

Welcome to the BRITE-REU Programming Workshop!

	Instructions

	Workshop 1: Linux/Bash and SCC

	Workshop 2: R

	Workshop 3: Python

	Workshop 4: Git and Snakemake

	Workshop 5: Data Visualization

	Workshop 6: Machine Learning

	Workshop 7: SQL

	Posters

Note

This is a Work In Progress and is actively being updated.

Indices and tables

	Index

	Module Index

	Search Page

Instructions

Through the ten weeks you are at BU, we will introduce some useful programming tools and skills during six weekly programming workshop sessions. These include skills on using linux, the BU shared computing cluster (SCC), sharing your code and work on github using git, coding with R and Python, machine learning software, and the SQL database language. The sessions will have two parts, a 1 hour offline document or video that you study prior to attending the session and 2 hours hands-on session during which we will walk you through different commands and programs.

In order to participate, you will need to install the required tools and applications prior to coming to the classes. Below are the instructions to install an SSH client, git, R and RStudio, Python and anaconda, RapidMiner, and mySQL. Please have them ready and running on your laptops so we can make the most out of the sessions. These instructions have been tested, but it’s not possible for us to run through all the installation steps for all operating systems. If you encounter a problem or need more clarification, please make a note and send it to us, or write up your own modification of these instructions. In case you have any difficulty, please contact us to fix any potential problems before the specific sessions start.

Instructors

	Dakota (LSEB room 645, dyh0110@bu.edu)

	Dileep (LSEB 9th floor, dkishore@bu.edu)

	Emma (ebriars@bu.edu)

	Jacquelyn (jturcino@bu.edu)

	Eric (reeder@bu.edu)

	Ahmed (ayoussef@bu.edu)

	Anastasia (agurinov@bu.edu)

Workshop schedule

All sessions meet Wednesday 10 am - 12 pm in LSE 904, except as noted

	Week 2: Linux/Bash and SCC (Wednesday 12 pm - 2 pm)

	Week 3: R

	Week 4: Python

	Week 6: Machine Learning

	Week 7: Version Control and git

	Week 8: SQL

	Week 9: Data Visualization

Software installation

	 Linux and Bash
	Windows 10: Linux Subsystem for Windows

	Windows 8: Installing Babun

	Mac & Linux

	 SSH
	Windows

	Mac & Linux

	 Git
	Git command-line

	Git GUI (cross-platform)

	 Python
	Anaconda

	 R
	Mac

	Windows Users

	 Machine Learning
	RapidMiner Studio

	 SQL
	SQLite

	MySQL

Linux/Unix and Bash

Windows 10: Linux Subsystem for Windows

	Control Panel -> Programs and Features and click “Turn Windows Features on or off” on the top left pane

	
	In the dialog box, check “Windows Subsystem for Linux” and click Ok
	[image: unix_1]

	Reboot machine

	Start Menu -> Microsoft store -> Search for “Linux”

	
	Click “Get the apps” under the “Linux on Windows?” banner
	[image: unix_2]

	You’ll see a list of every Linux distribution currently available in the Windows Store. We recommend that you select “Ubuntu” (unless you know what you’re doing)

	To open the Linux environment you installed, just open the Start menu and search for whatever distribution you installed. For example, if you installed Ubuntu, launch the Ubuntu shortcut

	After installation it will ask to create a UNIX username and password

	You are now ready to use the bash shell

Windows 8: Installing Babun

Babun is just a customized and pre-configured Cygwin. You can install Cygwin if you’re familiar with that.

	Just download the dist file from here [http://babun.github.io], unzip it and run the install.bat script.

	After a few minutes Babun starts automatically.

	The application will be installed to the %USERPROFILE%\.babun directory.

	Use the /target option to install babun to a custom directory.

Mac & Linux

You default shell should already be bash.
Otherwise run: chsh -s /bin/bash

SSH Client

In order to do anything on the Shared Computing Cluster (SCC) from your local computer, you first need to connect to the SCC using an SSH (Secure SHell) client. This task varies greatly based on your local operating system. Follow the SSH client installation instructions below depending on your operating system.

Windows

Option 1: MobaXterm

SSH client with x-forwarding capabilities for graphic sharing

	Download and install MobaXterm from here [http://mobaxterm.mobatek.net/]

	Launch MobaXterm and start a new session

[image: ssh_1]

	Select SSH as the session type

[image: ssh_2]

	Specify ssc1.bu.edu as the remote host and click OK

[image: ssh_3]

	Your connection will be saved on the left sidebar, so the next time you can start your session by clicking the scc1.bu.edu [SSH] link. In the terminal window you will get a prompt to enter your BU login information and password

[image: ssh_4]

Option 2 - PuTTY

	Download and install PuTTY [https://www.putty.org/]

	
	Enter your connection settings
	
	Host name: scc1.bu.edu

	Port: 22 (leave as default)

	Connection type: SSH (leave as default)

[image: ssh_5]

	Click Open to start SSH session

	If this is your first time connecting to the server from this computer, you will see the following output. Accept the connection by clicking Yes

[image: ssh_6]

	Once the SSH connection is open, you should see a terminal prompt asking for your username (username@scc1.bu.edu) and then your password

Mac & Linux

	Use built-in terminal for both

	Mac option: for X11-forwarding download XQuartz [https://www.xquartz.org/]

	
	To sign into the SCC for Mac and linux:
	
	
	Open a terminal
	
	Use ssh to connect to the SCC with your login credentials in the terminal: your_local_machine% ssh username@scc1.bu.edu

	Enter BU kerberos password when prompted

	Type exit to close session

Git

Git command-line

Linux

If you’re on a RPM-based distribution:

$ sudo dnf install git-all

If you’re on a Debian-based distribution:

$ sudo apt install git-all

Mac

A macOS Git installer is maintained and available for download at the Git website [http://git-scm.com/download/mac]

Windows

Install git for windows [https://gitforwindows.org/]

Note

This is a project called Git for Windows, which is separate from Git itself

Git GUI (cross-platform)

Git is best used as a command line interface. Although git GUIs are not as powerful as the command line, it is still nice to be able to visualize your commit history. Git for windows comes with a GUI, but I recommend trying GitKraken [https://www.gitkraken.com/download] - it’s cleaner and comes with a light and dark UI.

[image: gitkraken]

Python

Anaconda

To install Python, it is recommended to use the Anaconda distribution. Anaconda is a cross platform python distribution that packages useful tools for scientific programming in Python such as IDEs/text editors (Spyder/VSCode), package managing tools (pip/conda), interactive notebooks (Jupyter), and other useful tools. To install Anaconda use the following steps:

	Go to https://www.anaconda.com/download/

	It’s 2018, so make sure to download the Python 3.6 version. Python2 is rapidly being dropped from many important libraries, so Python3 is preferred.

	During installation on Windows, you may be asked if you would like to add Anaconda to your PATH. This will make Anaconda packages/Python available across your computer, so it’s up to you whether this is something you want. Installation on MAC/Linux should be straight forward.

	
	Once installation is successful, you will now have access to all the tools we need. To ensure everything installed properly, look for Anaconda Navigator in your applications. Launch the application, you should have a window that looks like this:
	[image: python]

	If the button under Jupyter Notebook reads “Install” please click it to ensure Jupyter Notebooks are installed.

	That’s it! You’re done!

R and Rstudio

R is a programming language which is commonly used in bioinformatics and statistics.

Mac

	
	Install R:
	
	Open an internet browser and go to www.r-project.org.

	Click the “download R” link in the middle of the page under “Getting Started.”

	Select a CRAN location (a mirror site) and click the corresponding link.

	Click on the “Download R for (Mac) OS X” link at the top of the page.

	Click on the file containing the latest version of R under “Files.”

	Save the .pkg file, double-click it to open, and follow the installation instructions.

	Now that R is installed, you need to download and install RStudio.

	
	To install R Studio:
	
	Go to www.rstudio.com and click on the “Download RStudio” button.

	Click on “Download RStudio Desktop.”

	Click on the version recommended for your system, or the latest Mac version, save the .dmg file on your computer, double-click it to open, and then drag and drop it to your applications folder.

	
	To Install the SDSFoundations Package
	
	Download SDSFoundations to your desktop (make sure it has the .tgz extension).

	Open RStudio.

	Click on the Packages tab in the bottom right window.

	Click “Install.”

	Select install from “Package Archive File.”

	Select the SDSFoundations package file from your desktop.

	Click install. You are done! You can now delete the SDSpackage file from your desktop.

Windows Users

	
	To Install R:
	
	Open an internet browser and go to www.r-project.org.

	Click the “download R” link in the middle of the page under “Getting Started.”

	Select a CRAN location (a mirror site) and click the corresponding link.

	Click on the “Download R for Windows” link at the top of the page.

	Click on the “install R for the first time” link at the top of the page.

	Click “Download R for Windows” and save the executable file somewhere on your computer. Run the .exe file and follow the installation instructions.

	Now that R is installed, you need to download and install RStudio.

	
	To Install RStudio
	
	Go to www.rstudio.com and click on the “Download RStudio” button.

	Click on “Download RStudio Desktop.”

	Click on the version recommended for your system, or the latest Windows version, and save the executable file. Run the .exe file and follow the installation instructions.

	
	To Install the SDSFoundations Package
	
	Download SDSFoundations to your desktop (make sure it has the .zip extension).

	Open RStudio.

	Click on the Packages tab in the bottom right window.

	Click “Install.”

	Select install from “Package Archive File.”

	Select the SDSFoundations package file from your desktop.

	Click install. You are done! You can now delete the SDSpackage file from your desktop.

Machine Learning

RapidMiner Studio

For the machine learning session we will use R and RapidMiner Studio. You can download RapidMiner Studio 8.2 [https://my.rapidminer.com/nexus/account/index.html#downloads]. For this course we will not use a license, but you can register to get feedback from other users. You can find installation guides here [https://docs.rapidminer.com/latest/studio/installation/]

SQL

SQLite

Install SQLite

(Note: the SQLite program is called sqlite3)

Windows:

See this very useful video to install SQLite: https://www.youtube.com/watch?v=zOJWL3oXDO8

Mac and Linux:

Should already be preinstalled. To check, open a terminal window and type “sqlite3”. To quit the program after you’ve started it, type “.quit”. (Note the “.” before “quit”)

GUI:

There are two reasonably good GUIs for using SQLite. I haven’t used either extensively, so can’t make a strong recommendation, but I preferred SQLite Studio. These are not required for the workshop, but may be beneficial if you use the program after this summer.

	SQLite Studio. Download for all three major operating systems here: https://sqlitestudio.pl

	DB Browser for SQLite. Downloads are here: https://sqlitebrowser.org/

Test:

Follow these steps:

	In all three major operating systems, open a command terminal, create a directory called “sqlitedb”, and move to that directory

	Create a new database file called test.db by typing: “sqlite3 test.db”

	You should see something like this. If so, it’s working.

SQLite version 3.32.2 2020-06-04 12:58:43
Enter ".help" for usage hints.
sqlite>

	Exit the program by typing “.quit”

Tutorial and Documentation:

This is a good introduction:
https://www.tutorialspoint.com/sqlite/index.htm

This is the official SQLite Documentation:
https://sqlite.org

MySQL

Note

We are not using MySQL this year!

For Mac, use the DMG archive.
https://dev.mysql.com/downloads/mysql/5.7.html#downloads

For Windows:
https://dev.mysql.com/downloads/mysql/5.7.html#downloads
Choose (mysql-installer-web-community-8.0.11.0.msi)

For linux:
https://dev.mysql.com/doc/refman/5.7/en/linux-installation.html

Install a mysql database interface

This gives a GUI interface to databases and their contents, as well as a window to write SQL commands.

On Mac use Sequel Pro: https://www.sequelpro.com/

On linux and Windows, use phpmyadmin: https://www.phpmyadmin.net/

See this wiki page for installing on Windows:
https://www.wikihow.com/Install-phpMyAdmin-on-Your-Windows-PC

Workshop 1: Linux/Bash and SCC

Welcome to the first workshop of the series. The goal of the first workshop is to
familiarize you with Linux operating system (OS), Bash scripting, and the Shared Computing Cluster (SCC). This workshop will take place on Thursday, June 16 1-3pm, and your instructors will be Jacquelyn (jturcino@bu.edu), Dileep Kishore (dkishore@bu.edu) and Amulya Shastry (shastrya@bu.edu).

For the Linux/Bash part of this workshop, please independently review all the materials below up to Grep, AWK, and Sed before the workshop. We will review the Grep, AWK and Sed and Bash Scripting sub-parts during the workshop.

Tutorials

	 Linux/Bash
	UNIX & Linux

	Bash

	 The SCC
	Shared Computing Cluster

	Architecture

	File Storage

	Recovering Lost Files

	SSH Login

	Submitting jobs

	Workshop 1.2

1. Linux/Bash

UNIX & Linux

The UNIX operating system was first developed in the 1960s and has been under constant development ever since. It is a stable, multi-user, multi-tasking system for servers, desktops and laptops. There are many different versions of UNIX, although they share common similarities. The most popular varieties of UNIX are Sun Solaris, GNU/Linux, and MacOS X.

The UNIX operating system is made up of three parts; the kernel, the shell and the programs.

	The kernel: The kernel of UNIX is the hub of the operating system: it allocates time and memory to programs and handles the filestore and communications in response to system calls.

	The shell: The shell acts as an interface between the user and the kernel. The shell is a command line interpreter (CLI). It interprets the commands the user types in and arranges for them to be carried out. The commands are themselves programs.

	The programs: Programs are instructions that tell the computer what to do.

