

properties

[image: Latest PyPI version]
 [https://pypi.org/project/properties][image: MIT license]
 [https://github.com/seequent/properties/blob/master/LICENSE][image: ReadTheDocs]
 [http://propertiespy.readthedocs.io/en/latest/][image: Travis tests]
 [https://travis-ci.org/seequent/properties][image: Code coverage]
 [https://codecov.io/gh/seequent/properties]
Overview Video

[image: Python Properties]
 [https://www.youtube.com/watch?v=DJfOHVaglqs]An overview of Properties, November 2016.

Why

Properties provides structure to aid development in an interactive programming
environment while allowing for an easy transition to production code.
It emphasizes usability and reproducibility for developers and users at
every stage of the code life cycle.

Scope

The properties package enables the creation of strongly typed objects in a
consistent, declarative way. This allows validation of developer expectations and hooks
into notifications and other libraries. It provides documentation with
no extra work, and serialization for portability and reproducibility.

Goals

	Keep a clean namespace for easy interactive programming

	Prioritize documentation

	Provide built-in serialization/deserialization

	Connect to other libraries for GUIs and visualizations

Documentation

API Documentation is available at ReadTheDocs [https://propertiespy.readthedocs.io/en/latest/].

Alternatives

	attrs [https://github.com/python-attrs/attrs] - “Python Classes Without
Boilerplate” - This is a popular, actively developed library that aims to
simplify class creation, especially around object protocols (i.e. dunder
methods), with concise, declarative code.

Similarities to Properties include type-checking, defaults, validation, and
coercion. There are a number of differences:

	attrs acts somewhat like a namedtuple, whereas properties acts
more like a dict or mutable object.

	as a result, attrs is able to tackle hashing, comparison methods,
string representation, etc.

	attrs does not suffer runtime performance penalties as much as properties

	on the other hand, properties focuses on interactivity, with
notifications, serialization/deserialization, and mutable,
possibly invalid states.

	properties has many built-in types with existing, complex validation
already in place. This includes recursive validation of container
and instance properties. attrs only allows attribute type to be specified.

	properties is more prescriptive and detailed around auto-generated
class documentation, for better or worse.

	traitlets [https://github.com/ipython/traitlets] (Jupyter project) and
traits [https://github.com/enthought/traits] (Enthought) - These libraries
are driven by GUI development (much of the Jupyter environment is built
on traitlets; traits has automatic GUI generation) which leads to many
similar features as properties such as strong typing, validation, and
notifications. Also, some Properties features and aspects of the API take
heavy inspiration from traitlets.

However, There are a few key areas where properties differs:

	properties has a clean namespace - this (in addition to ? docstrings)
allows for very easy discovery in an interactive programming environment.

	properties prioritizes documentation - this is not explicitly implemented
yet in traits or traitlets, but works out-of-the-box in properties.

	properties prioritizes serialization - this is present in traits with
pickling (but difficult to customize) and in traitlets with configuration
files (which require extra work beyond standard class definition); in
properties, serialization works out of the box but is also highly
customizable.

	properties allows invalid object states - the GUI focus of traits/traitlets
means an invalid object state at any time is never ok; without that constraint,
properties allows interactive object building and experimentation.
Validation then occurs when the user is ready and calls validate

Significant advantages of traitlets and traits over properties are
GUI interaction and larger suites of existing property types.
Besides numerous types built-in to these libraries, some other examples are
trait types that support unit conversion [https://github.com/astrofrog/numtraits]
and NumPy/SciPy trait types [https://github.com/jupyter-widgets/traittypes]
(note: properties has a NumPy array property type).

Note

properties provides a link object which inter-operates with
traitlets and follows the same API as traitlets links

	param [https://github.com/ioam/param] - This library also provides
type-checking, validation, and notification. It has a few unique features
and parameter types (possibly of note is the ability to provide dynamic
values for parameters at any time, not just as the default). This was first
introduced before built-in Python properties, and current development is
very slow.

	built-in Python dataclass decorator [https://www.python.org/dev/peps/pep-0557/] -
provides “mutable named tuples with defaults” - this provides similar functionality
to the attrs by adding several object protocol dunder methods to a class. Data
Classes are clean, lightweight and included with Python 3.7. However, they
don’t provide as much builtin functionality or customization as the above
libraries.

	built-in Python property [https://docs.python.org/3/library/functions.html#property] -
properties/traits-like behavior can be mostly recreated using @property.
This requires significantly more work by the programmer, and results in
not-declarative, difficult-to-read code.

	mypy [https://github.com/python/mypy], PEP 484 [https://www.python.org/dev/peps/pep-0484/],
and PEP 526 [https://www.python.org/dev/peps/pep-0526/] -
This provides static typing for Python without coersion, notifications, etc.
It has a very different scope and implementation than traits-like libraries.

Connections

	casingSimulations [https://github.com/simpeg-research/casingSimulations] - Research repository for
electromagnetic simulations in the presence of well casing

	OMF [https://github.com/GMSGDataExchange/omf] - Open Mining Format API and file serialization

	SimPEG [https://github.com/simpeg/simpeg] - Simulation and Parameter Estimation in Geophysics

	Steno3D [https://github.com/seequent/steno3dpy] - Python client for building and uploading 3D models

Installation

To install the repository, ensure that you have
pip installed [https://pip.pypa.io/en/stable/installing/] and run:

pip install properties

For the development version:

git clone https://github.com/seequent/properties.git
cd properties
pip install -e .

Examples

Lets start by making a class to organize your coffee habits.

import properties
class CoffeeProfile(properties.HasProperties):
 name = properties.String('What should I call you?')
 count = properties.Integer(
 'How many coffees have you had today?',
 default=0
)
 had_enough_coffee = properties.Bool(
 'Have you had enough coffee today?',
 default=False
)
 caffeine_choice = properties.StringChoice(
 'How do you take your caffeine?' ,
 choices=['coffee', 'tea', 'latte', 'cappuccino', 'something fancy'],
 required=False
)

The CoffeeProfile class has 4 properties, all of which are documented!
These can be set on class instantiation:

profile = CoffeeProfile(name='Bob')
print(profile.name)

Out [1]: Bob

Since a default value was provided for had_enough_coffee, the response is (naturally)

print(profile.had_enough_coffee)

Out [2]: False

We can set Bob’s caffeine_choice to one of the available choices; he likes coffee

profile.caffeine_choice = 'coffee'

Also, Bob is half way through his fourth cup of coffee today:

profile.count = 3.5

Out [3]: ValueError: The 'count' property of a CoffeeProfile instance must
 be an integer.

