).validate(attribute_type)

if len(self.values) < 1:
raise ValueError("There were no values to add together")
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2.23.4 Schemas

Every protocol has a ProtocolSchema representation which uniquely describes the protocol, and from which the
protocol can be exactly recreated. The schema stores not only the type of protocol which it represents, but also the
values of each of the inputs. Protocol schemas are fully JSON serializable. The following is an example schema for
the above add_numbers protocol:

{
"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "add_values",
"inputs": {
".allow_merging": true,
".values": [1, 2, 3, 4]

},
"type": "AddValues"

}

A protocols schema can be accessed via it’s schema attribute. A protocol can be directly created from its schema
representation by calling the schema’s to_protocol() function.

2.23.5 Merging Protocols

When executing multiple workflows together (e.g. executing a workflow to estimate a substances density and potential
energy) there is a large likelihood that some of tasks in those two workflows will be identical. Examples may include
two workflows requiring protocols which build a set of coordinates, or assigning the same set of parameters to those
coordinates.

Protocols have built-in support for comparing whether they are performing the same task / calculation as another
protocol through the can_merge() and merge() functions:

• The can_merge() function checks to see whether two protocols are performing an identical task and hence
whether they should be merged or not.

• The merge() function handles the actual merging of two protocols which can be merged.

The default can_merge() function takes advantage of the merge_behvaiour attribute of the different input descrip-
tors. The merge_behvaiour attribute describes how each input should be considered when checking to see if two
protocols can be merged:

max_molecules = InputAttribute(
docstring="The maximum number of molecules to be added to the system.",
type_hint=int,
default_value=1000,
merge_behavior=MergeBehavior.ExactlyEqual

)

The most common behavior is to require that the inputs must be ExactlyEqual in order for two protocols two be
considered to be identical. However, for some inputs such as the timestep of a simulation or the number of steps to
simulate for, the exact values of the inputs don’t necessarily need to be equal but rather, we may just wish to take the
larger / smaller of the two inputs:

timestep = InputAttribute(
docstring="The timestep to evolve the system by at each step.",
type_hint=unit.Quantity,
merge_behavior=InequalityMergeBehavior.SmallestValue,

(continues on next page)
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default_value=2.0 * unit.femtosecond,
)

total_number_of_iterations = InputAttribute(
docstring="The number of times to propogate the system forward by.",
type_hint=int,
merge_behavior=InequalityMergeBehavior.LargestValue,
default_value=1,

)

This can be accomplished using the InequalityMergeBehavior enum.

The default merge() function also relies upon the merge_behaviour attributes to determine which values of the
inputs should be retained when merging two protocols.

2.24 Protocol Groups

The ProtocolGroup class represents a collection of protocols which have been grouped together. All protocols within
a group will be executed together on a single compute resources, i.e. there is currently no support for executing protocols
within a group in parallel.

Protocol groups have a specialised ProtocolGroupSchema which is essentially a collection of ProtocolSchema
objects.

2.24.1 Conditional Protocol Groups

A ConditionalGroup is a special class of ProtocolGroup which will execute all of the grouped protocols again and
again until a set of conditions has been met or until a maximum number of iterations (see max_iterations) has been
performed. They can be thought of as being a protocol representation of a while statement.

Each condition to be met is represented by a Condition object:

condition = ConditionalGroup.Condition()

# Set the left and right hand values.
condition.left_hand_value = ...
condition.right_hand_value = ...

# Choose the type of condition
condition.type = ConditionalGroup.Condition.Type.LessThan

The left and right hand values can either be constants, or come from the output of another protocol (including grouped
protocols) using a ProtocolPath. Currently a condition can either check that a value is less than or greater than
another value.

Conditional groups expose a current_iteration attribute which tracks how many times the grouped protocols have
been executed. This can be used as input by any of the grouped protocols and is useful, for example, to run a simulation
for longer and longer until the groups condition has been met:

conditional_group = ConditionalGroup("conditional_group")

# Set up protocols to run a simulation and then to extract the
(continues on next page)
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# value of the density and its uncertainty.
simulation = OpenMMSimulation("simulation")
simulation.input_coordinate_file = "coords.pdb"
simulation.parameterized_system = ...

extract_density = AverageObservable("extract_density")
extract_density.observable = simulation.observables["Density"]

# Set the total number of iterations the simulation should perform to be equal
# to the current iteration of the group. I.e the simulation should perform a
# new iteration at each group iteration.
simulation.total_number_of_iterations = ProtocolPath(

"current_iteration", conditional_group.id
)

# Add the protocols to the group.
conditional_group.add_protocols(production_simulation, analysis_protocol)

# Set up a condition which will check if the uncertainty is less than
# some threshold.
condition = ConditionalGroup.Condition()
condition.condition_type = groups.ConditionalGroup.Condition.Type.LessThan

condition.right_hand_value = 0.5 * unit.gram / unit.millilitre
condition.left_hand_value = ProtocolPath(

"value.error", conditional_group.id, analysis_protocol.id
)

# Add the condition.
conditional_group.add_condition(condition)

It is this idea which is used to continue running a molecular simulations until an observable of interest (such as the
density) has been calculated to within a specified uncertainty.

2.25 Observables

A key feature of this framework is its ability to compute the gradients of physical properties with respect to the force
field parameters used to estimate them. This requires the framework be able to, internally, be able to not only track the
gradients of all quantities which combine to yield the final observable of interest, but to also be able to propagate the
gradients of those composite quantities through to the final value.

The framework offers three such objects to this end (Observable, ObservableArray and ObservableFrame objects)
which will be covered in this document.

Note: In future versions of the framework the objects described here will likely be at least in part deprecated in favour
of using full automatic differentiation libraries such as jax. Supporting these libraries will take a large re-write of
the framework however, as well as full support between differentiable simulation engines like timemachine and the
OpenFF toolkit. As such, these objects are implemented as stepping stones which can be gently phased out while
working towards that larger, more modern goal.
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2.25.1 Observable Objects

The base object used to track observables is the Observable object. It stores the average value, the standard error in
the value and the gradient of the value with respect to force field parameters of interest.

Currently the value and error are internally stored in a composite Measurement object, which themselves wrap around
the uncertainties package. This allows uncertainties to be automatically propagated through operations without the
need for user intervention.

Note: Although uncertainties are automatically propagated, it is still up to property estimation workflow authors to
ensure that such propagation (assuming a Gaussian error model) is appropriate. An alternative, which is employed
throughout the framework is to make use of the bootstrapping technique.

Gradients are stored in a list as ParameterGradient gradient objects, which store both the floating value of the
gradient alongside an identifying ParameterGradientKey.

Supported Operations

• + and -: Observable objects can be summed with and subtracted from other Observable objects, Quantity
objects, floats or integers. When two Observable objects are summed / subtracted, their gradients are combined
by summing / subtracting also. When an Observable is summed / subtracted with a Quantity, float or int
object it is assumed that these objects do not depend on any force field parameters.

• *: Observable objects may be multiplied by other Observable objects, Quantity objects, and float or int
objects. When two Observable objects are multiplied their gradients are propagated using the product rule.
When an Observable is multiplied by a Quantity, float or int object it is assumed that these objects do not
depend on any force field parameters.

• /: Observable objects may be divided by other Observable objects, Quantity objects, and float or int
objects. Gradients are propagated through the division using the quotient rule. When an Observable is divided
by a Quantity, float or int object (or when these objects are divided by an Observable object) it is assumed
that these objects do not depend on any force field parameters.

In all cases two Observable objects can only be operated on provided the contain gradient information with respect
to the same set of force field parameters.

2.25.2 Observable Arrays

An extension of the Observable object is the ObservableArray object. Unlike an Observable, an
ObservableArray object does not contain error information, but rather the value it stores and the gradients of that
value should be a numpy array with shape=(n_data_points, n_dimensions). It is designed to store information
such as the potential energy evaluated at each configuration sampled during a simulation, as well as the gradient of the
potential, which can then be ensemble averaged using a fluctuation formula to propagate the gradients through to the
average.

Like with Observable objects, gradients are stored in a list as ParameterGradient gradient objects. The length of
the gradients is required to match the length of the value array.

ObservableArray objects may be concatenated together using their join() method or sub-sampled using their
subset() method.
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Supported Operations

The ObservableArray object supports the same operations as the Observable object, whereby all operations are
applied elementwise to the stored arrays.

2.25.3 Observable Frames

An ObservableFrame is a wrapper around a collection of ObservableArray which contain the types of observable
specified by the ObservableType enum. It behaves as a dictionary which can take either an ObservableType or a
string value of an ObservableType as an index.

Like an ObservableArray, observable frames may be concatenated together using their join() method or sub-
sampled using their subset() method.

Supported Operations

No operations are supported between observable frames.

2.26 Calculation Backends

A CalculationBackend is an object used to distribute calculation tasks across available compute resources. This is
possible through specific backends which integrate with libraries such as multiprocessing, dask, parsl and cerlery.

Each backend is responsible for creating compute workers. A compute worker is an entity which has a set amount of
dedicated compute resources available to it and which can execute python functions using those resources. Calculation
backends may spawn multiple workers such that many tasks and calculations can be performed simultaneously.

A compute worker can be as simple as a new multiprocessing Process or something more complex like a dask worker.
The resources available to a worker are described by the ComputeResources object.

CalculationBackend classes have a relatively simple structure:

class MyCalculationBackend(CalculationBackend):

def __init__(self, number_of_workers, resources_per_worker):
...

def start(self):
...

def stop(self):
...

def submit_task(self, function, *args, **kwargs):
...

By default they implement a constructor which takes as input the number of workers that the backend should initially
spawn as well as the compute resources which are available to each. They must further implement:

• a start() method which spawns the initial set of compute workers.

