

    
      
          
            
  
Documentation for pronouncing

Pronouncing is a simple interface for the CMU Pronouncing Dictionary [http://www.speech.cs.cmu.edu/cgi-bin/cmudict]. The library is designed to be
easy to use, and has no external dependencies. For example, here’s all you need
to do in order to find rhymes for a given word:

>>> import pronouncing
>>> pronouncing.rhymes("climbing")
['diming', 'liming', 'priming', 'rhyming', 'timing']





Read the documentation here: https://pronouncing.readthedocs.org.

I made this library because I wanted to be able to use the CMU Pronouncing
Dictionary in my projects without having to install the grand behemoth that is
NLTK. It’s designed to be friendly to beginner programmers who want to get
started with creative language generation and analysis, and for experts who
want to make quick prototypes of projects that deal with English pronunciation.


Installation

Install with pip like so:

pip install pronouncing





You can also download the source code and install manually:

python setup.py install








Contents



	Tutorial and Cookbook
	Word pronunciations

	Pronunciation search

	Counting syllables

	Meter

	Rhyme

	Next steps





	Pronouncing API Reference

	Credits and Acknowledgements

	History
	0.2.0 (2018-07-01)

	0.1.5 (2017-04-13)

	0.1.4 (2017-04-12)

	0.1.3 (2017-01-17)

	0.1.2 (2015-06-23)

	0.1.1 (2015-06-12)















          

      

      

    

  

    
      
          
            
  
Tutorial and Cookbook

This tutorial will demonstrate how to perform several common tasks with the
Pronouncing library and provide a few examples of how the library can be used
creatively.


Word pronunciations

Let’s start by using Pronouncing to get the pronunciation for a given word.
Here’s the code:

>>> import pronouncing
>>> pronouncing.phones_for_word("permit")
[u'P ER0 M IH1 T', u'P ER1 M IH2 T']





The pronouncing.phones_for_word() function returns a list of all
pronunciations for the given word found in the CMU pronouncing dictionary.
Pronunciations are given using a special phonetic alphabet known as ARPAbet.
Here’s a list of ARPAbet symbols and what English sounds they stand for [http://www.speech.cs.cmu.edu/cgi-bin/cmudict#phones]. Each token in a
pronunciation string is called a “phone.” The numbers after the vowels indicate
the vowel’s stress. The number 1 indicates primary stress; 2 indicates
secondary stress; and 0 indicates unstressed. (Wikipedia has a good
overview of how stress works in English [https://en.wikipedia.org/wiki/Stress_and_vowel_reduction_in_English], if
you’re interested.)

Sometimes, the pronouncing dictionary has more than one pronunciation for the
same word. “Permit” is a good example: it can be pronounced either with the
stress on the first syllable (“do you have a permit to program here?”) or
on the second syllable (“will you permit me to program here?”). For this
reason, the pronouncing.phones_for_word() function returns a list of
possible pronunciations. (You’ll need to come up with your own criteria for
deciding which pronunciation is best for your purposes.)

Here’s how to calculate the most common sounds in a given text:

>>> import pronouncing
>>> from collections import Counter
>>> text = "april is the cruelest month breeding lilacs out of the dead"
>>> count = Counter()
>>> words = text.split()
>>> for word in words:
...   pronunciation_list = pronouncing.phones_for_word(word)
...   if len(pronunciation_list) > 0:
...     count.update(pronunciation_list[0].split(" "))
...
>>> count.most_common(5)
[(u'AH0', 4), (u'L', 4), (u'D', 3), (u'R', 3), (u'DH', 2)]








Pronunciation search

Pronouncing has a helpful function pronouncing.search() which allows you
to search the pronouncing dictionary for words whose pronunciation matches a
particular regular expression. For example, to find words that have within them
the same sounds as the word “sighs”:

>>> import pronouncing
>>> phones = pronouncing.phones_for_word("sighs")[0]
>>> pronouncing.search(phones)[:5]
[u'incise', u'incised', u'incisor', u'incisors', u'malloseismic']





For convenience, word-boundary anchors (\b) are added automatically to the
beginning and end of the pattern you pass to pronouncing.search(). You’re
free to include any other regular expression syntax in the pattern. Here’s
another example, which finds all of the words that end in “-iddle”:

>>> pronouncing.search("IH1 D AH0 L$")[:5]
[u'biddle', u'criddle', u'fiddle', u'friddle', u'kiddle']