Ok, Bob, chug that coffee:

profile.count = 4

Now that Bob’s CoffeeProfile is established, properties can
check that it is valid:

profile.validate()

Out [4]: True

Property Classes are auto-documented in Sphinx-style reStructuredText!
When you ask for the doc string of CoffeeProfile, you get

Required Properties:

* **count** (:class:`Integer <properties.basic.Integer>`): How many coffees have you had today?, an integer, Default: 0
* **had_enough_coffee** (:class:`Bool <properties.basic.Bool>`): Have you had enough coffee today?, a boolean, Default: False
* **name** (:class:`String <properties.basic.String>`): What should I call you?, a unicode string

Optional Properties:

* **caffeine_choice** (:class:`StringChoice <properties.basic.StringChoice>`): How do you take your caffeine?, any of "coffee", "tea", "latte", "cappuccino", "something fancy"

Contents:

	HasProperties
	Documentation

	Validation

	Notifications

	Serialization

	Defaults

	Registry

	Property
	Defining custom Property types

	Built-in Property types
	Primitive Properties

	Math Properties

	Image Properties

	Other Property Types

	Instance Property

	Container Properties

	Union Property

	Gettable Property

	Dynamic Property

	Renamed Property

	Utilities

	Extra Properties Implementations
	UID-Related Extras

	Web-Related Extras

	Singleton

	Task

Indices and tables

	Index

HasProperties

	
class properties.HasProperties(**kwargs)

	Base class to enable Property behavior

Classes that inherit HasProperties need simply to declare the
Properties they need. HasProperties will save these Properties as
_props on the class. Property values will be saved to
_backend on the instance.

HasProperties classes also store a registry of all
HasProperties classes in as _REGISTRY. If a subclass
re-declares _REGISTRY, the subsequent subclasses will be saved
to this new registry.

The PropertyMetaclass
contains more information about what goes into HasProperties
class construction and validation.

	
classmethod deserialize(value, trusted=False, strict=False, assert_valid=False, **kwargs)

	Creates HasProperties instance from serialized dictionary

This uses the Property deserializers to deserialize all
JSON-compatible dictionary values into their corresponding Property
values on a new instance of a HasProperties class. Extra keys
in the dictionary that do not correspond to Properties will be
ignored.

Parameters:

	value - Dictionary to deserialize new instance from.

	trusted - If True (and if the input dictionary has
'__class__' keyword and this class is in the registry), the
new HasProperties class will come from the dictionary.
If False (the default), only the HasProperties class this
method is called on will be constructed.

	strict - Requires '__class__', if present on the input
dictionary, to match the deserialized instance’s class. Also
disallows unused properties in the input dictionary. Default
is False.

	assert_valid - Require deserialized instance to be valid.
Default is False.

	Any other keyword arguments will be passed through to the Property
deserializers.

	
serialize(include_class=True, save_dynamic=False, **kwargs)

	Serializes a HasProperties instance to dictionary

This uses the Property serializers to serialize all Property values
to a JSON-compatible dictionary. Properties that are undefined are
not included. If the HasProperties instance contains a reference
to itself, a properties.SelfReferenceError will be raised.

Parameters:

	include_class - If True (the default), the name of the class
will also be saved to the serialized dictionary under key
'__class__'

	save_dynamic - If True, dynamic properties are written to
the serialized dict (default: False).

	Any other keyword arguments will be passed through to the Property
serializers.

	
validate()

	Call all registered class validator methods

These are all methods decorated with @properties.validator.
Validator methods are expected to raise a ValidationError if they
fail.

	
class properties.base.PropertyMetaclass

	Metaclass to establish behavior of HasProperties classes

On class construction:

	Build Property dictionary from the class dictionary and the base
classes’ Properties.

	Build listener dictionaries from class dictionary and the base
classes’ listeners.

	Check Property names are not private.

	Ensure the Property names referred to by
Renamed Properties and
handlers are valid.

	Build class docstring.

	Construct default value dictionary, and check that any provided
defaults are valid.

	Add the class to the HasProperties _REGISTRY or the
closest parent class with a new registry defined

On class instantiation:

	Initialize private backend dictionary where Property values are stored.

	Initialize private listener dictionary and set the listeners on the
class instance.

	Set all the default values on the class without firing change
notifications.

Functions that act on HasProperties instances:

	
properties.copy(value, **kwargs)

	Return a copy of a HasProperties instance

A copy is produced by serializing the HasProperties instance then
deserializing it to a new instance. Therefore, if any properties
cannot be serialized/deserialized, copy will fail. Any
keyword arguments will be passed through to both serialize
and deserialize.

	
properties.equal(value_a, value_b)

	Determine if two HasProperties instances are equivalent

Equivalence is determined by checking if (1) the two instances are
the same class and (2) all Property values on two instances are
equal, using Property.equal. If the two values are the same
HasProperties instance (eg. value_a is value_b) this method
returns True. Finally, if either value is not a HasProperties
instance, equality is simply checked with ==.

Note

HasProperties objects with recursive self-references will not
evaluate to equal, even if their property values and structure
are equivalent.

HasProperties features:

	Documentation - Classes are auto-documented with
a sphinx-style docstring.

	Validation - Instances ensure property values remain correct,
compatible, and complete.

	Notifications - Classes allow callbacks to be
registered for property changes.

	Serialization - Instances may be serialized to
and deserialized from JSON.

	Defaults - Default property values can be set
at the HasProperties or Property level.

	Registry - All HasProperties classes are saved to a class registry.

Documentation

HasProperties class docstrings are written in the metaclass. These docstrings
include any docstring that is provided in the class definition as well as
information about all the Properties on the class, including their name,
description, default value, and if they are required

Note

Properties are documented in three groups: Required, Optional,
and Other. Within these groups, they are in alphabetical order by
default. This can be overridden by defining _doc_order, a list
of Property names in the desired order, in a HasProperties class.
However, this alternative order only applies within the
Required/Optional/Other groupings; it does not supersede these groups.

By default, docstrings are formatted in Sphinx-style reStructuredText. This
simplifies creation of easy-to-read, linked html documentation. Format is
slightly modified for readability in an IPython; however, this only applies
to the auto-generated portion of docstrings. Explicit Sphinx tags and
formatting present in the source code will not be rewritten.

Note

Intersphinx linking requires some care to be taken when constructing
docs:

	Linked classes (for example, Instance Property classes or custom
Property subclasses) must be present somewhere in the docs with their
full module path, even if they are exported to a different namespace.

	If external classes are used, the outside library must be referenced
with intersphinx_mapping in the conf.py Sphinx
configuration file.

	To customize Sphinx linking the sphinx_class method on
Property subclasses must be overridden

Validation

Validation is used for type-checking, value coercion, and checking
HasProperties instances are composed correctly. Invalid values raises a
ValueError. There are three components of validation:

	Property validation - This occurs when the
Property.validate
method is called. It contains Property-specific type checking and
coersion. On a HasProperties class, every time a Property value
is set, the corresponding validate method is called and the output of
the validate function is used for the new Property value. If the value is not
valid, a ValueError is raised.

	HasProperties property validators - These are callback methods registered
to fire on specific HasProperties-class properties. They are called when the
property is set after Property validation but before the property is
saved (unlike observers which fire after the
value is saved). These validators may perform further type-checking or
coercion that is related to the HasProperties class. See
properties.validator (Mode 1) for more details on using these
validators. The properties.validators_disabled and
properties.listeners_disabled context managers may be used to
disable these validators.