Everything in UNIX is either a file or a process. A process is an executing program identified by a unique PID (process identifier). A file is a collection of data. They are created by users using text editors, running compilers etc.

 1. CLI intro

1. CLI intro

Runtime ~ 5 min

If you were able to open a terminal, you should see something like this:

[image: ../../_images/terminal.png]
Most often, you will see your username, your current position in the file system, the “$” or “#” symbol and then a cursor.

Given this is a “command” line, type a command and then press enter!

[image: ../../_images/ls.png]
I gave the ls command, short for “list”. This lists all of the files in the current directory. Because of my personal settings, directories are colored in blue and regular files are colored white. If you are ever playing around with your terminal settings, setting colors on will prove to be useful. Another command is the cd command:

[image: ../../_images/cd.png]
By cd example, what I’m doing is changing my Current Directory to the one named example. Using ls, I see that there are two files called poem.txt and prose.txt and a directory called there_is_nothing_in_here in the example directory. In the command cd example, cd is the command name and example is considered the first argument for that command.

The next command is the man command, and it stands for manual. It takes a single argument, the name of a command:

[image: ../../_images/man.png]
[image: ../../_images/man_ls.png]
You can press down, the space bar or page down to read down the manual, or up and page up to scroll back up. When you are done reading the manual, just press q and you’ll be brought back to the command line. Most manuals have several sections:

	Name: Gives the name of the command

	Synopsis: The usage of the command is written in a short hand

	Description: Gives a description of the purpose of the command

	Options: Optional flags that the command uses

	Examples: Example command are given

	Author: The people who wrote the command’s source code

	Bugs: Known bugs and/or where to report bugs

	Copyright: Who actually owns the source code

If we go down far enough on the ls manual, we’ll see that the -l flag gives the output in long list format. Here’s how you use flags:

[image: ../../_images/man_ls-l.png]

This lets you see a whole bunch of information about the files in the directory. Flags are just arguments and are often separated from other arguments by whitespace, such as a space. However, flags can be combined into a single argument as such:

[image: ../../_images/man_ls-la.png]

The -a flag lets you see hidden files and directories. Files become hidden by having the first character of their name be a .!

Also, clicking tab will do an auto-complete if what you’ve written out is unique and in the right spot. For example, typing cd is enough in the example directory for you to hit tab and autocomplete there_is_nothing_in_here, as there is no other directory in the current working directory to cd into. This works with commands as well, but commands tend to be short.

Now you can see files in a directory, go to nearby directories and look at manuals. You can do that with the file explorer GUI too. However, you’ll come to see that the terminal can do a lot of the things that the GUI cannot do. If you are still having trouble, there are resources online that can help bolster your knowledge, such as this tutorial series [https://youtu.be/MmHcOPJEjGA].

 2. Navigation and File Operations

2. Navigation and File Operations

Filesystem

Runtime ~ 5 min

A filesystem is a structure that organizes how files are stored on the computer. In Unix, the two most basic objects are files and directories. Files can be things like text files or pictures. Directories contain files or other directories.

The base directory of the Unix file system is called root, and it is symbolized by a forward slash, /. You can cd into it to see what’s there.

[image: ../../_images/cd_root.png]
Generally, all Unix systems have similar directories in their root directories. From there, you can cd into any directory that you have permission to enter. Now, remember how when we used ls -la there were two files there named . and ..?

[image: ../../_images/man_ls-la.png]
Well, . refers to your current directory and .. refers to the one outside of your current directory. If you decide you want to go back up the filesystem, you can type cd ...

[image: ../../_images/cd_up.png]

Navigation

Runtime ~ 10 min

The cd command is such a simple function that it doesn’t even have a man page. It is not the only function that is used in navigating your filesystem, though. The pwd command outputs your current position:

[image: ../../_images/pwd.png]
There are more interesting ways to move from one place to another, for example, pushd:

[image: ../../_images/pushd.png]
It seems to do exactly what cd does. It moves you from one place to another; however, you can then use popd to return to wherever you left using pushd:

[image: ../../_images/popd.png]

Files

Runtime ~ 5 min

Let’s go back to ls -l:

[image: ../../_images/man_ls-la.png]
So what are all of those columns? In order, they are the file/directory’s permissions, number of links, the owner’s name, the owner’s group, the file size, the time of last modification and the file/directory name. Let’s go one at a time:

	Permissions: This column describes who has permission to read (r), write (w) or execute (x) that file. The first value is whether the file is a directory or not. The next set of 3 characters is the permissions set for the person who made the file, the Owner. The next set describe the permissions of members of the group that the Owner is a part of. The last set of values is the permissions to anybody else. If a directory is not executable by you, you may not enter it. If a directory is not readable by you, you may not ls the directory to read its contents.

	Number of links: One for files. Each directory has one for each file or directory they are directly near, including themselves

	Owner: The person who owns the file, which is usually the person who made it

	Group: The Owner’s group

	File size: in bytes

	Time of last modification: Formatted as “Month Day Year”

	File name: It will be appropriately colored if you have the terminal settings. Filenames can be up to 256 characters long and can use any characters except the null character and the forward slash. However, please don’t use whitespace and non-alphanumeric symbols besides period, underscore and hyphen. Most other characters have special meanings, so trying to work with such a file will be difficult.

These values are all stored in what is known as an inode table, one for each file in the filesystem. This is not important for now, but just know that an empty file can still take up space on the server.

As hinted at before, some files can be executed. These files are known as executable, and can be activated like this:

[image: ../../_images/executable.png]
Notice how only ./hello_world.py and `pwd`/hello_world.py were able to run the program. There are a few ways to run an executable. Using ./ syntax is most reliable. Without it, the computer will look at what’s called a PATH variable and try to find something with that name in the PATH variable’s list. Instead, ./ tells the computer “Hey, it’s in this directory. Don’t go elsewhere.”

File Operations

Runtime ~ 10 min

More helpful commands!

	touch: Sees if each argument is the name of a file. If so, it “touches” it and does nothing. If a file does not exist with that name, it will make an empty file with that name.

	mv: Stands for “move.” If the first argument is a file and the second is a directory, then that file is moved into that directory. If the name of the second argument doesn’t exist, then mv will simply rename the file/directory at the first argument to the second. Careful, it’s very easy to clobber* files!

	cp: Stands for “copy.” Copies a file(s) from one place to another and can specify what the copy’s name is. Careful, very easy to clobber*.

	mkdir: Makes a directory. Whatever arguments you give it, if a directory doesn’t exist with that name, then it will make it. You are safe from clobbering* with this one – it will throw an error if you try to do something wrong.

	rm: Removes whatever files. Will not remove a file you do not own. Be very, very careful when using this.

	rmdir: Removes the specified empty directories (directories that do not contain any files) you give it.

*clobber - to overwrite

[image: ../../_images/file_management.png]
What if you want to change the permissions of a file? There are commands for that:

	chmod: Change permissions to files that you can modify. There’s a few syntax that you can use, but if you remember your binary, you can use the synatax shown below. The number 1 gives execute permissions, 2 allows write permissions and 4 gives read permissions. Thus, 764 means that the user can do all three (1+2+4), the group can read and write (2+4) and anybody else can only read (4).

	chown: Change a file’s owner. Simple enough.

[image: ../../_images/file_permissions.png]
All right, you can see and change a lot of a file’s metadata, but how about its content?

	cat: Concatenate the content of files given as arguments and print the entire content of a file(s) to the screen.

[image: ../../_images/file_stuff_cat.png]

	head: Print the first 10 lines of a file. You can also set how many lines you want it to print out instead of 10.

	tail: Print the last 10 lines of a file. You can also set how many lines you want it to print out instead of 10.

[image: ../../_images/file_stuff_coin.png]

	less: Gives you the contents of a file one page at a time. Will sometimes allow you to read a compressed file without uncompressing it first.

[image: ../../_images/file_stuff_less1.png]
[image: ../../_images/file_stuff_less2.png]

 3. Piping and Redirection

3. Piping and Redirection

I/O redirection and concepts covered in the video:

	Standard output (stdout), standard input (stdin), standard error (stderr)

	>, >>: redirect stdout and replace/append to file

	2>, 2>>: redirect stderr and replace/append to file

	&>, &>>: redirect both stdout and stderr and replace/append to file

	>:stdin redirect from file

	|: pipe stdout from one program to another

 4. Grep/Awk/Sed

4. Grep/Awk/Sed

Materials to download

	Mary had a little lamb [https://raw.githubusercontent.com/BRITE-REU/programming-workshops/master/source/workshops/01_linux_bash_scc/files/mary-lamb.txt]

	BRITE students [https://raw.githubusercontent.com/BRITE-REU/programming-workshops/master/source/workshops/01_linux_bash_scc/files/BRITE_students.txt]

	Geekfile [https://raw.githubusercontent.com/BRITE-REU/programming-workshops/master/source/workshops/01_linux_bash_scc/files/geekfile.txt]

Grep

Grep (Global Regular Expression Print) finds a string in a given file or input.

grep [options] [regexp] [filename]

Usecases

	Case-insensitive search (grep -i):

grep -i 'mary' mary-lamb.txt

	Whole-word search (grep -w):

grep -w 'as' mary-lamb.txt

	Inverted search (grep -v):

grep -v ‘the’ mary-lamb.txt

	Print additional (trailing) context lines after match (grep -A <NUM>):

grep -A1 'eager' mary-lamb.txt

	Print additional (leading) context lines before match (grep -B <NUM>):

grep -B2 'fleece' mary-lamb.txt

	Print additional (leading and trailing) context lines before and after the match (grep -C <NUM>):

grep -C3 'appear' mary-lamb.txt

Exercises

	Display all the lines of the file mary-lamb.txt that do NOT contain the word lamb.

	Display only those lines of the file mary-lamb.txt that contain the word he in them. The search should NOT be sensitive to case.

	Display only those lines of the file mary-lamb.txt which contain either lamb or Mary words in the them. The search should not be sensitive to case.

AWK

Named after the authors: Aho, Weinberger, Kernighan

awk [options] [filename]

Usecases

	Print everything in the text file:

awk '{print}' BRITE_students.txt

	Now, let’s get the more specific. Let’s ask for first names only:

awk '{print $1}' BRITE_students.txt

	What if we want to see two columns at the same time (e.g. first and last names)?

awk '{print $1" "$2}' BRITE_students.txt

	Now let’s see what your info is (exact match):

awk '$1=="Anastasia"' BRITE_students.txt

	How can we see a particular pattern in our cohort (e.g. students in Campbell lab)?

awk '/Campbell/ {print $0}' BRITE_students.txt

	How many students are there whose name begins with “B”?

awk '/B/{++cnt} END {print "Count = ", cnt}' BRITE_students.txt

Exercises

	How do you print the first name and faculty advisor of students whose last names contain the letter u (file BRITE_students.txt)?

SED

SED stands for “Stream EDitor”. It is a widely used text processing Linux tool.

sed [options] [filename]

Usecases

	Replacing or substituting string: sed command is mostly used to replace the text in a file. The below simple sed command replaces the word “unix” with “linux” in the file.

sed 's/unix/linux/' geekfile.txt

Here the s specifies the substitution operation. The / are delimiters. The unix is the search pattern and the linux is the replacement string.

By default, the sed command replaces the first occurrence of the pattern in each line and it won’t replace the second, third, …occurrence in the line.

	Replacing the nth occurrence of a pattern in a line: Use the /1, /2 etc flags to replace the first, second occurrence of a pattern in a line. The below command replaces the second occurrence of the word unix with linux in a line.

sed 's/unix/linux/2' geekfile.txt

	Replacing all the occurrence of the pattern in a line: The substitute flag /g (global replacement) specifies the sed command to replace all the occurrences of the string in the line.

sed 's/unix/linux/g' geekfile.txt

	Replacing from nth occurrence to all occurrences in a line: Use the combination of /1, /2, etc. and /g to replace all the patterns from the nth occurrence of a pattern in a line. The following sed command replaces the third, fourth, fifth, … unix word with linux word in a line.

sed 's/unix/linux/3g' geekfile.txt

	Replacing string on a specific line number: You can restrict the sed command to replace the string on a specific line number. An example is:

sed '3 s/unix/linux/' geekfile.txt

The above sed command replaces the string only on the third line.

	Deleting lines from a particular file: sed command can also be used for deleting lines from a particular file. To Delete a particular line, e.g. 4 in this example:

sed '4d' geekfile.txt

	To delete a last line:

sed '$d' geekfile.txt

	To delete 2-4 lines:

sed '2,4d' geekfile.txt

	To delete 3-last lines:

sed '3,$d' geekfile.txt

Exercises

	Replace word Mary with Maria in the file mary-lamb.txt.

	Remove the 1st, 2nd and 5th lines from the file mary-lamb.txt.

 5. Bash scripting

5. Bash scripting

A bash script is a file containing commands that can run on the bash shell. They usually have the .sh extension.

A minimal example

Create a file named myscript.sh and insert the code from the example below.

#!/usr/bin/env bash
A simple bash script

echo "Hello World"

Note

#! is called the “shebang”. It indicates the path to the program/interpreter that should be used to execute the script.

Execution

The permissions on the script you created should be set so you can execute it with either ./myscript.sh or bash myscript.sh. Sometimes the file might not have appropriate permissions set. For example:

$./myscript.sh
bash: ./myscript.sh: Permission denied
$ ls -l myscript.sh
-rw-r--r-- 18 dkishore users 4096 Jun 10 09:12 myscript.sh

To run this file, the permissions on the script need to be changed to allow for execution: chmod +x myscript.sh

Variables

#!/bin/bash
cp $1 $2
Verification
echo Details for $2
ls -lh $2

$1 and $2 are the first and second arguments to the script.