• a stop()method which should kill all workers spawned by the backend as well as cleanup any temporary worker
files.
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• a submit_task() method which takes a function to be execute by a worker, and a set of args and kwargs to
pass to that function.

The submit_task() must run asynchronously and return an asyncio Future object (or an object which implements
the same API) when called, which can then be queried for when the task has completed.

All calculation backends are implemented as context managers such that they can be used as:

with MyCalculationBackend(number_of_workers=..., resources_per_worker...) as backend:
backend.submit_task(...)

where the start() and stop() methods will be called automatically.

2.27 Dask Backends

The framework implements a number of calculation backends which integrate with the dask distributed and job-queue
libraries.

2.27.1 Dask Local Cluster

The DaskLocalCluster backend wraps around the dask LocalCluster class to distribute tasks on a single machine:

worker_resources = ComputeResources(
number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.CUDA,

)

with DaskLocalCluster(number_of_workers=1, resources_per_worker=worker_resources) as␣
→˓local_backend:

local_backend.submit_task(logging.info, "Hello World")
...

Its main purpose is for use when debugging calculations locally, or when running calculations on machines with large
numbers of CPUs or GPUs.

2.27.2 Dask HPC Cluster

The DaskLSFBackend, DaskPBSBackend, and DaskSLURMBackend backends wrap around the dask LSFCluster, PB-
SCluster, and SLURMCluster classes respectively, and both inherit the BaseDaskJobQueueBackend class which im-
plements the core of their functionality. They predominantly run in an adaptive mode, whereby the backend will
automatically scale up or down the number of workers based on the current number of tasks that the backend is trying
to execute.

These backends integrate with the queueing systems which most HPC cluster use to manage task execution. They work
by submitting jobs into the queueing system which themselves spawn dask workers, which in turn then execute tasks
on the available compute nodes:

# Create the object which describes the compute resources each worker should request from
# the queueing system.
worker_resources = QueueWorkerResources(

number_of_threads=1,
(continues on next page)
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number_of_gpus=1,
preferred_gpu_toolkit=QueueWorkerResources.GPUToolkit.CUDA,
per_thread_memory_limit=worker_memory,
wallclock_time_limit="05:59",

)

# Create the backend object.
setup_script_commands = [

f"conda activate evaluator",
f"module load cuda/10.1",

]

calculation_backend = DaskLSFBackend(
minimum_number_of_workers=1,
maximum_number_of_workers=max_number_of_workers,
resources_per_worker=queue_resources,
queue_name="gpuqueue",
setup_script_commands=setup_script_commands,

)

# Perform some tasks.
with calculation_backend:

calculation_backend.submit_task(logging.info, "Hello World")
...

The setup_script_commands argument takes a list of commands which should be run by the queue job submis-
sion script before spawning the actual worker. This enables setting up custom environments, and setting any required
environmental variables.

Configuration

To ensure optimal behaviour we recommend changing / uncommenting the following settings in the dask distributed
configuration file (this can be found at ~/.config/dask/distributed.yaml):

distributed:

worker:
daemon: False

comm:
timeouts:

connect: 10s
tcp: 30s

deploy:
lost-worker-timeout: 15s

See the dask documentation for more information about changing dask settings.
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2.27.3 Selecting GPU Platform

The calculation backends alos allows the user to specify the GPU platform and precision level. Users can specify either
auto, CUDA or OpenCL as the preferred_gpu_toolkit using the GPUToolkit enum class. The default precision level is
set to mixed but can be overridden by specifying preferred_gpu_precision using the GPUPrecision enum class:

worker_resources = ComputeResources(
number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.OpenCL,
preferred_gpu_precision=ComputeResources.GPUPrecision.mixed,

)

With GPUToolkit.auto, the framework will determine the fastest available platform based on the precision level:

worker_resources = ComputeResources(
number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.auto,
preferred_gpu_precision=ComputeResources.GPUPrecision.mixed,

)

2.28 Storage Backends

A StorageBackend is an object used to store data generated as part of property calculations, and to retrieve that data
for use in future calculations.

In general, most data stored in a storage backend is stored in two parts:

• A JSON serialized representation of this class (or a subclass), which contains lightweight information such as
the state and composition of a system.

• A directory like structure (either directly a directory, or some NetCDF like compressed archive) of ancillary files
which do not easily lend themselves to be serialized within a JSON object, such as simulation trajectories, whose
files are referenced by their file name by the data object.

The ancillary directory-like structure is not required if the data may be suitably stored in the data object itself.

2.28.1 Data Storage / Retrieval

Each piece of data which is stored in a backend must inherit from the BaseStoredData class, will be assigned a unique
key. This unique key is both useful for tracking provenance if this data is re-used in future calculations, and also can
be used to retrieve the piece of data from the storage system.

In addition to retrieval using the data keys, each backend offers the ability to perform a ‘query’ to retrieve data which
matches a set of given criteria. Data queries are implemented via BaseDataQuery objects, which expose different
options for querying for specific types of data (such a simulation data, trained models, etc.).

A query may be used for example to match all simulation data that was generated for a given Substance in a particular
phase:

# Look for all simulation data generated for liquid water
substance_query = SimulationDataQuery()

(continues on next page)
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substance_query.substance = Substance.from_components("O")
substance_query.property_phase = PropertyPhase.Liquid

found_data = backend.query(substance_query)

The returned found_data will be a dictionary with keys of tuples and values as lists of tuples. Each key will be a tuple
of the values which were matched, for example the matched thermodynamic state, or the matched substance. For each
value tuple in the tuple list, the first item in the tuple is the unique key of the found data object, the second item is the
data object itself, and the final object is the file path to the ancillary data directory (or None if none is present).

See the Data Classes and Queries page for more information about the available data classes, queries and their details.

2.28.2 Implementation

A StorageBackend must at minimum implement a structure of:

class MyStorageBackend(StorageBackend):

def _store_object(self, object_to_store, storage_key=None, ancillary_data_path=None):
...

def _retrieve_object(self, storage_key, expected_type=None):
...

def _object_exists(self, storage_key):
...

where

• _store_object() must store a BaseStoredData object as well as optionally its ancillary data directory, and
return a unique key assigned to that object.

• _retrieve_object() must return the BaseStoredData object which has been assigned a given key if the
object exists in the system, as well as the file path to ancillary data directory if it exists.

• _object_exists() should return whether any object still exists in the storage system with a given key.

All of these methods will be called under a reentrant thread lock and may be considered as thread safe.

2.29 Data Classes and Queries

All data which is to be stored within a StorageBackend must inherit from the BaseStoredData class. More broadly
there are typically two types of data which are expected to be stored:

• HashableStoredData - data which is readily hashable and can be quickly queried for in a storage backend. The
prime examples of such data are ForceFieldData, whose hash can be easily computed from the file represen-
tation of a force field.

• ReplaceableData - data which should be replaced in a storage backend when new data of the same type, but
which has a higher information content, is stored in the backend. An example of this is when storing a piece
of StoredSimulationData in the backend which was generated for a particular Substance and at the same
ThermodynamicState as an existing piece of data, but which stores many more uncorrelated configurations.
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Every data class must be paired with a corresponding data query class which inherits from the BaseDataQuery class.
In addition, each data object must implement a to_storage_query() function which returns the data query which
would uniquely match that data object. The to_storage_query() is used heavily by storage backends when checking
if a piece of data already exists within the backend.

2.29.1 Force Field Data

The ForceFieldData class is used to ForceFieldSource objects within the storage backend. It is a hashable storage
object which allows for rapidly checking whether any calculations have been previously been performed for a particular
force field source.

It has a corresponding ForceFieldQuery class which can be used to query for particular force field sources within a
storage backend.

2.29.2 Cached Simulation Data

Classes derived from the BaseSimulationData class are used to store the data generated by molecular simulation.
The data object primarily records the Substance, PropertyPhase and ThermodynamicState that the simulation
was run at, as well as provenance about the calculation and the force field parameters used (as the key of the force field
in the storage system).

It has a corresponding BaseSimulationDataQuery class which can be used to query for simulation data which
matches a set of particular criteria within a storage backend, which in part includes querying for data collected:

• at a given thermodynamic_state (i.e temperature and pressure).

• for a given property_phase (e.g. gas, liquid, liquid+gas coexisting, . . . ).

• using a given set of force field parameters identified by their unique force_field_id assigned by the storage
system

Additionally included is not only the ability to find data generated for a particular substance (e.g. only data for
methanol), but also the ability to return data for each component of a given substance by setting the substance_query
attribute to a SubstanceQuery which has the components_only attribute set to true:

# Load an existing storage backend
storage_backend = LocalFileStorage()

# Define a system of 50% water and 50% methanol.
full_substance = Substance.from_components("O", "CO")

# Look for all simulation data generated for the full substance
data_query = SimulationDataQuery()

data_query.substance = full_substance
data_query.property_phase = PropertyPhase.Liquid

full_substance_data = storage_backend.query(data_query)

# Now look for all of the pure data which has been stored for both pure
# water and pure methanol.
pure_substance_query = SubstanceQuery()
pure_substance_query.components_only = True

(continues on next page)
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data_query.substance_query = pure_substance_query
component_data = storage_backend.query(data_query)

This is particularly useful for when retrieving data for use in the calculation of excess properties (such as the enthalpy
of mixing), where such calculations require information about both the full mixture as well as the pure components.

Single Simulation Data

The StoredSimulationData class is used to store data generated by a single molecular simulation and can be
queried for using its accompanying SimulationDataQuery query class. In addition to the data stored by the par-
ent BaseSimulationData class, this class further stores:

• the number of molecules which were simulated.

• the topology of the simulated system (stored as ancillary data).