	HasProperties class validators - These are callback methods registered to
fire only when
HasProperties.validate is
called. They are used to cross-validate Properties and ensure that
a HasProperties instance is correctly constructed. See
properties.validator (Mode 2) for more details on using these
validators.

	
properties.validator(names_or_instance, names=None, func=None)

	Specify a callback function to fire on class validation OR property set

This function has two modes of operation:

	Registering callback functions that validate Property values when
they are set, before the change is saved to the HasProperties instance.
This mode is very similar to the observer function.

	Registering callback functions that fire only when the HasProperties
validate method is called. This allows for cross-validation
of Properties that should only fire when all required Properties are
set.

Mode 1:

Validator functions on a HasProperties class fire on set but before the
observed Property or Properties have been changed (unlike observer
functions that fire after the value has been changed).

You can use this method as a decorator inside a HasProperties class

@properties.validator('variable_name')
def callback_function(self, change):
 print(change)

or you can use it to register a function to a single HasProperties
instance

properties.validator(my_has_props, 'variable_name', callback_function)

The variable name must refer to a Property name on the HasProperties
class. A list of Property names may also be used; the same
callback function will fire when any of these Properties change. Also,
properties.everything may be
specified instead of the variable name. In that case, the callback
function will fire when any Property changes.

The callback function must take two arguments. The first is the
HasProperties instance; the second is the change notification dictionary.
This dictionary contains:

	‘name’ - the name of the changed Property

	‘previous’ - the value of the Property prior to change (this will be
properties.undefined if the value was not previously set)

	‘value’ - the new value of the Property (this will be
properties.undefined if the value is deleted)

	‘mode’ - the mode of the change; for validators, this is ‘validate’

Mode 2:

When used as a decorator without arguments (i.e. called directly on a
HasProperties method), the decorated method is registered as a class
validator. These methods execute only when validate() is called
on the HasProperties instance.

@properties.validator
def validation_method(self):
 print('validating instance of {}'.format(self.__class__))

The decorated function must only take one argument, the HasProperties
instance.

	
class properties.validators_disabled

	Context manager for disabling all property change validators

This context manager behaves like properties.listeners_disabled,
but only affects HasProperties methods decorated with @validator

Notifications

	
properties.observer(names_or_instance, names=None, func=None, change_only=False)

	Specify a callback function that will fire on Property value change

Observer functions on a HasProperties class fire after the observed
Property or Properties have been changed (unlike validator functions
that fire on set before the value is changed).

You can use this method as a decorator inside a HasProperties class

@properties.observer('variable_name')
def callback_function(self, change):
 print(change)

or you can use it to register a function to a single HasProperties
instance

properties.observer(my_has_props, 'variable_name', callback_function)

The variable name must refer to a Property name on the HasProperties
class. A list of Property names may also be used; the same
callback function will fire when any of these Properties change. Also,
properties.everything may be
specified instead of the variable name. In that case, the callback
function will fire when any Property changes.

The callback function must take two arguments. The first is the
HasProperties instance; the second is the change notification dictionary.
This dictionary contains:

	‘name’ - the name of the changed Property

	‘previous’ - the value of the Property prior to change (this will be
properties.undefined if the value was not previously set)

	‘value’ - the new value of the Property (this will be
properties.undefined if the value is deleted)

	‘mode’ - the mode of the change; for observers, this is either
‘observe_set’ or ‘observe_change’

Finally, the keyword argument change_only may be specified as a
boolean. If False (the default), the callback function will fire any
time the Property is set. If True, the callback function will only fire
if the new value is different than the previous value, determined by
the Property.equal method.

	
class properties.listeners_disabled(disable_type=None)

	Context manager for disabling all HasProperties listeners

Code that runs inside this context manager will not fire HasProperties
methods decorated with @validator or @observer. This
context manager has no effect on Property validation.

with properties.listeners_disabled():
 self.quietly_update()

	
class properties.observers_disabled

	Context manager for disabling all property change observers

This context manager behaves like properties.listeners_disabled,
but only affects HasProperties methods decorated with @observer

Linking across Properties/Traitlets

Properties has link functions similar to those from
traitlets [http://traitlets.readthedocs.io/en/stable/utils.html#links].
This allows easy connection to IPython widgets and other projects that
build on traitlets.

	
class properties.directional_link(source, target, update_now=False, change_only=True, transform=None)

	Link two properties so updating the source updates the target

source and target must each be tuples of HasProperties (or
traitlets.HasTraits, if available) instances and property (or trait)
name.

If update_now is True, the target value will be updated
to the source value on link. If False, it will not update until the
source value is set. The default is False to prevent conflicts with
how properties and traitlets deal with uninitialized values.

The change_only keyword argument determines if target updates when
the source value is set but unchanged. If True, the target only updates
when the source value changes; this is the default to mirror behavior
from traitlets. It should only be set to False when the source instance
is HasProperties.

If a transform function is provided, the target will be updated
with the transformed source value.

	
relink()

	Re-enable an unlinked directional link

	
unlink()

	Disable a directional link

Note

This does not delete the observer callbacks; it simply makes
them non-functional.

	
class properties.link(*items, **kwargs)

	Link property values to keep them in sync

link takes two or more items to link. Each item must be
a tuple of HasProperties (or traitlets.HasTraits, if available)
instances and property (or trait) name. This creates a series of
directional links to connect all items.

Available keyword arguments are update_now and change_only.
These are passed through to the
directional links.

Note

If an error is encountered when updating multiple linked items,
some linked properties may not get updated. The order in which
properties are updated depends on the order of items. There
is no validation to ensure linked items are compatible Property
types.

Warning

Linking n items sets up n*(n-1) directional links,
all of which may fire on one change. Some care should be taken
when creating links among a large number of items.

	
relink()

	Re-enable all unlinked directional links used by link

	
unlink()

	Disable all directional links used by link

Serialization

HasProperties come with relatively naive JSON serialization built-in.
To use this, simply call serialize() on a HasProperties instance.

However, built-in serialization is somewhat limited.

	Some property types are not JSON-serializable out of the box, for example,
File. Other properties may have unwanted
results when serializing to JSON (for example,
Arrays will become a list).

	HasProperties instances are serialized as nested dictionaries, so self
references will prevent serialization.

To overcome this a Property instance may
have a serializer and/or deserializer registered. These are functions
that take a Property value into and out of any arbitrary serialized state;
this state could be anything from an alternative JSON form to a saved file
to a web request.

Validation vs. Serialization/Deserialization

For some Property types, validation and serialization/deserialization
look very similar; they both convert between an invalid-but-understood
value and a valid Property value. However, they remain separate because
they serve different purposes:

Validation and coercion happen on input of Property values and on
validate(). This is taking “human-accessible” user input and
ensuring it is the “valid” type.

Serialization takes the valid HasProperties class and converts it to
something that can be saved to a file. Deserialization is the reverse
of that process, and should be used only on serialization’s output.

With simple properties like strings, validation and serialization
almost identical. User input, valid value, and saveable-to-file value
are all just the same string. However, the differences are apparent with
more complicated properties like Array - in that case, user input may be
a list or a numpy array, valid type is a numpy array, and serialized
value may be a binary file or something. Validate needs to deal with the
user input whereas deserialize needs to deal with the binary file.

