

project_template

[image: Build status: Linux and OSX]
 [https://travis-ci.org/thejohnfreeman/project-template-python][image: Build status: Windows]
 [https://ci.appveyor.com/project/thejohnfreeman/project-template-python][image: Documentation status]
 [https://project-template-python.readthedocs.io/][image: Latest PyPI version]
 [https://pypi.org/project/project_template/][image: Python versions supported]
 [https://pypi.org/project/project_template/]This is a sample project generated by generator-python [https://github.com/thejohnfreeman/generator-python] for Yeoman [https://yeoman.io/]. 1 It has
a number of features, each with its own chapter in the documentation [https://project-template-python.readthedocs.io/]:

	ISC [https://tldrlegal.com/license/-isc-license] license (a shorter MIT license)

	All package metadata in pyproject.toml
(reaching standardization in PEP 518 [https://www.python.org/dev/peps/pep-0518/])

	Cross-platform scripts for common development tasks
(linting, testing, building documentation)

	Testing with pytest [https://docs.pytest.org/], doctests [https://pymotw.com/2/doctest/], and coverage

	Continuous integration on Linux and OSX with Travis CI [https://travis-ci.org/]
and Windows with AppVeyor [https://www.appveyor.com/]

	Documentation with Sphinx [https://www.sphinx-doc.org/] and Read the Docs [https://docs.readthedocs.io/]

Why?

Imagine you’re working on a Python project, and you take a detour to write
a subpackage or submodule with some useful functions or a clever abstraction.
This package depends on nothing else in your project; it can actually be
a dependency of your project. It might be useful in some of your other
projects, or it might be useful to other people in their projects. You would
like to extract that package into its own project (while following best
practices for directory structure, code style, tests, documentation, and
continuous integration) that you can quickly and easily package and share
through the Python Package Index (PyPI) [https://pypi.org].

I consider this use case representative of the vast majority: an all-Python
library that you want to share with yourself and others on PyPI. Common
development tasks should be easy:

	running tests (across multiple versions of Python TBD [https://github.com/thejohnfreeman/project-template-python/issues/3]);

	running a suite of state-of-the-art static analyses
(including style checkers);

	building and publishing documentation (using the most common extensions);

	continuous integration on the big three platforms (Linux, OSX, and Windows);
and

	publishing to PyPI
(even without knowing the intricacies of Python packaging).

Tangentially, I spent a bunch of time on the documentation walking through
each feature and explaining it from the ground up so that a newcomer can
understand.
I want the documentation to leave users with no unanswered questions.
That means if you have a question, then the documentation is incomplete!
Please let me know [https://github.com/thejohnfreeman/project-template-python/issues/new] so that I can fill any gaps.

Why did you choose X?

This project makes choices for each of its features, and there are bound to be
people who do not like them or understand them. The rest of the documentation [https://project-template-python.readthedocs.io/]
tries to explain each individual choice, but I will outline here the general
philosophy.

For dependency management and packaging, there is one tool emerging that
both

	offers a good user experience to the point that you might never need
to manually edit your package metadata file or learn the history [https://www.pypa.io/en/latest/history/] and
pain [https://www.youtube.com/watch?v=AQsZsgJ30AE] of Python packaging, and

	uses a single, standard (PEP 518 [https://www.python.org/dev/peps/pep-0518/]) package metadata file
(pyproject.toml).

That tool is Poetry [https://github.com/sdispater/poetry#introduction]. Shout to Pipenv [https://docs.pipenv.org/en/latest/] for leading the way on the first point,
but in my opinion it has been overtaken.

For the rest of the tools (style checkers, static analyzers, test, docs, CI),
I have tried to choose the most popular, battle-tested solutions.
As the landscape changes, this project will change with it.

Why didn’t you choose Y?

If you think I’ve made an error, please let me know in the issues [https://github.com/thejohnfreeman/project-template-python/issues].
Please remember that each choice is the result of a significant investment of
my time in researching alternatives.
I have not yet documented why I chose against the ones that I did, but I am
open to having that discussion (and I would like to link back to those
discussions from a “graveyard” chapter in the documentation).

	1

	With the exception of a few additions. Most notably, the content of
this documentation is not generated (but its boilerplate is).

License

The license for this project is the Internet Systems Consortium (ISC)
license [https://tldrlegal.com/license/-isc-license].
It is functionally equivalent to the simplified BSD and MIT licenses, but
without language deemed unnecessary following the Berne Convention.

ISC is the default just because it is my favorite permissive license.
I would like to offer a choice of popular licenses if it is easy.
I tried composing the most popular generator for licenses [https://github.com/jozefizso/generator-license], but it is
impossible [https://github.com/yeoman/yeoman/issues/1708] to get the value of the choice returned to generator-python
for writing the package metadata file.
I don’t plan on expending the effort to add a license prompt unless it becomes
clear it is holding back many new users, but I welcome a pull request [https://github.com/thejohnfreeman/generator-python/pulls] to
add it.