• and trajectory of configurations (stored as ancillary data) and observables generated by the simulation.

• the statistic inefficiency of the data.

Data of this kind is considered replaceable, whereby data which has the lowest statistical efficiency is preferred. The
philosophy here is that we should store the maximum amount of samples (i.e the maximum number of uncorrelated
samples for the property which has the shortest correlation time) which will be useful for future calculations, such that
future calaculations can simply discard the data which cannot be used (i.e. is likely correlated).

Free Energy Data

The StoredFreeEnergyData class is used to store data generated by a free energy calculation which computes the free
energy difference between an end and start state. It can be queried for using its accompanying FreeEnergyDataQuery
query class.

In addition to the data stored by the parent BaseSimulationData class, this class further stores:

• the free energy difference between the end and starting state.

• the topology of the system (stored as ancillary data).

• and trajectory of configurations generated in the starting and end states (stored as ancillary data).

Although data of this kind inherits from the ReplaceableData base class, all data deposited in a storage backend will
be retained. At this time no situation can be envisaged that the same free energy data from exactly the same calculation
will be stored, with the exception of operator errors.

2.30 Local File Storage

The LocalFileStorage backend stores and retrieves all data objects to / from the local file system. The root directory
in which all data is to be stored is defined when the object is created:

storage_backend = LocalFileStorage(root_directory="stored_data")

All data objects will be stored within this directory as JSON files, with file names of the storage key assigned to that
object. If the data object has an associated ancillary data directory, this will be moved (not copied) into the root
directory and renamed to the storage key when that object is stored into the system.

An example directory created by a local storage backend will look something similar to:
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- root_directory

- 1fe615c5cb48429ab77fd71125dec297
- trajectory.dcd
- statistics.csv

- 3e15d19e0e614d0491a1a0bc9a51534e
- trajectory.dcd
- statistics.csv

- 1fe615c5cb48429ab77fd71125dec297.json
- 3e15d19e0e614d0491a1a0bc9a51534e.json
- 0f71f2b4a22042d89d6f0882406869b6.json

where here the backend contains two data objects with ancillary data directories, and one without.

When retrieving data which has an ancillary data directory from the backend, the returned directory path will be the
full path to the directory in the root storage directory.

2.31 Building the Docs

Although documentation for the OpenFF Evaluator is readily available online, it is sometimes useful to build a local
version such as when

• developing new pages which you wish to preview without having to wait for ReadTheDocs to finish building.

• debugging errors which occur when building on ReadTheDocs.

In these cases, the docs can be built locally by doing the following:

git clone https://github.com/openforcefield/openff-evaluator.git
cd openff-evaluator
conda env create --name openff-evaluator-docs --file devtools/conda-envs/docs_env.yaml
conda activate openff-evaluator-docs
rm -rf docs/api docs/_build/html && sphinx-build -b html -j auto docs docs/_build/html

The above will yield a new directory named docs/_build which will contain the built html files which can be viewed in
your local browser.

2.32 API

Documentation for each of the classes contained within the openff.evaluator framework.
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2.32.1 Client Side API

Exceptions

EvaluatorException A serializable wrapper around an Exception.

EvaluatorException

exception openff.evaluator.utils.exceptions.EvaluatorException(message=None)
A serializable wrapper around an Exception.

classmethod from_exception(exception)
Initialize this class from an existing exception.

Parameters exception (Exception) – The existing exception

Returns The initialized exception object.

Return type cls

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
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2.32.2 Server Side API

2.32.3 Physical Property API

PhysicalProperty Represents the value of any physical property and it's
uncertainty if provided.

PropertyPhase An enum describing the phase that a property was col-
lected in.

Source Container class for information about how a property
was measured / calculated.

CalculationSource Contains any metadata about how a physical property
was calculated.

MeasurementSource Contains any metadata about how a physical property
was measured by experiment.

PhysicalProperty

class openff.evaluator.datasets.PhysicalProperty(thermodynamic_state=None,
phase=PropertyPhase.Undefined, substance=None,
value=None, uncertainty=None, source=None)

Represents the value of any physical property and it’s uncertainty if provided.

It additionally stores the thermodynamic state at which the property was collected, the phase it was collected in,
information about the composition of the observed system, and metadata about how the property was collected.

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.
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Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_unit() openff.evaluator.unit.Unit: The default unit (e.g.
from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
validate([attribute_type]) Validate the values of the attributes.

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

abstract classmethod default_unit()

openff.evaluator.unit.Unit: The default unit (e.g. g / mol) associated with this class of property.

id

A unique identifier string assigned to this property

Type str

metadata

Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

Type dict

thermodynamic_state

The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

phase

The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase
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substance

The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

Type Substance

value

The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

uncertainty

The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

gradients

The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

source

The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.
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• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

PropertyPhase

class openff.evaluator.datasets.PropertyPhase(value)
An enum describing the phase that a property was collected in.

Examples

Properties measured in multiple phases (e.g. enthalpies of vaporization) can be defined be concatenating Prop-
ertyPhase enums:

>>> gas_liquid_phase = PropertyPhase.Gas | PropertyPhase.Liquid

__init__()

Methods

from_string(enum_string) Parses a phase enum from its string representation.

Attributes

Undefined

Solid

Liquid

Gas

classmethod from_string(enum_string)
Parses a phase enum from its string representation.

Parameters enum_string (str) – The str representation of a PropertyPhase

Returns The created enum

Return type PropertyPhase
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Examples

To round-trip convert a phase enum: >>> phase = PropertyPhase.Liquid | PropertyPhase.Gas >>> phase_str
= str(phase) >>> parsed_phase = PropertyPhase.from_string(phase_str)

Source

class openff.evaluator.datasets.Source

Container class for information about how a property was measured / calculated.

Todo: Swap this out with a more general provenance class.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any
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CalculationSource

class openff.evaluator.datasets.CalculationSource(fidelity=None, provenance=None)
Contains any metadata about how a physical property was calculated.

This includes at which fidelity the property was calculated at (e.g Direct simulation, reweighting, . . . ) in addition
to the parameters which were used as part of the calculations.

fidelity

The fidelity at which the property was calculated

Type str

provenance

A dictionary containing information about how the property was calculated.

Type dict of str and Any

__init__(fidelity=None, provenance=None)
Constructs a new CalculationSource object.

Parameters
• fidelity (str) – The fidelity at which the property was calculated

• provenance (dict of str and Any) – A dictionary containing information about how
the property was calculated.

Methods

__init__([fidelity, provenance]) Constructs a new CalculationSource object.
from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str
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classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

MeasurementSource

class openff.evaluator.datasets.MeasurementSource(doi='', reference='')
Contains any metadata about how a physical property was measured by experiment.

This class contains either the DOI and/or the reference, but must contain at least one as the observable must have
a source, even if it was measured in lab.

doi

The DOI for the source, preferred way to identify for source

Type str or None, default None

reference

The long form description of the source if no DOI is available, or more information is needed or wanted.

Type str

__init__(doi='', reference='')
Constructs a new MeasurementSource object.

Parameters
• doi (str or None, default None) – The DOI for the source, preferred way to identify

for source

• reference (str) – The long form description of the source if no DOI is available, or more
information is needed or wanted.

Methods

__init__([doi, reference]) Constructs a new MeasurementSource object.
from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls
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json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

Built-in Properties

Substance Definition

Substance Defines the components, their amounts, and their roles
in a system.

Component Defines a single component in a chemical system, as well
as it's role within the system (if any).

Amount A representation of the amount of a given component in
a Substance.

ExactAmount The exact number of instances of a Component in a Sub-
stance.

MoleFraction The mole fraction of a Component in a Substance.

Substance

class openff.evaluator.substances.Substance

Defines the components, their amounts, and their roles in a system.

Examples

A neat liquid containing only a single component:

>>> from openff.evaluator.substances import Component, ExactAmount, MoleFraction
>>> liquid = Substance()
>>> liquid.add_component(Component(smiles='O'), MoleFraction(1.0))

A binary mixture containing two components, where the mole fractions are explicitly stated:

>>> binary_mixture = Substance()
>>> binary_mixture.add_component(Component(smiles='O'), MoleFraction(0.2))
>>> binary_mixture.add_component(Component(smiles='CO'), MoleFraction(0.8))
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The infinite dilution of one molecule within a bulk solvent or mixture may also be specified by defining the exact
number of copies of that molecule, rather than a mole fraction:

>>> benzene = Component(smiles='C1=CC=CC=C1', role=Component.Role.Solute)
>>> water = Component(smiles='O', role=Component.Role.Solvent)
>>>
>>> infinite_dilution = Substance()
>>> infinite_dilution.add_component(component=benzene, amount=ExactAmount(1)) #␣
→˓Infinite dilution.
>>> infinite_dilution.add_component(component=water, amount=MoleFraction(1.0))

In this example we explicitly flag benzene as being the solute and the water component the solvent. This enables
workflow’s to easily identify key molecules of interest, such as the molecule which should be ‘grown’ into solution
during solvation free energy calculations.

__init__()

Methods

__init__()

add_component(component, amount) Add a component to the Substance.
calculate_aqueous_ionic_mole_fraction(...) Determines what mole fraction of ions is needed to

yield
from_components(*components) Creates a new Substance object from a list of compo-

nents.
from_json(file_path) Create this object from a JSON file.
get_amounts(component) Returns the amounts of the component in this sub-

stance.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_molecules_per_component(maximum_molecules)Returns the number of molecules for each component

in this substance, given a maximum total number of
molecules.

json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
validate([attribute_type]) Validate the values of the attributes.

Attributes

amounts the amounts of the component in this substance This
attribute is read-only.

components A list of all of the components in this substance.
identifier A unique str representation of this substance, which

encodes all components and their amounts in the sub-
stance.

number_of_components The number of different components in this sub-
stance.
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components

A list of all of the components in this substance. The default value of this attribute is (). This attribute is
read-only.