Defaults

When a HasProperties class is instantiated, default Property values may
come from three places. These include, in order of precedence:

	_defaults dictionary on a HasProperties class. This dictionary
has Property name/value pairs.

Note

Property values specified in _defaults are inherited by
subclasses unless they are explicitly overwritten in a
subclass’s _defaults dictionary.

	default value specified as a keyword argument on the
Property instance.

	_class_default defined on the Property class.

Note

Regardless of where the default value is defined, there are several
points to note:

	Default values may be callables. In this case value() will be
used as the default rather than value. For example, if you want
a properties.List to default to an empty list, you set the
default to list rather than list() or [],
so a new list is created every time.

	To eliminate any default value, the default can be set to
properties.undefined. This is
also the fallback _class_default for all Properties if no other
default is specified.

	Default values are validated in the
HasProperties metaclass

Registry

Whenever a new HasProperties class is created, it is added to the class
_REGISTRY defined on HasProperties.
This allows classes to be easily referenced and accessed by name. For example,
when serializing an instance, its __class__ may be saved. Then
on deserialization, the instance can be reconstructed based on the
corresponding entry in the registry.

_REGISTRY can also be overridden in HasProperties subclasses. This
creates a separate registry branch where all subclasses on the branch
are saved to the new registry. Overriding _REGISTRY may be necessary
to prevent namespace conflicts when importing multiple modules with
HasProperties classes.

Property

	
class properties.Property(doc, **kwargs)

	Property class provides documentation, validation, and serialization

When defined within a HasProperties class, each Property contributes to
class documentation, validation, and serialization while behaving for the
user just like @property values on the class. For examples, see the
HasProperties documentation and documentation
for specific Property types.

Available keywords:

	doc - Docstring for the Property. Must be provided on instantiation.

	default - Default value for the Property. This may be a callable that
takes no arguments. Upon HasProperties instantiation, default value is
assigned to the Property. If no default is given, the Property value
will be undefined.

	required - If True, Property must be given a value for the containing
HasProperties instance to pass validate(). If false, the Property
may remain undefined. By default, required is True.

	serializer - Function that will serialize the Property value when
the containing HasProperties instance is serialized. The serializer
must be a callable that takes the value to be serialized and possibly
keyword arguments passed to serialize. By default, the
serializer writes to JSON.

	deserializer - Function that will deserialize an input value to
a valid Property value when a HasProperties instance is deserialized. The
deserializer must be a callable that takes the value to be deserialized
and possibly keyword arguments passed to deserialize. By default,
the deserializer writes to JSON.

	name - Name of the Property. This is overwritten in the HasProperties
metaclass to correspond to the Property’s assigned name.

	
assert_valid(instance, value=None)

	Returns True if the Property is valid on a HasProperties instance

Raises a ValueError if the value required and not set, not valid,
not correctly coerced, etc.

Note

Unlike validate, this method requires instance to be
a HasProperties instance; it cannot be None.

	
deserialize(value, **kwargs)

	Deserialize input value to valid Property value

This method uses the Property deserializer if available.
Otherwise, it uses from_json. Any keyword arguments are
passed through to these methods.

	
equal(value_a, value_b)

	Check if two valid Property values are equal

Note

This method assumes that None and
properties.undefined are never passed in as values

	
error(instance, value, error_class=None, extra='')

	Generate a ValueError for invalid value assignment

The instance is the containing HasProperties instance, but it may
be None if the error is raised outside a HasProperties class.

	
static from_json(value, **kwargs)

	Statically load a Property value from JSON value

	
meta

	Get the tagged metadata of a Property instance

	
serialize(value, **kwargs)

	Serialize a valid Property value

This method uses the Property serializer if available.
Otherwise, it uses to_json. Any keyword arguments are
passed through to these methods.

	
tag(*tag, **kwtags)

	Tag a Property instance with metadata dictionary

	
static to_json(value, **kwargs)

	Statically convert a valid Property value to JSON value

	
validate(instance, value)

	Check if the value is valid for the Property

If valid, return the value, possibly coerced from the input value.
If invalid, a ValueError is raised.

Warning

Calling validate again on a coerced value must not modify
the value further.

Note

This function should be able to handle instance=None
since valid Property values are independent of containing
HasProperties class. However, the instance is passed to
error for a more verbose error message, and it may be
used for additional optional validation.

Defining custom Property types

Custom Property types can be created by subclassing
Property and customizing a few attributes
and methods. These include:

class_info/info

This are used when documenting the Property. class_info
is a general, descriptive string attribute of the new Property class.
info is an @property method that gives an
instance-specific description of the Property, if necessary. If
info is not defined, it defaults to class_info.
This string is used in HasProperties class docstrings and error messages.

validate(self, instance, value)

This method defines what values the Property will accept. It must return
the validated value. This value may be coerced from the input value;
however, validating on the coerced value must not modify the value further.

The input instance is the containing HasProperties instance or None
if the Property is not part of a HasProperties instance, so validate
must account for either of these scenarios. Usually, Property validation
should be instance-independent.

If value is invalid, a ValueError should be raised by calling
self.error(instance, value)

to_json(value, **kwargs)/from_json(value, **kwargs)

These static methods should allow converting between a validated
Property value and a JSON-dumpable version of the Property value.
Both these methods assume the value is valid.

The serialize and deserialize should not need to be
customized in new Properties; they simply call upon these methods.

equal(self, value_a, value_b)

This method defines how valid property values should be compared for
equality if the default value_a == value_b is insufficient.

_class_default

This should be set to the default value of the new property class. It
may also be a callable that returns the default value.
Almost always this should be left untouched; in that case, the
default will be properties.undefined.
However, in some specific cases, it may make sense to override.

Built-in Property types

In addition to setting up the base HasProperties and
Property behavior, the properties library defines
many built-in Property types.

Basic Property types

	Primitive Properties - Properties for primitive data types (e.g. integers, strings, etc.)

	Math Properties - Math Properties that rely on numpy

	Image Properties - Image Properties that rely on external image libraries

	Other Property Types - Other basic Properties with no extra dependencies

Advanced Property types

	Instance Property - Property for HasProperties (or other class) instances

	Container Properties - Tuple, list, and set properties

	Union Property - Properties that may be multiple types

Special Property types

	Gettable Property - Immutable Property set when Property is defined

	Dynamic Property - Property that is calculated dynamically and never saved

	Renamed Property - Used to maintain backwards compatibility when renaming Properties

Primitive Properties

Boolean

	
class properties.Boolean(doc, **kwargs)

	Property for True or False values

Available keywords (in addition to those inherited from
Property):

	cast - convert input value to boolean based on its truth value. By
default, cast is False.

Integer

	
class properties.Integer(doc, **kwargs)

	Property for integer values

Available keywords (in addition to those inherited from
Property):

	min - Minimum valid value, inclusive. If None (the default), there
is no minimum limit.

	max - Maximum valid value, inclusive. If None (the default), there
is no maximum limit.

	cast - Attempt to convert input value to integer. By default, cast
is False.

