

    
      
          
            
  
Welcome to ProjectPredict’s documentation!

Welcome to the documentation for ProjectPredict, the library to project managers schedule tasks intelligently.
Just getting started? Read the What is ProjectPredict? section. Interested? Read the Installation section
to get ProjectPredict and get started.
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What is ProjectPredict?

ProjectPredict is a library to help project managers gain insight into the status of their project using Bayesian
networks. It is inspired by the paper “Project scheduling: Improved approach to incorporate uncertainty using Bayesian
networks” [https://www.pmi.org/learning/library/project-scheduling-approach-incorporate-uncertainty-2371]
(Khodakarami, Fenton, & Neil, Project Management Journal, 2007). The project features


	Inferring the latest start date, earliest finish date, and total float for each task in a project


	Recommending which task or tasks should be started next using custom constraints and objective functions


	Task duration specified either through three-point (PERT) estimation [https://en.wikipedia.org/wiki/Three-point_estimation] or inferring the duration of a task from a machine
learning model


	Visualization of a project timeline using Matplotlib [https://matplotlib.org]





The Bayesian network

A project is specified as a directed acyclic graph of tasks. For example, suppose you have three tasks, A, B, C, D, E,
and F. Task C can only be begun when tasks A and B are completed, task D can only be completed when task B is completed,
and tasks D and E can only be begun when task B is completed. The resulting graph would look like this:

[image: _images/sample_project.png]
Each task is then decomposed into a smaller Bayesian network.

[image: _images/task_bn.png]
Where \(D\) is the duration, \(ES\) is the earliest start date, \(LS\) is the latest start date,
\(EF\) is the earliest finish date, and \(LF\) is the deadline or latest finish date. The earliest finish date can
be inferred from the graph by traversing the graph in topological order from the starting tasks (A and B in our
example), from the equations

\(ES_i = \max \{ES_j + D_j \; \forall \; \text{predecessor tasks}\; j\}\)

\(EF_i = ES_i + D_i\)

The latest start date for each task can be inferred by traversing teh graph in reverse topological order from the
final tasks (D and E in our example), from teh equations

\(LF_i = \max \{LF_j - D_j \; \forall \; \text{successor tasks}\; j\}\)

\(LS_i = LF_i - D_i\)

For our sample project, tasks A and B must be given an earliest start date, and tasks C and D must be given a latest
finish date. Both of these can take the form of either a probability distribution or a hard date. All tasks must
be given a duration, either using three-point estimation or predicted from a learning model.

Once these values have been inferred for each task, the total float can be defined as \(TF_i = LF_i - EF_i\). This
is a measure of the amount of time a task’s duration can be increased without affecting the completion time of the
project as a whole. The smaller the total float of a task, the more critical the task is to the overall project.







          

      

      

    

  

    
      
          
            
  
Installation

The easiest way to install ProjectPredict is to install it from PyPI using pip

pip install projectpredict





Or, using Pipenv [https://docs.pipenv.org], the new officially recommended standard for Python package management,


Development Installation

Currently the only way to install ProjectPredict for development is to clone it from GitHub.

git clone https://github.com/JustinTervala/ProjectPredict





Set up your virtual environment using virtualenv [https://virtualenv.pypa.io/en/stable/]

git clone https://github.com/JustinTervala/ProjectPredict
cd ProjectPredict
virtualenv venv
source venv/bin/activate





Then install the requirements

pip install -r requirements.txt
pip install -r requirements-dev.txt





Or, using Pipenv

git clone https://github.com/JustinTervala/ProjectPredict
cd ProjectPredict
pipenv install --dev
pipenv shell








Testing

ProjectPredict uses pytest as its unit testing framework. You can run the tests from the top-level directory by simply
typing “pytest”

pytest --cov=projectpredict








Building the Documentation

ProjectPredict uses sphinx [http://www.sphinx-doc.org/en/master/] to build the docs, and uses several plugins. From
the top-level directory,

cd docs
pip install -r requirements.txt
make html





This will generate the file in docs/_build/index.html. This file is the entry point to the documentation







          

      

      

    

  

    
      
          
            
  
The Recommendation Engine

ProjectPredict comes with a flexible recommendation engine which can be used to determine which tasks should be started
next. You can constrain the set of tasks both by a minimum and maximum number of tasks as well as by using custom
constraint functions. You can also specify if all tasks must be completed before the next tasks can begin or if a new
set or tasks can be started whenever any of the tasks in the recommended set completes. The default algorithm selects a
set of tasks which maximizes the sum of the total float across the project, weighted by the importance of some tasks’
deadlines and the risk tolerance.


The Default Algorithm

The default algorithm iterates through all possible combinations of tasks which can be started (all tasks with no
uncompleted predecessors) and, for each combination infers the latest start date, earliest finish date, and total float
of each task in the project assuming that the combination of tasks is begun at the current time. For each combination it
creates two scores, the float score and the precision score as defined by

\(s_f = \sum_{\text{tasks}\; i} { w_i \mu_i}\)

\(s_p = \sum_{\text{tasks}\; i} { w_i /\sigma_i}\)

Where \(\mu_i\) is the mean total float for task \(i\), \(\sigma_i\) is the mean total float for task
\(i\), and \(w_i\) is the weight of the deadline for task \(i\) (defaults to 1 if unspecified).

These scores are then used to select the best combination of tasks. First each score is scaled linearly between 0 and 1
based on the minimum and maximum of both scores.

\(\bar{s_f} = \frac{s_f - \min_{\text{task set i}}{s_{f_i}}}{\max_{\text{task set i}}{s_{f_i}}}\)

\(\bar{s_p} = \frac{s_p - \min_{\text{task set i}}{s_{p_i}}}{\max_{\text{task set i}}{s_{p_i}}}\)

Where \(\bar{s_f}\) and \(\bar{s_p}\) are the scaled total float score and scaled precision respectively for a
task. These two are then combined with a risk tolerance factor, \(r\), a value from 0 to 1, to obtain the combined
score \(s\), using \(s = r \bar{s_f} + (1-r)\bar{s_p}\). The recommended task set is the set of tasks which has the maximum
combined score.




