

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Documentation

This directory contains the documentation for amphp/amp. Documentation and code are bundled within a single repository for easier maintenance. Additionally, this preserves the documentation for older versions.

Reading

You can read this documentation either directly on GitHub or on our website. While the website will always contain the latest version, viewing on GitHub also works with older versions.

Writing

Our documentation is built using Jekyll.

sudo gem install bundler jekyll

bundle install --path vendor/bundle
bundle exec jekyll serve

 This repository contains shared files for all documentation pages as well as the main website.

Setup for a new repository

git submodule add https://github.com/amphp/amphp.github.io docs/.shared
copy .gitignore, _config.yml and Gemfile from another repository
adjust navigation and paths in _config.yml
cd docs
ln -s .shared/asset asset
bundle install --path vendor/bundle
bundle exec jekyll serve

Setup for an existing repository

cd docs
git submodule init
git submodule update
bundle install --path vendor/bundle
bundle exec jekyll serve

redirect_to: https://amphp.org/amp/

redirect_to: https://amphp.org/amp/promises

redirect_to: https://amphp.org/amp/

redirect_to: https://amphp.org/amp/event-loop

 {:.note}

This section is currently undocumented or incomplete.
Please help improving this situation by filing a pull-request.

layout: docs
title: Cancellation
permalink: /cancellation/

Amp provides primitives to allow the cancellation of operations, namely CancellationTokenSource and CancellationToken.

$tokenSource = new CancellationTokenSource;
$promise = asyncRequest("...", $tokenSource->getToken());

Loop::delay(1000, function () use ($tokenSource) {
 $tokenSource->cancel();
});

$result = yield $promise;

Every operation that supports cancellation accepts an instance of CancellationToken as (optional) argument. Within a coroutine, $token->throwIfRequested() can be used to fail the operation with a CancelledException. As $token is often an optional parameter and might be null, these calls need to be guared with a if ($token) or similar check. Instead of doing so, it’s often easier to simply set the token to $token = $token ?? new NullCancellationToken at the beginning of the method.

While throwIfRequested() works well within coroutines, some operations might want to subscribe with a callback instead. They can do so using CancellationToken::subscribe() to subscribe any cancellation requests that might happen.

If the operation consists of any sub-operations that support cancellation, it passes that same CancellationToken instance down to these sub-operations.

The original caller creates a CancellationToken by creating an instance of CancellationTokenSource and passing $cancellationTokenSource->getToken() to the operation as shown in the above example. Only the original caller has access to the CancellationTokenSource and can cancel the operation using CancellationTokenSource::cancel(), similar to the way it works with Deferred and Promise.

{:.note}

Cancellations are advisory only. A DNS resolver might ignore cancellation requests after the query has been sent as the response has to be processed anyway and can still be cached. An HTTP client might continue a nearly finished HTTP request to reuse the connection, but might abort a chunked encoding response as it cannot know whether continuing is actually cheaper than aborting.

layout: docs
title: Coroutines
permalink: /coroutines/

Coroutines are interruptible functions. In PHP they can be implemented using generators [http://php.net/manual/en/language.generators.overview.php].

While generators are usually used to implement simple iterators and yielding elements using the yield keyword, Amp uses yield as interruption points. When a coroutine yields a value, execution of the coroutine is temporarily interrupted, allowing other tasks to be run, such as I/O handlers, timers, or other coroutines.

// Fetches a resource with Artax and returns its body.
$promise = Amp\call(function () use ($http) {
 try {
 // Yield control until the generator resolves
 // and return its eventual result.
 $response = yield $http->request("https://example.com/");

 $body = yield $response->getBody();

 return $body;
 } catch (HttpException $e) {
 // If promise resolution fails the exception is
 // thrown back to us and we handle it as needed.
 }
});

Every time a promise is yielded, the coroutine subscribes to the promise and automatically continues it once the promise resolved.
On successful resolution the coroutine will send the resolution value into the generator using Generator::send() [https://secure.php.net/generator.send].
On failure it will throw the exception into the generator using Generator::throw() [https://secure.php.net/generator.throw].
This allows writing asynchronous code almost like synchronous code.

Note that no callbacks need to be registered to consume promises and errors can be handled with ordinary catch clauses, which will bubble up to the calling context if uncaught in the same way exceptions bubble up in synchronous code.

{:.note}

Use Amp\call() to always return a promise instead of a \Generator from your public APIs. Generators are an implementation detail that shouldn’t be leaked to API consumers.

Yield Behavior

All yields in a coroutine must be one of the following three types:

Yieldable	Description
————–	———
Amp\Promise	Any promise instance may be yielded and control will be returned to the coroutine once the promise resolves. If resolution fails the relevant exception is thrown into the generator and must be handled by the application or it will bubble up. If resolution succeeds the promise’s resolved value is sent back into the generator.
React\Promise\PromiseInterface	Same as Amp\Promise. Any React promise will automatically be adapted to an Amp promise.
array	Yielding an array of promises combines them implicitly using Amp\Promise\all(). An array with elements not being promises will result in an Amp\InvalidYieldError.