Type tuple

amounts

the amounts of the component in this substance This attribute is read-only.

Type dict

property identifier

A unique str representation of this substance, which encodes all components and their amounts in the
substance.

Type str

property number_of_components

The number of different components in this substance.

Type int

classmethod from_components(*components)
Creates a new Substance object from a list of components. This method assumes that all components should
be present with equal mole fractions.

Parameters components (Component or str) – The components to add to the substance.
These may either be full Component objects or just the smiles representation of the com-
ponent.

Returns The substance containing the requested components in equal amounts.

Return type Substance

add_component(component, amount)
Add a component to the Substance. If the component is already present in the substance, then the mole
fraction will be added to the current mole fraction of that component.

Parameters
• component (Component) – The component to add to the system.

• amount (Amount) – The amount of this component in the substance.

get_amounts(component)
Returns the amounts of the component in this substance.

Parameters component (str or Component) – The component (or it’s identifier) to retrieve
the amount of.

Returns The amounts of the component in this substance.

Return type tuple of Amount

get_molecules_per_component(maximum_molecules, tolerance=None, count_exact_amount=True,
truncate_n_molecules=True)

Returns the number of molecules for each component in this substance, given a maximum total number of
molecules.

Parameters
• maximum_molecules (int) – The maximum number of molecules.
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• tolerance (float, optional) – The tolerance within which this amount should be rep-
resented. As an example, when converting a mole fraction into a number of molecules, the
total number of molecules may not be sufficiently large enough to reproduce this amount.

• count_exact_amount (bool) – Whether components present in an exact amount (i.e.
defined with an ExactAmount) should be considered when apply the maximum number

of molecules constraint. This may be set false, for example, when building a separate
solvated protein (n = 1) and solvated protein + ligand complex (n = 2) system but wish
for both systems to have the same number of solvent molecules.

• truncate_n_molecules (bool) – Whether or not to attempt to truncate the number of
molecules in the substance if the total number is over the specified maximum. If False, an
exception will be raised in this case.

The truncation works by iteratively removing one molecule of the predominant component
up to a limit of removing a total number of molecules equal to the number of components in
the substance (e.g. for a binary substance a maximum of two molecules can be removed).
An exception is raised if the number of molecules cannot be sensibly truncated.

Returns A dictionary of molecule counts per component, where each key is a component iden-
tifier.

Return type dict of str and int

static calculate_aqueous_ionic_mole_fraction(ionic_strength)

Determines what mole fraction of ions is needed to yield an aqueous system of a given ionic strength.

Parameters ionic_strength (openff.evaluator.unit.Quantity) – The ionic string in
units of molar.

Returns The mole fraction of ions.

Return type float

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str
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json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

Component

class openff.evaluator.substances.Component(smiles=UNDEFINED, role=Role.Solvent)
Defines a single component in a chemical system, as well as it’s role within the system (if any).

__init__(smiles=UNDEFINED, role=Role.Solvent)
Constructs a new Component object with either a label or a smiles string, but not both.

Notes

The label and smiles arguments are mutually exclusive, and only one can be passed while the other should
be None.

Parameters
• smiles (str) – A SMILES descriptor of the component

• role (Role) – The role of this component in the system.

Methods

__init__([smiles, role]) Constructs a new Component object with either a la-
bel or a smiles string, but not both.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
validate([attribute_type]) Validate the values of the attributes.

86 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str


OpenFF Evaluator Documentation

Attributes

identifier A unique identifier for this component.
role The role of this component in the system.
smiles The SMILES pattern which describes this compo-

nent.

class Role(value)
An enum which describes the role of a component in the system, such as whether the component is a solvent,
a solute, a receptor etc.

These roles are mainly used by workflow to identify the correct species in a system, such as when doing
docking or performing solvation free energy calculations.

smiles

The SMILES pattern which describes this component. The default value of this attribute is not set and must
be set by the user.. This attribute is read-only.

Type str

role

The role of this component in the system. The default value of this attribute is Role.Solvent. This
attribute is read-only.

Type Role

property identifier

A unique identifier for this component.

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str
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classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

Amount

class openff.evaluator.substances.Amount(value=UNDEFINED)

A representation of the amount of a given component in a Substance.

__init__(value=UNDEFINED)

Parameters value (float or int) – The value of this amount.

Methods

__init__([value])
param value The value of this amount.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
to_number_of_molecules(total_substance_molecules)Converts this amount to an exact number of

molecules
validate([attribute_type]) Validate the values of the attributes.

Attributes

identifier A string identifier for this amount.
value The value of this amount.

value

The value of this amount. The default value of this attribute is not set and must be set by the user.. This
attribute is read-only.

Type Union

property identifier

A string identifier for this amount.

88 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


OpenFF Evaluator Documentation

abstract to_number_of_molecules(total_substance_molecules, tolerance=None)
Converts this amount to an exact number of molecules

Parameters
• total_substance_molecules (int) – The total number of molecules in the whole sub-

stance. This amount will contribute to a portion of this total number.

• tolerance (float, optional) – The tolerance with which this amount should be in. As
an example, when converting a mole fraction into a number of molecules, the total number
of molecules may not be sufficiently large enough to reproduce this amount.

Returns The number of molecules which this amount represents, given the to-
tal_substance_molecules.

Return type int

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –
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ExactAmount

class openff.evaluator.substances.ExactAmount(value=UNDEFINED)

The exact number of instances of a Component in a Substance.

An assumption is made that this amount is for a component which is infinitely dilute (such as ligands in binding
calculations), and hence do not contribute to the total mole fraction of a Substance.

__init__(value=UNDEFINED)

Parameters value (float or int) – The value of this amount.

Methods

__init__([value])
param value The value of this amount.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
to_number_of_molecules(total_substance_molecules)Converts this amount to an exact number of

molecules
validate([attribute_type]) Validate the values of the attributes.

Attributes

identifier A string identifier for this amount.
value The value of this amount.

value

The value of this amount. The default value of this attribute is not set and must be set by the user..

Type int

property identifier

A string identifier for this amount.

to_number_of_molecules(total_substance_molecules, tolerance=None)
Converts this amount to an exact number of molecules

Parameters
• total_substance_molecules (int) – The total number of molecules in the whole sub-

stance. This amount will contribute to a portion of this total number.

• tolerance (float, optional) – The tolerance with which this amount should be in. As
an example, when converting a mole fraction into a number of molecules, the total number
of molecules may not be sufficiently large enough to reproduce this amount.

Returns The number of molecules which this amount represents, given the to-
tal_substance_molecules.

Return type int

90 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


OpenFF Evaluator Documentation

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

MoleFraction

class openff.evaluator.substances.MoleFraction(value=UNDEFINED)

The mole fraction of a Component in a Substance.

__init__(value=UNDEFINED)

Parameters value (float or int) – The value of this amount.
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Methods

__init__([value])
param value The value of this amount.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
to_number_of_molecules(total_substance_molecules)Converts this amount to an exact number of

molecules
validate([attribute_type]) Validate the values of the attributes.

Attributes

identifier A string identifier for this amount.
value The value of this amount.

value

The value of this amount. The default value of this attribute is not set and must be set by the user..

Type float

property identifier

A string identifier for this amount.

to_number_of_molecules(total_substance_molecules, tolerance=None)
Converts this amount to an exact number of molecules

Parameters
• total_substance_molecules (int) – The total number of molecules in the whole sub-

stance. This amount will contribute to a portion of this total number.

• tolerance (float, optional) – The tolerance with which this amount should be in. As
an example, when converting a mole fraction into a number of molecules, the total number
of molecules may not be sufficiently large enough to reproduce this amount.

Returns The number of molecules which this amount represents, given the to-
tal_substance_molecules.

Return type int

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.
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Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

State Definition

ThermodynamicState Data specifying a physical thermodynamic state obeying
Boltzmann statistics.

ThermodynamicState

class openff.evaluator.thermodynamics.ThermodynamicState(temperature=None, pressure=None)
Data specifying a physical thermodynamic state obeying Boltzmann statistics.

Notes

Equality of two thermodynamic states is determined by comparing the temperature in kelvin to within 3 decimal
places, and comparing the pressure (if defined) in pascals to within 3 decimal places.
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Examples

Specify an NPT state at 298 K and 1 atm pressure.

>>> state = ThermodynamicState(temperature=298.0*unit.kelvin, pressure=1.0*unit.
→˓atmospheres)

Note that the pressure is only relevant for periodic systems.

__init__(temperature=None, pressure=None)
Constructs a new ThermodynamicState object.

Parameters
• temperature (openff.evaluator.unit.Quantity) – The external temperature

• pressure (openff.evaluator.unit.Quantity) – The external pressure

Methods

__init__([temperature, pressure]) Constructs a new ThermodynamicState object.
from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
validate([attribute_type]) Validate the values of the attributes.

Attributes

beta Returns one divided by the temperature multiplied by
the molar gas constant

inverse_beta Returns the temperature multiplied by the molar gas
constant

pressure The external pressure.
temperature The external temperature.

property inverse_beta

Returns the temperature multiplied by the molar gas constant

property beta

Returns one divided by the temperature multiplied by the molar gas constant

temperature

The external temperature. The default value of this attribute is not set and must be set by the user..

Type Quantity

pressure

The external pressure. The default value of this attribute is not set. This attribute is optional.

Type Quantity
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validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

2.32.4 Data Set API

PhysicalPropertyDataSet An object for storing and curating data sets of both phys-
ical property measurements and estimated.
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PhysicalPropertyDataSet

class openff.evaluator.datasets.PhysicalPropertyDataSet

An object for storing and curating data sets of both physical property measurements and estimated. This class
defines a number of convenience functions for filtering out unwanted properties, and for generating general
statistics (such as the number of properties per substance) about the set.