Customization

The recommendation algorithm can be customized by specifying a scoring function which will accept the earliest start
date, latest start date, earliest finish date, latest finish date, and total float samples generated for a task set as
well as some optional keyword arguments. A recommendation selection function must also be supplied which accepts the
generated scores and some optional keyword arguments. A list of constraints can be specified by supplying a list of
functions which accept the project and a proposed set of tasks and returns a boolean indicating if the set of task
satisfies the constraints. For examples see Recommendations with Constraints







          

      

      

    

  

    
      
          
            
  
Examples


Your First Project

The simplest way to construct a project is to use deterministic distributions for the duration, earliest start date, and
latest start date. Suppose our project has 6 tasks – A, B, C, D, E, F specified as









	Task

	Duration

	Earliest start date

	Latest finish date





	A

	1 day

	Anytime

	–



	B

	3.5 hours

	2018-05-14 12pm

	–



	C

	2 days

	–

	–



	D

	3 days

	–

	2018-04-16



	E

	1 hour

	–

	2018-05-15



	F

	5 hours

	–

	2018-05-20






With the following dependencies

[image: _images/sample_project.png]
We first write create Tasks from DurationPdfs for the durations and DatePdfs for the earliest start and latest finish
dates
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	from datetime import datetime

from projectpredict import Project, Task, TimeUnits, DurationPdf, DatePdf
from projectpredict.pdf import DeterministicPdf


taskB_earliest_start_date = datetime(year=2018, month=5, day=14, hour=12)

# We make a DatePdf centered around taskB_earliest_start_date.
# The second parameter should be a zero-mean distribution.
# Because this start date is fully deterministic, we use a DeterministicPdf
# with value of 0
taskB_earliest_start_pdf = DatePdf(taskB_earliest_start_date, DeterministicPdf(0))

#

# Because Task A doesn't specify an earliest start date pdf it is assumed that
# it can begin any time.
taskA = Task(
    'A',
    duration_pdf=DurationPdf(DeterministicPdf(1), units=TimeUnits.days)
)

taskB = Task(
    'B',
    duration_pdf=DurationPdf(DeterministicPdf(3.5), TimeUnits.hours),
    earliest_start_date_pdf=taskB_earliest_start_pdf
)

taskC = Task(
    'C',
    duration_pdf=DurationPdf(DeterministicPdf(2), units=TimeUnits.days)
)


# Final tasks require a latest finish date
taskD_latest_finish_date = datetime(year=2018, month=5, day=16)
taskE_latest_finish_date = datetime(year=2018, month=5, day=15)
taskF_latest_finish_date = datetime(year=2018, month=5, day=20)


taskD = Task(
    'D',
    duration_pdf=DurationPdf(DeterministicPdf(3), units=TimeUnits.days),
    latest_finish_date_pdf=DatePdf(taskD_latest_finish_date, DeterministicPdf(0))
)

taskE = Task(
    'E',
    duration_pdf=DurationPdf(DeterministicPdf(1), units=TimeUnits.hours),
    latest_finish_date_pdf=DatePdf(taskE_latest_finish_date, DeterministicPdf(0))
)

taskF = Task(
    'F',
    duration_pdf=DurationPdf(DeterministicPdf(5), units=TimeUnits.hours),
    latest_finish_date_pdf=DatePdf(taskF_latest_finish_date, DeterministicPdf(0))
)







Once we have defined the tasks, we can add the tasks and their dependencies to the project.
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	# Construct a Project with the name "MyProject"
project = Project('MyProject')

tasks = [taskA, taskB, taskC, taskD, taskE, taskF]
dependencies = [
    (taskA, taskC),
    (taskB, taskC),
    (taskB, taskD),
    (taskC, taskE),
    (taskC, taskF)
]
project.add_tasks(tasks)
project.add_dependencies(dependencies)







Finally we can get the derived latest start date, earliest finish date, and total float for the tasks.
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	# We can specify a current time. If not specified, then
# The current wall time is used
current_time = datetime(year=2018, month=5, day=12, hour=12)

# Because all the distributions are deterministic, we only need 1 iteration
stats = project.calculate_task_statistics(current_time=current_time, iterations=1)

taskA_stats = stats[taskA]

print('earliest finish: {}'.format(taskA_stats.earliest_finish))
print('latest start: {}'.format(taskA_stats.latest_start))
print('total float: {}'.format(taskA_stats.total_float))







	1
2
3

	"earliest finish: {'variance': datetime.timedelta(0), 'mean': datetime.datetime(2018, 5, 13, 12, 0)}"
"latest start: {'variance': datetime.timedelta(0), 'mean': datetime.datetime(2018, 5, 11, 23, 0)}"
"total float: {'variance': datetime.timedelta(0), 'mean': datetime.timedelta(-1, 39600)}"







For this particular project, the total float is negative, indicating that Task A appears to already be past the deadline.
Additionally, we could use calculate_earliest_finish_times() and calculate_latest_start_times() methods to calculate only
the earliest finish dates and latest start dates respectively.




Using Distributions

The world is almost never kind enough to let us know the exact duration of a task, and some deadlines are more flexible
than others, and some earliest start dates may be uncertain. Rather than blindly guessing a distribution for the
durations, we’ll use three-point (PERT) estimation [https://en.wikipedia.org/wiki/Three-point_estimation] to derive
the distribution using the Task.from_pert() method.










	Task

	Duration



	Best Case

	Expected

	Worst Case





	A

	5 hours

	24 hours

	36 hours



	B

	0.5 hours

	3.5 hours

	10 hours



	C

	1 day

	2 days

	4 days



	D

	0.5 days

	3 days

	7 days



	E

	0.2 hours

	1 hour

	4 hours



	F

	1 hour

	5 hours

	10 hours






We’ll also put a zero-mean Gaussian distribution over the earliest start date of Task B and the latest finish date of
Task D.
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	from projectpredict.pdf import GaussianPdf

taskB_earliest_start_date = datetime(year=2018, month=5, day=14, hour=12)

taskA = Task.from_pert('A', 5, 24, 36, units=TimeUnits.hours)

taskB = Task.from_pert('B', 0.5, 3.5, 10, units=TimeUnits.hours,
    earliest_start_date_pdf=DatePdf(
        taskB_earliest_start_date,
        GaussianPdf(0, 2),
        units=TimeUnits.hours)
)

taskC = Task.from_pert('C', 1, 2, 4, units=TimeUnits.days)

taskD_latest_finish_date = datetime(year=2018, month=5, day=16)
taskE_latest_finish_date = datetime(year=2018, month=5, day=15)
taskF_latest_finish_date = datetime(year=2018, month=5, day=20)


taskD = Task.from_pert('D', 0.5, 3, 7, units=TimeUnits.days,
    latest_finish_date_pdf=DatePdf(
        taskD_latest_finish_date,
        GaussianPdf(0, 1),
        units=TimeUnits.days
    )
)

taskE = Task.from_pert('E', 0.2, 1, 4, units=TimeUnits.hours,
    latest_finish_date_pdf=DatePdf(taskE_latest_finish_date, DeterministicPdf(0))
)

taskF = Task.from_pert('F', 1, 5, 10, units=TimeUnits.hours,
    latest_finish_date_pdf=DatePdf(taskF_latest_finish_date, DeterministicPdf(0))
)







From here, we can add the tasks and dependencies to a Project and calculate the statistics same as in the previous
example.