Yield vs. Yield From

yield is used to “await” promises, yield from can be used to delegate to a sub-routine. yield from should only be used to delegate to private methods, any public API should always return promises instead of generators.

When a promise is yielded from within a \Generator, \Generator will be paused and continue as soon as the promise is resolved. Use yield from to yield another \Generator. Instead of using yield from, you can also use yield new Coroutine($this->bar()); or yield call([$this, "bar"]);.

An example:

class Foo
{
 public function delegationWithCoroutine(): Amp\Promise
 {
 return new Amp\Coroutine($this->bar());
 }

 public function delegationWithYieldFrom(): Amp\Promise
 {
 return Amp\call(function () {
 return yield from $this->bar();
 });
 }

 public function delegationWithCallable(): Amp\Promise
 {
 return Amp\call([$this, 'bar']);
 }

 public function bar(): Generator
 {
 yield new Amp\Success(1);
 yield new Amp\Success(2);
 return yield new Amp\Success(3);
 }
}

Amp\Loop::run(function () {
 $foo = new Foo();
 $r1 = yield $foo->delegationWithCoroutine();
 $r2 = yield $foo->delegationWithYieldFrom();
 $r3 = yield $foo->delegationWithCallable();
 var_dump($r1);
 var_dump($r2);
 var_dump($r3);
});

Outputs:

int(3)
int(3)
int(3)

For further information about yield from, consult the PHP manual [http://php.net/manual/en/language.generators.syntax.php#control-structures.yield.from].

layout: docs
title: Coroutine Helpers
permalink: /coroutines/helpers

Amp\Coroutine requires an already instantiated Generator to be passed to its constructor. Always calling a callable before passing the Generator to Amp\Coroutine is unnecessary boilerplate.

coroutine()

Returns a new function that wraps $callback in a promise/coroutine-aware function that automatically runs generators as coroutines. The returned function always returns a promise when invoked. Errors have to be handled by the callback caller or they will go unnoticed.

function coroutine(callable $callback): callable { ... }

Use this function to create a coroutine-aware callable for a promise-aware callback caller.

asyncCoroutine()

Same as coroutine() but doesn’t return a Promise when the returned callback is called. Instead, promises are passed to Amp\Promise\rethrow() to handle errors automatically.

call()

function call(callable $callback, ...$args): Promise { ... }

Calls the given function, always returning a promise. If the function returns a Generator, it will be run as a coroutine. If the function throws, a failed promise will be returned.

call($callable, ...$args) is equivalent to coroutine($callable)(...$args).

asyncCall()

function asyncCall(callable $callback, ...$args) { ... }

Same as call(), but doesn’t return the Promise. Promises are automatically passed to Amp\Promise\rethrow for error handling.

layout: docs
title: Event Loop
permalink: /event-loop/

It may surprise people to learn that the PHP standard library already has everything we need to write event-driven and non-blocking applications. We only reach the limits of native PHP’s functionality in this area when we ask it to poll thousands of file descriptors for IO activity at the same time. Even in this case, though, the fault is not with PHP but the underlying system select() call which is linear in its performance degradation as load increases.

For performance that scales out to high volume we require more advanced capabilities currently found only in extensions. If you wish to, for example, service 10,000 simultaneous clients in an Amp-backed socket server, you should use one of the event loop implementations based on a PHP extension. However, if you’re using Amp in a strictly local program for non-blocking concurrency or you don’t need to handle more than a few hundred simultaneous clients in a server application the native PHP functionality should be adequate.

Global Accessor

Amp uses a global accessor for the event loop as there’s only one event loop for each application. It doesn’t make sense to have two loops running at the same time, as they would just have to schedule each other in a busy waiting manner to operate correctly.

The event loop should be accessed through the methods provided by Amp\Loop. On the first use of the accessor, Amp will automatically setup the best available driver, see next section.

Amp\Loop::set() can be used to set a custom driver or to reset the driver in tests, as each test should run with a fresh driver instance to achieve test isolation. In case of PHPUnit, you can use a TestListener to reset the event loop [https://github.com/amphp/phpunit-util] automatically after each tests.

Implementations

Amp offers different event loop implementations based on various backends. All implementations extend Amp\Loop\Driver. Each behaves exactly the same way from an external API perspective. The main differences have to do with underlying performance characteristics. The current implementations are listed here:

Class	Extension
————————-	——————————————————
Amp\Loop\NativeDriver	–
Amp\Loop\EvDriver	pecl/ev [https://pecl.php.net/package/ev]
Amp\Loop\EventDriver	pecl/event [https://pecl.php.net/package/event]
Amp\Loop\UvDriver	php-uv [https://github.com/bwoebi/php-uv]

It’s not important to choose one implementation for your application. Amp will automatically select the best available driver. It’s perfectly fine to have one of the extensions in production while relying on the NativeDriver locally for development.

If you want to quickly switch implementations during development, e.g. for comparison or testing, you can set the AMP_LOOP_DRIVER environment variable to one of the classes. If you use a custom implementation, this only works if the implementation doesn’t take any arguments.