Another example, which re-writes a text by taking each word and replacing it
with a random word that begins with the same first two phones:

>>> import pronouncing
>>> import random
>>> text = 'april is the cruelest month breeding lilacs out of the dead'
>>> out = list()
>>> for word in text.split():
...   phones = pronouncing.phones_for_word(word)[0]
...   first2 = phones.split()[:2]
...   out.append(random.choice(pronouncing.search("^" + " ".join(first2))))
...
>>> print ' '.join(out)
apec's isn't them kraatz muffy bronte leichliter outpacing of than delfs








Counting syllables

To get the number of syllables in a word, first get one of its pronunciations
with pronouncing.phones_for_word() and pass the resulting string of
phones to the pronouncing.syllable_count() function, like so:

>>> import pronouncing
>>> pronunciation_list = pronouncing.phones_for_word("programming")
>>> pronouncing.syllable_count(pronunciation_list[0])
3





The following example calculates the total number of syllables in a text
(assuming that all of the words are found in the pronouncing dictionary):

>>> import pronouncing
>>> text = "april is the cruelest month breeding lilacs out of the dead"
>>> phones = [pronouncing.phones_for_word(p)[0] for p in text.split()]
>>> sum([pronouncing.syllable_count(p) for p in phones])
15








Meter

Pronouncing includes a number of functions to help you isolate metrical
characteristics of a text. You can use the pronouncing.stresses()
function to get a string that represents the “stress pattern” of a string of
phones:

>>> import pronouncing
>>> phones_list = pronouncing.phones_for_word("snappiest")
>>> pronouncing.stresses(phones_list[0])
u'102'





A “stress pattern” is a string that contains only the stress values from a
sequence of phones. (The numbers indicate the level of stress: 1 for
primary stress, 2 for secondary stress, and 0 for unstressed.)

You can use the pronouncing.search_stresses() function to find words based on their
stress patterns. For example, to find words that have two dactyls in them
(“dactyl” is a metrical foot consisting of one stressed syllable followed by
two unstressed syllables):

>>> import pronouncing
>>> pronouncing.search_stresses("100100")
[u'afroamerican', u'afroamericans', u'interrelationship', u'overcapacity']





You can use regular expression syntax inside of the patterns you give to
pronouncing.search_stresses(). For example, to find all words wholly
consisting of two anapests (unstressed, unstressed, stressed), with “stressed”
meaning either primary stress or secondary stress:

>>> import pronouncing
>>> pronouncing.search_stresses("^00[12]00[12]$")
[u'neopositivist', u'undercapitalize', u'undercapitalized']





The following example rewrites a text, replacing each word with a random word
that has the same stress pattern:

>>> import pronouncing
>>> import random
>>> text = 'april is the cruelest month breeding lilacs out of the dead'
>>> for word in text.split():
...   pronunciations = pronouncing.phones_for_word(word)
...   pat = pronouncing.stresses(pronunciations[0])
...   replacement = random.choice(pronouncing.search_stresses("^"+pat+"$"))
...   out.append(replacement)
...
>>> ' '.join(out)
u"joneses kopf whats rathbun p's gavan midpoint nill goh the pont's"








Rhyme

Pronouncing includes a simple function, pronouncing.rhymes(), which
returns a list of words that (potentially) rhyme with a given word. You can use
it like so:

>>> import pronouncing
>>> pronouncing.rhymes("failings")
[u'mailings', u'railings', u'tailings']





The pronouncing.rhymes() function returns a list of all possible rhymes
for the given word—i.e., words that rhyme with any of the given word’s
pronunciations. If you only want rhymes for one particular pronunciation, the
the pronouncing.rhyming_part() function gives a smaller part of a string
of phones that can be used with pronouncing.search() to find rhyming
words. The following code demonstrates how to find rhyming words for two
different pronunciations of “uses”:

>>> import pronouncing
>>> pronunciations = pronouncing.phones_for_word("uses")
>>> sss = pronouncing.rhyming_part(pronunciations[0])
>>> zzz = pronouncing.rhyming_part(pronunciations[1])
>>> pronouncing.search(sss + "$")[:5]
[u"bruce's", u'juices', u'medusas', u'produces', u"tuscaloosa's"]
>>> pronouncing.search(zzz + "$")[:5]
[u'abuses', u'cabooses', u'disabuses', u'excuses', u'induces']





Use the in operator to check to see if one word rhymes with another:

>>> import pronouncing
>>> "wheeze" in pronouncing.rhymes("cheese")
True
>>> "geese" in pronouncing.rhymes("cheese")
False





The following example rewrites a text, replacing each word with a rhyming
word (when a rhyming word is available):

>>> import pronouncing
>>> import random
>>> text = 'april is the cruelest month breeding lilacs out of the dead'
>>> out = list()
>>> for word in text.split():
...   rhymes = pronouncing.rhymes(word)
...   if len(rhymes) > 0:
...     out.append(random.choice(rhymes))
...   else:
...     out.append(word)
...
>>> print ' '.join(out)
april wiles's duh coolest month ceding pontiac's krout what've worthey wehde








Next steps

Hopefully this is just the beginning of your rhyme- and meter-filled journey.
Consult Pronouncing API Reference for more information about individual functions in the
library.

Pronouncing is just one possible interface for the CMU pronouncing dictionary,
and you may find that for your particular purposes, a more specialized
approach is necessary. In that case, feel free to peruse Pronouncing’s source
code [http://github.com/aparrish/pronouncingpy] for helpful hints and
tidbits.







          

      

      

    

  

    
      
          
            
  
Pronouncing API Reference


	
pronouncing.init_cmu(filehandle=None)

	Initialize the module’s pronunciation data.

This function is called automatically the first time you attempt to use
another function in the library that requires loading the pronunciation
data from disk. You can call this function manually to control when and
how the pronunciation data is loaded (e.g., you’re using this module in
a web application and want to load the data asynchronously).


	Parameters

	filehandle – a filehandle with CMUdict-formatted data



	Returns

	None










	
pronouncing.parse_cmu(cmufh)

	Parses an incoming file handle as a CMU pronouncing dictionary file.

(Most end-users of this module won’t need to call this function explicitly,
as it’s called internally by the init_cmu() function.)


	Parameters

	cmufh – a filehandle with CMUdict-formatted data



	Returns

	a list of 2-tuples pairing a word with its phones (as a string)










	
pronouncing.phones_for_word(find)

	Get the CMUdict phones for a given word.

Because a given word might have more than one pronunciation in the
dictionary, this function returns a list of all possible pronunciations.

>>> import pronouncing
>>> pronouncing.phones_for_word("permit")
['P ER0 M IH1 T', 'P ER1 M IH2 T']






	Parameters

	find – a word to find in CMUdict.



	Returns

	a list of phone strings that correspond to that word.










	
pronouncing.rhymes(word)

	Get words rhyming with a given word.

This function may return an empty list if no rhyming words are found in
the dictionary, or if the word you pass to the function is itself not
found in the dictionary.

>>> import pronouncing
>>> pronouncing.rhymes("conditioner")
['commissioner', 'parishioner', 'petitioner', 'practitioner']






	Parameters

	word – a word



	Returns

	a list of rhyming words










	
pronouncing.rhyming_part(phones)

	Get the “rhyming part” of a string with CMUdict phones.

“Rhyming part” here means everything from the vowel in the stressed
syllable nearest the end of the word up to the end of the word.

>>> import pronouncing
>>> phones = pronouncing.phones_for_word("purple")
>>> pronouncing.rhyming_part(phones[0])
'ER1 P AH0 L'






	Parameters

	phones – a string containing space-separated CMUdict phones



	Returns

	a string with just the “rhyming part” of those phones










	
pronouncing.search(pattern)

	Get words whose pronunciation matches a regular expression.

This function Searches the CMU dictionary for pronunciations matching a
given regular expression. (Word boundary anchors are automatically added
before and after the pattern.)

>>> import pronouncing
>>> 'interpolate' in pronouncing.search('ER1 P AH0')
True






	Parameters

	pattern – a string containing a regular expression



	Returns

	a list of matching words










	
pronouncing.search_stresses(pattern)

	Get words whose stress pattern matches a regular expression.

This function is a special case of search() that searches only the
stress patterns of each pronunciation in the dictionary. You can get
stress patterns for a word using the stresses_for_word() function.

>>> import pronouncing
>>> pronouncing.search_stresses('020120')
['gubernatorial']






	Parameters

	pattern – a string containing a regular expression



	Returns

	a list of matching words










	
pronouncing.stresses(s)

	Get the vowel stresses for a given string of CMUdict phones.

Returns only the vowel stresses (i.e., digits) for a given phone string.