Learned Model

While using three-point estimation is much better than either deterministic or guessing a distribution, it would be even
better to learn the distribution from a model. Imagine you are using an issue tracker for a software project. Frequently
you’ll have some knowledge of what team the work will be done by and the story points of the task. You may also have
some history of how long each task took to complete. Using this information, you could train a model to determine the
duration a task will take. ProjectPredict currently supports using a Gaussian Process Regression model from scikit-learn
to predict the duration of the task. We’ll first generate some simulated data for the project. We’ll assume the durations
are in units of days.
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	import numpy as np
from scipy.stats import norm
import pandas as pd


# We give out teams integer keys, a name, and a probability that any given
# task will be assigned to them
teams = {
    1: {'team': 'red', 'prob': 0.5},
    2: {'team': 'blue', 'prob': 0.25},
    3: {'team': 'green', 'prob': 0.15},
    4: {'team': 'yellow', 'prob': 0.1},
}

# For each team (by number), what give the probability that the team will
# assign some points to any task.
team_points = {
    1: [{'points': 1, 'prob': 0.5},
        {'points': 2, 'prob': 0.3},
        {'points': 3, 'prob': 0.2}],

    2: [{'points': 1, 'prob': 0.4},
        {'points': 2, 'prob': 0.4},
        {'points': 3, 'prob': 0.2}],

    3: [{'points': 1, 'prob': 0.7},
        {'points': 2, 'prob': 0.25},
        {'points': 3, 'prob': 0.05}],

    4: [{'points': 1, 'prob': 0.3},
        {'points': 2, 'prob': 0.5},
        {'points': 3, 'prob': 0.2}],
}

# Assign the mean and std of a Guassian distribution to
duration_lookup = {
    1: {1: {'mean': 3, 'std': 0.5},
        2: {'mean': 5, 'std': 1.25},
        3: {'mean': 10, 'std': 2}},

    2: {1: {'mean': 1, 'std': 0.5},
        2: {'mean': 3, 'std': 2},
        3: {'mean': 5, 'std': 3}},

    3: {1: {'mean': 2, 'std': 1},
        2: {'mean': 4, 'std': 3},
        3: {'mean': 7, 'std': 4}},

    4: {1: {'mean': 1, 'std': 0.5},
        2: {'mean': 2, 'std': 1.15},
        3: {'mean': 4, 'std': 5}},
}


def generate_team_samples(teams, num_samples=100):
    return np.random.choice(
        list(teams.keys()), p=[team['prob'] for team in teams.values()], size=num_samples)


def generate_points_samples(team_points_lookup, team_samples):
    results = []
    for team_sample in team_samples:
        lookup = team_points_lookup[team_sample]
        points = np.random.choice(
            [entry['points'] for entry in lookup],
            p=[entry['prob'] for entry in lookup])
        results.append(points)
    return results


def generate_duration_samples(team_samples, points_samples, duration_prob_lookup):
    results = []
    for team_sample, points_sample in zip(team_samples, points_samples):
        lookup = duration_prob_lookup[team_sample][points_sample]
        prob = norm(loc=lookup['mean'], scale=lookup['std'])
        sample = prob.rvs()

        # Don't allow negative durations
        while sample <= 0:
            sample = prob.rvs()
        results.append(sample)
    return results

team_samples = generate_team_samples(teams)
points_samples = generate_points_samples(team_points, team_samples)
duration_samples = generate_duration_samples(team_samples, points_samples, duration_lookup)







We’ll then save the data to a CSV using pandas so we can use it later if we need to.
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	import pandas as pd

# Convert the samples to a numpy array
data = np.array(list(zip(team_samples, points_samples, duration_samples)))

#write the numpy array to a csv using pandas
dataframe = pd.DataFrame(data=data, columns=['team', 'points', 'duration'])
dataframe.to_csv('duration_samples.csv')







Now we’ll train our model. For this we’ll use the GaussianProcessRegressorModel which wraps scikit-learn’s
GuassianProcessregressor.
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	from projectpredict.learningmodels import GaussianProcessRegressorModel
from projectpredict import TimeUnits

# By default, the kernel used in the model is
# ConstantKernel() + Matern(length_scale=1, nu=3 / 2) + WhiteKernel(noise_level=1)
# A custom jkernel can be specified using the "kernel" keyword in the constructor
model = GaussianProcessRegressorModel(TimeUnits.days)
input_data = data[data.columns.drop('duration')]
output = data['duration']

# Because we are using a pandas DataFrame, we don't need to specify the
# ordering of the data.
model.train(input_data, output)

# If we were using a raw numpy array or a python, we'd write
# model.train(input_data, output, ordering=['team', 'points'])







Now that model has been trained, we can add  team and points data to our Tasks. Data is attached to Tasks using the
“data” keyword argument in the constructor. The keys of the dictionary must be the same as the column names of the
input data used to train the model, or the elements passed to the “ordering” keyword used to train the model.
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	from datetime import datetime

from projectpredict import Project, Task, TimeUnits, DatePdf
from projectpredict.pdf import GaussianPdf, DeterministicPdf


taskB_earliest_start_date = datetime(year=2018, month=5, day=14, hour=12)

taskA = Task('A', data={'team': 1, 'points': 3})

taskB = Task('B', data={'team': 3, 'points': 2},
    earliest_start_date_pdf=DatePdf(
        taskB_earliest_start_date,
        GaussianPdf(0, 2),
        units=TimeUnits.hours)
)

taskC = Task('C', data={'team': 2,'points': 1})

taskD_latest_finish_date = datetime(year=2018, month=5, day=16)
taskE_latest_finish_date = datetime(year=2018, month=5, day=15)
taskF_latest_finish_date = datetime(year=2018, month=5, day=20)


taskD = Task('D', data={'team': 4,'points': 3},
    latest_finish_date_pdf=DatePdf(
        taskD_latest_finish_date,
        GaussianPdf(0, 1),
        units=TimeUnits.days
    )
)

taskE = Task('E', data={'team': 1,'points': 2},
    latest_finish_date_pdf=DatePdf(taskE_latest_finish_date, DeterministicPdf(0))
)

taskF = Task('F', data={'team': 2,'points': 2},
    latest_finish_date_pdf=DatePdf(taskF_latest_finish_date, DeterministicPdf(0))
)







At this point, the tasks don’t contain any estimates of their durations. We could set their duration estimates directly
from the model using

taskA.set_duration_pdf(model)