Event Loop as Task Scheduler

The first thing we need to understand to program effectively using an event loop is this:

The event loop is our task scheduler.

The event loop controls the program flow as long as it runs. Once we tell the event loop to run it will maintain control until the application errors out, has nothing left to do, or is explicitly stopped.

Consider this very simple example:

<?php

require "vendor/autoload.php";

use Amp\Loop;

function tick() {
 echo "tick\n";
}

echo "-- before Loop::run()\n";

Loop::run(function() {
 Loop::repeat($msInterval = 1000, "tick");
 Loop::delay($msDelay = 5000, "Amp\\Loop::stop");
});

echo "-- after Loop::run()\n";

Upon execution of the above example you should see output like this:

-- before Loop::run()
tick
tick
tick
tick
-- after Loop::run()

This output demonstrates that what happens inside the event loop’s run loop is like its own separate program. Your script will not continue past the point of Loop::run() unless there are no more scheduled events or Loop::stop() is invoked.

While an application can and often does take place entirely inside the confines of the run loop, we can also use the event loop to do things like the following example which imposes a short-lived timeout for interactive console input:

<?php

use Amp\Loop;

$myText = null;

function onInput($watcherId, $stream)
{
 global $myText;

 $myText = fgets($stream);
 stream_set_blocking(STDIN, true);

 Loop::cancel($watcherId);
 Loop::stop();
}

Loop::run(function () {
 echo "Please input some text: ";
 stream_set_blocking(STDIN, false);

 // Watch STDIN for input
 Loop::onReadable(STDIN, "onInput");

 // Impose a 5-second timeout if nothing is input
 Loop::delay($msDelay = 5000, "Amp\\Loop::stop");
});

var_dump($myText); // whatever you input on the CLI

// Continue doing regular synchronous things here.

Obviously we could have simply used fgets(STDIN) synchronously in this example. We’re just demonstrating that it’s possible to move in and out of the event loop to mix synchronous tasks with non-blocking tasks as needed.

Continue with the Event Loop API.

layout: docs
title: Event Loop API
permalink: /event-loop/api

This document describes the Amp\Loop [https://github.com/amphp/amp/blob/master/lib/Loop.php] accessor. You might want to also read the documentation contained in the source file, it’s extensively documented and doesn’t contain much distracting code.

run()

The primary way an application interacts with the event loop is to schedule events for execution and then simply let the program run. Once Loop::run() is invoked the event loop will run indefinitely until there are no watchable timer events, IO streams or signals remaining to watch. Long-running programs generally execute entirely inside the confines of a single Loop::run() call.

Loop::run() accepts an optional callback as first parameter. Passing such a callback is equivalent to calling Loop::defer($callback) and Loop::run() afterwards.

stop()

The event loop can be stopped at any time while running. When Loop::stop() is invoked the event loop will return control to the userland script at the end of the current tick of the event loop. This method may be used to yield control from the event loop even if events or watchable IO streams are still pending.

now()

Returns the current ‘loop time’ in millisecond increments. The value returned by this method does not necessarily correlate to wall-clock time, rather the value is meant to be used in relative comparisons to prior values returned by this method (e.g.: interval calculations, expiration times, etc.). The value returned by this method is only updated once per loop tick. This method is a faster alternative to time() and microtime(), which require a system call.

Timer Watchers

Amp exposes several ways to schedule timer watchers. Let’s look at some details for each function.

defer()

	Schedules a callback to execute in the next iteration of the event loop

	This method guarantees a clean call stack to avoid starvation of other events in the current iteration of the loop. An defer callback is always executed in the next tick of the event loop.

	After an defer timer watcher executes it is automatically garbage collected by the event loop so there is no need for applications to manually cancel the associated watcher.

	Like all watchers, defer timers may be disabled and re-enabled. If you disable this watcher between the time you schedule it and the time that it actually runs the event loop will not be able to garbage collect it until it executes. Therefore you must manually cancel an defer watcher yourself if it never actually executes to free any associated resources.

Example

<?php // using Loop::defer()

use Amp\Loop;

Loop::run(function () {
 echo "line 1\n";
 Loop::defer(function () {
 echo "line 3\n";
 });
 echo "line 2\n";
});

Callback Signature

function (string $watcherId, mixed $cbData = null)

delay()

	Schedules a callback to execute after a delay of n milliseconds

	A “delay” watcher is also automatically garbage collected by the reactor after execution and applications should not manually cancel it unless they wish to discard the watcher entirely prior to execution.

	A “delay” watcher that is disabled has its delay time reset so that the original delay time starts again from zero once re-enabled.

	Like defer watchers, a timer scheduled for one-time execution must be manually canceled to free resources if it never runs due to being disabled by the application after creation.

Example

<?php // using delay()

use Amp\Loop;

Loop::run(function () {
 // event loop will stop in three seconds
 Loop::delay($msDelay = 3000, "Amp\\Loop::stop");
});

Callback Signature

function (string $watcherId, mixed $cbData = null)

repeat()

	Schedules a callback to repeatedly execute every n milliseconds.

	Like all other watchers, repeat timers may be disabled/re-enabled at any time.