__init__()

Constructs a new PhysicalPropertyDataSet object.

Methods

__init__() Constructs a new PhysicalPropertyDataSet object.
add_properties(*physical_properties[, validate]) Adds a physical property to the data set.
from_json(file_path) Create this object from a JSON file.
from_pandas(data_frame) Constructs a data set object from a pandas

DataFrame object.
json([file_path, format]) Creates a JSON representation of this class.
merge(data_set[, validate]) Merge another data set into the current one.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
properties_by_substance(substance) A generator which may be used to loop over all of

the properties which were measured for a particular
substance.

properties_by_type(property_type) A generator which may be used to loop over all of
properties of a particular type, e.g.

to_pandas() Converts a PhysicalPropertyDataSet to a pan-
das.DataFrame object with columns of

validate() Checks to ensure that all properties within the set are
valid physical property object.

Attributes

properties A list of all of the properties within this set.
property_types The types of property within this data set.
sources The sources from which the properties in this data set

were gathered.
substances The substances for which the properties in this data

set were collected for.

property properties

A list of all of the properties within this set.

Type tuple of PhysicalProperty

property property_types

The types of property within this data set.

Type set of str
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property substances

The substances for which the properties in this data set were collected for.

Type set of Substance

property sources

The sources from which the properties in this data set were gathered.

Type set of Source

merge(data_set, validate=True)
Merge another data set into the current one.

Parameters
• data_set (PhysicalPropertyDataSet) – The secondary data set to merge into this one.

• validate (bool) – Whether to validate the other data set before merging.

add_properties(*physical_properties, validate=True)
Adds a physical property to the data set.

Parameters
• physical_properties (PhysicalProperty) – The physical property to add.

• validate (bool) – Whether to validate the properties before adding them to the set.

properties_by_substance(substance)
A generator which may be used to loop over all of the properties which were measured for a particular
substance.

Parameters substance (Substance) – The substance of interest.

Return type generator of PhysicalProperty

properties_by_type(property_type)
A generator which may be used to loop over all of properties of a particular type, e.g. all “Density” prop-
erties.

Parameters property_type (str or type of PhysicalProperty) – The type of property
of interest. This may either be the string class name of the property or the class type.

Return type generator of PhysicalProperty

validate()

Checks to ensure that all properties within the set are valid physical property object.

to_pandas()

Converts a PhysicalPropertyDataSet to a pandas.DataFrame object with columns of

• ‘Id’

• ‘Temperature (K)’

• ‘Pressure (kPa)’

• ‘Phase’

• ‘N Components’

• ‘Component 1’

• ‘Role 1’

• ‘Mole Fraction 1’
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• ‘Exact Amount 1’

• . . .

• ‘Component N’

• ‘Role N’

• ‘Mole Fraction N’

• ‘Exact Amount N’

• ‘<Property 1> Value (<default unit>)’

• ‘<Property 1> Uncertainty / (<default unit>)’

• . . .

• ‘<Property N> Value / (<default unit>)’

• ‘<Property N> Uncertainty / (<default unit>)’

• ‘Source’

where ‘Component X’ is a column containing the smiles representation of component X.

Returns The create data frame.

Return type DataFrame

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_pandas(data_frame: DataFrame)→ PhysicalPropertyDataSet
Constructs a data set object from a pandas DataFrame object.

Notes

• All physical properties are assumed to be source from experimental measurements.

• Currently this method onlu supports data frames containing properties which are built-in to the frame-
work (e.g. Density).

• This method assumes the data frame has a structure identical to that produced by the
PhysicalPropertyDataSet.to_pandas function.

Parameters data_frame – The data frame to construct the data set from.

Return type The constructed data set.

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.
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Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

NIST ThermoML Archive

ThermoMLDataSet A dataset of physical property measurements created
from a ThermoML dataset.

register_thermoml_property A function used to map a property from the ThermoML
archive to an internal PhysicalProperty object of the cor-
rect type.

thermoml_property A decorator which wraps around the regis-
ter_thermoml_property method.

ThermoMLDataSet

class openff.evaluator.datasets.thermoml.ThermoMLDataSet

A dataset of physical property measurements created from a ThermoML dataset.

Examples

For example, we can use the DOI 10.1016/j.jct.2005.03.012 as a key for retrieving the dataset from the Ther-
moML Archive:

>>> dataset = ThermoMLDataSet.from_doi('10.1016/j.jct.2005.03.012')

You can also specify multiple ThermoML Archive keys to create a dataset from multiple ThermoML files:

>>> thermoml_keys = ['10.1021/acs.jced.5b00365', '10.1021/acs.jced.5b00474']
>>> dataset = ThermoMLDataSet.from_doi(*thermoml_keys)

__init__()

Constructs a new ThermoMLDataSet object.
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Methods

__init__() Constructs a new ThermoMLDataSet object.
add_properties(*physical_properties[, validate]) Adds a physical property to the data set.
from_doi(*doi_list) Load a ThermoML data set from a list of DOIs
from_file(*file_list) Load a ThermoML data set from a list of files
from_json(file_path) Create this object from a JSON file.
from_pandas(data_frame) Constructs a data set object from a pandas

DataFrame object.
from_url(*url_list) Load a ThermoML data set from a list of URLs
from_xml(xml, default_source) Load a ThermoML data set from an xml object.
json([file_path, format]) Creates a JSON representation of this class.
merge(data_set[, validate]) Merge another data set into the current one.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
properties_by_substance(substance) A generator which may be used to loop over all of

the properties which were measured for a particular
substance.

properties_by_type(property_type) A generator which may be used to loop over all of
properties of a particular type, e.g.

to_pandas() Converts a PhysicalPropertyDataSet to a pan-
das.DataFrame object with columns of

validate() Checks to ensure that all properties within the set are
valid physical property object.

Attributes

properties A list of all of the properties within this set.
property_types The types of property within this data set.
registered_properties

sources The sources from which the properties in this data set
were gathered.

substances The substances for which the properties in this data
set were collected for.

classmethod from_doi(*doi_list)
Load a ThermoML data set from a list of DOIs

Parameters doi_list (str) – The list of DOIs to pull data from

Returns The loaded data set.

Return type ThermoMLDataSet

classmethod from_url(*url_list)
Load a ThermoML data set from a list of URLs

Parameters url_list (str) – The list of URLs to pull data from

Returns The loaded data set.

Return type ThermoMLDataSet
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classmethod from_file(*file_list)
Load a ThermoML data set from a list of files

Parameters file_list (str) – The list of files to pull data from

Returns The loaded data set.

Return type ThermoMLDataSet

add_properties(*physical_properties, validate=True)
Adds a physical property to the data set.

Parameters
• physical_properties (PhysicalProperty) – The physical property to add.

• validate (bool) – Whether to validate the properties before adding them to the set.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_pandas(data_frame: DataFrame)→ PhysicalPropertyDataSet
Constructs a data set object from a pandas DataFrame object.

Notes

• All physical properties are assumed to be source from experimental measurements.

• Currently this method onlu supports data frames containing properties which are built-in to the frame-
work (e.g. Density).

• This method assumes the data frame has a structure identical to that produced by the
PhysicalPropertyDataSet.to_pandas function.

Parameters data_frame – The data frame to construct the data set from.

Return type The constructed data set.

classmethod from_xml(xml, default_source)
Load a ThermoML data set from an xml object.

Parameters
• xml (str) – The xml string to parse.

• default_source (Source) – The source to use if one cannot be parsed from the archive
itself.

Returns The loaded ThermoML data set.

Return type ThermoMLDataSet

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
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• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(data_set, validate=True)
Merge another data set into the current one.

Parameters
• data_set (PhysicalPropertyDataSet) – The secondary data set to merge into this one.

• validate (bool) – Whether to validate the other data set before merging.

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

property properties

A list of all of the properties within this set.

Type tuple of PhysicalProperty

properties_by_substance(substance)
A generator which may be used to loop over all of the properties which were measured for a particular
substance.

Parameters substance (Substance) – The substance of interest.

Return type generator of PhysicalProperty

properties_by_type(property_type)
A generator which may be used to loop over all of properties of a particular type, e.g. all “Density” prop-
erties.

Parameters property_type (str or type of PhysicalProperty) – The type of property
of interest. This may either be the string class name of the property or the class type.

Return type generator of PhysicalProperty

property property_types

The types of property within this data set.

Type set of str

property sources

The sources from which the properties in this data set were gathered.

Type set of Source

property substances

The substances for which the properties in this data set were collected for.

Type set of Substance
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to_pandas()

Converts a PhysicalPropertyDataSet to a pandas.DataFrame object with columns of

• ‘Id’

• ‘Temperature (K)’

• ‘Pressure (kPa)’

• ‘Phase’

• ‘N Components’

• ‘Component 1’

• ‘Role 1’

• ‘Mole Fraction 1’

• ‘Exact Amount 1’

• . . .

• ‘Component N’

• ‘Role N’

• ‘Mole Fraction N’

• ‘Exact Amount N’

• ‘<Property 1> Value (<default unit>)’

• ‘<Property 1> Uncertainty / (<default unit>)’

• . . .

• ‘<Property N> Value / (<default unit>)’

• ‘<Property N> Uncertainty / (<default unit>)’

• ‘Source’

where ‘Component X’ is a column containing the smiles representation of component X.

Returns The create data frame.

Return type DataFrame

validate()

Checks to ensure that all properties within the set are valid physical property object.

register_thermoml_property

openff.evaluator.datasets.thermoml.register_thermoml_property(thermoml_string,
supported_phases,
property_class=None,
conversion_function=None)

A function used to map a property from the ThermoML archive to an internal PhysicalProperty object of the
correct type.