Let’s experiment here. First, create a file named variables_test.sh and copy-paste the code above there. Next, try calling this file with myscript.sh as the first argument, and myscript2.sh as the second argument. What happened?

Note

	$0 refers to the name of the bash script

	$# refers to the number of arguments passed to the script

	$@ refers to all the arguments supplied

	$? refers to the exit status of the most recent process

You can also set your own variables inside the script:

#!/bin/bash
myvariable=Hello
anothervar=Fred
echo $myvariable $anothervar
sampledir=/etc
echo $sampledir

Note

	Use quotes if your value has a space. For example: myvar="Hello World!"

	When referring to or reading a variable we place a $ sign before the variable name

	When setting a variable we leave out the $ sign

	Do not use white-space around the =

Input

Run the command read and save the users response into the variable varname as shown below. Then create a new shell script with the code below and run it. This is how you can have an interactive program.

#!/bin/bash
Ask the user for their name
echo Hello, who am I talking to?
read varname
echo It\'s nice to meet you $varname

Conditional statements

Play with the scripts below. Do you understand what they are doing? If you don’t understand, make sure to test them out and ask us questions!

	if statements

#!/bin/bash
Basic if statement
if [$1 -gt 100]
then
 echo "Hey that\'s a large number."
 pwd
fi

	The square brackets in the if statement is a reference to the test command.

	-gt is equivalent to >=. Similarly there are =, != and many more.

	0 means TRUE and 1 means FALSE (fail).

	if-else-if

#!/bin/bash
elif statements
if [$1 -ge 18]
then
 echo "You may go to the party."
elif [$2 == 'yes']
then
 echo "You may go to the party but be back before midnight."
else
 echo "You may not go to the party."
fi

Loops

	while loop

#!/bin/bash
Basic while loop
counter=1
while [$counter -le 10]
do
 echo $counter
 ((counter++))
done
echo "All done"

	until loop (opposite of the while loop)

#!/bin/bash
Basic until loop
counter=1
until [$counter -gt 10]
do
 echo $counter
 ((counter++))
done
echo "All done"

	for loops

#!/bin/bash
Basic for loop
names='Stan Kyle Cartman Kenny' # is one way to define lists
for name in $names
do
 echo $name
done
echo All done

	Ranges and iterators

#!/bin/bash
Basic range in for loop
for value in {1..5}
do
 echo $value
done
echo All done

Note

You can have custom range by providing a step. For example: {10..0..2}

Functions

	Minimal example

#!/bin/bash
Basic function
print_something () {
 echo Hello I am a function
}
print_something

	Passing arguments

#!/bin/bash
Passing arguments to a function
print_something () {
 echo Hello $1
}
print_something Mars
print_something Jupiter

	Returning values

Bash functions don’t allow for return values, but they do allow for a return status.

#!/bin/bash
Setting a return status for a function
print_something () {
 echo Hello $1
 return 5
}
print_something Mars
print_something Jupiter
echo The previous function has a return value of $?

	Variable scope

#!/bin/bash
Experimenting with variable scope
var_change () {
 local var1='local 1'
 echo Inside function: var1 is $var1 : var2 is $var2
 var1='changed again'
 var2='2 changed again'
}
var1='global 1'
var2='global 2'
echo Before function call: var1 is $var1 : var2 is $var2
var_change
echo After function call: var1 is $var1 : var2 is $var2

Results

Before function call: var1 is global 1 : var2 is global 2
Inside function: var1 is local 1 : var2 is global 2
After function call: var1 is global 1 : var2 is 2 changed again

 1. The SCC

1. The SCC

Shared Computing Cluster

The Shared Computing Cluster (SCC) at Boston University is a Linux cluster with over 690 nodes, 14,000 processors, 324 GPUs, and currently over 4.2 petabytes of disk storage. The SCC is located in Holyoke, MA at the Massachusetts Green High Performance Computing Center (MGHPCC), a collaboration between 5 major universities and the Commonwealth of Massachusetts.

The SCC is suitable for high-performance computing in various areas of research such as bioinformatics and is commonly used to

	Share and store data

	Run code that exceeds workstation capability (RAM, Network, Disk)

	Run code that runs for long periods of time (hours, days, weeks)

	Run code in highly parallelized formats (use 100 machines simultaneously)

	Access specialized software packages

Architecture

The SCC uses the linux command line environment. To use the SCC, you must login to one of several login nodes. Everyone who has a BU ID can login to SCC1. If you are on a project, you can login to SCC2. For users in the Earth and Environmental Departments, use GEO login node. For BUMC users and for work on sensitive data, you can login to SCC4. For more information, see the SCC’s SSH [https://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh/] and VPN [https://www.bu.edu/tech/services/cccs/remote/vpn/use/] pages.

Note

SCC4 is only accessible through the BU network. To work remotely, you will need to use a virtual private network (VPN) to connect to the BU network.

File Storage

	Home directory: This directory is entirely controlled by you. The default permission are set so that no other user can see or access your files. Home directories have a quota of 10 GB.

	Backed-up project disk space: Research projects are by default granted 50GB of backed-up space (/project/project_name/). Files that cannot be replaced and source code should be stored in this space.

	Not backed-up project disk space: Projects are by default granted 50 GB of space(/projectnb/project_name/). Files generally stored in this space include output files, downloaded data sets, and large quantities of data that you could recreate in the unlikely event of data loss.

	Scratch space: Each node has a directory called /scratch stored on a local hard drive. This can be used by batch jobs to quickly write temporary files. If you wish to keep these files, you should copy them to your own space when the job completes. More information can be found here [https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/local_scratch/] .

Note

Scratch files are kept for 30 days, with no guarantees.

Recovering Lost Files

You can retrieve lost files using snapshots. Snapshots are copies of files from home directories and Project Disk Space that are stored within the file system. This is convenient when you want to retrieve a file that was lost or accidentally deleted. More information can be found here [https://www.bu.edu/tech/support/research/computing-resources/file-storage/] .

SSH Login

To connect to the SCC, you will need to download an SSH Client or use a terminal application depending on your operating system. An SSH client is a software program which uses the secure shell protocol to connect to a remote computer. Go to the instructions section to download the appropriate software to connect to the SCC. Once you login using the instructions below, you will find yourself in your home directory.

Windows/MobaXterm

local_prompt% ssh username@scc1.bu.edu

Mac

local_prompt% ssh –Y username@scc1.bu.edu

Linux

local_prompt% ssh –X username@scc1.bu.edu

Submitting jobs

	Submitting jobs
	Types of jobs

	Submitting jobs with qsub

	Resources required to run a job

	Job status and deletion

Workshop 1.2

	 SCC activity
	Login into SCC

	Loading modules

	Submitting jobs to the SCC
	Useful parameters

	Useful tips

	Hands-on activity
	Log on to SCC

	Choose some RNA-seq data

	Load sra toolkit using the module commands

	Download the files with a bash script

	Make your code run faster

 1. Running Jobs

1. Running Jobs

The SCC is a space to run code or other jobs requiring resources that are unavailable on a local workstation, including jobs that exceed workstation capability (RAM, network, kisk), long periods of time to run, and specialized software.

Types of jobs

	Interactive job: run an interactive shell for GUI applications, code debugging, or benchmarking of serial and parallel code performance

	Interactive graphics job: run interactive software with advanced graphics such as RStudio

	Batch job: execute a program without manual intervention

Note

During this workshop, we will focus on batch jobs.

Submitting jobs with qsub

To submit a non-interactive job, you will use the qsub command.

scc1 % qsub [options] command [arguments]

For example, we can submit the command printenv using qsub to print environment variables

scc1 % qsub -b y printenv
Your job 6580039 ("printenv") has been submitted

The option -b y tells the batch system that the following command is a binary executable. The output message of the qsub command will print the job ID, which you can use to monitor the job’s status within the queue. While the job is running, the batch system creates stdout and stderr files in the job’s working directory. These files are names after the job (i.e. printenv), followed by the job’s id number.

For example, after submitting the printenv job, we will get the following log files:

	printenv.o6580039: the output of the command

	printenv.e6580039: list of errors, if any, that occurred while the job was running

Another way to submit a job using qsub is through a bash script (job_script.sh) that specifies the options, commands, and arguments required to run the job.

scc1 % qsub job_script.sh

Resources required to run a job

There are a number of directives or options that the user can pass to the batch system. These are provided as arguments to the qsub command or added as lines with symbols #$ in the job script.

qsub arguments are passed like this:

scc1% qsub -l h_rt=24:00:00 -N myjob -j y printenv

Job script arguments are specified like this:

#!/bin/bash
#$ -l h_rt=24:00:00 # Specify the hard time limit for the job
#$ -N myjob # Give job a name
#$ -j y # Merge the error and output streams into a single file

printenv

To request other resources besides the general directives, the SCC website details available directives that can be requested at this page [https://www.bu.edu/tech/support/research/system-usage/running-jobs/submitting-jobs/] .

Job status and deletion

You can check the status of a job using the qstat command.

scc1% qstat -u userID

List running jobs only:

scc1% qstat -s r userID

Check information about a job:

scc1% qstat -j userID

Display resources requested by a user’s jobs:

scc1% qstat -r userID

To retreive information about a past job, you can use the qacct command.

scc1% qacct -j userID

Information about all jobs that were run in the past number of days:

scc1% qacct -o <userID> -d <number of days> -j

To delete a job, you can use the qdel command.

scc1% qdel -u userID # delete all jobs
scc1% qdel <jobID> # delete specific job

 SCC and qsub exercises

SCC and qsub exercises

Login into SCC

ssh username@scc1.bu.edu

Loading modules

The SCC has many preinstalled programs and utilities, which we refer to as modules. You can search for different modules using:

module avail [pattern]

To load a specific module:

module load [module_name]

For example, let’s check for all the available JAVA versions on SCC and load version 9.

module avail java
module load java/9.0.1
java -version

Submitting jobs to the SCC

When you ssh to the SCC you are connected to a head node. Head nodes are the only nodes on the cluster that are connected to the internet (so that you can access the SCC). They are the busiest and maintain all user connections. We should not run any program on the head node. By default your program will be killed if it runs more than 20 minutes, but even if you have some code that runs in 5 minutes, do not run it on the head node. Instead, always submit it as a job with qsub.

qsub -P [project_name] -N [name_of_job] [bash_script]

When a job is running, its standard output will be saved in a file named [job_name].o[job_ID] and its standard error will go to [job_name].e[job_ID] in the directory where you called qsub. To merge them use -j y. For a full list of parameters and option for qsub see here [http://www.bu.edu/tech/support/research/system-usage/running-jobs/submitting-jobs/]. You can see how to allocate more memory, multiple processes to multi-threaded jobs, send notification emails upon the completion of your job, and much more.

Useful parameters

	Send an email upon ending: -m e -M [email]

	Get multiple processes/slots: -pe omp [#processes]

	Set the maximum (hard) running time: -l h_rt=hh:mm::ss

Once the job is given the resources it requires, you can check the status of your ongoing jobs using qstat. This will return all the running jobs with their job_ID, name, starting time, and status.

qstat -u [username]

To delete or stop a job use qdel.

qdel [job_ID]

Useful tips

	Always use a meaningful name for your jobs.

	Do not allocate more resources than you need. It will not make your program run faster and will only make your queue wait time longer.

	You can use j_hold to make one job to wait for another one to finish then run. If the job is running the machine associated to it will be shown too. You can ssh to that machine and see the status of that job, too.

	Use top -u username to see your ongoing processes and their allocated resources.

Hands-on activity

The NCBI’s SRA toolkit [https://www.ncbi.nlm.nih.gov/sra/docs/] is a useful tool to download sequencing data from GEO [https://www.ncbi.nlm.nih.gov/geo/].
Here we will use the toolkit to download some RNASeq data.

Log on to SCC

ssh [username]@scc1.bu.edu

Choose some RNA-seq data

First query for a series [https://www.ncbi.nlm.nih.gov/geo/browse/?view=series] on GEO. For example, the GSE113476 series [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113476] contains human breast cancer PDX samples. Get the SRA project (SRP) accession ID (SRP141444 [https://www.ncbi.nlm.nih.gov/sra?term=SRP141444]) in the relations box. To download this project, we need to get all the sample files (with SRR accession IDs), which is possible using the SRA Run Selector [https://www.ncbi.nlm.nih.gov/Traces/study/]. Search for project SRP141444 and get the SRR accession for each sample. Save this list as a file on the SCC.

vim SRR_acc_List.txt

Copy the first four SRR IDs into the file and save it:

SRR7050666
SRR7050667
SRR7050668
SRR7050669

Load sra toolkit using the module commands

Check what versions of the toolkit are available and then load the default version.

module avail sra
module load sratoolkit

Download the files with a bash script

Make a script to read the SRR accession IDs one by one and fastq-dump them into a directory using the following code.

#!/bin/bash
ACCESSION_LIST_FILE=$1
OUTPUT_DIR=$2
while read SRR_ID; do
 fastq-dump --gzip --split-files --outdir $OUTPUT_DIR $SRR_ID
done < $ACCESSION_LIST_FILE

Now submit the script as a job!

qsub -N SRA_example dl_sra.sh SRR_Acc_List.txt SRP141444

Check if your code is running:

qstat -u username

This script will download each SRR one by one. That is slow. Let’s kill it (qdel) and make it faster.

Make your code run faster

One way you can make jobs multi processing, especially when you need to use large numbers of processes, is to use multiple jobs. Try that on your own. Make a bash script that sends a query (qsub) for each SRR accession.

 Workshop 2: R and RStudio

Workshop 2: R and RStudio

R and RStudio
In this online workshop you will learn the R programming language, RStudio interface for programming in R, and useful tips for exploring and working with data.