	Unlike defer() and delay() watchers, repeat() timers must be explicitly canceled to free associated resources. Failure to free repeat watchers via cancel() once their purpose is fulfilled will result in memory leaks in your application. It is not enough to simply disable repeat watchers as their data is only freed upon cancellation.

<?php // using repeat()

use Amp\Loop;

Loop::run(function () {
 Loop::repeat($msInterval = 100, function ($watcherId) {
 static $i = 0;
 if ($i++ < 3) {
 echo "tick\n";
 } else {
 Loop::cancel($watcherId);
 }
 });
});

Callback Signature

function (string $watcherId, mixed $cbData = null)

Stream IO Watchers

Stream watchers are how we know when we can read and write to sockets and other streams. These events are how we’re able to actually create things like HTTP servers and asynchronous database libraries using the event loop. As such, stream IO watchers form the backbone of any useful non-blocking Amp application.

There are two types of IO watchers:

	Readability watchers

	Writability watchers

onReadable()

{:.note}

This is an advanced low-level API. Most users should use amphp/byte-stream [https://github.com/amphp/byte-stream] instead.

Watchers registered via Loop::onReadable() trigger their callbacks in the following situations:

	When data is available to read on the stream under observation

	When the stream is at EOF (for sockets, this means the connection is broken)

A common usage pattern for reacting to readable data looks something like this example:

<?php

use Amp\Loop;

const IO_GRANULARITY = 32768;

function isStreamDead($socket) {
 return !is_resource($socket) || @feof($socket);
}

Loop::onReadable($socket, function ($watcherId, $socket) {
 $socketId = (int) $socket;
 $newData = @fread($socket, IO_GRANULARITY);
 if ($newData != "") {
 // There was actually data and not an EOF notification. Let's consume it!
 parseIncrementalData($socketId, $newData);
 } elseif (isStreamDead($socket)) {
 Loop::cancel($watcherId);
 }
});

In the above example we’ve done a few very simple things:

	Register a readability watcher for a socket that will trigger our callback when there is data available to read.

	When we read data from the stream in our triggered callback we pass that to a stateful parser that does something domain-specific when certain conditions are met.

	If the fread() call indicates that the socket connection is dead we clean up any resources we’ve allocated for the storage of this stream. This process should always include calling Loop::cancel() on any event loop watchers we registered in relation to the stream.

{:.warning}

You should always read a multiple of the configured chunk size (default: 8192), otherwise your code might not work as expected with loop backends other than stream_select(), see amphp/amp#65 [https://github.com/amphp/amp/issues/65] for more information.

onWritable()

{:.note}

This is an advanced low-level API. Most users should use amphp/byte-stream [https://github.com/amphp/byte-stream] instead.

	Streams are essentially “always” writable. The only time they aren’t is when their respective write buffers are full.

A common usage pattern for reacting to writability involves initializing a writability watcher without enabling it when a client first connects to a server. Once incomplete writes occur we’re then able to “unpause” the write watcher using Loop::enable() until data is fully sent without having to create and cancel new watcher resources on the same stream multiple times.

Pausing, Resuming and Canceling Watchers

All watchers, regardless of type, can be temporarily disabled and enabled in addition to being cleared via Loop::cancel(). This allows for advanced capabilities such as disabling the acceptance of new socket clients in server applications when simultaneity limits are reached. In general, the performance characteristics of watcher reuse via pause/resume are favorable by comparison to repeatedly canceling and re-registering watchers.

disable()

A simple disable example:

<?php

use Amp\Loop;

// Register a watcher we'll disable
$watcherIdToDisable = Loop::delay($msDelay = 1000, function () {
 echo "I'll never execute in one second because: disable()\n";
});

// Register a watcher to perform the disable() operation
Loop::delay($msDelay = 500, function () use ($watcherIdToDisable) {
 echo "Disabling WatcherId: ", $watcherIdToDisable, "\n";
 Loop::disable($watcherIdToDisable);
});

Loop::run();

After our second watcher callback executes the event loop exits because there are no longer any enabled watchers registered to process.

enable()

enable() is the diametric analog of the disable() example demonstrated above:

<?php

use Amp\Loop;

// Register a watcher
$myWatcherId = Loop::repeat($msInterval = 1000, function() {
 echo "tick\n";
});

// Disable the watcher
Loop::disable($myWatcherId);

// Remember, nothing happens until the event loop runs, so it doesn't matter that we
// previously created and disabled $myWatcherId
Loop::run(function () use ($myWatcherId) {
 // Immediately enable the watcher when the reactor starts
 Loop::enable($myWatcherId);
 // Now that it's enabled we'll see tick output in our console every 1000ms.
});

For a slightly more complex use case, let’s look at a common scenario where a server might create a write watcher that is initially disabled but subsequently enabled as necessary:

<?php

use Amp\Loop;

class Server
{
 private $clients = [];

 public function startServer()
 {
 // ... server bind and accept logic would exist here
 Loop::run();
 }

 private function onNewClient($sock)
 {
 $socketId = (int) $sock;
 $client = new ClientStruct;
 $client->socket = $sock;
 $readWatcher = Loop::onReadable($sock, function () use ($client) {
 $this->onReadable($client);
 });
 $writeWatcher = Loop::onWritable($sock, function () use ($client) {
 $this->doWrite($client);
 });