Float

	
class properties.Float(doc, **kwargs)

	Property for float values

Available keywords (in addition to those inherited from
Property):

	min - Minimum valid value, inclusive. If None (the default), there
is no minimum limit.

	max - Maximum valid value, inclusive. If None (the default), there
is no maximum limit.

	cast - Attempt to convert input value to integer. By default, cast
is False.

Complex

	
class properties.Complex(doc, **kwargs)

	Property for complex numbers

Available keywords (in addition to those inherited from
Property):

	cast - Attempt to convert input value to integer. By default, cast
is False.

String

	
class properties.String(doc, **kwargs)

	Property for string values

Available keywords (in addition to those inherited from
Property):

	strip - Substring to strip off input. By default, nothing is
stripped.

	change_case - If ‘lower’, coerces input to lowercase; if ‘upper’,
coerce input to uppercase. If None (the default), case is left
unchanged.

	unicode - If True, coerce strings to unicode. Default is True
to ensure consistent behavior across Python 2/3.

	regex - Regular expression (pattern or compiled expression) the
input string must match. Note: re.search is used to determine
if string is valid; to match the entire string, ensure ‘^’ and ‘$’ are
contained in the regex pattern.

Math Properties

Note

Math Properties require numpy and vectormath to be
installed. This may be installed with pip install properties[full],
pip install properties[math], or
pip install numpy vectormath.

Array

	
class properties.Array(doc, **kwargs)

	Property for numpy arrays [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Available keywords (in addition to those inherited from
Property):

	shape - Tuple (or set of valid tuples) that describes the
allowed shape of the array. Length of shape tuple corresponds to
number of dimensions; values correspond to the allowed length for
each dimension. These values may be integers or ‘*’ for any length.
For example, an n x 3 array would be shape (‘*’, 3). None may also
be used if any shape is valid.
The default value is (‘*’,).

	dtype - Allowed data type for the array. May be float, int,
bool, or a tuple containing any of these. The default is (float, int).

Vector3

	
class properties.Vector3(doc, **kwargs)

	Property for 3D vectors [https://vectormath.readthedocs.io/en/latest/content/basic.html#vectormath.vector.Vector3]

These Vectors are of shape (3,) and dtype float. In addition to
length-3 arrays, these properties accept strings including: ‘zero’, ‘x’,
‘y’, ‘z’, ‘-x’, ‘-y’, ‘-z’, ‘east’, ‘west’, ‘north’, ‘south’, ‘up’,
and ‘down’.

Available keywords (in addition to those inherited from
Property):

	length - On validation, vectors are scaled to this length. If
None (the default), vectors are not scaled

Vector2

	
class properties.Vector2(doc, **kwargs)

	Property for 2D vectors [https://vectormath.readthedocs.io/en/latest/content/basic.html#vectormath.vector.Vector2]

These Vectors are of shape (2,) and dtype float. In addition to
length-2 arrays, these properties accept strings including: ‘zero’, ‘x’,
‘y’, ‘-x’, ‘-y’, ‘east’, ‘west’, ‘north’, and ‘south’.

Available keywords (in addition to those inherited from
Property):

	length - On validation, vectors are scaled to this length. If
None (the default), vectors are not scaled

Vector3Array

	
class properties.Vector3Array(doc, **kwargs)

	Property for an array of 3D vectors [https://vectormath.readthedocs.io/en/latest/content/basic.html#vectormath.vector.Vector3Array]

This array of vectors are of shape (‘*’, 3) and dtype float. In addition
to an array of this shape, these properties accept a list of strings
including: ‘zero’, ‘x’, ‘y’, ‘z’, ‘-x’, ‘-y’, ‘-z’, ‘east’, ‘west’,
‘north’, ‘south’, ‘up’, and ‘down’.

Available keywords (in addition to those inherited from
Property):

	length - On validation, all vectors are scaled to this length. If
None (the default), vectors are not scaled

Vector2Array

	
class properties.Vector2Array(doc, **kwargs)

	Property for an array of 2D vectors [https://vectormath.readthedocs.io/en/latest/content/basic.html#vectormath.vector.Vector2Array]

This array of vectors are of shape (‘*’, 2) and dtype float. In addition
to an array of this shape, these properties accept a list of strings
including: ‘zero’, ‘x’, ‘y’, ‘-x’, ‘-y’, ‘east’, ‘west’, ‘north’,
and ‘south’.

Available keywords (in addition to those inherited from
Property):

	length - On validation, all vectors are scaled to this length. If
None (the default), vectors are not scaled

Image Properties

Note

Image Properties require pypng to be installed. This may be
installed with pip install properties[full],
pip install properties[image], or pip install pypng.

ImagePNG

	
class properties.ImagePNG(doc, mode='rb', **kwargs)

	Property for PNG images

Available keywords (in addition to those inherited from
Property):

	mode: Opens the file in this mode. Must be a binary mode that
supports file reading. Default value is ‘rb’.

	valid_modes: Tuple of valid modes for open files. This must
include mode. If nothing is specified, valid_mode is set
to mode.

	filename - Name associated with open copy of PNG image.
Default is ‘texture.png’.

Other Property Types

StringChoice

	
class properties.StringChoice(doc, choices, case_sensitive=False, **kwargs)

	String Property where only certain choices are allowed

Available keywords (in addition to those inherited from
Property):

	choices - Either a set/list/tuple of allowed strings
OR a dictionary of string key and list-of-string value pairs,
where any string in the value list is coerced to the key string.

	case_sensitive - Determine if input must follow case in choices.
If False (the default), the input value will be coerced to the case
in choices.

	descriptions - Dictionary of choice/description key/value
pairs. If specified, it must contain all choices.

Color

	
class properties.Color(doc, **kwargs)

	Property for RGB colors.

Valid inputs are length-3 RGB tuple/list with integer values between 0 and
255, 3 or 6 digit hex color, color name from standard web colors, or
‘random’. All of these are coerced to RGB tuple.

No additional keywords are avalaible besides those those inherited from
Property.

DateTime

	
class properties.DateTime(doc, **kwargs)

	Property for DateTimes

This property uses datetime.datetime. The value may also be
specified as a string that uses either ‘1995/08/12’ or
‘1995-08-12T18:00:00Z’ format; these are coerced to a datetime instance.

No additional keywords are avalaible besides those those inherited from
Property.

File

	
class properties.File(doc, mode=None, **kwargs)

	Property for files

This may be a file or file-like object. If mode is provided, filenames
are also allowed; these will be opened on validate.
Note: Validation rejects closed files, but nothing prevents the file
from being modified or closed once it is set.

Available keywords (in addition to those inherited from
Property):

	mode: Opens the file in this mode. If ‘r’ or ‘rb’, the file must
exist, otherwise the file will be created. If None, string filenames
will not be open (and therefore be invalid). Default value is None.

	valid_modes: Tuple of valid modes for open files. This must
include mode. If nothing is specified, valid_mode is set
to mode.