>>> import pronouncing
>>> pronouncing.stresses(pronouncing.phones_for_word('obsequious')[0])
'0100'






	Parameters

	s – a string of CMUdict phones



	Returns

	string of just the stresses










	
pronouncing.stresses_for_word(find)

	Get a list of possible stress patterns for a given word.

>>> import pronouncing
>>> pronouncing.stresses_for_word('permit')
['01', '12']






	Parameters

	find – a word to find



	Returns

	a list of possible stress patterns for the given word.










	
pronouncing.syllable_count(phones)

	Count the number of syllables in a string of phones.

To find the number of syllables in a word, call phones_for_word()
first to get the CMUdict phones for that word.

>>> import pronouncing
>>> phones = pronouncing.phones_for_word("literally")
>>> pronouncing.syllable_count(phones[0])
4






	Parameters

	phones – a string containing space-separated CMUdict phones



	Returns

	integer count of syllables in list of phones













          

      

      

    

  

    
      
          
            
  
Credits and Acknowledgements

Lead developer: Allison Parrish <allison@decontextualize.com>.

This package was originally developed as part of my Spring 2015 research
fellowship at ITP [http://itp.nyu.edu/itp/]. Thank you to the program and
its students for their interest and support!





          

      

      

    

  

    
      
          
            
  
History


0.2.0 (2018-07-01)


	Removed dictionary data from this package in favor of a dependency on David
L. Day’s very nice cmudict package.


	Many fixes and improvements from hugovk (thanks!)







0.1.5 (2017-04-13)


	Messed up the PyPI upload. Yay!







0.1.4 (2017-04-12)


	Improved performance when retrieving rhyming words. (Based on pull request
proposed by WillPiledriver [https://github.com/WillPiledriver].)







0.1.3 (2017-01-17)


	Various tweaks and performance improvements.







0.1.2 (2015-06-23)


	Pre-compiled regex for improved performance. (Contributed by John Wiseman.)







0.1.1 (2015-06-12)


	First release on PyPI.










          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	
       	
       pronouncing	
       

   



          

      

      

    

  

    
      
          
            

Index



 I
 | P
 | R
 | S
 


I


  	
      	init_cmu() (in module pronouncing)


  





P


  	
      	parse_cmu() (in module pronouncing)


  

  	
      	phones_for_word() (in module pronouncing)


      	pronouncing (module)


  





R


  	
      	rhymes() (in module pronouncing)


  

  	
      	rhyming_part() (in module pronouncing)


  





S


  	
      	search() (in module pronouncing)


      	search_stresses() (in module pronouncing)


  

  	
      	stresses() (in module pronouncing)


      	stresses_for_word() (in module pronouncing)


      	syllable_count() (in module pronouncing)


  







          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:


	Report bugs at https://github.com/aparrish/pronouncingpy/issues


	Fix bugs and implement features: Look through the GitHub issues for bugs to fix and features to implement!


	Contribute to documentation and example code.


	Submit feedback! File an issue at https://github.com/aparrish/pronouncingpy/issues.





Get Started!

Ready to contribute? Here’s how to set up pronouncing for local development.


	Fork the pronouncing repo on GitHub.


	Clone your fork locally:

$ git clone git@github.com:your_name_here/pronouncingpy.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pronouncingpy
$ cd pronouncingpy/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 pronouncingpy tests
$ python setup.py test
$ tox





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/aparrish/pronouncingpy/pull_requests
and make sure that the tests pass for all supported Python versions.







Tips

To run a subset of tests:

$ python -m unittest tests.test_pronouncing











          

      

      

    

  

    
      
          
            
  
pronouncing



	Pronouncing API Reference









          

      

      

    

  _static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          Documentation for pronouncing
        


        		
          Tutorial and Cookbook
          
            		
              Word pronunciations
            


            		
              Pronunciation search
            


            		
              Counting syllables
            


            		
              Meter
            


            		
              Rhyme
            


            		
              Next steps
            


          


        


        		
          Pronouncing API Reference
        


        		
          Credits and Acknowledgements
        


        		
          History
          
            		
              0.2.0 (2018-07-01)
            


            		
              0.1.5 (2017-04-13)
            


            		
              0.1.4 (2017-04-12)
            


            		
              0.1.3 (2017-01-17)
            


            		
              0.1.2 (2015-06-23)
            


            		
              0.1.1 (2015-06-12)
            


          


        


      


    
  

_static/up-pressed.png





_static/up.png