 Loop::disable($writeWatcher); // <-- let's initialize the watcher as "disabled"

 $client->readWatcher = $readWatcher;
 $client->writeWatcher = $writeWatcher;

 $this->clients[$socketId] = $client;
 }

 // ... other class implementation details here ...

 private function writeToClient($client, $data)
 {
 $client->writeBuffer .= $data;
 $this->doWrite($client);
 }

 private function doWrite(ClientStruct $client)
 {
 $bytesToWrite = strlen($client->writeBuffer);
 $bytesWritten = @fwrite($client->socket, $client->writeBuffer);

 if ($bytesToWrite === $bytesWritten) {
 Loop::disable($client->writeWatcher);
 } elseif ($bytesWritten >= 0) {
 $client->writeBuffer = substr($client->writeBuffer, $bytesWritten);
 Loop::enable($client->writeWatcher);
 } elseif ($this->isSocketDead($client->socket)) {
 $this->unloadClient($client);
 }
 }

 // ... other class implementation details here ...
}

cancel()

It’s important to always cancel persistent watchers once you’re finished with them or you’ll create memory leaks in your application. This functionality works in exactly the same way as the above enable / disable examples:

<?php

use Amp\Loop;

Loop::run(function() {
 $myWatcherId = Loop::repeat($msInterval = 1000, function () {
 echo "tick\n";
 });

 // Cancel $myWatcherId in five seconds and exit the event loop
 Loop::delay($msDelay = 5000, function () use ($myWatcherId) {
 Loop::cancel($myWatcherId);
 });
});

onSignal()

Loop::onSignal() can be used to react to signals sent to the process.

<?php

use Amp\Loop;

Loop::run(function () {
 // Let's tick off output once per second so we can see activity.
 Loop::repeat($msInterval = 1000, function () {
 echo "tick: ", date('c'), "\n";
 });

 // What to do when a SIGINT signal is received
 $watcherId = Loop::onSignal(UV::SIGINT, function () {
 echo "Caught SIGINT! exiting ...\n";
 exit;
 });
});

As should be clear from the above example, signal watchers may be enabled, disabled and canceled like any other event.

Referencing Watchers

Watchers can either be referenced or unreferenced. An unreferenced watcher doesn’t keep the loop alive. All watchers are referenced by default.

One example to use unreferenced watchers is when using signal watchers. Generally, if all watchers are gone and only the signal watcher still exists, you want to exit the loop as you’re not actively waiting for that event to happen.

reference()

Marks a watcher as referenced. Takes the $watcherId as first and only argument.

unreference()

Marks a watcher as unreferenced. Takes the $watcherId as first and only argument.

Driver Bound State

Sometimes it’s very handy to have global state. While dependencies should usually be injected, it is impracticable to pass a DnsResolver into everything that needs a network connection. The Loop accessor provides therefore the two methods getState and setState to store state global to the current event loop driver.

These should be used with care! They can be used to store loop bound singletons such as the DNS resolver, filesystem driver, or global ReactAdapter. Applications should generally not use these methods.

Event Loop Addenda

Watcher Callback Parameters

Watcher callbacks are invoked using the following standardized parameter order:

| Watcher Type | Callback Signature |
| ———————– | ——————————————————|
| defer() | function(string $watcherId, $callbackData) |
| delay() | function(string $watcherId, $callbackData) |
| repeat() | function(string $watcherId, $callbackData) |
| onReadable() | function(string $watcherId, $stream, $callbackData) |
| onWritable() | function(string $watcherId, $stream, $callbackData) |
| onSignal() | function(string $watcherId, $signo, $callbackData) |

Watcher Cancellation Safety

It is always safe to cancel a watcher from within its own callback. For example:

<?php

use Amp\Loop;

$increment = 0;

Loop::repeat($msDelay = 50, function ($watcherId) use (&$increment) {
 echo "tick\n";
 if (++$increment >= 3) {
 Loop::cancel($watcherId); // <-- cancel myself!
 }
});

It is also always safe to cancel a watcher from multiple places. A double-cancel will simply be ignored.

An Important Note on Writability

Because streams are essentially “always” writable you should only enable writability watchers while you have data to send. If you leave these watchers enabled when your application doesn’t have anything to write the watcher will trigger endlessly until disabled or canceled. This will max out your CPU. If you’re seeing inexplicably high CPU usage in your application it’s a good bet you’ve got a writability watcher that you failed to disable or cancel after you were finished with it.

A standard pattern in this area is to initialize writability watchers in a disabled state before subsequently enabling them at a later time as shown here:

<?php

use Amp\Loop;

$watcherId = Loop::onWritable(STDOUT, function () {});
Loop::disable($watcherId);
// ...
Loop::enable($watcherId);
// ...
Loop::disable($watcherId);

Process Signal Number Availability

php-uv exposes UV::SIG* constants for watchable signals. Applications using the EventDriver will need to manually specify the appropriate integer signal numbers when registering signal watchers.