If you want a different license, just drop it into the file LICENSE 🔗 [https://github.com/thejohnfreeman/project-template-python/blob/master/LICENSE]
and edit the license setting in pyproject.toml 🔗 [https://github.com/thejohnfreeman/project-template-python/blob/master/pyproject.toml]. If you don’t
know what license you want, the wizard at choosealicense.com [https://choosealicense.com] can help you
pick one.

Dependencies

This project manages dependencies through pyproject.toml 🔗 [https://github.com/thejohnfreeman/project-template-python/blob/master/pyproject.toml], a Python
package metadata file working its way to standardization through PEP 518 [https://www.python.org/dev/peps/pep-0518/].
pyproject.toml stands to replace a growing set of redundant, confusing,
non-standard configuration files: setup.py, requirements.txt,
setup.cfg, MANIFEST.in, and Pipfile.

Poetry

Right now, the premier tool for managing pyproject.toml is Poetry [https://github.com/sdispater/poetry#introduction]. The
generator requires you to have Poetry installed and has instructions [https://github.com/thejohnfreeman/generator-python#install] in its
documentation for installing it.

If you’re familiar with npm [https://medium.com/beginners-guide-to-mobile-web-development/introduction-to-npm-and-basic-npm-commands-18aa16f69f6b] or Yarn [https://yarnpkg.com/], Poetry works much the same way.
Poetry will create a virtual environment for your project and install your
project’s dependencies there, isolated from the virtual environments of other
projects.

By default, Poetry will create your virtual environment underneath a cache
directory in your home directory, $HOME/.cache/pypoetry/virtualenvs. You
can find this directory by checking your Poetry configuration:

$ poetry config settings.virtualenvs.path

You can configure Poetry to create the virtual environment in your project
directory, if you want:

$ poetry config settings.virtualenvs.in-project true

The in-project virtual environment directory will be named .venv.

Managing dependencies

When you run the generator, it will install the starting dependencies, but if
you clone this project, you must install them yourself:

$ poetry install

Dependencies are grouped. The two most common groups are required
(dependencies your code uses at runtime) and development (dependencies
your project uses for development, e.g. mypy or pytest).
You can add or remove dependencies easily:

$ poetry add requests
$ poetry remove --dev mypy

By default, Poetry will search the Python Package Index (PyPI) [https://pypi.org/] for the
latest versions of the dependencies you name. To find out how to search other
package repositories or how to search for specific versions, consult the
Poetry documentation [https://poetry.eustace.io/docs/basic-usage/].

Default dependencies

By default, the generator does not install any required dependencies, but it
does install a set of development dependencies, explained here.

	Package

	Reason

	mypy [http://www.mypy-lang.org/]

	Type-checking.

	pylint [https://www.pylint.org/]

	Static analysis and PEP 8 [https://www.python.org/dev/peps/pep-0008/] (code style) conformance.

	pydocstyle [https://github.com/PyCQA/pydocstyle]

	PEP 257 [https://www.python.org/dev/peps/pep-0257/] (docstring style) conformance.

	yapf [https://github.com/google/yapf]

	Formatting code.

	pytest [https://docs.pytest.org/]

	Testing.

	pytest-cov [https://pypi.org/project/pytest-cov/]

	Code coverage.

	sphinx [http://www.sphinx-doc.org/]

	Documentation.

	sphinx-autobuild [https://github.com/GaretJax/sphinx-autobuild]

	Fast iterations on documentation.

	sphinx_rtd_theme [https://sphinx-rtd-theme.readthedocs.io/en/stable/]

	Read the Docs [https://readthedocs.org/] theme for documentation.

	toml [https://github.com/uiri/toml]

	Reading the version from pyproject.toml.

Scripts

This project includes an “Invokefile” to approximate the convenience of npm
scripts [https://medium.freecodecamp.org/introduction-to-npm-scripts-1dbb2ae01633], at least until such scripts make their way [https://github.com/sdispater/poetry/pull/591] into
pyproject.toml.
By Invokefile, I’m talking about a tasks.py script for the Invoke [https://www.pyinvoke.org/] tool.
Using Invoke for common tasks like running tests, formatting code, or
building the documentation relieves us from having to memorize and recite the
command lines or from keeping around a bunch of small shell scripts.
Invoke tasks give us short, easily-remembered names for these functions.

Previously, this project used a Makefile for scripts. Make has the advantage
that it is included by default on most Linuxes and OSX, and that it is more
well known than Invoke, but I switched to Invoke because it is cross-platform,
just like Python. The continuous integration
scripts use Invoke to run the tests to ensure that (1) the tests are run the
same way on every platform and that (2) the Invokefile is written correctly.