But the add_task() and add_tasks() methods in the Project will automatically set the duration when it adds the Task(s)
to the project, so we can use the same syntax as before with one slight modification: The project needs to be given the
model in its constructor.
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	project = Project('MyProject', model=model)

tasks = [taskA, taskB, taskC, taskD, taskE, taskF]
dependencies = [
    (taskA, taskC),
    (taskB, taskC),
    (taskB, taskD),
    (taskC, taskE),
    (taskC, taskF)
]
project.add_tasks(tasks)
project.add_dependencies(dependencies)







We can then get the earliest finish date, latest start date, and total float in the same way as before.

current_time = datetime(year=2018, month=5, day=12, hour=12)

stats = project.calculate_task_statistics(current_time=current_time)








Updating Project Status

Now suppose the project begins, and we start with task A. We can mark it as started by doing the following

taskA_start_time = datetime(year=2018, month=5, day=13)

# Without specifying a start_time, the current wall time will be used
taskA.start(start_time=taskA_start_time)





Let’s suppose that the task is completed 12 hours later, then we can mark it as complete by writing the following:

from datetime import timedelta
current_time = taskA_start_time + timedelta(hours=12)
taskA.complete(completion_time=current_time)





Marking a task as completed effectively removes it from the sampling and calculations of the earliest finish date,
latest start date, and total float.




Recommendations

Now that we have completed Task A, the question then becomes what is the next Task which should be attempted. We can
get recommendations from the project using the Project’s recommend_next() method. For more information on the algorithm
see The Recommendation Engine

project.recommend_next(current_time=current_time)
>>> (<Task name=B>,)





We can also get a recommendation for multiple tasks using the “max_number” keyword (there is also a corresponding
“min_number” keyword).

project.recommend_next(current_time=current_time, max_number=2)





By default this batch mode recommendation system assumes that if a task in this batch is completed, a new task can begin
immediately. To disable this behavior, set the “batch_wait” keyword to True.

project.recommend_next(current_time=current_time, max_number=2, batch_wait=True)






Customizing the Default Recommendation Algorithm

The default recommendation engine can be modified by setting a “risk_tolerance” score. This is a value between 0 and 1.
The higher the score, the more emphasis is put on reducing the total float and less emphasis is put on the precision of
the total float. The default is 0.5, but you can select your own by adding the “risk_tolerance” entry to the
“selection_func_arguments” keyword argument.

project.recommend_next(
   current_time=current_time,
   max_number=2,
   selection_func_arguments={'risk_tolerance': 0.75}
)





You can also place more emphasis on certain deadlines than others, so if one task is critical to meet a deadline, you
can specify a “deadline_weight” for a task by adding the keyword argument to the Task constructor. For example, to place
more weight on meeting Task E’s deadline, we could construct it as

taskE = Task('E', data={'team': 1,'points': 2},
    latest_finish_date_pdf=DatePdf(taskE_latest_finish_date, DeterministicPdf(0)),
    deadline_weight=10
)








Recommendations with Constraints

You can also limit the set of accepted tasks by adding constraint functions. Suppose you know that your velocity for a
a sprint is 7 points. To restrict the set of tasks to ones wose story point sum is less than or equal to 7, you can
construct a constraint function like the following

def story_point_constraint(project, task_set):
   story_point_sum = sum(task.data['points'] for task in task_set)
   return story_point_sum <= 7

project.recommend_next(
   current_time=current_time,
   max_number=2,
   constraints=[story_point_constraint]
)








Recommendations with Custom Scoring

You can also specify a custom scoring mechanism by specifying two function - a scoring function and a selection function.
The scoring function must accept a dict in which the keys is a Task and the value is a list of TaskSamples generated by
the sampling algorithm. Additional arguments can be accepted as keyword arguments to the recommend_next() method and will
be forwarded to the scoring function. The recommendation selection function must accept a dict in which the keys are a
tuple of Tasks and the value is the returned score from the scoring function. Additional arguments can be specified by
supplying a dict of the arguments to the “selection_func_arguments” keyword argument of the recommend_next() method.

def my_score_func(samples, **score_args):
   foo = score_args['foo']
   bar = score_args['bar']
   # ...
   return some_score

def my_selection_func(scores, **selection_args):
   wiz = selection_args['wiz']
   bang = selection_args['bang']
   # ...
   return best_task

project.recommend_next(
   current_time=current_time,
   max_number=2,
   score_func=my_score_func,
   selection_func=my_selection_func,
   selection_func_arguments={'wiz': 0.75, 'bang': 'wizbang'}
   foo=12,
   bar='high_risk'
)













          

      

      

    

  

    
      
          
            
  
Visualization

Currently only one artist, the MatplotlibArtist, is provided by ProjectPredict. It provides a single visualization of a
project based on its generated statistics using matplotlib. It places positions the tasks on a graph based on its
mean latest start date, creating a timeline of the project. Additionally, it can shade the tasks based on either the
total float, latest start, or earliest finish (the default colormap is Matplotlib’s Spectral [https://matplotlib.org/tutorials/colors/colormaps.html] colormap).


Note

The following example uses the Project developed using the learning model from Learned Model



	1
2
3
4
5
6
7
8

	from projectpredict.artists import MatplotlibArtist
import matplotlib.pyplot as plt

artist = MatplotlibArtist(project)
current_time = datetime(year=2018, month=4, day=25)
fig, ax = artist.draw(current_time=current_time)
plt.tight_layout()
plt.savefig('myproject.png')







This results in the following plot:

[image: _images/sample_artist.png]
The horizontal bars indicate the standard deviation of the latest start date, and teh blue vertical bar represents the
current date. These can be toggled off by setting the “show_variance=False” and “show_current_time=False” keyword
arguments respectively.


Custom Visualizations

No interface must be satisfied to make your own visualizations, but an ArtistBase class has been provided which supplies
a function, get_positions(), which generates a timeline-like graph of the project based on the latest start date for
each task in the project. You can choose to extend from this base class or not.




Layout Algorithm

Constructing the visual layout of the Project is non trivial, and the current implementation still doesn’t get it quite
right. Currently the algorithm iterates through the tasks in topological order,

find the optimal spacing for the tasks
initialize the position of the first task (in topological order) to be 0,0
for task in topological sort of project:
   x_position = task's latest start date
   relevant_positions = all previously-seen tasks such that their x-distance is <= the optimal distance
   if any of relevant_positions are predecessors of the current task:
      relevant_positions = the predecessors of the task which are in relevant_positions
   best_neighbor = the task in relevant_positions whose x-position difference from the current task is greatest
   y_position = y such that (x-position, y) is on a circle centered at best_neighbor with radius optimal_distance
   store x_position, y_position for the task





The optimal distance is rather arbitrarily found by

start_tasks = all tasks with no predecessors
terminal_tasks = all tasks with no successors
max_path = longest path between any start task and any terminal task
max_time_difference = (end of max_path's latest finish date - start of max path's latest finish date)
optimal_distance = max_time_difference / length of max_path











          

      

      

    

  

    
      
          
            
  
Customized PDFs

ProjectPredict only comes with two built in PDFs, the DeterministicPdf and the GaussianPdf, however, making a custom PDF
is straightforward, and requires only a minimal interface.