Timer Drift

Repeat timers are basically simple delay timers that are automatically rescheduled right before the appropriate handler is triggered. They are subject to timer drift. Multiple timers might stack up in case they execute as coroutines.

layout: docs
title: Iterators
permalink: /iterators/

Iterators are the next level after promises. While promises resolve once and with one value, iterators allow a set of items to be consumed.

Iterator Consumption

Every iterator in Amp follows the Amp\Iterator interface.

namespace Amp;

interface Iterator
{
 public function advance(): Promise;
 public function getCurrent();
}

advance() returns a Promise and its resolution value tells whether there’s an element to consume or not. If it resolves to true, getCurrent() can be used to consume the element at the current position, otherwise the iterator ended and there are no more values to consume. In case an exception happens, advance() returns a failed promise and getCurrent() throws the failure reason when called.

Simple Consumption Example

$iterator = foobar();

while (yield $iterator->advance()) {
 $element = $iterator->getCurrent();
 // do something with $element
}

Iterator Creation

Emitter

What Deferred is for promises, is Emitter for iterators. A library that returns an Iterator for asynchronous consumption of an iterable result creates an Amp\Emitter and returns the Iterator using iterate(). This ensures a consumer can only consume the iterator, but not emit values or complete the iterator.

emit()

emit() emits a new value to the Iterator, which can be consumed by a consumer. The emitted value is passed as first argument to emit(). emit() returns a Promise that can be waited on before emitting new values. This allow emitting values just as fast as the consumer can consume them.

complete()

complete() marks the Emitter / linked Iterator as complete. No further emits are allowed after completing an Emitter / Iterator.

Producer

Producer is a simplified form of Emitter that can be used when a single coroutine can emit all values.

Producer accepts a callable as first constructor parameter that gets run as a coroutine and passed an $emit callable that can be used to emit values just like the emit() method does in Emitter.

Example

$iterator = new Producer(function (callable $emit) {
 yield $emit(1);
 yield $emit(new Delayed(500, 2));
 yield $emit(3);
 yield $emit(4);
});

fromIterable

Iterators can also be created from ordinary PHP arrays or Traversable instances, which is mainly useful in tests, but might also be used for the same reasons as Success and Failure.

function fromIterable($iterable, int $delay = 0) { ... }

$delay allows adding a delay between each emission.

layout: docs
title: Iterator Combination
permalink: /iterators/combinators

Amp provides two common combination helpers for iterators: concat and merge.

concat()

concat() accepts an array of Iterator instances and concatenates the given iterators into a single iterator, emitting values from a single iterator at a time. The prior iterator must complete before values are emitted from any subsequent iterators. Iterators are concatenated in the order given (iteration order of the array).

merge()

merge() accepts an array of Iterator instances and creates an Iterator that emits values emitted from any iterator in the array of iterators ending once all emitters completed.

layout: docs
title: Iterator Transformation
permalink: /iterators/transformation

Amp provides two common transformation helpers for iterators: map and filter.

Further primitives are very easy to implement using Producer with those two as examples.

map()

map() accepts an Iterator and a callable $onEmit that can transform each value into another value.

filter()

filter() accepts an Iterator and a callable $filter. If $filter($value) returns false the value gets filtered, otherwise the value is retained in the resulting Iterator.

layout: docs
title: Promises
permalink: /promises/

A Promise is an object representing the eventual result of an asynchronous operation.
There are three states:

	Success: The promise resolved successfully.

	Failure: The promise failed.

	Pending: The promise has not been resolved yet.

A successful resolution is like returning a value in synchronous code while failing a promise is like throwing an exception.

Promises are the basic unit of concurrency in asynchronous applications.
In Amp they implement the Amp\Promise interface.
These objects should be thought of as placeholders for values or tasks that might not be complete immediately.

Another way to approach asynchronous APIs is using callbacks that are passed when the operation is started.

doSomething(function ($error, $value) {
 if ($error) {
 /* ... */
 } else {
 /* ... */
 }
});

The callback approach has several drawbacks.

	Passing callbacks and doing further actions in them that depend on the result of the first action gets messy really quickly.

	An explicit callback is required as input parameter to the function, and the return value is simply unused. There’s no way to use this API without involving a callback.

That’s where promises come into play.
They’re simple placeholders that are returned and allow a callback (or several callbacks) to be registered.

doSomething()->onResolve(function ($error, $value) {
 if ($error) {
 /* ... */
 } else {
 /* ... */
 }
});

This doesn’t seem a lot better at first sight, we have just moved the callback.
But in fact this enabled a lot.
We can now write helper functions like Amp\Promise\all() [https://amphp.org/amp/promises/combinators#all] which subscribe to several of those placeholders and combine them. We don’t have to write any complicated code to combine the results of several callbacks.

But the most important improvement of promises is that they allow writing coroutines [https://amphp.org/amp/coroutines/], which completely eliminate the need for any callbacks.