This function takes either a specific class (e.g. Density) which maps directly to the specified thermoml_string,
or a a function which maps a ThermoMLProperty into a PhysicalProperty allowing fuller control.

Parameters
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• thermoml_string (str) – The ThermoML string identifier (ePropName) for this property.

• supported_phases (PropertyPhase:) – An enum which encodes all of the phases for
which this property supports being estimated in.

• property_class (type of PhysicalProperty, optional) – The class associated
with this physical property. This argument is mutually exclusive with the conver-
sion_function argument.

• conversion_function (function) – A function which maps a ThermoMLProperty into
a PhysicalProperty. This argument is mutually exclusive with the property_class argument.

thermoml_property

openff.evaluator.datasets.thermoml.thermoml_property(thermoml_string, supported_phases)
A decorator which wraps around the register_thermoml_property method.

Parameters
• thermoml_string (str) – The ThermoML string identifier (ePropName) for this property.

• supported_phases (PropertyPhase:) – An enum which encodes all of the phases for
which this property supports being estimated in.

Taproom

Data Set Curation

Filtering

FreeSolv

ThermoML

Data Point Selection

Data Conversion
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2.32.5 Force Field API

Gradient Estimation

2.32.6 Calculation Layers API

Built-in Calculation Layers

2.32.7 Calculation Backends API

Dask Backends

2.32.8 Storage API

Built-in Storage Backends

Data Classes

Data Queries

Attributes
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2.32.9 Workflow API

Schemas

Attributes

Placeholder Values

2.32.10 Built-in Workflow Protocols

Analysis

Coordinate Generation

Force Field Assignment

Gradients

Groups

Miscellaneous

OpenMM

Paprika

Reweighting

Simulation
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Storage

YANK Free Energies

2.32.11 Workflow Construction Utilities

2.32.12 Attribute Utilities

Attribute A custom descriptor used to add useful metadata to class
attributes.

AttributeClass A base class for objects which require well defined at-
tributes with additional metadata.

UNDEFINED A custom type used to differentiate between None val-
ues, and an undeclared optional value.

PlaceholderValue A class to act as a place holder for an attribute whose
value is not known a priori, but will be set later by some
specialised code.

Attribute

class openff.evaluator.attributes.Attribute(docstring, type_hint, default_value=UNDEFINED,
optional=False, read_only=False)

A custom descriptor used to add useful metadata to class attributes.

This decorator expects the object to have a matching private field in addition to the public attribute. For example
if an object has an attribute substance, the object must also have a _substance field.

Notes

The attribute class will automatically create this private attribute on the object and populate it with the default
value.

__init__(docstring, type_hint, default_value=UNDEFINED, optional=False, read_only=False)
Initializes a new Attribute object.

Parameters
• docstring (str) – A docstring describing the attributes purpose. This will automatically

be decorated with additional information such as type hints, default values, etc.

• type_hint (type, Union) – The expected type of this attribute. This will be used to help
the workflow engine ensure that expected input types match corresponding output values.

• default_value (Any) – The default value for this attribute.
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• optional (bool) – Defines whether this is an optional input of a class. If true, the de-
fault_value should be set to UNDEFINED.

• read_only (bool) – Defines whether this attribute is read-only.

Methods

__init__(docstring, type_hint[, ...]) Initializes a new Attribute object.

AttributeClass

class openff.evaluator.attributes.AttributeClass

A base class for objects which require well defined attributes with additional metadata.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
validate([attribute_type]) Validate the values of the attributes.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any
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classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

UNDEFINED

openff.evaluator.attributes.UNDEFINED =
<openff.evaluator.attributes.attributes.UndefinedAttribute object>

A custom type used to differentiate between None values, and an undeclared optional value.

PlaceholderValue

class openff.evaluator.attributes.PlaceholderValue

A class to act as a place holder for an attribute whose value is not known a priori, but will be set later by some
specialised code. This may include the input to a protocol which will be set by a workflow as the output of an
executed protocol.

__init__()

Methods

__init__()

2.32.13 Observable Utilities
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2.32.14 Plug-in Utilities

Plug-ins

register_default_plugins Registers the built-in workflow protocols, calculation
layers and physical properties with the plugin system.

register_external_plugins Registers any supported plugins found in external pack-
ages with the plugin system.

register_default_plugins

openff.evaluator.plugins.register_default_plugins()

Registers the built-in workflow protocols, calculation layers and physical properties with the plugin system.

register_external_plugins

openff.evaluator.plugins.register_external_plugins()

Registers any supported plugins found in external packages with the plugin system.

2.33 Release History

Releases follow the major.minor.micro scheme recommended by PEP440, where

• major increments denote a change that may break API compatibility with previous major releases

• minor increments add features but do not break API compatibility

• micro increments represent bugfix releases or improvements in documentation

2.33.1 Current development

• PR #555: More gracefully handle Packmol failures.

2.33.2 0.4.8 - January 30, 2024

• PR #524: Allow Pydantic v2 at runtime.

• PR #536: Make tests pseudo-private.

• PR #537: Update versioneer.py for Python 3.12 compatibility.

• PR #542: Remove use of pkg_resources.

• PR #546: Remove use of ParameterHandler._OPENMMTYPE.
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2.33.3 0.4.7 - October 16, 2023

• PR #534: Includes virtual site and related parameters in openmm.system subset creation when calculating gra-
dients.

• PR #533: Considers openmm.AmoebaMultipoleForce when disabling PBC.

2.33.4 0.4.6 - October 12, 2023

• PR #532: Changes BaseEnergyMinimisation.tolerance to use units of force.

2.33.5 0.4.5 - July 24, 2023

• PR #517: Adds support for Foyer forcefields.

2.33.6 0.4.4 - July 24, 2023

This release drops support for Python 3.8, adds support for Python 3.10, and removed protocols based on Yank.

• PR #511: Following NEP 29, removes support for Python 3.8.

• PR #509: Add links to centralized OpenFF installation guide.

• PR #496: Removes support for protocls based on Yank.

• PR #497: Adds support for Python 3.10

2.33.7 0.4.3

This release adds support for OpenMM 8. Support for OpenMM 7 will be removed in a future release.

Bugfixes

• PR #496: Adds support for OpenMM 8.

• PR #503: Updates FilterBySmirks to no longer ignore isotopes.

Documentation

• PR #499: Updates tutorials for upstream changes.

2.33.8 0.4.2

New Features

• PR #479: Improves compatibility with pymbar 3 and 4.
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Bugfixes

• PR #489: Properly creates Amber-style systems involving multiple molecules.

Behavior Changes

• PR #490: Deprecates Yank protocols.

2.33.9 0.4.1

New Features

• PR #475: Tests compatibility with pymbar 3 and 4.

2.33.10 0.4.0

Behavior Changes

This release is intended to be compatible with OpenFF Toolkit version 0.11.0 and newer and is not compatible with
older versions. To use OpenFF Evaluator in environments with older versions of the toolkit (0.10.x and older) please
use the 0.3.x release line.

The simtk namespace is no longer supported. It is recommended to use OpenMM 7.6 or newer.

Two other version constraints have been added: pymbar >=4.0.0 and mdtraj =1.9.3,1.9.4. A future release
should fix compatibility with newer versions of MDTraj.

Unit-bearing quantities are now handled by openff-units instead of the openmm.units units module. See the
openff-units Documentation for more information, including OpenMM interoperability.

The use of CMILES has been replaced with equivalent behavior using the OpenFF Toolkit as CMILES is no longer
actively maintained.

New Features

• PR #465: Adds support for AMD GPUs via OpenCL.

Documentation

• PR #409: Replaces some uses of Behaviour with the American spelling Behaviour.

• PR #413: Adds a brief citation recommendation.
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2.33.11 0.3.11

Bugfixes

• PR #445: Fix OpenMM unit utils API regression

2.33.12 0.3.10

Bugfixes

• PR #444: Fix labelling molecules with virtual sites

2.33.13 0.3.9

Bugfixes

• PR #402: Fix importing full ThermoML archive

Behavior Changes

The way that ThermoML archive files are served was changed in 2021 so that individual journal archives are no
longer made available. Instead, now only the full ThermoML archive can be downloaded. Because of this, the
ImportThermoMLDataSchema schema no longer allows users to select which journal to pull data from.

2.33.14 0.3.8

Bugfixes

• PR #390: Fix excluding v-sites from OpenMM positions

2.33.15 0.3.7

Bugfixes

• PR #389: Fix v-site positions not set by OpenMM

2.33.16 0.3.6

Bugfixes

• PR #375: Fix #374 - import from collections.abc

• PR #379: Fix #378 - ‘FilterDuplicates` unintentionally selects values without uncertainty if multiple are present

• PR #384: Fix #382 - Default keyword arguments result in error

• PR #387: Fix #380 - Recursion error in local file storage
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New Features

• PR #385: Support custom OpenMM nonbonded forces

• PR #386: Migrate to new OpenMM namespace

2.33.17 0.3.5

Bugfixes

• PR #367: Fix #365 - to/from_pandas does not roundtrip.

• PR #368: Fix #364 - Parsing an invalid IUPAC name raises an exception rather than a warning.

• PR #371: Fix gradients of non-Quantity parameters.

New Features

• PR #362: Support dask-jobqueue Slurm backend.

• PR #366: Support gradients of handler attributes.

2.33.18 0.3.4

A patch release which adds the option (and enables it by default) to remove working files, such as simulated trajectories,
when they are no longer needed.

Behavior Changes

• PR #349: Working files are deleted by default after an estimation batch completes.