PDFs from Scipy

Generating custom PDFs from scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html] distributions
requires only that you extend from the projectpredict.pdf.SciPyPdf base class and provide a constructor. For example,
to provide a half-normal distribution from scipy.stats.halfnorm [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfnorm.html#scipy.stats.halfnorm], you could write
the following class

	1
2
3
4
5
6

	 from scipy.stats import halfnorm
 from math import sqrt

 class HalfNormalPdf(SciPyPdf):
     def __init__(mean, variance):
         super(HalfNormalPdf, self).__init__(halfnorm(loc=mean, scale=sqrt(variance)))










Fully Custom PDFs

All PDFs must provide the following methods:


	A method called sample() which takes no parameters and return a random sample from the PDF in the form of a float


	A field or property called “mean” which holds the mean of the pdf


	A field or property called “variance” which holds the variance of the pdf




For example, a uniform PDF from Python’s built-in random module could be written as

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from rand import uniform

class UniformPdf(object):
    def __init__(low, high):
        self.low = low
        self.high = high
        self.mean = (high - low) / 2
        self.variance = 1/12 * (high - low)**2

    def sample();
      return uniform(low, high)













          

      

      

    

  

    
      
          
            
  
Customized Learning Models

ProjectPredict comes with a Gaussian Process Regression model, however you may find this model unsuitable for your data.
To make your own model, you only need to follow a minimal interface – the only requirement is that you have a method
named “predict” that accepts the dictionary of data associated with a task and returns a DurationPdf. For simplicity,
assume your tasks have a “points” value in their data, and your model simply returns a DurationPdf wrapping a
DeterministicPdf containing with the same value as the points passed into it. You could write this as

	1
2
3
4
5
6

	 class SimpleModel(object):
     def __init__(self, units=TimeUnits.hours):
         self.units = units

     def predict(self, input_data):
         return DurationPdf(DeterministicPdf(input_data['points']), units=self.units)











          

      

      

    

  

    
      
          
            
  
Next Steps

ProjectPredict is still in development, and numerous improvement can be made. Amoung them are:


	The default learning algorithm, the Gaussian Process Regressor [http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html] model from
scikit-learn does not perform adequately for a wide variety of data sets. Some alternatives would be to use GPFlow [http://gpflow.readthedocs.io/en/latest/] or pymc3 [https://docs.pymc.io] to determine the distribution using
non-parametric Bayesian methods.


	The visualization capabilities are admittedly somewhat primitive and lacks the ability to interact with the project
graph. A much better solution would be to set up a small web server and use cytoscape [http://js.cytoscape.org] to
view and interact with the model.


	Durations are internally represented as Python datetime.timedelta objects. It might be better to allow users to
specify how long a working day is (8 hours) and define a day to be the length of the working hours.


	Completing a task should update the model so that it learns as the project progresses.








          

      

      

    

  

    
      
          
            
  
Sphinx AutoAPI Index

This page is the top-level of your generated API documentation.
Below is a list of all items that are documented here.



	artists

	pdf

	task

	exceptions

	project

	learningmodels









          

      

      

    

  

    
      
          
            
  
artists


Module Contents


	
class artists.ArtistBase(project)

	Base class for artists. Contains methods to help determine the positions of the tasks


	
project

	Project – The project to draw






	Parameters

	project (Project) – The project to draw






	
__init__(project)

	




	
_date_to_timestamp()

	




	
_find_optimal_distance(stats)

	Finds the best distance between nodes.

This is determined from the number of tasks in the longest path between all starting tasks and all
terminal tasks. The optimal distance is the difference between the earliest latest finish date mean and the
latest latest finish date mean divided by the number of nodes in the path.


	Parameters

	(dict{Task (stats) – TaskStatistics}): The statistics used to derive the optimal distance



	Returns

	The optimal distance between nodes.



	Return type

	float










	
_find_longest_path_length(start_tasks, terminal_tasks)

	




	
get_positions(stats)

	




	
_find_best_y_position(optimal_distance, positions, task, x_position)

	The optimal Y position is found by first finding the best task for the new task to be positioned near and
solving the equation for a circle centered at that task’s position with a radius equal to the optimal_distance
for the y-variable.






	
_calculate_y_position(x_position, optimal_distance)

	




	
_get_relevant_positions(task, positions, x_position, optimal_distance)

	




	
_find_best_neighbor_task()

	








	
class artists.MatplotlibArtist(project)

	Draws a project using Matplotlib


Note

There are still several issues with this artist. The task labels only fit a single letter, so the names often
overflow. And the labels are too long and are improperly oriented.




	
project

	Project – The project to draw






	Parameters

	project (Project) – The project to draw






	
__init__(project)

	




	
_get_color_converter(bounds, low_better, colormap)

	




	
draw(shade="total_float", stats=None, current_time=None, iterations=1000, colormap="Spectral", show_plot=True, show_variance=True, show_current_time=True)

	Draws a project and shades it by derived stats.

The X position of the tasks is determined by their latest start date


	Parameters

	
	shade (str) – Shades the nodes by a derived stat. Accepted values are ‘total_float’, ‘latest_start’, or
‘earliest_finish’


	stats (list[TaskStatistics], optional) – The statistics used to draw the Project. If none are supplied, the
Project will be sampled.


	current_time (datetime, optional) – The current time to sample the Project. Only used if stats is not
specified. Defaults to the current (UTC) time.


	iterations (int, optional) – The number of iterations to sample the Project from. Only used if stats is not
specified. Defaults to 1000


	colormap (str, optional) – The matplotlib color map to use. Defaults to ‘Spectral’


	show_plot (bool, optional) – Show the plot? Defaults to True.


	show_variance (bool, optional) – Show the variance of the latest start date? Defaults to True.


	show_current_time (bool, optional) – Show the current time as a vertical line? Defaults to True.