Instance Property

	
class properties.Instance(doc, instance_class, **kwargs)

	Property for instances of a specified class

Instance Properties may be used for any type, but they gain additional
power with HasProperties types. The Instance Property may be
assigned a dictionary with valid HasProperties class keywords; this is
coerced to an instance of the HasProperties class. Also, HasProperties
methods behave recursively, so if the parent HasProperties class is
validated, serialized, etc., then HasProperties Instance Properties
on the class will also be validated, serialized, etc.

Available keywords (in addition to those inherited from
Property):

	instance_class - The allowed class for the property.

	auto_create - DEPRECATED - set default to the instance_class
instead. If True, this Property is instantiated by default.
This is equivalent to setting the default keyword to the instance_class.
If False, the default value is undefined. Note: auto_create passes no
arguments, so it cannot be True if the instance_class requires
arguments.

Container Properties

Tuple

	
class properties.Tuple(doc, prop=None, **kwargs)

	Property for tuples, where each entry is another Property type

Available keywords (in addition to those inherited from
Property):

	prop - Property instance that specifies the Property type of
each entry in the Tuple. A HasProperties class may also be
specified; this is simply coerced to an
Instance Property of that class.

	min_length - Minimum valid length of the tuple, inclusive. If None
(the default), there is no minimum length.

	max_length - Maximum valid length of the tuple, inclusive. If None
(the default), there is no maximum length.

	coerce - If False, input must be a tuple. If True, container
types are coerced to a tuple and other non-container values become a
length-1 tuple. Default value is False.

List

	
class properties.List(doc, prop=None, **kwargs)

	Property for lists, where each entry is another Property type

Available keywords (in addition to those inherited from
Property):

	prop - Property instance that specifies the Property type of
each entry in the List. A HasProperties class may also be specified;
this is simply coerced to an
Instance Property of that class.

	min_length - Minimum valid length of the list, inclusive. If None
(the default), there is no minimum length.

	max_length - Maximum valid length of the list, inclusive. If None
(the default), there is no maximum length.

	coerce - If False, input must be a list. If True, container
types are coerced to a list and other non-container values become a
length-1 list. Default value is False.

	observe_mutations - If False, the underlying storage class is
a list (or subclass thereof). If True, the underlying storage
class will be an
observable_copy
of the list. The benefit of observing mutations is that all mutations
and operations will trigger HasProperties change notifications. The
drawback is slower performance as copies of the list are made on
every operation.

Set

	
class properties.Set(doc, prop=None, **kwargs)

	Property for sets, where each entry is another Property type

Available keywords (in addition to those inherited from
Property):

	prop - Property instance that specifies the Property type of
each entry in the Set. A HasProperties class may also be specified;
this is simply coerced to an
Instance Property of that class.

	min_length - Minimum valid length of the set, inclusive. If None
(the default), there is no minimum length.

	max_length - Maximum valid length of the set, inclusive. If None
(the default), there is no maximum length.

	coerce - If False, input must be a set. If True, container
types are coerced to a set and other non-container values become a
length-1 set. Default value is False.

	observe_mutations - If False, the underlying storage class is
a set (or subclass thereof). If True, the underlying storage
class will be an
observable_copy
of the set. The benefit of observing mutations is that all mutations
and operations will trigger HasProperties change notifications. The
drawback is slower performance as copies of the set are made on
every operation.

Dictionary

	
class properties.Dictionary(doc, **kwargs)

	Property for dicts, where each key and value is another Property type

Available keywords (in addition to those inherited from
Property):

	key_prop - Property instance that specifies the Property type of
each key in the Dictionary. A HasProperties class may also be
specified; this is simply coerced to an
Instance Property of that class.

	value_prop - Property instance that specifies the Property type of
each value in the Dictionary. A HasProperties class may also be
specified; this is simply coerced to an
Instance Property of that class.

	observe_mutations - If False, the underlying storage class is
a dict (or subclass thereof). If True, the underlying storage
class will be an
observable_copy
of the dict. The benefit of observing mutations is that all mutations
and operations will trigger HasProperties change notifications. The
drawback is slower performance as copies of the dict are made on
every operation.

Observable Container Creation

	
properties.base.containers.observable_copy(value, name, instance)

	Return an observable container for HasProperties notifications

This method creates a new container class to allow HasProperties
instances to observe_mutations. It returns a copy of the
input value as this new class.

The output class behaves identically to the input value’s original
class, except when it is used as a property on a HasProperties
instance. In that case, it notifies the HasProperties instance of
any mutations or operations.

Union Property

	
class properties.Union(doc, props, **kwargs)

	Property with multiple valid Property types

Union Properties contain a list of Property instances.
Validation, serialization, etc. cycle through the corresponding method
on the each Property instance sequentially until one succeeds. If all
Property types raise an error, the Union Property will also raise an
error.

Note

When specifying Property types, the order matters; if multiple
types are valid, the earlier type will be favored. For example,

import properties
union_0 = properties.Union(
 doc='String and Color',
 props=(properties.String(''), properties.Color('')),
)
union_1 = properties.Union(
 doc='String and Color',
 props=(properties.Color(''), properties.String('')),
)

union_0.validate(None, 'red') == 'red' # Validates to string
union_1.validate(None, 'red') == (255, 0, 0) # Validates to color

Available keywords (in addition to those inherited from
Property):

	props - A list of Property instances that each specify a valid
type for the Union Property. HasProperties classes may also be
specified; these are coerced to Instance Properties of the respective
class.

Gettable Property

	
class properties.GettableProperty(doc, **kwargs)

	Property with immutable value

GettableProperties are assigned their default values upon
HasProperties instance construction, and cannot be modified after
that.

Keyword arguments match those available to Property
with the exception of required.

UUID

	
class properties.Uuid(doc, **kwargs)

	Immutable property for unique identifiers

Default value is generated on HasProperties class instantiation
using uuid.uuid4()

No additional keywords are available besides those those inherited from
GettableProperty.

Dynamic Property

	
class properties.basic.DynamicProperty(doc, func, prop, **kwargs)

	DynamicProperties are GettableProperties calculated dynamically

These allow for a similar behavior to @property with additional
documentation and validation built in. DynamicProperties are not
saved to the HasProperties instance (and therefore are not serialized),
do not fire change notifications, and don’t allow default values.

These are created by decorating a single-argument method with a Property
instance. This method is registered as the DynamicProperty getter.
Setters and deleters may also be registered.

import properties
class SpatialInfo(properties.HasProperties):
 x = properties.Float('x-location')
 y = properties.Float('y-location')
 z = properties.Float('z-location')

 @properties.Vector3('my dynamic vector')
 def location(self):
 return [self.x, self.y, self.z]

 @location.setter
 def location(self, value):
 self.x, self.y, self.z = value

 @location.deleter
 def location(self):
 del self.x, self.y, self.z

Note

DynamicProperties should not be directly instantiated; they should
be constructed with the above decorator method.

Note

Since DynamicProperties have no saved state, the decorating Property
is not allowed to have a default value. Also, the
required attribute will be ignored.

Note

When implementing a DynamicProperty getter, care should be taken
around when other properties do not yet have a value. In the example
above, if self.x, self.y, or self.z is still
None the location vector will be invalid, so calling
self.location will fail. However, if the getter method returns
None it will be treated as properties.undefined and
pass validation.

	
deleter(func)

	Register a delete function for the DynamicProperty

This function may only take one argument, self.

	
setter(func)

	Register a set function for the DynamicProperty

This function must take two arguments, self and the new value.
Input value to the function is validated with prop validation prior to
execution.