2.33.19 0.3.3

This release facilitates the migration of the openff-evaluator package from omnia to conda-forge. This mainly involves
changes which update the package to use the new namespaces introduced in the openff-tookit package, rather than the
old and now deprecated openforcefield namespaces.

Bugfixes

• PR #346: Remove the unsupported encoding json kwarg.
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New Features

• PR #341: Replace usages of dynamic Pint classes with internal static variants.

• PR #343: Migrate to the new OpenFF Toolkit namespace.

• PR #345: Migrate all reference from omnia to conda-forge.

2.33.20 0.3.2

This release exposes the option to disable caching of simulation data by an evaluator server. The performance of the
local storage backend is currently poor when dealing with large amounts of cached data and hence it may be preferable
to disable caching in such cases.

New Features

• PR #337: Expose server option to dis/enable data caching.

2.33.21 0.3.1

This release fixes a bug introduced in version 0.3.0 of this framework, whereby the default workflows for computing
excess properties could in rare cases be incorrectly merged leading to downstream protocols taking their inputs from
the wrong upstream protocol outputs.

While this bug should not affect most calculations, it is recommended that any production calculations performed using
version 0.3.0 of this framework be repeated using version 0.3.1.

Bugfixes

• PR #331: Fixes merging excess properties.

2.33.22 0.3.0

The main feature of this release is the overhauling of how the framework computes the gradients of observables with
respect to force field parameters.

In particular, from this release onwards all gradients will be computed using the fluctuation formula (also referred to
as the thermodynamic gradient), rather than calculation be the re-weighted finite difference approach (PR #280). In
general the two methods produce gradients which are numerically indistinguishable, and so this should not markedly
change any scientific output of this framework.

The change was made to, in future, enable better integration with automatic differentiation libraries such as jax, and
differentiable simulation engines such as timemachine which readily and rapidly give access to d𝑈/d𝜃𝑖.

Additionally, as of version 0.3.0 ‘known’ charges (i.e. those assigned to TIP3P water and ions) are no longer auto-
matically applied when using a SMIRNOFF based force field. This feature was originally included in the framework
as the OpenFF toolkit did not support defining charges on specific molecules in the force field itself. This is now fully
supported through the LibraryCharges section of a SMIRNOFF force field and hence this workaround is no longer
required. From now on all ion and water charges must be specified in the SMIRNOFF force field.

Finally, this release includes beta support for computing host-guest binding affinities using the attach-pull-release
(APR) method through integration with the pAPRika and taproom packages. This support was largely facilitated by
the efforts of the paprika authors - David R. Slochower and Jeffry Setiadi.

2.33. Release History 115

https://github.com/openforcefield/openff-evaluator/pull/341
https://github.com/openforcefield/openff-evaluator/pull/343
https://github.com/openforcefield/openff-evaluator/pull/345
https://github.com/openforcefield/openff-evaluator/pull/337
https://github.com/openforcefield/openff-evaluator/pull/331
https://github.com/openforcefield/openff-evaluator/pull/280
https://github.com/google/jax
https://github.com/proteneer/timemachine
https://github.com/slochower/pAPRika
https://github.com/slochower/host-guest-benchmarks
https://github.com/slochower
https://github.com/jeff231li


OpenFF Evaluator Documentation

Bugfixes

• PR #285: Use merged protocols in workflow provenance.

• PR #287: Fix merging of nested protocol inputs

New Features

• PR #262: Initial host-guest binding affinity support via paprika and taproom.

• PR #280: Switch to computing thermodynamic gradients.

• PR #309: Add a date to the timestamp logging output.

• PR #311: Initial solvation free energy gradient support.

• PR #312: Support caching free energy data.

• PR #324: Adds new miscellaneous DummyProtocol protocol.

Behavior Changes

• PR #280: Migrate to thermodynamic gradients.

• PR #310: The SMIRNOFF protocol no longer applies ‘known’ charges (i.e. water and ions).

• PR #316: Add library charges to the TIP3P test data file.

• PR #328: Store workflow provenance as serialized string.

Breaking Changes

• The StatisticsArray array has been completely removed and replaced with a new set of observable
(Observable, ObservableArray, ObservableFrame objects (#279, #286).

• The following protocol inputs / outputs have been renamed:

– SolvationYankProtocol.solvent_X_system -> SolvationYankProtocol.solution_X_system

– SolvationYankProtocol.solvent_X_coordinates -> SolvationYankProtocol.
solution_X_coordinates

– SolvationYankProtocol.estimated_free_energy -> SolvationYankProtocol.
free_energy_difference

• The following classes have been renamed:

– OpenMMReducedPotentials -> OpenMMEvaluateEnergies.

– AveragePropertyProtocol -> BaseAverageObservable, ExtractAverageStatistic
-> AverageObservable, ExtractUncorrelatedData -> BaseDecorrelateProtocol,
ExtractUncorrelatedTrajectoryData -> DecorrelateTrajectory,
ExtractUncorrelatedStatisticsData -> DecorrelateObservables

– ConcatenateStatistics -> ConcatenateObservables, BaseReducedPotentials ->
BaseEvaluateEnergies, ReweightStatistics -> ReweightObservable

• The following classes have been removed:

– OpenMMGradientPotentials, BaseGradientPotentials, CentralDifferenceGradient

116 Chapter 2. Supported Physical Properties

https://github.com/openforcefield/openff-evaluator/pull/285
https://github.com/openforcefield/openff-evaluator/pull/287
https://github.com/openforcefield/openff-evaluator/pull/262
https://github.com/openforcefield/openff-evaluator/pull/280
https://github.com/openforcefield/openff-evaluator/pull/309
https://github.com/openforcefield/openff-evaluator/pull/311
https://github.com/openforcefield/openff-evaluator/pull/312
https://github.com/openforcefield/openff-evaluator/pull/324
https://github.com/openforcefield/openff-evaluator/pull/280
https://github.com/openforcefield/openff-evaluator/pull/310
https://github.com/openforcefield/openff-evaluator/pull/316
https://github.com/openforcefield/openff-evaluator/pull/328
https://github.com/openforcefield/openff-evaluator/pull/279
https://github.com/openforcefield/openff-evaluator/pull/279


OpenFF Evaluator Documentation

• The final value estimated by a workflow must now be an Observable object which contains any gradient infor-
mation to return. (#296).

2.33.23 0.2.2

This release adds documentation for how physical properties are computed within the framework (both for this, and for
previous releases.

Documentation

• PR #281: Initial pass at physical property documentation.

2.33.24 0.2.1

A patch release offering minor bug fixes and quality of life improvements.

Bugfixes

• PR #259: Adds is_file_and_not_empty and addresses OpenMM failure modes.

• PR #275: Workaround for N substance molecules > user specified maximum.

New Features

• PR #267: Adds workflow protocol to Boltzmann average free energies.

• PR #269: Expose exclude exact amount from max molecule cap.

2.33.25 0.2.0

This release overhauls the frameworks data curation abilities. In particular, it adds

• a significant amount of data filters, including to filter by state, substance composition and chemical functionali-
ties.

and components to

• easily import all of the ThermoML and FreeSolv archives.

• convert between property types (currently density <-> excess molar volume).

• select data points close to a set of target states, and substances which contain specific functionalities (i.e. select
only data points measured for ketones, alcohols or alkanes).

More information about the new curation abilities can be found in the documentation here.
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New Features

• PR #260: Data set curation overhaul.

• PR #261: Adds PhysicalPropertyDataSet.from_pandas.

Breaking Changes

• All of the PhysicalPropertyDataSet.filter_by_XXX functions have now been removed in favor of the new
curation components. See the documentation for information about the newly available filters and more.

2.33.26 0.1.2

A patch release offering minor bug fixes and quality of life improvements.

Bugfixes

• PR #254: Fix incompatible protocols being merged due to an id replacement bug.

• PR #255: Fix recursive ThermodynamicState string representation.

• PR #256: Fix incorrect version when installing from tarballs.

2.33.27 0.1.1

A patch release offering minor bug fixes and quality of life improvements.

Bugfixes

• PR #249: Fix replacing protocols of non-existent workflow schema.

• PR #253: Fix antechamber truncating charge file.

Documentation

• PR #252: Use conda-forge for ambertools installation.

2.33.28 0.1.0 - OpenFF Evaluator

Introducing the OpenFF Evaluator! The release marks a significant milestone in the development of this project, and
constitutes an almost full redesign of the framework with a focus on stability and ease of use.

Note: because of the extensive changes made throughout the entire framework, this release should almost be considered
as an entirely new package. No files produced by previous versions of this will work with this new release.
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Clearer Branding

First and foremost, this release marks the complete rebranding from the previously named propertyestimator to the
new openff-evaluator package. This change is accompanied by the introduction of a new openff namespace for the
package, signifying it’s position in the larger Open Force Field infrastructure and piplelines.

What was previously:

import propertyestimator

now becomes:

import openff.evaluator

The rebranded package is now shipped on conda under the new name of openff-evaluator:

conda install -c conda-forge -c omnia openff-evaluator

Markedly Improved Documentation

In addition, the release includes for the first time a significant amount of documentation for using the `framework and
it's features`_ as well as a collection of user focused tutorials which can be ran directly in the browser.

Support for RDKit

This release almost entirely removes the dependence on OpenEye thanks to support for RDKit almost universally across
the framework.

The only remaining instance where OpenEye is still required is for host-guest binding affinity calculations where it is
used to perform docking.

Model Validation

Starting with this release almost all models, range from PhysicalProperty entries to ProtocolSchema objects, are
now heavily validated to help catch any typos or errors early on.

Batching of Similar Properties

The EvaluatorServer now more intelligently attempts to batch properties which may be computed using the same
simulations into a single batch to be estimated. While the behaviour was already supported for pure properties in
previous, this has now been significantly expanded to work well with mixture properties.
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2.33.29 0.0.9 - Multi-state Reweighting Fix

This release implements a fix for calculating the gradients of properties being estimated by reweighting data cached
from multiple independant simulations.