The default Invokefile [https://github.com/thejohnfreeman/project-template-python/blob/master/tasks.py] has a few tasks:

	Target

	Task

	lint

	Run the linters: style checkers, type checker,
and static analyzers.

	test

	Run the tests (including doctests [https://pymotw.com/2/doctest/]) with coverage.

	html

	Build the documentation in HTML.

	serve

	Launch a server for the HTML documentation that, whenever a change is
detected, rebuilds it and refreshes your browser.

Note

The scripts assume they are running in the virtual environment of the
project. You should invoke them like this:

$ poetry run invoke <task>

Alternatively, if you want every command to conveniently execute in the
virtual environment, then you can start a shell in that environment:

$ poetry shell

Code

The generator does not write any code for you, but it will generate an empty
package or module based on your choice. The tests directory will be created
for you, but you’ll need to add the first test.

This sample project has a single-file module (project_template.py 🔗 [https://github.com/thejohnfreeman/project-template-python/blob/master/project_template.py])
and one test (test_greeting.py 🔗 [https://github.com/thejohnfreeman/project-template-python/blob/master/tests/test_greeting.py]).

Quality

There are a few tools installed to help you maintain high code quality.
All of these are executed with the lint script:

$ poetry run invoke lint

	Tool

	Reason

	mypy [http://www.mypy-lang.org/]

	Type-checking.

	pylint [https://www.pylint.org/]

	Static analysis and PEP 8 [https://www.python.org/dev/peps/pep-0008/] (code style) conformance.

	pydocstyle [https://github.com/PyCQA/pydocstyle]

	PEP 257 [https://www.python.org/dev/peps/pep-0257/] (docstring style) conformance.

There is a Pylint configuration [http://pylint.pycqa.org/en/stable/user_guide/run.html#command-line-options] in .pylintrc 🔗 [https://github.com/thejohnfreeman/project-template-python/blob/master/.pylintrc]. Its settings are
documented there [https://github.com/thejohnfreeman/project-template-python/blob/master/.pylintrc]. To learn how to enable, disable, or configure Pylint’s
diagnostics, consult the documentation on message control [http://pylint.pycqa.org/en/stable/user_guide/message-control.html] or take a look at
Pylint’s own configuration file [https://github.com/PyCQA/pylint/blob/master/pylintrc].

Tests

The generator chooses pytest [https://docs.pytest.org/] for the testing framework. All you have to do to
get started is add test modules in the tests 🔗 [https://github.com/thejohnfreeman/project-template-python/blob/master/tests] package.
Separately, you can write small tests in function docstrings using doctests [https://pymotw.com/2/doctest/].
All of these tests are executed as part of the test script. The report includes coverage:

$ poetry run invoke test
pytest --cov=project_template --doctest-modules --ignore=docs
============================= test session starts =============================
platform linux -- Python 3.6.8, pytest-4.4.1, py-1.8.0, pluggy-0.9.0
rootdir: /home/jfreeman/code/project-template-python
plugins: cov-2.7.1
collected 2 items

project_template.py . [50%]
tests/test_greeting.py . [100%]

----------- coverage: platform linux, python 3.6.8-final-0 -----------
Name Stmts Miss Cover

project_template.py 2 0 100%

========================== 2 passed in 0.07 seconds ===========================

Continuous Integration

Continuous integration is the name for automatically executing your tests when
you push changes to your software. The generator generates configuration files
for the Travis CI [https://travis-ci.org/] and AppVeyor [https://www.appveyor.com/] continuous integration platforms, and
includes their status badges for the project in the README [https://raw.githubusercontent.com/thejohnfreeman/project-template-python/master/README.rst].

Travis CI

Travis CI will test your software on Linux and OSX across Python versions 3.6,
3.7, and 3.8, excluding those less than your minimum supported.

Note

As of 2019 May 6, Travis CI does not have an image for OSX that includes
Python 3.8. While Homebrew is available, trying to update the package list
seems to fail [https://travis-ci.org/thejohnfreeman/project-template-python/jobs/528949377] (or return a spurious non-zero status), which I have not
yet investigated. For the same reason, it is impossible to install nproc [http://man7.org/linux/man-pages/man1/nproc.1.html]
(used by the lint script) on the OSX image that has Python
3.6.

To set up Travis CI for your project, you’ll need to:

	Grant access [https://github.com/settings/connections/applications/f244293c729d5066cf27] to the Travis CI application for your account or
organization. This will let Travis CI add hooks and mark commits with the
status of your builds.

	Log in [https://travis-ci.org/] to Travis CI with your GitHub credentials.