You are expected to study the the following content:

	Introduction and Data Structures

	Exploring Data in R

Here is a link to a very useful Base R Cheat Sheet [https://iqss.github.io/dss-workshops/R/Rintro/base-r-cheat-sheet.pdf] that is good to keep handy (maybe you can have a printed version for yourself).

In the workshop, we will work with RNA-Seq data and perform differential analysis.

	R Workshop

Tutorials

	R and RStudio: Introduction and Data Structures
	Getting Started

	Basic Operations in R

	Conditional Statements and Looping

	Exploring Data in R
	R packages and libraries

	Loading Data

	Data Exploration

	R Workshop
	Load Packages

	Import Airway Data

	Working with data.frame objects

	Asking R for help

	Working with matrix objects

	Running simple comparative statistical analyses

	Running one test

	Wrapper functions

	The apply() Family of Functions

	Matrix operations

	Loading data from R packages

	Explore Airway Dataset

	Differential Expression Analysis using DESeq2

	Manipulate and Visualize Results

	Gene Set Enrichment using enrichR

 R and RStudio: Introduction and Data Structures

R and RStudio: Introduction and Data Structures

R is a free programming language for statistical computing and graphics. It is an implementation of the S programming language and was created by Ross Ihaka and Robert Gentleman at the Univeristy of Auckland, New Zealand. R is currently developed by the R Development Core Team. RStudio is an Integrated Development Environment (IDE) for R.

To start, download the latest versions of R and RStudio following the instructions provided here [https://programming-workshops.readthedocs.io/en/latest/workshops/00_instructions/r.html]

Getting Started

Open RStudio locally and learn how to use the RStudio interface [https://www.youtube.com/watch?v=jAgbZ8jkBtQ].

Basic Operations in R

We can use R as a calculator to do simple math operations such as addition (+), subtraction (-), multiplication (*), division (), and raise a value to a power (^). We can type these calculations in the console or run them in an R script that extension ends in .R

#We can use hashtags to make comments about our code
#Basic calculations in R
4 + 5
4 - 5
4 * 5
4/5

#Outputs of calculations
[1] 9
[1] -1
[1] 20
[1] 0.8

#Calculate exponents using ^
4^5

#Output of exponent
[1] 1024

Data Structures

R has many data structures and types that we can use, depending on the information we want to work with.

The major data types include:

	character

	numeric (real or decimal)

	integer

	logical

	double

	complex

The major data structures include:

	Scalars

	Atomic Vectors

	Factors

	Lists

	Matrices and Arrays

	Dataframes

Scalars

The simplest type of object is a scalar which is an object with one value. We can assign a value or calculations to a variable using the assignment operator “<-“.

Note: The equals sign “=” is not an assignment operator in R and has a different functionality which will be discussed further below.

To create scalar data objects x and y:

#Set x and y as values
x <- 4
y <- 5

The objects x and y were set a numeric data type.

We can manipulate these objects in R and perform different calculations together. To print the value of these variables, we can use the print() function or call the variable itself.

#Calculations with numeric variables

z <- x+y

z

print(z)

x*y/z

#Output of calculations

[1] 9

[1] 9

[1] 29

As stated above, we can also create data objects of other data types such as logical and character mode.

For logical data, we use TRUE (T) and FALSE (F)

Logical <- T

Logical

[1] TRUE

For characte data, we use single or double quotation to enclose the data

Character_Data <- "T"

Character_Data

[1] "T"

We can use available functions in R to determine the mode or type of data we are working with.

#Use mode function
mode(x)
[1] "numeric"

mode(Logical)
[1] "logical"

mode(Character_Data)
[1] "character"

#Use is.object() function
is.numeric(x)
[1] TRUE

is.logical(Logical)
[1] TRUE

is.numeric(Character_Data)
[1] FALSE

Vectors

A vector is a basic data structure in R. It is a set of scalars of the same data type.

We can create vectors in different ways.

One of the main ways is to use the function c() to concatenate multiple scalars together.

x <- c(1, 5, 4, 9, 0)

x

[1] 1 5 4 9 0

We can use function typeof() to determine the data type of a vector, and we can check the length of the vector using the funtion length() .

typeof(x)

[1] "double"

length(x)

[1] 5

If we set x to have elements of different data types, the elements will be coerced to the same type.

x <- c(1, 5, FALSE, 9, "help")

x

[1] "1" "5" "FALSE" "9" "help"

typeof(x)

[1] "character"

Instead of reassigning the elements of x using the function c(), we could reassign specific elements based on the index number.

#Reassign third and fifth elements back to original values
x

[1] "1" "5" "FALSE" "9" "help"

x[3] <- 4

x[5] <- 0

x

[1] 1 5 4 9 0

typeof(x)

[1] "double"

Other ways to creat vectors is to use other operators and functions such as “:” operator, seq() function, and rep() function.

#Create vector of consecutive numbers

y <- 1:10

y

[1] 1 2 3 4 5 6 7 8 9 10

#Create vector of a sequence of numbers
#Defining number of points in an interval or step size

seq(1, 10, by = 1)

[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, length.out = 10)

[1] 1 2 3 4 5 6 7 8 9 10

#Create vector of the same values

rep(3, 5) # A set of 5 numbers with value set as 3

[1] 3 3 3 3 3

Factors

A factor is a special type of character vector. Factors are qualitative or categorical variables that are often used in statistical modeling. To create a factor data structure, we will first create a character vector and convert it to a factor using the factor() function.

temperature <- c("High","Medium","Low")
temperature <- factor(temperature)

Converting temperature character vector to a factor type creates “levels” based on the factor values (these are the values of categorical variables).

temperature

[1] High Medium Low
Levels: High Low Medium

Matrices and Arrays

So far we have discussed one-dimensional objects. We can create objects of multidimensional data. Matrices are data structures that contain data values in two dimensions. An array is a matrix with more than two dimensions. Matrices and arrays are used perform efficient calculations in a computationally fast and efficient manner.

To create a matrix, we can use the matrix() function, which takes as arguments a
data vector and parameters for the number of rows and columns.

We can determine the dimensions of a matrix using the dim() function.

#Create a simple 2 by 2 matrix.

mat<-matrix(c(2,6,3,8),nrow=2,ncol=2)

mat

 [,1] [,2]
[1,] 2 3
[2,] 6 8

dim(mat)

[1] 2 2

We can also choose to add row names and column names to the matrix.

#Add row names and column names

rownames(mat) <- c("a", "b")

colnames(mat) <- c("c", "d")

 c d
a 2 3
b 6 8

#Add row names and column through the matrix function

mat<-matrix(c(2,6,3,8),nrow=2,ncol=2,
 dimnames = list(
 c(a,b),
 c(c,d)
)
)

mat

 c d
a 2 3
b 6 8

We can also create a matrix by concatenating vectors together using rbind() function to concatenate by rows or cbind() function to concatenate by columns.

x <- 1:3

y <- 4:6

Combine by rows
a <- rbind(x,y)

a

 [,1] [,2] [,3]
x 1 2 3
y 4 5 6

Combined by columns
b <- cbind(x,y)

b

 x y
[1,] 1 4
[2,] 2 5
[3,] 3 6

To create an array, we can use the function array(), which takes as arguments vectors as input and uses the values in the dim parameter to create an array.

vector1 <- c(1,2,3)
vector2 <- c(5,6,7,8,9,10)

Create an array with dimension (3,3,2) that creates 2 arrays each with 3 rows and 3 columns.

array1 <- array(c(vector1,vector2),dim = c(3,3,2))

array1

, , 1

 [,1] [,2] [,3]
[1,] 1 5 8
[2,] 2 6 9
[3,] 3 7 10

, , 2

 [,1] [,2] [,3]
[1,] 1 5 8
[2,] 2 6 9
[3,] 3 7 10

Lists

Lists are data objects which contain elements of different types including numbers, strings, vectors, and other lists. A list can also contain a matrix or even a function as its elements.

#Create a list of different data types

list_data <- list(c(2,4,6,8), "Hello", matrix(c(11,12,13,14),nrow=2,ncol=2),TRUE, 62.13, FALSE)
print(list_data)

Give names to the elements in the list

names(list_data) <- c("Vector1", "Character1", "Matrix1", "Logical1", "Numeric", "Logical2")

list_data

$Vector1
[1] 2 4 6 8

$Character1
[1] "Hello"

$Matrix1
 [,1] [,2]
[1,] 11 13
[2,] 12 14

$Logical1
[1] TRUE

$Numeric
[1] 62.13

$Logical2
[1] FALSE

We can use the function str() to list the underlying structure of the data object.

str(list_data)

 List of 6
$ Vector1 : num [1:4] 2 4 6 8
$ Character1: chr "Hello"
$ Matrix1 : num [1:2, 1:2] 11 12 13 14
$ Logical1 : logi TRUE
$ Numeric : num 62.1
$ Logical2 : logi FALSE

Data Frames

A data frame is a table in which each column contains values of one variable or vector and each row contains one set of values from each column. Within each column, all data elements must be of the same data type. However, different columns can be of different data types. The data stored in a data frame can be of numeric, factor or character type. In addition, each column should contain same number of data elements.

To create a data frame, we can use the function data.frame():

#Create a data frame with employee ID, salaries, and start dates

emp.data <- data.frame(
 emp_id = c("U974","U503","U298","U545","U612"),
 salary = c(623.3,515.2,611.0,729.0,843.25),
 start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
 "2015-03-27")),
 stringsAsFactors = FALSE
)

emp.data

 emp_id salary start_date
1 U974 623.30 2012-01-01
2 U503 515.20 2013-09-23
3 U298 611.00 2014-11-15
4 U545 729.00 2014-05-11
5 U612 843.25 2015-03-27

We can use the function str() to list the underlying structure of the data object.

str(emp.data)

 'data.frame': 5 obs. of 3 variables:
$ emp_name : chr "U974" "U503" "U298" "U545" ...
$ salary : num 623 515 611 729 843
$ start_date: Date, format: "2012-01-01" "2013-09-23" ...

We can extract data from the data frame and also add data to the data frame.

#Extract salary information
emp.data$salary

[1] 623.30 515.20 611.00 729.00 843.25

#Add column vector
emp.data$dept <- c("IT","Operations","IT","HR","Finance")

 emp_id salary start_date dept
1 U974 623.30 2012-01-01 IT
2 U503 515.20 2013-09-23 Operations
3 U298 611.00 2014-11-15 IT
4 U545 729.00 2014-05-11 HR
5 U612 843.25 2015-03-27 Finance

More Examples of Data Structures and Types

To learn more about data types and structures and see more examples, watch these available videos below.
Part 1 [https://www.youtube.com/watch?v=B2f9tSGVn7w]
Part 2 [https://www.youtube.com/watch?v=_HKDbA9WkX8]

Conditional Statements and Looping

Logical and relational operators

Logical and relational operators can be used to execute code based on certain conditions. Common operators include:

[image: ../../_images/Logical_Operators.png]

If statements

q <- 3
t<-5

#if else conditional statement

if(q<t){

 w<-q+t

 } else

 w<-q-t

 w

[1] 8

a<-2
b<-3
c<-4
#Using and to test two conditions, both true

if(a<b & b<c) x<-a+b+c

 x
[1] 9

Looping

We can use looping to efficiently repeat code without having to write the same code over and over.

The while loop repeats a condition while the expression in parenthesis holds true and takes the form:

while (condition controlling flow is true)
 perform task

x<-0
while(x<=5){x<-x+1}

x
[1] 6

For loops are used to iterate through a process a specified number of times. A
counter variable such as “i” is used to count the number of times the loop is executed:

for (i in start:finish)
 execute task

An example is to add values 1 to 10 to vector y using a for loop.

#Create empty vector
y<-vector(mode="numeric")

#Loop through 1 to 10 to add values to y
for(i in 1:10){
 y[i]<-i
 }

y

[1] 1 2 3 4 5 6 7 8 9 10

To learn more about if statements and logical operators, check out this video [https://www.youtube.com/watch?v=eVEx_pBEkRI]

Alternatives to using looping and conditional statements include using the apply function in R. A quick introduction to apply function is provided here [https://www.youtube.com/watch?v=csLati8vpOo].

 Exploring Data in R

Exploring Data in R

In this section we will go into more detail as to how to import and explore data through different packages,functions, and graphics.

R packages and libraries

R packages are collections of functions and data sets developed by the R community. The main repository used in R is CRAN which has over 10,000 packages published and more that are publicly available.

To install most packages, the function install.packages(“package_name”) can be used.

There are other repositories such as Bioconductor that are used in Bioinformatics and other fields.

To learn how to install packages, read a quick description about package installation [https://www.tutorialspoint.com/r/r_packages.htm] and watch a tutorial here [https://www.youtube.com/watch?v=0cCuHhfphtQ].

Loading Data

Importing downloaded data

Based on the file type, there are different functions available to import datasets into R. A few of the most common ones are listed below:

	read.csv: For reading in comma separated value files (“.csv”).

	read.delim: For reading in delimited text files (“.txt”).

	scan: For reading a file, or keyboard input, into a vector.

	read_excel: For reading in excel spreadsheets (“.xls” or “.xlsx”). From the readxl package.

Some examples:

#read in CSV file
my_csv_file <- read.csv("/path/to/csv_file.csv")

#read in tab-delimited text file
my_tab_file <- read.delim("/path/to/csv_file.txt", sep = "\t")

#read input from keyboard (hit enter twice to stop scanning)
keyboard_input <- scan()
1
2
3

#read i first sheet of excel spreadsheet
install.packages("readxl")
library(readxl)
my_excel_file <- read_excel("/path/to/excel_file.xlsx", sheet = 1)

An alternative way to import downloaded data is to also click on “Import Dataset” on the upper right hand side under Environment.