Coroutines make use of PHP’s generators.
Every time a promise is yielded, the coroutine subscribes to the promise and automatically continues it once the promise resolved.
On successful resolution the coroutine will send the resolution value into the generator using Generator::send() [https://secure.php.net/generator.send].
On failure it will throw the exception into the generator using Generator::throw() [https://secure.php.net/generator.throw].
This allows writing asynchronous code almost like synchronous code.

{:.note}

Amp’s Promise interface does not conform to the “Thenables” abstraction common in JavaScript promise implementations. Chaining .then() calls is a suboptimal method for avoiding callback hell in a world with generator coroutines. Instead, Amp utilizes PHP generators as described above.

However, as ReactPHP is another wide-spread implementation, we also accept any React\Promise\PromiseInterface where we accept instances of Amp\Promise. In case of custom implementations not implementing React\Promise\PromiseInterface, Amp\Promise\adapt() can be used to adapt any object having a then or done method.

Promise Consumption

interface Promise {
 public function onResolve(callable $onResolve);
}

In its simplest form the Amp\Promise aggregates callbacks for dealing with results once they eventually resolve. While most code will not interact with this API directly thanks to coroutines, let’s take a quick look at the one simple API method exposed on Amp\Promise implementations:

| Parameter | Callback Signature |
| ———— | —————————————— |
| $onResolve | function ($error = null, $result = null) |

Amp\Promise::onResolve() accepts an error-first callback. This callback is responsible for reacting to the eventual result represented by the promise placeholder. For example:

<?php

$promise = someFunctionThatReturnsAPromise();
$promise->onResolve(function (Throwable $error = null, $result = null) {
 if ($error) {
 printf(
 "Something went wrong:\n%s\n",
 $error->getMessage()
);
 } else {
 printf(
 "Hurray! Our result is:\n%s\n",
 print_r($result, true)
);
 }
});

Those familiar with JavaScript code generally reflect that the above interface quickly devolves into “callback hell” [http://callbackhell.com/], and they’re correct. We will shortly see how to avoid this problem in the coroutines section.

Promise Creation

Promises can be created in several different ways. Most code will use Amp\call() [https://amphp.org/amp/coroutines/helpers#call] which takes a function and runs it as coroutine if it returns a Generator.

Success and Failure

Sometimes values are immediately available. This might be due to them being cached, but can also be the case if an interface mandates a promise to be returned to allow for async I/O but the specific implementation always having the result directly available. In these cases Amp\Success and Amp\Failure can be used to construct an immediately resolved promise. Amp\Success accepts a resolution value. Amp\Failure accepts an exception as failure reason.

Deferred

{:.note}

The Deferred API described below is an advanced API that many applications probably don’t need. Use Amp\call() [https://amphp.org/amp/coroutines/helpers#call] or promise combinators [https://amphp.org/amp/promises/combinators] instead where possible.

Amp\Deferred is the abstraction responsible for resolving future values once they become available. A library that resolves values asynchronously creates an Amp\Deferred and uses it to return an Amp\Promise to API consumers. Once the async library determines that the value is ready it resolves the promise held by the API consumer using methods on the linked promisor.

final class Deferred
{
 public function promise(): Promise;
 public function resolve($result = null);
 public function fail(Throwable $error);
}

promise()

Returns the corresponding Promise instance. Deferred and Promise are separated, so the consumer of the promise can’t fulfill it. You should always return $deferred->promise() to API consumers. If you’re passing Deferred objects around, you’re probably doing something wrong.

resolve()

Resolves the promise with the first parameter as value, otherwise null. If a Amp\Promise is passed, the resolution will wait until the passed promise has been resolved. Invokes all registered Promise::onResolve() callbacks.

fail()

Makes the promise fail. Invokes all registered Promise::onResolve() callbacks with the passed Throwable as $error argument.

Here’s a simple example of an async value producer asyncMultiply() creating a deferred and returning the associated promise to its API consumer.

<?php // Example async producer using promisor

use Amp\Loop;

function asyncMultiply($x, $y)
{
 // Create a new promisor
 $deferred = new Amp\Deferred;

 // Resolve the async result one second from now
 Loop::delay($msDelay = 1000, function () use ($deferred, $x, $y) {
 $deferred->resolve($x * $y);
 });

 return $deferred->promise();
}

$promise = asyncMultiply(6, 7);
$result = Amp\Promise\wait($promise);

var_dump($result); // int(42)

layout: docs
title: Promise Combinators
permalink: /promises/combinators

Multiple promises can be combined into a single promise using different functions.

all()

Amp\Promise\all() combines an array of promise objects into a single promise that will resolve
when all promises in the group resolve. If any one of the Amp\Promise instances fails the
combinator’s Promise will fail. Otherwise the resulting Promise succeeds with an array matching
keys from the input array to their resolved values.