	Returns

	The figure and axis of the plot



	Return type

	tuple










	
_adjust_ticks()

	




	
_create_color_converter(colormap, shade, stats)

	




	
_add_variance_bars(positions, stats)

	













          

      

      

    

  

    
      
          
            
  
pdf


Module Contents


	
class pdf.SciPyPdf(pdf)

	
	
__init__(pdf)

	




	
sample()

	Get a sample from the PDF


	Returns

	A sample from the PDF



	Return type

	float










	
mean()

	float: The mean of the PDF






	
variance()

	float: The variance of the PDF






	
__eq__(other)

	




	
__repr__()

	








	
class pdf.GaussianPdf(mean, variance)

	A PDF representing a Gaussian distribution


	
pdf

	norm – The Gaussian pdf object






	Parameters

	pdf (norm) – The Gaussian pdf object






	
__init__(mean, variance)

	




	
from_dict(dict_in)

	Creates a GaussianPdf from a dictionary


	Parameters

	dict_in (dict) – The dict to create the PDF from. Must contain keys for ‘mean’ and ‘variance’



	Returns

	The constructed Gaussian PDF



	Return type

	GaussianPdf










	
to_dict()

	Gets a dictionary representation of this PDF


	Returns

	The dictionary representation of this PDF



	Return type

	dict














	
class pdf.DeterministicPdf(value)

	A PDF representing a Gaussian distribution


	
pdf

	float – The exact value to be returned by the sample() function






	Parameters

	value (float) – The exact value to be returned by the sample() function






	
__init__(value)

	




	
sample()

	Get a sample from the PDF. Will always return the value passed into the constructor.


	Returns

	The value passed into the constructor



	Return type

	float










	
mean()

	float: The mean of the PDF. Always equal to the value passed into the constructor






	
variance()

	float: The variance of the PDF. Will always return 0






	
__eq__(other)

	




	
from_dict(dict_in)

	Creates a DeterministicPdf from a dictionary


	Parameters

	dict_in (dict) – The dict to create the PDF from. Must contain keys for ‘mean’



	Returns

	The constructed deterministic PDF



	Return type

	DeterministicPdf










	
to_dict()

	Gets a dictionary representation of this PDF


	Returns

	The dictionary representation of this PDF



	Return type

	dict














	
class pdf.PdfFactory

	Factory to construct PDFs from dictionaries


	
create(pdf_type, parameters)

	Create a PDF


	Parameters

	
	pdf_type (str) – The type of PDF to construct. Must match an entry in the pdf_registry


	parameters (dict) – The parameters from which to construct the PDF from.






	Returns

	The constructed PDF














	
class pdf.TimeUnits

	Enum representing possible units of time


	
to_timedelta(value)

	Converts a TimeUnits and a value to a timedelta


	Parameters

	
	units (TimeUnits) – The units to use with the timedelta


	value (float) – The value to use in the timedelta






	Returns

	The timedelta with the given units and value



	Return type

	timedelta










	
from_string(value)

	Converts a string to a TimeUnits


	Parameters

	value (str) – The string to convert



	Returns

	The converted timeunit



	Return type

	TimeUnits



	Raises

	ValueError – If no matching string is found.














	
class pdf.DurationPdf(pdf, units=None)

	A probability density function over a time duration


	
pdf

	A probability density function object which provides a mechanism for sampling via a sample() method






	
units

	TimeUnits – The units to use for the duration






	Parameters

	
	pdf – A probability density function object


	units (TimeUnits, optional) – The units to use for the duration. Defaults to TimeUnits.seconds









	
__init__(pdf, units=None)

	




	
mean()

	timedelta: The mean value of this PDF






	
sample(minimum=None)

	Get a sample from the distribution


	Parameters

	minimum (timedelta) – The minimum duration



	Returns

	A sample from the distribution



	Return type

	timedelta










	
__eq__(other)

	








	
class pdf.DatePdf(mean_datetime, pdf, units=None)

	A probability density function over a datetime.


	
mean_datetime

	datetime – A datetime to use as the mean value






	
pdf

	A probability density function object which provides a sampling mechanism via a sample() method






	
units

	TimeUnits – The units to use for the pdf samples






	Parameters

	
	mean_datetime (datetime) – A datetime to use as the mean value


	pdf – A probability density function object


	units (TimeUnits, optional) – The units to use for pdf samples. Defaults to TimeUnits.seconds









	
__init__(mean_datetime, pdf, units=None)

	




	
mean()

	timedelta: The mean value of this PDF






	
sample()

	Get a sample from the distribution


	Returns

	A sample from the distribution



	Return type

	datetime










	
__eq__(other)

	













          

      

      

    

  

    
      
          
            
  
task


Module Contents


	
class task.Entity(uid=None, name="")

	Base class for entities which provides a UUID and a hashability to the child classes


	
uid

	UUID – The UUID of the object






	
name

	str – The name of the object






	Parameters

	
	uid (UUID, optional) – The UUID of the object


	name (str, optional) – The name of the object









	
__init__(uid=None, name="")

	




	
__eq__(other)

	




	
__hash__()

	




	
__repr__()

	








	
class task.Task(name, uid=None, project_uid=None, duration_pdf=None, earliest_start_date_pdf=None, latest_finish_date_pdf=None, data=None, deadline_weight=1)

	A task in the project or overall process


	
project_uid

	UUID – The UUID of the project containing this task






	
duration_pdf

	projectpredict.pdf.DurationPdf – A pdf to use to sample the duration of the task






	
earliest_start_date_pdf

	projectpredict.pdf.DatePdf – A pdf to use to sample the earliest start date of of the task






	
latest_finish_date_pdf

	projectpredict.pdf.DatePdf – A pdf to use to sample the latest finish date of the task






	
start_time

	datetime – The datetime the task was started






	
completion_time

	datetime – The datetime the task was completed






	
data

	Any data associated with this task.






	
deadline_weight

	The weight attached to the deadline for this task.






	Parameters

	
	name (str) – The name of the task


	uid (UUID, optional) – The UUID of the task. If none is provided, one will be generated.


	project_uid (UUID, optional) – The UUID of the project containing this task


	duration_pdf (projectpredict.pdf.DurationPdf) – A pdf to use to sample the duration of the task


	earliest_start_date_pdf (DatePdf, optional) – A pdf to use to sample the earliest start date of of the task


	latest_finish_date_pdf (DatePdf, optional) – A pdf to use to sample the latest finish date of the task


	data (optional) – Any data associated with this task.


	deadline_weight (int, optional) – The weight attached to meeting this task’s deadline









	
__init__(name, uid=None, project_uid=None, duration_pdf=None, earliest_start_date_pdf=None, latest_finish_date_pdf=None, data=None, deadline_weight=1)

	




	
start(start_time=None)

	Marks the task as started


	Parameters

	start_time (datetime, optional) – The datetime the task was started. Defaults to the current UTC timestamp










	
complete(completion_time=None)

	Completes the task


	Parameters

	completion_time (datetime, optional) – The datetime the task was completed. Defaults to the current UTC
timestamp










	
is_completed()

	bool: Is the task completed?






	
is_started()

	bool: Has the task been started?






	
mean_duration()

	timedelta: Gets the mean of the duration pdf






	
set_duration_pdf(model)

	Sets the duration PDF from a model


	Parameters

	model – The model to use to predict the duration of the task










	
set_earliest_start_pdf(mean_datetime, std, units=None)

	Sets the earliest start date pdf as a normal distributirequired=Trueon about a mean date.