[image: ../../_images/RStudio_Console.png]
In addition, datasets that are available online can be imported into R using their URL.

For example:

#install and load data.table library
install.packages("data.table")
library(data.table)

#Use fread function to download data set under the variable mydat
mydat <- fread('http://www.stats.ox.ac.uk/pub/datasets/csb/ch11b.dat')

head(mydat)

 V1 V2 V3 V4 V5
1: 1 307 930 36.58 0
2: 2 307 940 36.73 0
3: 3 307 950 36.93 0
4: 4 307 1000 37.15 0
5: 5 307 1010 37.23 0
6: 6 307 1020 37.24 0

Here’s a helpful cheat sheet [https://github.com/rstudio/cheatsheets/raw/master/data-import.pdf] for importing data in R.

Available data sets in R

R has many available datasets that can be loaded using the function data().
Typing data() in the console provides a list of datasets and their descriptions.

[image: ../../_images/Dataset.png]
We can load these data sets with the function load().
To look at the first few lines of the data set, we can use the function head(). To see the last few lines of the data set, we can use the function tail().

[image: ../../_images/Load_Dataset.png]

Saving Data Object and Files

We can save objects using the save() function.

For example, if we loaded the mtcars dataset from data() function in R, we can then save mtcars object by specifying the object (mtcars) and the file path with an .RData extension. Note, we can save more than one data object in a .RData file.

#load mtcars data set
data("mtcars")

#View mtcars dataset
head(mtcars)

 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

#save mtcars in .RData extension
save(mtcars, file = "mtcars.RData")

To load this file into R, we can use the load() function.

load(file = "mtcars.RData")

Another way to save one data object is to save it using a .RDS extension. To save and load a .RDS extension, we can use saveRDS() function and readRDS() function.

#save mtcars to a .RDS file
saveRDS(mtcars, file = "mtcars.rds")

#read in .RDS file and save under mtcars variable name
mtcars <- readRDS(file = "mtcars.rds")

To write an R object or variable to a file, we can use existing functions to write mtcars to a csv file and txt file.

write.csv(mtcars, file = "mtcars.csv")

write.table(mtcars, file = "mtcars.txt", sep="")

Data Exploration

Common functions used to initially explore data include functions for mean and standard deviation. In addition, we can use the summary() function to give us some descriptive statistics about a data set.

[image: ../../_images/Data_Exploration.png]

Manipulating Data

We can use packages to reshape or clean our data prior to analysis. Two main packages that are used are tidyr and reshape2.

To learn more about how to use these package to tidy and reshape data, read this page [http://www.milanor.net/blog/reshape-data-r-tidyr-vs-reshape2/]. In addition, an example of using reshape2 on a cancer data set is shown here [https://www.youtube.com/watch?v=aXXy04P_l1c].

Plotting and visualizations in R

R supports a variety of graphics in the base package, and numerous other packages provide additional graphics.

For example, we can use a simple plot() function to plot specific variables of the mtcars data set.

plot(mtcars$wt, mtcars$mpg)

[image: ../../_images/Plot_Example.png]
Other plot functions include:

[image: ../../_images/Plot_Functions.png]
Graphical parameters can be added to these plots including:

[image: ../../_images/Graphical_Parameters.png]
Many plot functions also include graphical parameter arguments.

For example, we can add a title and axis labels and change the point size using arguments in the plot function.

plot(mtcars$wt, mtcars$mpg, main="Scatterplot", xlab="Car Weight ", ylab="Miles Per Gallon ", pch=19)

[image: ../../_images/Plot_Parameters.png]
An alternative way to generate plots is to use ggplot2 package.

install.packages("ggplot2")
library(ggplot2)

p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point(size=2) + xlab("Car Weight") + ylab("Miles Per Gallon")

[image: ../../_images/ggplot2_example.png]
With ggplot2, we can add other features and variables to our plot.

p <- ggplot(mtcars, aes(wt, mpg))
geom_point(aes(colour=factor(cyl), size = qsec)) + xlab("Car Weight") + ylab("Miles Per Gallon")

[image: ../../_images/ggplot2_variable.png]
To learn more advanced uses of ggplot2, look at this more detailed step by step tutorial [https://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html].

 R Workshop: RNA-seq Airway Data and Differential Expression Analysis

R Workshop: RNA-seq Airway Data and Differential Expression Analysis

In this workshop, we will focus on learning how to load packages, import data, perform exploratory analysis with built in functions as well as functions from packages installed, performing differential expression analysis of RNA-seq data with the DESeq2 package, and visualizing the results using ggplot2.

We will work in R Markdown, a .Rmd file written in markdown and contains chunks of embedded R code.

The R Mardown file and two csv files containing count data (airway_scaledcounts.csv) and meta data file (airway_metadata.csv) can be downloaded from here:

	airway_metadata.csv [https://github.com/BRITE-REU/programming-workshops/tree/master/source/workshops/02_R/files/airway_metadata.csv]

	airway_scaledcounts.csv [https://github.com/BRITE-REU/programming-workshops/tree/master/source/workshops/02_R/files/airway_scaledcounts.csv]

	Workshop R Markdown file [https://github.com/BRITE-REU/programming-workshops/tree/master/source/workshops/02_R/files/R_Workshop.Rmd]

Load Packages

We will begin by loading the necessary packages:

Go ahead and install these packages using install.packages():

	readr

	ggplot2

	dplyr

	magrittr

We will use packages from the bioconductor repository, which provides tools for analysis of high-throughput genomic data.

source(“https://bioconductor.org/biocLite.R”)

Use BiocManager::install(“package_name”) function to install packages SummarizedExperiment, DESeq2 and airway.

Note: If package base is not already installed, please install that as well.

packages <- c("readr", "ggplot2", "dplyr", "magrittr")
install.packages(packages, dependencies = TRUE)

if(!require("BiocManager", quietly = TRUE))
 install.packages("BiocManager")
BiocManager::install(version = "3.15")

BiocManager::install("SummarizedExperiment", dependencies = TRUE)
BiocManager::install("DESeq2", dependencies = TRUE)
BiocManager::install("airway", dependencies = TRUE)

Load these libraries using library(“package_name”) function:

#library(base) in case it's not loaded
library(readr)
library(dplyr)
library(ggplot2)
library(magrittr)
library(SummarizedExperiment)
library(DESeq2)
library(airway)
library(enrichR)

Import Airway Data

If you have not downloaded the R_Workshop folder already, please do that now.

Let’s begin first by setting our working directory. Set your working directory to where the R_Workshop folder is located on your computer.

#Find working directory
getwd()

#Set working directory path
setwd("/Users/tanyatk/Desktop/R_Workshop/")

#Check working directory again
getwd()

Today we will work with the airway dataset. This data set comes from an RNA-Seq experiment, a high throughput sequencing method, on four human airway smooth muscle cell lines treated and untreated with dexamethasone. We will work with read counts or expression matrix for this dataset (i.e. processed files).

Note: The sequencing files of this experiment are available on the GEO database with GEO Series Number GSE52778, and can be downloaded using SRA toolkit.

Use the read.csv(“file”) function to import the airway_scalecounts.csv (count data) and airway_metadata.csv (meta data) files from the downloaded folder R_Workshop.

Use read.csv() function to import airway_scaledcounts.csv and airway_metadata.csv files into R
scaledcounts <- read.csv("airway_scaledcounts.csv")
metadata <- read.csv("airway_metadata.csv")

Use base functions to describe and look at the airway data: scaledcounts and metadata.

	dim() - Dimensions

	head() - Print first lines of data

	tail() - Print last few lines of data

	str() - Describe data object structure and information

1 Use base functions to gain an initial view of the data

2 Look at scaledcounts variable

3 Look at metadata variable

Working with data.frame objects

Looking at scaledcounts we can see that the first column, “ensgene”, gives the gene identifier for each gene, while each successive column gives the expression values for this gene.

Use the `ensgene` column to extract the gene expression values for "ENSG00000002549".

This is okay, but it’s a little clunky. Alternatively we can set the gene identifiers as row names to index rows directly.

1 Set the gene identifiers to row names in `scaledcounts`.

2 Remove the `ensgene` column.

3 Extract the gene expression values using the string "ENSG00000002549" directly.

Asking R for help

Alternative to steps 1 + 2 above, we could have set gene identifiers to row names when we read in the file.

1 Look up the help page for `read.csv()` using `?read.csv`, scroll down to the `row.names` in the "Arguments" section.

2 Use these instructions to reread in `scaledcounts` and set the gene identifiers to row names automatically.

Working with matrix objects

The main difference between a data.frame object and a matrix object is that each column of a data.frame is free to have it’s own format, whereas all values within an entire matrix must have the same format (e.g. all numbers). One nice thing about matrix objects is that functions in R can be applied to all values at once. Note, that after setting the gene identifiers to row names, all values in scaledcounts are now numbers.

For gene expression, it is common to work with log-scaled count data because these tend to adhere more closely to normal distributions than count data. The one caveat to this that log(0) = -Inf. To overcome this, it is common practice to add a small value prior to performing log-transformations, most commonly by adding one to every value, log(1) = 0.

1 Use the `as.matrix()` function to convert `scaledcounts` to a matrix.

2 Add a pseudocount to every value.

3 Use the `log2()` function to log-scale the matrix.

Running simple comparative statistical analyses

In bioinformatics, we frequently want to perform statistical tests to find genes with a significant deviation in expression patterns across experimental conditions, for example genes that seem to be down-regulated in tumors compared to normal cells. Later in this workshop, we will use a fancy Bioconductor package (DESeq2) to run differential gene expression analysis. This type of analysis is common when analyzing high-throughput data, and it has the following basic steps:

	Extract the expression values for a single gene.

	Compare the mean expression between two groups using a statistical test.

	Repeat steps 1 + 2 for every gene.

Running one test

The t-test is a common choice for performing a differential analysis. Next we will perform a simple differential test comparing treated and control groups in our gene expression data. The “dex” column in metadata gives group values for treated and control samples.

1 Create a new data.frame called `genedata` with two columns: 1) log-transformed expression values of "ENSG00000002549" and 2) group values from the "dex" variable. Call the columns "ex" and "group", respectively.

2 Run the following to use the `t.test()` function to compare the log transformed expression values between treated and control samples with pooled variance (var.equal = TRUE).

Note that the syntax at the begining of this function, you will see it a lot. Look up ?formula for more information. This is common in functions for statistical modelling, as well as base R plotting functions. For example, instead of running a t-test we could run a linear model.

lmRes <- lm(ex ~ group, data = genedata)
print(summary(lmRes))

Note, that the p-value for the linear model is equal to the p-value for the t-test. This is because simple linear regression models are equivalent to a t-test with pooled variance.

We can use a similar syntax to create boxplots of the expression values for either group with the boxplot() function.

boxplot(ex ~ group, data = genedata)

As we can see, the difference in mean is very small relative to the variance, hence the large p-value.

Wrapper functions

What if we want to run a t-test on any gene? We can greatly reduce the amount of code we need to write by writing a function that takes a gene identifier as an argument, runs the t-test, and returns information we are interested in. For example, below is a function that takes the arguments, geneid and returns a vector with two values: the difference in mean and p-value.

Function to run ttest for a given gene ID
ttestGene <- function(geneid) {

 # Create data matrix
 genedata <- data.frame(ex = scaledcounts[geneid,], group = metadata$dex)

 # Run t-test
 ttestRes <- t.test(ex ~ group, data = genedata)

 # Get difference in mean
 diffMean <- ttestRes$estimate[2] - ttestRes$estimate[1]

 # Get difference and p-value
 results <- c(diffMean, pvalue = ttestRes$p.value)

 # Given these values a name
 names(results) <- c("diff", "pvalue")

 return(results)
}

Run it on "ENSG00000002549"
ttestGene("ENSG00000002549")

The apply() Family of Functions

In order to run this function on every gene in our dataset, we will turn to a family of R functions called the apply functions. These functions are very useful in a wide variety of contexts, so before we get into how we will use them here, let’s take time to have a thorough introduction to how they work and why we might use them.

x <- list(c(1,5,4,8), c(2,45,7,4,2,6), c(5,347,1))
if we want the mean of each of these vectors, we might write a for loop like this
means <- c()
for (i in 1:length(x)) {
 means[i] <- mean(x[[i]])
}
means
output: [1] 4.5000 11.0000 117.6667

For annoying reasons we won’t get into right now, R is very bad at handling for loops; when the thing you’re looping over gets appreciably large, it takes ages and ages to execute the loop. Consequently, people do all sorts of things to avoid writing for loops in R, and apply functions are often a great alternative. The general idea of all apply functions is passing one argument that is some iterable object, like a vector or list, and some function that you want to be called on each element of that vector/list.

lapply(x, mean)
output:
[[1]]
[1] 4.5

[[2]]
[1] 11

[[3]]
[1] 117.6667

In addition to avoiding the potentially inefficient for loop, note that we’ve also written much less code to accomplish the same thing.
The l in lapply stands for list, so it returns a list with one element for each element of the input object. This can be helpful when the function you’re applying returns multiple things, but in our case it makes the output slightly more messy/complicated than it needs to be. Fortunately, we can use sapply to simplify the output (the s stands for simplify):

sapply(x, mean)
output: [1] 4.5000 11.0000 117.6667

Now we’ve perfectly replicated the behavior of our for loop in much less code. The full extent of what sapply does when it “simplifies” output it a bit complicated, but much of the time it generally does what you expect/want.