Renamed Property

	
class properties.Renamed(new_name, **kwargs)

	Property that allows renaming of other properties.

Assign the old name to a Renamed Property that points to the
new name. Getting, setting, and deleting using the old name will warn
the user then redirect to the new name.

For example, when updating this code for PEP8

class MyClass(properties.HasProperties):
 myStringProp = properties.String('My string property')

backwards compatibility can be maintained with

class MyClass(properties.HasProperties):
 my_string_prop = properties.String('My string property')
 myStringProp = properties.Renamed('my_string_prop')

Argument:

	new_name - the new name of the property that was renamed.

Available keywords:

	warn - raise a warning when this property is used (default: True)

Utilities

	
class properties.utils.Sentinel(name, doc)

	Basic object with name and doc for specifying singletons

Avalable Sentinels:

	properties.undefined - The default value for all Properties
if no other default is specified. When an undefined property is
accessed, it returns None. Properties that are required must
be set to something other than undefined.

	properties.everything - Sentinel representing all available
properties. This is used when specifying observed properties.

	
properties.filter_props(has_props_cls, input_dict, include_immutable=True)

	Split a dictionary based keys that correspond to Properties

Returns:
(props_dict, others_dict) - Tuple of two dictionaries. The first contains
key/value pairs from the input dictionary that correspond to the
Properties of the input HasProperties class. The second contains the remaining key/value
pairs.

Parameters:

	has_props_cls - HasProperties class or instance used to filter the
dictionary

	input_dict - Dictionary to filter

	include_immutable - If True (the default), immutable properties (i.e.
Properties that inherit from GettableProperty but not Property) are
included in props_dict. If False, immutable properties are excluded
from props_dict.

For example

class Profile(properties.HasProperties):
 name = properties.String('First and last name')
 age = properties.Integer('Age, years')

bio_dict = {
 'name': 'Bill',
 'age': 65,
 'hometown': 'Bakersfield',
 'email': 'bill@gmail.com',
}

(props, others) = properties.filter_props(Profile, bio_dict)
assert set(props) == {'name', 'age'}
assert set(others) == {'hometown', 'email'}

	
class properties.ValidationError(message, reason=None, prop=None, instance=None, _error_tuples=None)

	Exception type to be raised during property validation

Parameters

	message - Detailed description of the error cause

	reason - Short reason for the error

	prop - Name of property related to the error

	instance - HasProperties instance related to the error

These inputs are stored as a tuple and passed to the
instance._error_hook method, which may be overridden on
the HasProperties class for custom error behavior.

	
class properties.SelfReferenceError

	Exception type to be raised with infinite recursion problems

Extra Properties Implementations

These HasProperties and Property implementations are available by
importing properties.extras.

	UID-Related Extras - HasUID class for HasProperties instances with
unique IDs and Pointer property to refer to instances by
unique ID.

	Web-Related Extras - Web-related Property classes

	Singleton - HasProperties class that creates only one instance
for a given identifying name. Any instances with that name will
be the same instance.

	Task - Callable HasProperties class that may be subclassed
and used as a computational task.

UID-Related Extras

	
class properties.extras.HasUID(**kwargs)

	HasUID is a HasProperties class that includes unique ID

Adding a UID to HasProperties allows serialization of more complex
structures, including recursive self-references. They are serialized
to a flat dictionary of UID/HasUID key/value pairs.

Required Properties:

	uid (String): Unique identifier, a unicode string, Default: new instance of str

	
classmethod deserialize(value, trusted=False, strict=False, assert_valid=False, **kwargs)

	Deserialize nested HasUID instance from flat pointer dictionary

Parameters

	value - Flat pointer dictionary produced by serialize
with UID/HasUID key/value pairs. It also includes a
__root__ key to specify the root HasUID instance.

	trusted - If True (and if the input dictionaries have
'__class__' keyword and this class is in the registry), the
new HasProperties class will come from the dictionary.
If False (the default), only the HasProperties class this
method is called on will be constructed.

	strict - Requires '__class__', if present on the input
dictionary, to match the deserialized instance’s class. Also
disallows unused properties in the input dictionary. Default
is False.

	assert_valid - Require deserialized instance to be valid.
Default is False.

	You may also specify an alternative root - This allows a different
HasUID root instance to be specified. It overrides __root__
in the input dictionary.

	Any other keyword arguments will be passed through to the Property
deserializers.

Note

HasUID instances are constructed with no input arguments
(ie cls() is called). This means deserialization will
fail if the init method has been overridden to require
input parameters.

	
classmethod load(uid)

	Load an instance given a UID

This is used by Pointer properties to retrieve instances
from UIDs.

	
serialize(include_class=True, save_dynamic=False, **kwargs)

	Serialize nested HasUID instances to a flat dictionary

Parameters:

	include_class - If True (the default), the name of the class
will also be saved to the serialized dictionary under key
'__class__'

	save_dynamic - If True, dynamic properties are written to
the serialized dict (default: False).

	You may also specify a registry - This is the flat dictionary
where UID/HasUID pairs are stored. By default, no registry need
be provided; a new dictionary will be created.

	Any other keyword arguments will be passed through to the Property
serializers.

	
classmethod validate_uid(uid)

	Assert if a given UID is valid

This is used by Pointer properties to validate a UID
without necessarily loading the corresponding instance.

	
class properties.extras.Pointer(doc, instance_class, **kwargs)

	Property for HasUID instances where string UID pointer may be used

Available keywords (in addition to those inherited from
Instance):

	load - Attempt to load instances from UID on validation
If True, when the Pointer property is assigned a valid UID,
it will then attempt to call self.instance_class.load(uid)
If this method is defined, it must return a valid instance
which will replace the UID as the Pointer value. If this method
is not defined or if it returns None, the Pointer property maintains
the UID value. Default is False, meaning there is no attempt to
load the instance.

	uid_prop - Property or attribute name of the UID property on
instance_class. The default is ‘uid’.

Web-Related Extras

	
class properties.extras.URL(doc, **kwargs)

	String property that only accepts valid URLs

This property type uses urllib.parse to validate
input URLs and possibly remove fragments and query params.

Available keywords (in addition to those inherited from
String):

	remove_parameters - Query params are stripped from input URL (default
is False).

	remove_fragment - Fragment is stripped from input URL (default
is False).

Singleton

	
class properties.extras.Singleton(name, **kwargs)

	Class that only allows one instance for each identifying name

These instances are stored on the _SINGLETONS attribute of
the class. You may create a new registry of singletons by
redefining this attribute on a subclass. Also, this means multiple
singleton classes may be present on a registry, therefore the class
you use to access the singleton may not be the class of the returned
singleton.

Each singleton must be initialized with a name. You can type-check and
validate this value by including a ‘name’ property on your class. The
identifying name does not change during the lifetime of the singleton,
even if the ‘name’ value is changed.

	
classmethod deserialize(value, trusted=False, strict=False, assert_valid=False, **kwargs)

	Create a Singleton instance from a serialized dictionary.