	Enable your repository [https://travis-ci.org/account/repositories] on Travis CI. This will create a hook on GitHub to
notify Travis CI whenever you push to your repository.

AppVeyor

AppVeyor will test your software on Windows for Python versions 3.6 and 3.7,
excluding those less than your minimum supported.

To set up AppVeyor for your project, you’ll need to:

	Log in [https://ci.appveyor.com/] to AppVeyor with your GitHub credentials.

	Grant access [https://ci.appveyor.com/account/thejohnfreeman/projects/new] to AppVeyor for the project you want to test. This will let
AppVeyor add hooks and mark commits with the status of your builds.

	Add the project [https://ci.appveyor.com/account/thejohnfreeman/projects/new] on AppVeyor. This will create a hook on GitHub to notify
AppVeyor whenever you push to your repository.

Documentation

The most popular tool for writing Python documentation is Sphinx [https://www.sphinx-doc.org/], and the
most popular host for it is Read the Docs (RTD) [https://docs.readthedocs.io/]. Sphinx uses
reStructuredText_ for its markup language. The generator gives a skeleton for
your documentation in the docs directory 🔗 [http://docutils.sourceforge.net/rst.html].

Defaults

	There are many themes for Sphinx, but the generator chooses the RTD
theme [https://github.com/thejohnfreeman/project-template-python/tree/master/docs]. It is designed to look good on desktop and mobile devices.

	The latest stable version of Sphinx is 2.0, but it is not [https://sphinx-rtd-theme.readthedocs.io/] yet [https://github.com/rtfd/sphinx_rtd_theme/issues/741] compatible
with the RTD theme. For now, the generator chooses the latest 1.x version.

	The documentation is versioned with your code. The generated configuration
reads [https://github.com/rtfd/sphinx_rtd_theme/issues/752] the version from pyproject.toml, the single source of truth for
package metadata.

	The generator includes a style sheet [https://github.com/thejohnfreeman/project-template-python/blob/master/docs/conf.py#L15-L21] that will wrap table text for you.
(Thanks to Rackspace [https://github.com/thejohnfreeman/project-template-python/blob/master/docs/_static/table.css]!)

	The landing page is generated from index.rst. By default, it includes
a section of content from the project README [https://rackerlabs.github.io/docs-rackspace/tools/rtd-tables.html] (so that you don’t have to
write it twice). Initially, that content is the project name and the project
badges.

Editing

You can edit the landing page by editing index.rst. If you want to add
more pages (“chapters”), then add new reStructuredText files to the docs
directory and link them from the toctree in index.rst.

While you’re working on documentation, you can use the serve script to launch a server for the HTML build of your documentation.
Whenever you change a file, the server will rebuild your documentation and
refresh your browser:

$ poetry run invoke serve

Publishing

When you’re ready to publish your documentation on Read the Docs, follow these
steps:

	Log in [https://readthedocs.org/] to Read the Docs with your GitHub credentials.

	Import [https://readthedocs.org/dashboard/import/] your project repository.
(You may likely need to refresh the list.)

	Click “Build version” for the first build. Subsequent builds are
automatically triggered when you push to GitHub.

Package

Once you’re done testing and documenting your project, you may want to package
and distribute it so that other people can install, import, and use it. Poetry
can help you upload a package to the Python Package Index (PyPI) [https://pypi.org/]. You only
get one shot to publish a specific version on PyPI, however. If you make
a mistake, you have to publish a new version. That’s why they made
a TestPyPI [https://test.pypi.org/] where you can overwrite a version until you get it right.

Getting started

Create accounts on both PYPI and TestPyPI. Remember your username and password
for both.

Check that Poetry already knows about the TestPyPI repository:

$ poetry config repositories.test
{'url': 'https://test.pypi.org/legacy/'}

If it doesn’t, you can add [https://python-poetry.org/docs/repositories/#using-a-private-repository] it:

$ poetry config repositories.test https://test.pypi.org/legacy/

Give Poetry your credentials for both of your accounts:

$ poetry config http-basic.pypi ${username} ${password}
$ poetry config http-basic.test ${username} ${password}

Publishing

If you’ve already published the version that is named in your
pyproject.toml, then you’ll need to pick the next version. Poetry can help
with that:

$ poetry version
$ poetry version minor
$ poetry version major

Build your project:

$ poetry build

Publish to TestPyPI:

$ poetry publish --repository test

At this point, you should be able to create another project, install your
package as a dependency, import it, and test it. If you use Poetry to manage
that project, you’ll need to add TestPyPI as a source in its
pyproject.toml:

[[tool.poetry.source]]
name = "testpypi"
url = "https://test.pypi.org/simple"

Once you feel confident your package is in good working order, publish it to
PyPI:

$ poetry publish

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 project_template

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

_static/up.png