It is often handy to use apply functions to work with lists/vectors/dataframe columns of strings. Let’s say we’re trying to strip the prefixes off of these gene IDs:

genes = c("ENSG00000166411", "ENSG00000143311", "ENSG00039457411")
to get just one gene, we might do
sub(pattern = "ENSG", replacement = "", genes[1])
last time the function we were applying only had one argument; what do we do with sub, which needs three arguments?
lapply(genes, sub, pattern = "ENSG", replacement = "")
output:
[[1]]
[1] "00000166411"

[[2]]
[1] "00000143311"

[[3]]
[1] "00039457411"

When applying functions with multiple arguments where you want to keep some arguments constant as you apply the function to each element of your list/vector, just specify them by name after the name of the function. Alternatively, you can write a little wrapper function:

lapply(genes, function(gene) sub(pattern = "ENSG", replacement = "", gene))
same output as before

As before, the fact that the output is a list might be undesirable, so let’s use sapply

sapply(genes, function(gene) sub(pattern = "ENSG", replacement = "", gene))
output:
ENSG00000166411 ENSG00000143311 ENSG00039457411
"00000166411" "00000143311" "00039457411"

Notice that this time, sapply returned a vector with named elements where each name was the input string. Sometimes this is valuable information, but sometimes the names get in the way of downstream operations. You can access/remove the names like so:

out <- sapply(genes, function(gene) sub(pattern = "ENSG", replacement = "", gene))
names(out)
names(out) <- NULL

We can also apply functions to dataframes, as we plan to for this workshop:

df <- data.frame(
 "ID" = c("p1", "p2", "p3"),
 "Gene1" = c(1,5,0.3),
 "Gene2" = c(10,5,4),
 stringsAsFactors = FALSE # lots of R functions automatically convert strings into factors and it can mess up all sorts of things
}
since dataframes have two axes, you need to specify whether you're applying over rows or columns
apply(df, 1, function(row) row)
output:
[,1] [,2] [,3]
ID "p1" "p2" "p3"
Gene1 "1.0" "5.0" "0.3"
Gene2 "10" " 5" " 4"

Note that applying over the rows transposed the dataframe. It is often the case that you’ll need to transpose the output of an apply() call:

t(apply(df, 1, function(row) row))
output:
ID Gene1 Gene2
[1,] "p1" "1.0" "10"
[2,] "p2" "5.0" " 5"
[3,] "p3" "0.3" " 4"

Also note that, in our original dataframe, the Gene1 and Gene2 columns are numeric, but the outputs of these apply statements are matrices where everything is a string. Consequently, you may find yourself coercing the outputs of apply calls back into dataframes a lot:

as.data.frame(t(apply(df, 1, function(row) row)))
output:
ID Gene1 Gene2
1 p1 1.0 10
2 p2 5.0 5
3 p3 0.3 4

Now let’s actually apply a function that does something, like finding the highest expression level for each patient:

we can't just apply max() to each row, because it will get confused by the ID column
apply(df, 1, function(row) max(c(row[2], row[3])))
output: [1] "10" "5.0" "0.3"

This does not produce the expected result because each row is represented as a vector and a vector can only have one type of data in it, so the numbers in the Gene1 and Gene2 columns were coerced to strings. Instead, we can try:

apply(df[,c(2,3)], 1, max)
output: [1] 10 5 4
and then reassemble an output dataframe (cbind takes vectors and returns a matrix with those vectors as columns)
as.data.frame(cbind(df$ID, apply(df[,c(2,3)], 1, max)))
output:
V1 V2
1 p1 10
2 p2 5
3 p3 4
we could also use this to get the column of max expression levels
apply(df, 1, function(row) max(c(as.numeric(row[2]), as.numeric(row[3]))))
output: [1] 10 5 4

At some point, your functions may get complicated enough that you don’t want to define them inside the apply call:

part_max <- function(row) {
 max_exp <- max(as.numeric(row[2]), as.numeric(row[3]))
 names(max_exp) <- "max_exp"
 out <- c(row[1], max_exp)
 return(out)
}
as.data.frame(t(apply(df, 1, part_max)), stringsAsFactors = FALSE)
output:
ID max_exp
1 p1 10
2 p2 5
3 p3 4

Now that we’ve familiarized ourselves with the basics of apply functions, let’s get back to the task at hand:

1 Run sapply for the first 1000 genes in `scaledcounts` using their names and the `ttestGene()` function. Write the ouput to an object called `res`.

2 Transpose the output with t().

Matrix operations

Loops are great and often necessary, but whenever possible utilizing matrix operations is a great way to speed up runtime.

X <- model.matrix(~ group, data = genedata)
print(X)

The three basic matrix operations functions in R are:

	t(): Transpose matrix input.

	solve(): Take the inverse of matrix input.

	%*%: Multiply matrices on the left and right.

Loading data from R packages

This data set is also available in a package called “airway” in Bioconductor.

Tip

Bioconductor (www.bioconductor.org) is an R programming language open-source and open-development software project for the analysis and interpretation of genomic data. It is comparable to CRAN for packages that are oriented towards biological data analysis. Open development means that the community is made aware of the development plans for each of the tools and in some instances, encouraged to contribute additions and modifications to the software itself.

The dataset is saved as something called an S4 object. The s4 object class is a somewhat complicated concept, but in this case, all you need to know is that there are named components of the object called “slots”, which are accessed using the specialised subsetting operator @ (pronounced at). The set of slots, and their classes, forms an important part of the definition of an S4 class. In R analyses of experiment data, you will often come across s4 objects that contain matrices of gene expression count data, sample metadata, and other information important to the data in fields or slots in the object.

To load the airway data we can use the data(“data_name”) function and call airway to add the dataset to our workspace. You’ll notice that the class is called RangedSummarizedExperiment (i.e. an S4 object), which is used to store matrices of experimental results such as the count data and meta data. This class is from the SummarizedExperiment package which is used often to store sequencing and microarray data. A descriptive and fairly concise tutorial of SummarizedExperiment objects is available here [https://bioconductor.org/packages/release/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html].

Call airway data using data() and print airway data to save to workspace

data("airway")
airway

Since we imported the same data set twice, we can remove data from our workspace using the rm() function.

Let’s remove the variables scaledcounts and metadata from our workspace. We’ll keep the airway object since it will be easier to work with for downstream analysis.

Remove scaledcounts and metadata variable
rm(scaledcounts)
rm(metadata)

Explore Airway Dataset

Let’s first do some preliminary work with the airway dataset. The sample/metadata information is saved under the slot colData which can be extracted using airway@colData or colData(airway).

First check the data structure of the colData(airway) dataset.

Hint: Built in functions to check data structure

Let’s set colData(airway) as a data frame.

Hint: We will use the as.data.frame() function to do this.

Check mode of colData(airway) and make change the structure to a data frame.

The count data is saved under the slot assay. We can extract the count matrix by calling airway@assay or assay(airway). We can also use descriptive statistics to look at the expression acrosss samples. We will sum the expression of each column and scale by 1e6 to get scaled expression value. We will then use the summary() function to look at the range of expression between the samples.

Determine a way to sum the expression of each column.

Hint: You can use a for loop, apply function, or base functions such as colSums()

1 Sum the expression of each column, divide by 1e6
2 Use summary function to see the range of values between each sample

Differential Expression Analysis using DESeq2

We will use DESeq2 package for differential expression analysis of the airway data set to find differentially expressed genes between untreated and treated samples. We will first load DESeq2 and set up the data to be compatible with DESeq by using the function DESeqDataSet().

We can use the help(“function_name”) or ?function_name to look up the function to get a description.

A description or help pages will show up under the Help tab in the bottom right corner.

Look up DESeqDataSet() function description
help("DESeqDataSet")
?DESeqDataSet

We can also go to the bioconductor page for DESeq2 and look at the manual for functions as well as a tutorial of using the package itself. Click here to see the page [https://bioconductor.org/packages/release/bioc/html/DESeq2.html].

The function DESeqDataSet includes an argument called design which asks for a formula that expresses how the counts for each gene depends on the variables in colData. In this case we choose variables cell and dex because we care about the cell line and which samples are treated with dexamethasone versus which samples are untreated controls.

DE_airway <- DESeqDataSet(airway, design = ~ cell + dex)
DE_airway

Before we continue, we must set our control group as our reference level for comparison in our differential expression analysis.

DE_airway@colData$dex <- relevel(DE_airway@colData$dex, ref = "untrt")

Now we wil run the differential expression analysis steps through the function DESeq(). Again we can look up the function to learn more about what it does and the arguments needed to run it. We use the results() function to generate a results table with log2 fold changes, p values and adjusted p values for each gene. The log2 fold change and the Wald test p value is based on the last variable in the design formula, in this case variable dex. Therefore our results will show which genes are differentially expressed between the untreated and treated groups.

help("DESeq")

DE_airway <- DESeq(DE_airway)
res <- results(DE_airway)

res

How do we order the results table (res) based on the p-value?
There are already available functions in R that we can use to sort the dataframe.
Hint: Use function order() to order the rows based on p-value

Use order() to order the results table based on the p-value

In DESeq2, the function plotMA generates an MA Plot commonly used to visualize the differential expression results. The plot shows the log2 fold changes attributable to a given variable over the mean of normalized counts for all the samples in the DESeqDataSet. Points represent genes and will be colored red if the adjusted p value is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either up or down.

plotMA(res, ylim=c(-2,2))

Manipulate and Visualize Results

Let’s add a column that tell us whether each gene is significant. Using the mutate() function from library dplyr, we can add a column showing whether the significance is TRUE or FALSE based on cutoff padj < 0.01.

1 Add column with gene names (using row names of matrix)

2 Change res to a tibble format to work with dplyr

3 Add sig column to show which genes are significant or not by using mutate() from dplyr

4 We can use the symbol %>% from library magrittr to represent a pipe. Pipes take the output from one function and feed it to the first argument of the next function. You may have seen something similar in unix with |

Let’s use the filter() function from dplyr to filter out results based on padj < 0.01, and write this to a csv file using write_csv() function from readr.

Try using piping format %>% to do this!

Filter res based on cutoff padj < 0.01 and save this result into a csv file called significant_results.csv

What if we want to generate our own plots? We can use ggplot2 to create our own volcano plot of the differential expression results between the untreated and treated groups.

Now let’s try generating a volcano plot using ggplot2?

Hint: log2FoldChange for x-axis, -1*log10(pvalue) for y-axis, sig to color the points.

Make sure to include argument for points and include the title “Volcano plot”

Bonus: Change the axis titles to something more readable and change the point shapes, or play around with any other parameters to get a feel for how ggplot2 works.

Create Volcano plot using ggplot2

How would you generate the same MA plot above using ggplot2?
Hint: Use baseMean for x-axis, log2FoldChange for y-axis, sig for color.

Make sure to have points and to use a log10 scale for the x-axis (i.e. scale_x_log10()).

Add the title “MA plot” to your plot as well.

Create MA plot using ggplot2

Gene Set Enrichment using enrichR

Gene set enrichment analysis (GSEA) is a method to identify classes of genes that are over-represented in a large set of genes. This is performed by comparing the input gene set with annotated gene sets from online functional databases such as Gene Ontology (GO) [http://geneontology.org] and KEGG [https://www.kegg.jp]. This is a common step in bioinformatics as it aids with the biological interpretation of results.

In this section of the workshop, we will perform GSEA on the set of differentially-expressed genes we identified earlier in this workshop using the enrichR [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987924/] tool. Please note that this section will require a working internet connection.

Let’s start by keeping only the set of genes that showed statistically-significant change in expression between conditions. Remember from the previous section that our threshold is be a false discovery rate (FDR) of 0.1 (i.e. no more than 10% chance that the observed change in expression is due to chance). Not all the genes in the results from DESeq2 were assigned p-values so we’ll start by filtering out the genes without p-values followed by storing the significant genes separately.

1 Filter out genes with no p-values

2 Keep significant genes only

3 How many significant genes did we get?

There’s one more step before we carry out GSEA. The genes in this dataset use Ensembl indentifiers, while enrichR expects gene symbols. We’ll use the biomaRt package to map our Ensembl IDs to gene symbols.

1 Load package (remember to install it if you haven't)

2 Load human reference genome

3 Map Ensembl IDs to gene symbols (might take a couple of minutes)

Now that we have our correctly-formatted gene symbols, we can perform GSEA. There are many different databases we can use for this step; for this workshop we will use the Gene Ontology (GO) databases: GO Biological Process, GO Molecular Function, and GO Cellular Component.

1 Find the list of all available databases from Enrichr

2 Scroll through list of available databases

3 Set up list with databases of interest

4 Perform GSEA

5 Check first few results for the biological process database

To conclude, we can look at our session information including the packages we loaded and worked with.

sessionInfo()

 Workshop 3: Python

Workshop 3: Python

Python
This workshop will serve as an introduction to Python. The workshop breaks into
two sections: a brief overview of Python as a programming language (with quick
examples and explanations of common functionality), and a problem-based workshop
where students will create a python script to perform protein synthesis
in silico. The introduction should be performed before the in-person
workshop. The workshop should be done in pairs, with both students alternating
who “drives”.

	Python Introduction

	Protein Synthesis Workshop

Sections

	Python 3
	Getting Started

	Basic Python Variables and Operations

	If, Else, and Elif Statements

	Iteration and Looping
	For loops

	Nested For Loops

	While Loops

	Nested While Loops

	Functions

	Scope

	File Input and Output.