This behaves identically to HasProperties.deserialize, except if
the singleton is already found in the singleton registry the existing
value is used.

Note

If property values differ from the existing singleton and
the input dictionary, the new values from the input dictionary
will be ignored

	
serialize(include_class=True, save_dynamic=False, **kwargs)

	Serialize Singleton instance to a dictionary.

This behaves identically to HasProperties.serialize, except it also
saves the identifying name in the dictionary as well.

	
class properties.extras.singleton.SingletonMetaclass

	Metaclass to produce singleton behavior using a singleton registry

Task

	
class properties.extras.BaseTask

	Class for defining a computational task

Input and Output class attributes must be subclasses of BaseInput and
BaseOutput respectively. Task is executed by calling an instance
of the task with Input property/value pairs as keyword arguments.

	
__call__(**kwargs)

	Execute the task

Keyword arguments are used to construct Input instance. This is
validated and passed to run. The Output of run
is validated, passed to process_output, and returned.

	
process_output(output_obj)

	Processes valid Output object into desired task output

This method is executed during __call__ on the output of
run.

By default, this serializes the output to a dictionary.

	
report_status(status)

	Hook for reporting the task status towards completion

	
run(input_obj)

	Execution logic for the task

This method must be overridden in Task subclasses

To run a Task, create an instance of the Task, then
call the instance with the required input parameters.
This will construct and validate an Input object.

run receives this validated Input object. It then must
process the inputs and return an Output object.

	
class properties.extras.BaseInput(**kwargs)

	HasProperties object with input parameters for a computation

	
class properties.extras.BaseOutput(**kwargs)

	HasProperties object with the result of a computation

Required Properties:

	log (String): Output log messages from the task, a unicode string

	success (Boolean): Did the task succeed, a boolean, Default: True

	
class properties.extras.TaskStatus(**kwargs)

	HasProperties object to indicate present status of the task

Optional Properties:

	message (String): Task progress message, a unicode string

	progress (Float): Task progress to completion, a float in range [0, 1]

	
class properties.extras.TaskException

	An exception related to a computational task

	
class properties.extras.PermanentTaskFailure

	An exception indicating Task should not be retried

	
class properties.extras.TemporaryTaskFailure

	An exception indicating Task should be retried

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__call__() (properties.extras.BaseTask method)

A

 	
 	Array (class in properties)

 	
 	assert_valid() (properties.Property method)

B

 	
 	BaseInput (class in properties.extras)

 	BaseOutput (class in properties.extras)

 	
 	BaseTask (class in properties.extras)

 	Boolean (class in properties)

C

 	
 	Color (class in properties)

 	
 	Complex (class in properties)

 	copy() (in module properties)

D

 	
 	DateTime (class in properties)

 	deleter() (properties.basic.DynamicProperty method)

 	deserialize() (properties.extras.HasUID class method)

 	(properties.HasProperties class method)

 	(properties.Property method)

 	(properties.extras.Singleton class method)

 	
 	Dictionary (class in properties)

 	directional_link (class in properties)

 	DynamicProperty (class in properties.basic)

E

 	
 	equal() (in module properties)

 	(properties.Property method)

 	
 	error() (properties.Property method)

F

 	
 	File (class in properties)

 	filter_props() (in module properties)

 	
 	Float (class in properties)

 	from_json() (properties.Property static method)

G

 	
 	GettableProperty (class in properties)

H

 	
 	HasProperties (class in properties)

 	
 	HasUID (class in properties.extras)

I

 	
 	ImagePNG (class in properties)

 	
 	Instance (class in properties)

 	Integer (class in properties)

L

 	
 	link (class in properties)

 	List (class in properties)

 	
 	listeners_disabled (class in properties)

 	load() (properties.extras.HasUID class method)

M

 	
 	meta (properties.Property attribute)

O

 	
 	observable_copy() (in module properties.base.containers)

 	
 	observer() (in module properties)

 	observers_disabled (class in properties)

P

 	
 	PermanentTaskFailure (class in properties.extras)

 	Pointer (class in properties.extras)

 	
 	process_output() (properties.extras.BaseTask method)

 	Property (class in properties)

 	PropertyMetaclass (class in properties.base)

R

 	
 	relink() (properties.directional_link method)

 	(properties.link method)

 	
 	Renamed (class in properties)

 	report_status() (properties.extras.BaseTask method)

 	run() (properties.extras.BaseTask method)

S

 	
 	SelfReferenceError (class in properties)

 	Sentinel (class in properties.utils)

 	serialize() (properties.extras.HasUID method)

 	(properties.HasProperties method)

 	(properties.Property method)

 	(properties.extras.Singleton method)

 	
 	Set (class in properties)

 	setter() (properties.basic.DynamicProperty method)

 	Singleton (class in properties.extras)

 	SingletonMetaclass (class in properties.extras.singleton)

 	String (class in properties)

 	StringChoice (class in properties)

T

 	
 	tag() (properties.Property method)

 	TaskException (class in properties.extras)

 	TaskStatus (class in properties.extras)

 	
 	TemporaryTaskFailure (class in properties.extras)

 	to_json() (properties.Property static method)

 	Tuple (class in properties)

U

 	
 	Union (class in properties)

 	unlink() (properties.directional_link method)

 	(properties.link method)

 	
 	URL (class in properties.extras)

 	Uuid (class in properties)

V

 	
 	validate() (properties.HasProperties method)

 	(properties.Property method)

 	validate_uid() (properties.extras.HasUID class method)

 	ValidationError (class in properties)

 	validator() (in module properties)

 	
 	validators_disabled (class in properties)

 	Vector2 (class in properties)

 	Vector2Array (class in properties)

 	Vector3 (class in properties)

 	Vector3Array (class in properties)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 properties

 		
 HasProperties

 		
 Documentation

 		
 Validation

 		
 Notifications

 		
 Linking across Properties/Traitlets

 		
 Serialization

 		
 Validation vs. Serialization/Deserialization

 		
 Defaults

 		
 Registry

 		
 Property

 		
 Defining custom Property types

 		
 Built-in Property types

 		
 Primitive Properties

 		
 Boolean

 		
 Integer

 		
 Float

 		
 Complex

 		
 String

 		
 Math Properties

 		
 Array

 		
 Vector3

 		
 Vector2

 		
 Vector3Array

 		
 Vector2Array

 		
 Image Properties

 		
 ImagePNG

 		
 Other Property Types

 		
 StringChoice

 		
 Color

 		
 DateTime

 		
 File

 		
 Instance Property

 		
 Container Properties

 		
 Tuple

 		
 List

 		
 Set

 		
 Dictionary

 		
 Observable Container Creation

 		
 Union Property

 		
 Gettable Property

 		
 UUID

 		
 Dynamic Property

 		
 Renamed Property

 		
 Utilities

 		
 Extra Properties Implementations

 		
 UID-Related Extras

 		
 Web-Related Extras

 		
 Singleton

 		
 Task

_static/up.png

_images/0.jpg