Bugfixes

• PR #143: Fix for multi-state gradient calculations.

2.33.30 0.0.8 - ThermoML Improvements

This release is centered around cleaning up the ThermoML data set utilities. The main change is that ThermoML
archive files can now be loaded even if they don’t contain measurement uncertainties.

New Features

• PR #142: ThermoML archives without uncertainties can now be loaded.

Breaking Changes

• PR #142: All ThermoMLXXX classes other than ThermoMLDataSet are now private.

2.33.31 0.0.7 - Bug Quick Fixes

This release aims to fix a number of minor bugs.

Bugfixes

• PR #136: Fix for comparing thermodynamic states with unset pressures.

• PR #138: Fix for a typo in the maximum number of minimization iterations.

2.33.32 0.0.6 - Solvation Free Energies

This release centers around two key changes -

i) a general refactoring of the protocol classes to be much cleaner and extensible through the removal of the old
stub functions and the addition of cleaner descriptors.

ii) the addition of workflows to estimate solvation free energies via the new SolvationYankProtocol and
SolvationFreeEnergy classes.

The implemented free energy workflow is still rather basic, and does not yet support calculating parameter gradients
or estimation from cached simulation data through reweighting.

A new table has been added to the documentation to make clear which built-in properties support which features.
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New Features

• PR #110: Cleanup and refactor of protocol classes.

• PR #125: Support for PBS based HPC clusters.

• PR #127: Adds a basic workflow for estimating solvation free energies with YANK.

• PR #130: Adds a cleaner mechanism for restarting simulations from checkpoints.

• PR #134: Update to a more stable dask version.

Bugfixes

• PR #128: Removed the defunct dask backend processes kwarg.

• PR #133: Fix for tests failing on MacOS due to travis issues.

Breaking Changes

• PR #130: The RunOpenMMSimulation.steps input has now been split into the steps_per_iteration and
total_number_of_iterations inputs.

Migration Guide

This release contained several public API breaking changes. For the most part, these can be remedied by the follow
steps:

• Replace all instances of run_openmm_simulation_protocol.steps to
run_openmm_simulation_protocol.steps_per_iteration

2.33.33 0.0.5 - Fix For Merging of Estimation Requests

This release implements a fix for a major bug which caused incorrect results to be returned when submitting multiple
estimation requests at the same time - namely, the returned results became jumbled between the different requests. As
an example, if a request was made to estimate a data set using the smirnoff99frosst force field, and then straight after
with the gaff 1.81 force field, the results of the smirnoff99frosst request may contain some properties estimated with
gaff 1.81 and vice versa.

This issue does not affect cases where only a single request was made and completed at a time (i.e the results of the
previous request completed before the next estimation request was made).

Bugfixes

• PR #119: Fixes gather task merging.

• PR #121: Update to distributed 2.5.1.
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2.33.34 0.0.4 - Initial Support for Non-SMIRNOFF FFs

This release adds initial support for estimating property data sets using force fields not based on the SMIRNOFF specifi-
cation. In particular, initial AMBER force field support has been added, along with a protocol which applies said force
fields using tleap.

New Features

• PR #96: Adds a mechanism for specifying force fields not in the SMIRNOFF spec.

• PR #99: Adds support for applying AMBER force field parameters through tleap

• PR #111: Protocols now stream trajectories from disk, rather than pre-load the whole thing.

• PR #112: Specific types of protocols can now be easily be replaced using WorkflowOptions.

• PR #117: Adds support for converting PhysicalPropertyDataSet objects to pandas.DataFrame.

Bugfixes

• PR #115: Fixes caching data for substances whose smiles contain forward slashes.

• PR #116: Fixes inconsistent mole fraction rounding.

Breaking Changes

• PR #96: The PropertyEstimatorClient.request_estimate(force_field=... argument has been re-
named to force_field_source.

Migration Guide

This release contained several public API breaking changes. For the most part, these can be remedied by the follow
steps:

• Change all instances of PropertyEstimatorClient.request_estimate(force_field=...) to
PropertyEstimatorClient.request_estimate(force_field_source=...)

2.33.35 0.0.3 - ExcessMolarVolume and Typing Improvements

This release implements a number of bug fixes and adds two key new features, namely built in support for estimating
excess molar volume measurements, and improved type checking for protocol inputs and outputs.

New Features

• PR #98: Substance objects may now have components with multiple amount types.

• PR #101: Added support for estimating ExcessMolarVolume measurements from simulations.

• PR #104: typing.Union is now a valid type arguemt to protocol_output and protocol_input.
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Bugfixes

• PR #94: Fixes exception when testing equality of ProtocolPath objects.

• PR #100: Fixes precision issues when ensuring mole fractions are <= 1.0.

• PR #102: Fixes replicated input for children of replicated protocols.

• PR #105: Fixes excess properties weighting by the wrong mole fractions.

• PR #107: Fixes excess properties being converged to the wrong uncertainty.

• PR #108: Fixes calculating MBAR gradients of reweighted properties.

Breaking Changes

• PR #98: Substance.get_amount renamed to Substance.get_amounts and now returns an immutable
frozenset of Amount objects, rather than a single Amount.

• PR #104: The DivideGradientByScalar, MultiplyGradientByScalar, AddGradients,
SubtractGradients and WeightGradientByMoleFraction protocols have been removed. The
WeightQuantityByMoleFraction protocol has been renamed to WeightByMoleFraction.

Migration Guide

This release contained several public API breaking changes. For the most part, these can be remedied by the follow
steps:

• Change all instances of Substance.get_amount to Substance.get_amounts and handle the newly returned
frozenset of amounts, rather than the previously returned single amount.

• Replace the now removed protocols as follows:

– DivideGradientByScalar -> DivideValue

– MultiplyGradientByScalar -> MultiplyValue

– AddGradients -> AddValues

– SubtractGradients -> SubtractValues

– WeightGradientByMoleFraction -> WeightByMoleFraction

– WeightQuantityByMoleFraction -> WeightByMoleFraction

2.33.36 0.0.2 - Replicator Quick Fixes

A minor release to fix a number of minor bugs related to replicating protocols.
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Bugfixes

• PR #90: Fixes merging gradient protocols with the same id.

• PR #92: Fixes replicating protocols for more than 10 template values.

• PR #93: Fixes ConditionalGroup objects losing their conditions input.

2.33.37 0.0.1 - Initial Release

The initial pre-alpha release of the framework.

2.34 Release Process

This document aims to outline the steps needed to release the openff-evaluator on conda-forge. This should only
be done with the approval of the core maintainers.

2.34.1 1. Update the Release History

If no PR has been submitted, create a new one to keep track of changes to the release notes only. Only the
releasehistory.rst file may be edited in this PR.

Ensure that the release history file is up to date, and conforms to the below template:

X.Y.Z - Descriptive Title
------------------------------

This release...

New Features
""""""""""""

* PR #X: Feature summary

Bugfixes
""""""""

* PR #Y: Fix Summary

Breaking Changes
""""""""""""""""

* PR #Z: Descriptive summary of the breaking change

Migration Guide
"""""""""""""""

This release contained several public API breaking changes. For the most part, these can␣
→˓be
remedied by the follow steps:

* A somewhat verbose guide on how users should upgrade their code given the new breaking␣
→˓changes. (continues on next page)
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(continued from previous page)

2.34.2 2: Cut the Release on GitHub

To cut a new release on GitHub:

1) Go to the Releases tab on the front page of the repo and choose Create a new release.

2) Set the release tag using the form: X.Y.Z

3) Added a descriptive title using the form: X.Y.Z [Descriptive Title]

4) Ensure the This is a pre-release checkbox is ticked.

5) Reformat the release notes from part 1) into markdown and paste into the description box.

a) Append the following extra message above the New Features title:

A richer version of these release notes with live links to API documentation is available
on [our ReadTheDocs page](https://property-estimator.readthedocs.io/en/latest/
→˓releasehistory.html)

See our [installation instructions](https://property-estimator.readthedocs.io/en/latest/
→˓install.html).

Please report bugs, request features, or ask questions through our
[issue tracker](https://github.com/openforcefield/openff-evaluator/issues).

**Please note that this is a pre-alpha release and there will still be major changes to␣
→˓the API
prior to a stable 1.0.0 release.**

Note - You do not need to upload any files. The source code will automatically be added as a `.tar.gz` file.

2.34.3 3: Trigger a New Build on Conda Forge

To trigger the build on conda-forge:

1) Create a fork of the openff-evaluator-feedstock and make the following changes to the recipe/meta.yaml file:

a) Update the version to match the release.

b) Set build to 0

c) Update any dependencies in the requirements section

d) Update the sha256 hash to the output of curl -sL https://github.com/openforcefield/
openff-evaluator/archive/{{ version }}.tar.gz | openssl sha256

2) Open PR to merge the fork into the main feedstock:

a) The PR title should have the format Release X.Y.Z

b) No PR body text is needed

c) The CI will run on this PR (~30 minutes) and attempt to build the package.

d) If the build is successful the PR should be reviewed and merged by the feedstock maintainers.

e) Once merged the package is built again on and uploaded to anaconda.
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3) Test the conda-forge package:

a) conda install -c conda-forge openff-evaluator

2.34.4 4: Update the ReadTheDocs Build Versions

To ensure that the read the docs pages are updated:

1) Trigger a RTD build of latest.

2) Under the Versions tab add the new release version to the list of built versions and save.

3) Verify the new version docs have been built and pushed correctly

4) Under Admin | Advanced Settings: Set the new release version as Default version to display and save.
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