	Importing Modules

	Conclusion

	Protein Synthesis Workshop
	Instructor: Dakota Hawkins

	Read FASTA Files:

	Write FASTA Files:

	Read codon_table.csv:

	Transcribe DNA to RNA:

	Translate RNA to Protein:

	Tie the Steps Together:

 Python 3

Python 3

Welcome to this supa-quick, supa-dope Python 3 tutorial. Python is a
general purpose programming language created in the early 1990s by Guido
van Rossum. Today, Python is one of the most popular languages and
enjoys particular success in statistics/data science and scientific
computing. This tutorial will serve as a brief introduction to the
capabilities of Python and its syntax. It is recommended that you follow along
with the examples, typing in and executing each code example yourself. This will
help familiarize yourself with Python syntax and ensure you know how to run
Python code before the workshop.

Getting Started

To get started we will likely need to install Python. While there are
many ways to install Python on your system, I recommend using the
Anaconda Distribution (https://www.anaconda.com/distribution/). Make sure to
install the Python 3 version of Anaconda. It’s 20XX, and unless you’re working
with legacy code bases, there’s no reason to use to Python 2. Anaconda is a
cross-platform (OSX, Linux, Windows) distribution manager that simplifies
installing and managing packages. While this tutorial only makes use of the base
Python packages, installing via Anaconda will also install several scientific
libraries that you will likely find useful later. Further, Jupyter is also
included in the Anaconda install, giving you access to Jupyter Notebooks.

To ensure Anaconda is successfully installed, look for the “Anaconda Navigator”
or “Navigator” in your applications (if you’re using OSX or Windows, on linux
type “conda –version” into the terminal).

Interacting with Python

Once Python is installed on our system, there are two main ways we can
interact with Python: 1) opening a python interpreter using the
terminal, 2) creating a python script file.

Accessing a Python Interpreter

To access a Python Interpreter simply open a terminal window, and type
‘python’. If you have iPython install on your computer, which Anaconda
includes by default, you can replace a normal Python environment with an iPython
environment by issuing the command ipython, instead. Think of Ipython and a
“Python +” version. Either way, issuing a python or ipython command
will create an interactive Python session where we can write and test Python
code. If you are on a Windows machine, instead of the normal command prompt,
barring specific installation steps, you will need to open an Anaconda Prompt.
This is a special terminal that will give you access to your Python/Anaconda
installation.

Writing a Python Script

A python script is a file with the ‘.py’ extension and can be written
using your favorite text editor or IDE. If you have Anaconda installed
on your computer, you will have access to the Sypder IDE, which is a
popular and useful IDE for writing scripts in Python. Anaconda also provides the
option to install VSCode, a cross plotform text-editor, that can also be used to
write scripts, and provides an IDE-lite experience. A python file can be run by
typing ‘python *script_name*.py’ into the terminal.

Using Jupyter Notebook/Lab

Instead of using a traditonal text editor or IDE, you can also chose to write
code in a Jupyter Notebook/Jupyter Lab. Jupyter Notebooks are interactive
notebooks where you can write code, display results inline, and include report
overviews. When used properly, they can be great for sharing results, learning,
and rapid prototyping. To start a Jupyter notebook, either navigate to the
Anaconda navigator, or execute the command jupyter notebook in a terminal.
Again, if you are using a Windows system, this will have to be in an Anaconda
prompt instead of a normal terminal window. Once started, you should have a
Jupyter Notebook opened as a tab in your default web browser. Python code in a
Jupyter Notebook can be written block-by-block into small sections known as
cells. Cells can be executed by hitting the “play button” a the top of the
notebook or by pressing “ctrl + enter”. In this way, Jupyter Notebooks function
as something akin to an “interactive script”. Jupyter Lab is similar to
Jupyter Notebook, but offers a more complete IDE experience – still within a
browser. To run Jupyter Lab, simply execute the command jupyter lab. You
may need to install Jupyter Lab, however, which can be done by executing the
command pip install jupyterlab.

Basic Python Variables and Operations

Mathematical Operators

Unsurprisingly, Python can do math! The basic mathematic operators are
+, -, *, and \ for addition, subtraction,
multiplication, and division

The print function takes a value or expression and displays the output to
the screen. The hash symbol denotes the proceeding text as a comment, and
thus is not evaluated by the interpreter.

print(2 + 2)
print(2 - 2)
print(2*2)
print(2/2)

4
0
4
1.0

Negative values are demonstrated with a '-'
print(-3 + 2)

-1

Exponents use the double star operator '**'
print(2**3)

8

The percent symbol, '%', is used as the modulo operator for calculating
remainders.
print(6 % 4) # 6 = 4*1 + 2

2

Mathematical expressions follow the order of operations.
print((2+3)*(-1)**2/2)

2.5

Mathematical Variables

There are two basic numerical data types in Python: integers and
floating point numbers. Integers are whole number, signed or unsigned,
while floating point numbers contain decimal values.

The data type of a value can be determined using the 'type()' function.
print(type(2))
print(type(2.0))

<class 'int'>
<class 'float'>

Values in Python can be assigned to variables with different names for
later access. Variable assignment is done using the '=' symbol.
x = 2
y = 3.0
print(x)
print(y)
print(y*x)

2
3.0
6.0

Variables can be cast to compatible data types using the desired data
type function.
print(y)
print(type(y))

z = int(y)
print(z)
print(type(z))

3.0
<class 'float'>
3
<class 'int'>

While we instantiated 'z' using 'y' and then modified 'z', the value 'y'
remains unchanged.
print(y)

3.0

Boolean Values and Operations

Boolean values are values that determine the truth value of a specific
statement. In Python, these take the form the key words, True and
False. There are several useful operators such as <, >,
<=, >=, and == for excessing relationships between numerical
values. Each of these operators returns a boolean value representing the
truth value of the given statement. All the previously listed operators
expect to be sandwiched between two values, one to the left and one to
the right, and are evaluated left to right.

The less than operator '<'
x = 3
y = 6
z = 10
print(x < 5)
The greater than operator '>'
print(z > x)
the less than or equal to operator '<='
print(x <= 5)
print(x <= 3)
the greater than or equal to operator '>='
print(x >= 5)
print(x >= 3)
the equality operator '=='
print(y == 6)
print(y == 7)

True
True
True
True
False
True
True
False

Boolean statements (e.g. 3 < 5) can be strung together using and
maniuplated using the and, or, and not keywords. All
keywords follow their formal logic definitions: the and keyword is
true if both statements are true, the or keyword is true if one
of the statements is true, and not negates the original truth value of a
given statement.

print(y > x and y < z)
print(y < x or y < z)
print(not y > x)

True
True
False

String Variables and Operations

Strings are data types used to represent text data. They can be
instantiated by placing expressions between single (‘expression’)
or double (“expression”) quotes.

string_1 = 'dog'
string_2 = "cat"
print(string_1)
print(string_2)

dog
cat

strings can be concatenated using the '+' operator
string_3 = string_2 + string_1
print("What do you mean you've never seen a " + string_3 + "?!")

What do you mean you've never seen a catdog?!

String Substitution

Values can be substituted into a string using string substitution. This
is done using the .format() method available to string objects.

the second single or double quote mark can be escaped using a backslash: \
statement = 'What do you mean you\'ve never seen a {0}?!'
print(statement.format(string_3))

What do you mean you've never seen a catdog?!

strings be evaluated using boolean operators
print(string_1 == string_2) # are they the same string?
print(string_1 < string_2) # is string_1 shorter than string_2?
print(string_3 > string_2) # is string_3 longer than string_2?

strings are case sensitive
print('cat' == 'Cat')

False
False
True
False

String case can be changed using the .upper() and .lower() string methods.

print(string_2.upper())
print(string_2.upper() == 'CAT')
print(string_2 == 'CAT'.lower())

CAT
True
True

The length of a string can be accessed using the built-in len() function.
print("The string '{0}' is {1} characters long.".format(string_1, len(string_1)))

The string 'dog' is 3 characters long.

Characters in a string can be assessed by position.
Python indexing starts at 0.

print("The first character in '{0}' is: {1}.".format(string_1, string_1[0]))

Due to zero indexing, the last element is the n - 1 element.
print("The last character in '{0}' is: {1}.".format(string_1,
 string_1[len(string_1) - 1]))

Negative indexing also works (e.g. -1 accesses the last element):
print("The second to last character in '{0}' is: {1}.".format(string_1,
 string_1[-2]))

The first character in 'dog' is: d.
The last character in 'dog' is: g.
The second to last character in 'dog' is: o.

If a string is of a numerical value, the string can be converted to an
integer or float.

float_string = '2.5'
int_string = '2'
print_msg = 'Converted {0} to {1} from type {2} to type {3}'

int_num = int(int_string)
print(print_msg.format(int_string, int_num, type(int_string),
 type(int_num)))

float_num = float(float_string)
print(print_msg.format(float_string, float_num, type(float_string),
 type(float_num)))

Likewise, numbers can easily be converted to strings
num = 3.5
print(print_msg.format(num, str(num), type(num), type(str(num))))

It is important to note that if a string represents a floating point
number, Python is unable to convert that number to an integer.

Converted 2 to 2 from type <class 'str'> to type <class 'int'>
Converted 2.5 to 2.5 from type <class 'str'> to type <class 'float'>
Converted 3.5 to 3.5 from type <class 'float'> to type <class 'str'>

Container Variables and Operations

There are three main container data structures in base Python: lists,
sets, and dictionaries.

Lists

Lists are arbitrarily long collections of objects. The are instantiated
by placing comma-separated values within square bracks [].

my_list = [1, 2, 3, 4]
print(my_list)

[1, 2, 3, 4]

Like strings, elements within lists can be accessed via their position.
print('The first element of my_list is {0}'.format(my_list[0]))

The first element of my_list is 1

Access and assign list value by accessing an indexed element,
and assigning it to a new value.
new_list = [1, 2, 3]
print(new_list)
new_list[2] = 5
print(new_list)

[1, 2, 3]
[1, 2, 5]

A range of objects within a list can be select using ':'
print(my_list[1:3])

Another ':' can be used to define step size for the selection range.
print(my_list[1:4:2])

[2, 3]
[2, 4]

element membership within a list can be tested using the 'in' keyword.

print(5 in my_list)
print(3 in my_list)

False
True

The length of a list is also assessed using the len() function.
print(len(my_list))

4

An empty list can be constructed using empty square brackets
x = []
print(len(x))
print(x)

0
[]

Elements can added onto the end of a list using the .append() list method.

x.append('Hi')
print(x)

['Hi']

Lists can have mixed-type variables (e.g. a list can contain both integers
and strings)
my_list.append('String!')
print(my_list)

[1, 2, 3, 4, 'String!']

incremented lists up to a defined number can be created using the built-in
range() function. The range function outputs a 'range' object. However, it
can be casted to a list using the list() function.

n = 10
Create list of length 10 ranging from 0 - 9
range_list = list(range(n))
print(range_list)

The list doesn't need to start at 0
m = 3
print(list(range(m, n)))

Likewise, we can specify our own step size
step = 2
print(list(range(m, n, step)))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[3, 4, 5, 6, 7, 8, 9]
[3, 5, 7, 9]

Lists can be concatenated using the '+' operator
string_list = ['I', 'Love', 'Dogs']
print(my_list + string_list)

[1, 2, 3, 4, 'String!', 'I', 'Love', 'Dogs']

Sets

Sets are container objects that can only contain unique elements. If you
are familiar with Set Theory in Mathematics, Python sets are simply an
implementation of such a structure. Sets are constructed passing a list
to the ‘set()’ function or constructing via { }.

Sets can only contain unique elements.
set_1 = set([1, 1, 2, 2, 3, 4, 5])
print(set_1)

set_2 = {3, 4, 6, 7, 7, 8 , 9, 10}
print(set_2)

{1, 2, 3, 4, 5}
{3, 4, 6, 7, 8, 9, 10}

add elements to a set using the .add set method
set_1.add(6)
print(set_1)

{1, 2, 3, 4, 5, 6}

still only unique elements
set_1.add(5)
print(set_1)

{1, 2, 3, 4, 5, 6}

Remove elements using the .remove set method
set_1.remove(6)
print(set_1)

{1, 2, 3, 4, 5}

retrieve union of two sets using the .union set method
print(set_1.union(set_2))

retrieve set difference of two sets using the .difference method
print(set_2.difference(set_1))

retrieve set intersection using the .intersection method
print(set_1.intersection(set_2))

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{8, 9, 10, 6, 7}
{3, 4}

Unlike lists, sets are unordered and thus don't support indexing.
print(set_1[0])

TypeError Traceback (most recent call last)

<ipython-input-37-c17aa407af1e> in <module>()
 1 # Unlike lists, sets are unordered and thus don't support indexing.
----> 2 print(set_1[0])

TypeError: 'set' object does not support indexing

Dictionaries

Dictionaries are collections with key-value pairs. They are constructed
by matching a key with an associated value. The value can then be
retrieved at a later time using the provided key. In python, keys and
values can be of arbitrary data types. Similar to sets, dictionaries are
consructed using curly brackets { }, though each entry must follow
the key:value syntax.