	Parameters

	
	mean_datetime (datetime) – The mean datetime of the earliest time a task can start


	std (float) – The standard deviation of the distribution


	units (TimeUnits, optional) – The units of time of the variance. Defaults to TimeUnits.seconds













	
set_latest_finish_pdf(mean_datetime, std, units=None)

	Sets the latest finish date pdf as a normal distribution about a mean date.


	Parameters

	
	mean_datetime (datetime) – The mean datetime of the latest time a task can finish


	std (float) – The standard deviation of the distribution


	units (TimeUnits, optional) – The units of time of the variance. Defaults to TimeUnits.seconds













	
get_duration_sample(current_time)

	Gets a sample of the duration.

If the task has already started, then only durations greater than current_time - start_time will be valid, and
samples will be drawn until a valid duration is picked.


	Parameters

	current_time (datetime) – The current time at which the sample should be drawn from.



	Returns

	A sample of the duration pdf



	Return type

	timedelta










	
get_earliest_start_sample(current_time)

	Gets a sample of the earliest start date pdf

If a task has been started, this will always return the start time. Else if an earliest start date pdf has been
provided, a sample is drawn from that distribution. If no distribution has ben provided, the current time is
returned.


	Parameters

	current_time (datetime) – The current time at which the sample should be drawn from.



	Returns

	A sample from the earliest start date pdf.



	Return type

	datetime










	
get_latest_finish_sample()

	Gets a sample of the latest finish date pdf

If an latest finish date pdf has been provided, a sample is drawn from that distribution. else, this function
will return None


	Returns

	A sample from the latest start date pdf



	Return type

	datetime










	
from_pert(name, best_case, estimated, worst_case, units=None, **kwargs)

	Constructs a Task from three-point (PERT) estimations.


	Parameters

	
	name (str) – The name of the task


	best_case (float) – The estimated best case duration of the task


	estimated (float) – The estimated duration of the task


	worst_case (float) – The estimated worst case duration of the task


	units (TimeUnits, optional) – The units of time used in the estimation. Defaults to TimeUnits.seconds


	**kwargs – Arguments to be passed into Task constructor






	Returns

	A task constructed from the provided arguments



	Return type

	Task



















          

      

      

    

  

    
      
          
            
  
exceptions


Module Contents


	
class InvalidProject(errors)

	Exception thrown when a project is determined to be invalid


	
errors

	list[str]|str – The errors found with the Project






	Parameters

	errors (list[str]|str) – The errors found with the Project






	
__init__(errors)

	




	
__repr__()

	













          

      

      

    

  

    
      
          
            
  
project


Module Contents


	
project.datetime_stats(datetimes)

	Gets the mean and variance of a collection of datetimes


	Parameters

	datetimes (iterable(datetime)) – The datetimes to compute the statistics on.



	Returns

	
	A dictionary containing keys for the mean and variance. The mean is a datetime, and the variance is a

	timedelta.









	Return type

	dict










	
project.timedelta_stats(timedeltas)

	Gets the mean and variance of a collection of timedeltas


	Parameters

	timedeltas (iterable(timedelta)) – The timedeltas to compute the statistics on.



	Returns

	A dictionary containing keys for the mean and variance. both the mean and variance are datetimes.



	Return type

	dict










	
class project.TaskSample(duration, earliest_start, latest_finish)

	A wrapper for a sample of the derived statistics for a Task


	
duration

	timedelta – The sampled duration of the task






	
earliest_start

	datetime – The sampled earliest start date of the task






	
latest_finish

	datetime – The sampled latest finish date of the task






	
latest_start

	datetime – The latest start date of the task. Must be set independently of the constructor






	
earliest_finish

	datetime – The earliest finish date of the task. Must be set independently of the constructor.






	Parameters

	
	duration (timedelta) – The sampled duration of the task


	earliest_start (datetime) – The sampled earliest start date of the task


	latest_finish (datetime) – The sampled latest finish date of the task









	
__init__(duration, earliest_start, latest_finish)

	




	
total_float()

	timedelta: The total float of the task. Earliest finish mst be set before calculation.






	
from_task(task, current_time)

	Constructs a TaskSample from a task


	Parameters

	
	task (Task) – The task to sample


	current_time (datetime) – The current datetime used to sample the task






	Returns

	The constructed sample



	Return type

	TaskSample














	
class project.TaskStatistics(latest_start, earliest_finish, total_float)

	A container for the relevant derived statistics for a Task


	
latest_start

	dict – A dict containing the mean and variance of the latest start date of the task in ‘mean’ and
‘variance’ keys respectively.






	
earliest_finish

	dict – A dict containing the mean and variance of the earliest finish date of the task in
‘mean’ and ‘variance’ keys respectively.






	
total_float

	dict – A dict containing the mean and variance of the total float date of the task in ‘mean’ and
‘variance’ keys respectively.






	Parameters

	
	latest_start (dict) – A dict containing the mean and variance of the latest start date of the task in ‘mean’ and
‘variance’ keys respectively.


	earliest_finish (dict) – A dict containing the mean and variance of the earliest finish date of the task in
‘mean’ and ‘variance’ keys respectively.


	total_float (dict) – A dict containing the mean and variance of the total float date of the task in ‘mean’ and
‘variance’ keys respectively.









	
__init__(latest_start, earliest_finish, total_float)

	




	
from_samples(samples)

	Construct a TaskStatistics object from samples


	Parameters

	samples (iterable(TaskSample)) – The samples to compute the statistics from.



	Returns

	The constructed TaskStatistics



	Return type

	TaskStatistics










	
__repr__()

	








	
class project.Project(name, model=None, uid=None, tasks=None, dependencies=None)

	A project


Note

This must be an acyclic graph.




	
name

	str – The name of the project






	
uid

	UUID – The UUID of the project






	
model

	A model used to predict the duration of tasks from their data






	Parameters

	
	name (str) – The name of the project


	model (optional) – A model used to predict the duration of tasks from their data


	uid (UUID, optional) – The UUID of the project


	tasks (iterable(Task), optional) – A collections of Tasks associated with this project


	dependencies (iterable(dict), optional) – The dependencies associated with the project in the form of dicts of
‘source’ and ‘destination’ keys.