The all() combinator is extremely powerful because it allows us to concurrently execute many
asynchronous operations at the same time. Let’s look at a simple example using the Amp HTTP client
(Artax [https://github.com/amphp/artax]) to retrieve multiple HTTP resources concurrently:

<?php

use Amp\Loop;
use Amp\Promise;

Loop::run(function () {
 $httpClient = new Amp\Artax\DefaultClient;
 $uris = [
 "google" => "http://www.google.com",
 "news" => "http://news.google.com",
 "bing" => "http://www.bing.com",
 "yahoo" => "https://www.yahoo.com",
];

 try {
 // magic combinator sauce to flatten the promise
 // array into a single promise.
 // yielding an array is an implicit "yield Amp\Promise\all($array)".
 $responses = yield array_map(function ($uri) use ($httpClient) {
 return $httpClient->request($uri);
 }, $uris);

 foreach ($responses as $key => $response) {
 printf(
 "%s | HTTP/%s %d %s\n",
 $key,
 $response->getProtocolVersion(),
 $response->getStatus(),
 $response->getReason()
);
 }
 } catch (Amp\MultiReasonException $e) {
 // If any one of the requests fails the combo will fail and
 // be thrown back into our generator.
 echo $e->getMessage(), "\n";
 }

 Loop::stop();
});

some()

Amp\Promise\some() is the same as all() except that it tolerates individual failures. As long
as at least one promise in the passed succeeds, the combined promise will succeed. The successful
resolution value is an array of the form [$arrayOfErrors, $arrayOfValues]. The individual keys
in the component arrays are preserved from the promise array passed to the functor for evaluation.

any()

Amp\Promise\any() is the same as some() except that it tolerates all failures. It will succeed even if all promises failed.

first()

Amp\Promise\first() resolves with the first successful result. The resulting promise will only fail if all
promises in the group fail or if the promise array is empty.

layout: docs
title: Promise Helpers
permalink: /promises/miscellaneous

Amp offers some small promise helpers, namely

	Amp\Promise\rethrow()

	Amp\Promise\timeout()

	Amp\Promise\wait()

rethrow()

rethrow(Amp\Promise|React\Promise\PromiseInterface): void subscribes to the passed Promise and forwards all errors to the event loop. That handler can log these failures or the event loop will stop if no such handler exists.

rethrow() is useful whenever you want to fire and forget, but still care about any errors that happen.

timeout()

timeout(Amp\Promise|React\Promise\PromiseInterface, int $timeout): Amp\Promise applies a timeout to the passed promise, either resolving with the original value or error reason in case the promise resolves within the timeout period, or otherwise fails the returned promise with an Amp\TimeoutException.

Note that timeout() does not cancel any operation or frees any resources. If available, use dedicated API options instead, e.g. for socket connect timeouts.

wait()

wait(Amp\Promise|React\Promise\PromiseInterface): mixed can be used to synchronously wait for a promise to resolve. It returns the result value or throws an exception in case of an error. wait() blocks and calls Loop::run() internally. It SHOULD NOT be used in fully asynchronous applications, but only when integrating async APIs into an otherwise synchronous application.

layout: docs
title: Utils
permalink: /utils/

This documentation section deals with helpers that are not async specific, but generic helpers.

	CallableMaker

	Struct

Further utils for PHPUnit are provided in amphp/phpunit-util [https://github.com/amphp/phpunit-util].

layout: docs
title: CallableMaker
permalink: /utils/callable-maker

Amp\CallableMaker is a helper trait that allows creating closures from private / protected static and instance methods in an easy way. Creating such callables might be necessary to register private / protected methods as callbacks in an efficient manner without making those methods public.

This trait should only be used in projects with a PHP 7.0 minimum requirement. If PHP 7.1 or later are the minimum requirement, Closure::fromCallable should be used directly.

callableFromInstanceMethod()

Creates a Closure form an instance method with the given name and returns it. The closure can be passed around without worrying about the method’s visibility.

callableFromStaticMethod()

Same as callableFromInstanceMethod(), but for static methods.

layout: docs
title: Struct
permalink: /utils/struct

A struct is a generic computer science term for an object composed of public properties. The \Amp\Struct trait
is intended to make using public properties a little safer by throwing an \Error when undefined properties
are attempted to be written or read.

PHP allows for dynamic creation of public properties. This can lead to insidious bugs created by typos related to
writing to and reading from public properties. One common solution to this problem is to make all properties private and
provide public setter and getter methods which control access to the underlying properties. However effective this
solution may be, it requires that additional code be written and subsequently tested for the setter and getter methods.

Let’s try some examples with anonymous classes to demonstrate the advantages of using the \Amp\Struct trait. Running
the following code will not error; although, the typo will likely create some unexpected behavior:

$obj = new class {
 public $foo = null;
};

$obj->fooo = "bar";

If you were to access the $foo property of the $obj object after the above code, you might expect the value
to be "bar" when it would actually be NULL.

When a class uses the \Amp\Struct trait, an \Error will be thrown when attempting to access a property not defined
in the class definition. For example, the code below will throw an \Error with some context that attempts to help
diagnose the issue.

$obj = new class {
 use Amp\Struct;

 public $foo = null;
};

$obj->fooo = "bar";

The message for the thrown \Error will be similar to:
Uncaught Error: class@anonymous@php shell code0x10ee8005b property “fooo” does not exist … did you mean “foo?”

Although, an \Error being thrown in your code may cause some havoc, it will not allow for unpredictable
behavior caused by the use of properties which are not part of the class definition.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