	
__init__(name, model=None, uid=None, tasks=None, dependencies=None)

	




	
validate()

	Validates the Project meets the requirements to do inference

Checks:
* The Project is a directed acyclic graph
* Every terminal Task (one without successors) has a latest start date PDF


	Raises

	InvalidProject – If the project does not conform to the requirements.










	
dependencies()

	list[tuple(Task, Task)]: The dependencies in the project where the first element of the tuple is the source
task and the second element of the tuple is the dependent task.






	
tasks()

	iterable(Task): The tasks of this project






	
dependencies_summary()

	list[DependencySummary]: The dependencies of this project






	
get_task_from_id(id_)

	Gets a task from an id


	Parameters

	id (UUID) – The UUID of the project to get



	Returns

	The task with the associated with the id or None if task is not found



	Return type

	Task|None










	
add_task(task)

	Adds a Task to this Project and determines the duration PDF of the task from the model if not previously specified.


	Parameters

	task (Task) – The Task to add to the project










	
add_tasks(tasks)

	
	Adds multiple Tasks to this Project and determines the duration PDF of the task from the model if not

	previously specified.






	Parameters

	tasks (iterable(Task)) – The Task to add to the project










	
add_dependency(parent, child)

	Adds a Task dependency to this Project


	Parameters

	
	parent (Task) – The parent task


	child (Task) – The child task, i.e. the Task which depends on the parent













	
add_dependencies(dependencies)

	Adds multiple Task dependencies to this Project


	Parameters

	dependencies (list[tuple(Task, Task)]) – A list of tuples of Task dependencies in the form of
(parent task, child task)










	
calculate_earliest_finish_times(current_time=None, iterations=1000)

	Generates samples of the earliest finish times for each uncompleted node in the project.


	Parameters

	
	current_time (datetime) – the time at which to take the samples


	iterations (int, optional) – The number of samples to generate. Defaults to 1000






	Returns

	[datetime]}: A dictionary of the samples for each task.



	Return type

	dict{Task










	
earliest_finish_sample_func(parents, children, samples, **kwargs)

	




	
calculate_latest_start_times(iterations=1000)

	Generates samples of the latest start times for each uncompleted node in the project.


	Parameters

	iterations (int, optional) – The number of samples to generate. Defaults to 1000



	Returns

	[datetime]}: A dictionary of the samples for each task.



	Return type

	dict{Task










	
latest_start_sample_func(parents, children, samples, **kwargs)

	




	
_get_samples(forward_sample_func=None, backward_sample_func=None, iterations=1000, current_time=None, **kwargs)

	




	
_get_parents_and_children(task)

	




	
calculate_task_statistics(current_time=None, iterations=1000)

	




	
recommend_next(current_time=None, constraints=None, iterations=1000, score_func=None, selection_func=None, min_number=1, max_number=1, batch_wait=False, selection_func_arguments=None, **score_func_arguments)

	Get the recommended next tasks


	Parameters

	
	current_time (datetime, optional) – The current time (in UTC) to query the project.
Defaults to the current time.


	constraints (iterable(callable)) – A list of constraints to apply to the selected tasks. These must be
functions which task in two parameters – the project (self) and the set of Tasks under consideration.


	iterations (int, optional) – The number of iterations to query the project for each considered set of Tasks.
Defaults to 1000.


	score_func (func, optional) – The function used to score the results of a Task set. Defaults to a function
which returns a dict containing the mean and precision (inverse variance) of the total float of each
task weighted by the Tasks’ deadline weight. The function must take keyword arguments which can be
specified as keyword arguments to this function (see score_func_arguments).


	selection_func (func, optional) – The function used to select which task set is best from the results
returned from the score_func. Defaults to a function which scales the total float and precision each
between 0 and 1 and sums them according to a weighting parameter (see selection_func_arguments). The
function must accept a dict of Task set to score and keyword arguments which can be specified by the
selection_func_arguments parameter of this function.


	min_number (int, optional) – The minimum number of tasks which can can be recommended. Defaults to 1.


	max_number (int, optional) – The maximum number of tasks which can be recommended. Defaults to 1.


	batch_wait (bool, optional) – Do all tasks for a proposed tuple of Tasks need to be completed before the next
tasks can begin? Defaults to False.


	selection_func_arguments (dict, optional) – The arguments to be passed to the selection_func.


	**score_func_arguments – The arguments to pass to the score_func






	Returns

	The recommended tasks to complete next



	Return type

	tuple(Task)










	
recommendation_sample_func(parents, children, samples, **kwargs)

	




	
_default_recommendation_score_func(**kwargs)

	




	
_default_recommendation_selection_func(**kwargs)

	




	
get_starting_and_terminal_tasks()

	Gets the starting tasks (ones without predecessors) and terminal tasks (ones without successors)


	Returns

	
	The starting and terminal tasks in the form of

	(starting tasks, terminal tasks)









	Return type

	tuple(list[Task], list[Task])










	
update_from_dict(data)

	Updates the Project using a dictionary of new values


	Parameters

	data (dict) – The new values










	
from_dict(data_in, model)

	Constructs a Project from a dictionary of values and a model


	Parameters

	
	data_in (dict) – The data to construct the Project from


	model – The model used to predict the durations of tasks






	Returns

	The constructed project



	Return type

	Project
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Submodules



	learningmodels.scikit











          

      

      

    

  

    
      
          
            
  
learningmodels.scikit


Module Contents


	
class learningmodels.scikit.GaussianProcessRegressorModel(units=None, **kwargs)

	Learns the duration of a task from data using scikit-learn’s GaussianProcessRegressor


	
model

	GaussianProcessRegressor – The underlying model used to predict the data






	
units

	TimeUnits, optional – The time units the resulting durations should be in. Defaults to TimeUnits.seconds






	
is_trained

	bool – A boolean value indicating if the model has been trained.






	
ordering

	list[str] – The ordering of the input data used to construct input data






	Parameters

	units (TimeUnits, optional) – The time units the resulting durations should be in. Defaults to TimeUnits.seconds



	Keyword Arguments

	kernel – The kernel to use in the regressor model. Defaults to
ConstantKernel() + Matern(length_scale=1, nu=3 / 2) + WhiteKernel(noise_level=1)






	
__init__(units=None, **kwargs)

	




	
train(input_data, durations, ordering=None)

	Trains the model from input data and durations


Note

If a Pandas DataFrame is used for the input data, the ordering of the data will be determined by the
ordering of the colunms. If a pandas DataFrame is not used, then the ordering will need to be provided. Each
Task must provide data as a dictionary in which the keys are the same as the names in the ordering/column
names of the DataFrame




	Parameters

	
	input_data (array-like) – The data to train the data from


	durations (array-like) – The durations associated with the data


	ordering (list[str], optional) – The ordering of the data






	Raises

	ValueError – When a non-DataFrame is provided as the input_data and no ordering is provided










	
predict(input_data)

	Predicts the duration of a task given its data


	Parameters

	
	input_data (dict) – A dict containing the data necessary to predict the duration. The format must be as


	pairs in which the key is the name of the data and the value is its value. (key-value) – 






	Returns

	The estimated duration of the task.



	Return type

	DurationPdf
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