Construct dictionaries by separating keys and values using ':'
Separate key-value pairs using ','
my_dict = {'a': 1, 'b': 2, 'c': 3}
print(my_dict)

Look up values using keys
my_dict['a']

Create an empty list using {}
empty_dict = {}

add elements by 'indexing' by a given key and provided an associated
value as an assignment.
empty_dict['key'] = 'value'
print(empty_dict)

Retrieve keys of a dictionary using .keys() dictionary method
print(my_dict.keys())

Retrieve values of a dictionary using .values() dictionary method
print(my_dict.values())

If, Else, and Elif Statements

Sometimes when writing a program, you need to execute different code
snippets depending on the value of a specific variable. In Python, we do
this by employing the three boolean key words: if, else, and
elif

An if statement uses if the following syntax:

**if (boolean statement): **

run this code

if statements must be followed by a colon.
Likewise, the next line MUST be indented using either a tab or 4 spaces.
if True:
 print("It's true!")

x = 3
if (x < 10):
 print('{0} is less than 10'.format(x))

An else statement must follow an if statement and is executed
if the statement in the if statement is not met.
x = 11
if (x < 10):
 print('{0} is less than 10'.format(x))
else:
 print('{0} is greater than or equal to 10'.format(x))

Like an else statement, an elif statement must follow a preceding if
statement. However, like an if statement, an elif must also have its own
boolean statement that must be met in order for its snippets to be run.

if (x < 10):
 print('{0} is less than 10'.format(x))
elif (x < 15):
 print('{0} is greater than 9, but less than 15'.format(x))
else:
 print('{0} is greater than 14'.format(x))

Iteration and Looping

While programming, it is common you will want to execute a code snippet
multiple times, or execute the same line over a set of values. For this,
we use looping. There are two different types of loops we can use in
Python: for loops and while loops. For loops iterate through
a set of values; a while loop iterates until a specific condition is
met.

For loops

For loops employ the following syntax:

for each in list:

run code

The variable each is defined in the loop statement. Similarly, the
variable list can be any iterable data type: not just a list. Like
if, else, and elif statements, loop statements end with a
colon and must be followed by a new line and an indentation.

iterate through a list
my_list = [1, 'hi', 'yellow', 'pizza', 4.5]
for each in my_list:
 print(each)

use the range() function to iterate through integer values
for i in range(5):
 print(i)

Nested For Loops

We can nest loops within other loops for loop-ception. In a nested loop,
the first loop will run with the first value specified by the iterator
(e.g. i = 0) until the inner loop gone to completion (e.g. executed for
j =0 and j = 1). Once the inner loop is completed, the outer loop then
moves on to the next value, and the process is repeated.

for i in range(5):
 for j in range(2):
 print('(i={0}, j={1})'.format(i, j))

While Loops

While loops execute until a boolean statement returns False. While
loops employ the following syntax:

while boolean_statement:

execute code

count = 0
while count < 5:
 print(count)
 count += 1 # the += operator increments the value of a variable by
 # the right value

Nested While Loops

Like for loops, while loops can also be nested; however, in order to
fully iterate through each loop, values used in the boolean statement in
the inner loop must be set in the outer loop. This ensures the value
will be reset for the next iteration in the inner loop.

count = 0
while count < 3:
 num = 5
 while num > 3:
 print('num: ' + str(num))
 num -= 1 # the -= operater decrements a variable by the right value.
 print('count: ' + str(count))
 count += 1

Functions

It often a good idea to modularize your programming. That is, break your
code into smaller parts that can be run together to complete your task.
This is often performed by declaring functions. In Python, functions
take a defined set of inputs, perform some set of operations using the
inputs, and likely outputs some value. Functions are defined using the
following syntax:

def function_name(input_1, …):

run code

Like loops and control statements, function definitions end with a colon
followed by a new line and an indentation.

def add(x, y):
 return(x + y)

print(add(1, 2))

It is common to have doc-strings, denoted by three sets of quotation marks,
after a function definition to define the use of the function.
def multiply(x, y):
 """
 Multiplies two numbers together.

 Arguments:
 x (float or int): a numeric value.
 y (float or int): a numeric value.

 Returns:
 (float or int): the product of `x` and `y`.
 """
 return(x*y)

print(multiply(3, 2))

It is possible to include optional parameters in functions.
These are defined by setting an arguments name and giving
a default value using '='

def increment(x, step=1):
 """
 Increments a value by specified value.

 Arguments:
 x (float or int): a numeric value.
 step (float, optional): a numeric value to increment `x` by.
 Default value is 1.
 Returns:
 (float or int): sum of `x` and `step`.
 """
 return(x + step)
print(increment(2))
print(increment(2, 3))

Scope

When discussing functions, it is important to also talk about the
scope of a variable. The scope of a variable is the environment in
which the variable is defined. If a variable is defined within a
function, it’s scope is local and unique to that function: the variable
cannot be accessed outside of the function. If a variable is defined
outside of a function, at the first indentation level, the scope is
global: the variable can be accessed anywhere within the Python file.

global_var = 20
def scope_function():
 """Scope example."""
 local_var = 3
 print(global_var + local_var) # global_var has global scope

local_var was defined only within scope_function(). Thus,
it does not exist outside of the function.
print(local_var)

File Input and Output.

Often when writing a program, it is necessary to read or write to a
file. Reading and writing can be done in a variety of ways and we’ll go
over the most useful here.

Reading a file

To read a file, we must first create a connection to the file. The most
basic way to do this is with the open command and utilize the
readline io method.

The open command creates a TextIOWrapper object that is used to read
lines in a file. The first argument in the file to open, while the
second argument specifies the object should be in "read-mode"

read_file = open('input_file.txt', 'r') # open the file
file_string = ""
line = read_file.readline() # read a line using the readline TextIOWrapper method.
while len(line) > 0: # read lines until no lines are left in the file.
 file_string += line
 line = read_file.readline()
print(file_string)
read_file.close() # close the connection to the file.

Using with to simplify file reading

The above method requires we create a separate file object and remember
to open and close it. This can be simplified by using the with and
as keywords:

with open('input_file.txt') as f:
 for line in f:
 print(line)

Writing Files

We write to files analagous to the way we first read a file: creating a
connection, iterating through the lines we want to write, and finally
closing the file.

write_list = ['This is a line',
 'This is also a line.',
 'In case you didn\'t know,',
 'You can have line breaks',
 'in between list elements',
 'and really any bounded element.']

f = open('output_file.txt', 'w') # the 'w' parameter specifies "write-mode"
for each in write_list:
 f.write(each)
f.close() # Look in your present working directory and you'll notice an output_file.txt file.

Importing Modules

In Python, a module is an external library that provides functionality
that extends past the built-in functionality. However, there are several
standard libraries/modules that are included in the base Python install,
such as math, sys, os and other modules. These, and any
other module, must be brought into the python environment using the
import keyword.

On a basic import, any method, data structure, or value provided by the
module must be accessed by first appending the module name to the method
(e.g. to use the sin function in the math module, we type
math.sin)

import math
find the sin of 1, 0, and pi
print(math.sin(1))
print(math.sin(0))
print(math.sin(math.pi))

It is possible to import specifc methods or sub-modules from libraries.
This is done by combining the from keyword with the import
keyword. Depending on the level of import, the syntax for accessing the
imported methods changes.

from math import cos
print(cos(math.pi)) # no `math.cos` necessary because we imported
 # `cos` directly.

from os import path
import 'path' submodule from 'os' module to gain access to 'realpath'
method. When executing, os.path.realpath' not necessary because 'path'
sub-module imported. However, path.realpath necessary because 'realpath'
is in the 'path' sub-module.
print(path.realpath('input_file.txt'))

You can re-name modules using the 'as' keyword on import
import math as m
print(m.pi)

Conclusion

This concludes our brief introduction to Python 3. This document simply
serves as a primer to first getting acquainted with the syntax and data
structures in Python. Many concepts, techniques, and capabilities were
left out. Feel free to explore more of Python’s capabilities on your own
if you so desire. Looking into external libraries such as numpy and
scipy will be incredibly beneficial for anyone looking to continue
to perform numerical/data analysis in Python. If you’re feeling spicy,
Jake VanderPlas has a wonderful introduction to Data Science in Python that is
freely available on the web
(https://jakevdp.github.io/PythonDataScienceHandbook/). This is not required for
the workshop, but you might find it beneficial in your work down the road.

 BRITE REU Python Workshop

BRITE REU Python Workshop

Instructor: Dakota Hawkins

Overview

Protein synthesis generally follows what has been termed “The Central
Dogma of Molecular Biology.” That is that DNA codes RNA where RNA then
makes protein. Here is a useful source if you need a quick refresher
(https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393).
In today’s workshop we will be writing a small Python script to simulate
this process by reading a DNA sequence from a FASTA file, transcribing
the sequence to mRNA, translating the computed mRNA strand to amino
acids, and finally writing the protein sequence to another FASTA file.
This workshop is intended to synthesise the information we learned in
the Python introduction.

For this workshop you will be working with a partner in small teams. The
groups will be used as a means to facilitate discussion (e.g. “How can
we structure this function?”), while you and your partner will help each
other implement the code. Partners should choose a single computer to
write the code with. While a single person will be “driving” at a time,
both partners are expected to converse and contribute. Likewise, no one
person should be driving for the entire workshop: make sure to switch
semi-regularly to ensure each person is getting the same out of the
workshop. Please ensure each partner has a working copy of the completed
Jupyter Notebook after the workshop is complete.

This notebook includes skeleton methods for all of the different Python
functions we’ll need: ``read_fasta()``, ``write_fastsa()``,
``read_codon_table()``, ``transcribe()``, ``translate()``,
and ``main()``. While these functions should encompass all of the
functions we’ll need, feel free to write your own helper functions if
you deem it necessary. Similarly, if you’d rather eskew the structure I
provided – whether combining previously separated functions, changing
passed arguments, etc. – feel free to do so. The only requirement is
both partners are onboard with the change and the final product produces
the same output. The skeleton code is mainly used to provide a starting
structure so the code is easier to jump into.

Files

0. The file, ‘human_notch.fasta’, contains the genomic sequence for the Notch
gene in homo sapiens. The file is is the fasta format.

human_notch.fasta

1. The file, ‘codon_table.csv’, contains information on which codons produce
which amino acids. You will use then when simulating protein synthesis from
mRNA.

codon_table.csv

2. The file, ‘protein_synthesis.py’, contains skeleton function definitions
for all necessary steps in our simulation.

protein_synthesis.py

3. The file, ‘protein_synthesis_solutions.py’, contains implemented functions
for each function defined in ‘protein_synthesis’ skeleton code.

protein_synthesis_solutions.py

4. The file, protein_synthesis.ipynb, contains a Jupyter Notebook with the
same skeleton code found in protein_synthesis.py. Use this if Jupyter is your
preferred environment.

protein_synthesis.ipynb

Helpful Tips and Files

	The ``re`` python module contains a ``sub`` method to perform
regular expression substitution. Likewise, the base string method
``replace`` can replace substrings in a parent string with another
provided substring.

	FASTA files are text files with standardized format for storing
biological sequence. Generally, the first line in FASTA files is a
description demarked by ``>`` (or less frequently ``;``) as
the first character. The next lines contain the actual biological
sequence. Generally each line is either 60 or 70 characters long
before a line break. An example FASTA file (human_notch.fasta)
has been included. For more information:
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp

	Helpful functions

	Library

	Function

	Description

	Example Call

	base

	open()

	Access a
file in
Python.

	read_file = open(file_name, "r")

	base

	readline(
)

	Read the
current line
from a file
object.

	read_file.readline()

	base

	write()

	Write a
string to a
file.

	write_file.write("Hi there.")

	base

	strip()

	Remove
leading and
trailing
whitespace
and
formatting
characters.

	"\n Hi there ".strip()

	base

	split()

	Separate a
string into
disjoint
sections
given a
specified
delimiter.

	"1,2,3,4".split(',')"

	re

	sub()

	Substitute
a given
pattern with
another.

	re.sub("F", "J", "Function")

	base

	replace()

	Replace a
substring
with another
substring.

	"ATG".replace("G", "C")

Read FASTA Files:

def read_fasta(fasta_file):
 """
 Retrieve a DNA or protein sequence data from a FASTA file.

 Arguments:
 fasta_file (string): path to FASTA file.
 Returns:
 (string): DNA or protein sequence found in `fasta_file`.
 """
 return('')

Write FASTA Files:

def write_fasta(sequence, output_file, desc=''):
 """
 Write a DNA or protein sequence to a FASTA file.

 Arguments:
 sequence (string): sequence to write to file.
 output_file (string): path designating where to write the sequence.
 desc (string, optional): description of sequence. Default is empty.
 Returns:
 None.
 """
 return(None)

Read codon_table.csv:

def read_codon_table(codon_table='codon_table.csv'):
 """
 Create a dictionary that maps RNA codons to amino acids.

 Constructs dictionary by reading a .csv file containing codon to amino
 acid mappings.

 Arguments:
 codon_table (string, optional): path to the .csv file containing
 codon to amino acid mappings. Assumed column structure is
 'Codon', 'Amino Acid Abbreviation', 'Amino Acid Code', and
 'Amino Acid Name'. Default is 'codon_table.csv'
 Returns:
 (dictionary, string:string): dictionary with codons as keys and
 amino acid codes as values.
 """
 return({'': ''})

Transcribe DNA to RNA:

def transcribe(dna_seq, direction='+'):
 """
 Transcribe a DNA sequence to an RNA sequence.
 Arguments:
 dna_seq (string): DNA sequence to transcribe to RNA.
 strand (string, optional): which strand of DNA the sequence is
 derived from. The symbol '+' denotes forward/coding strand
 while '-' denotes reverse/template strand. Default is '-'.
 Regardless of strand, the sequence is assumed to oriented
 5' to 3'.
 Returns:
 (string): transcribed RNA sequence from `dna_seq`.
 """

return(0)

Translate RNA to Protein:

def translate(rna_seq, codon_to_amino):
 """
 Translate an RNA sequence to an amino acid sequence.

 Arguments:
 rna_seq (string): RNA sequence to translate to amino acid sequence.
 codon_to_amino (dict string:string): mapping of three-nuceleotide-long codons to
 amino acid codes.
 Returns:
 (string): amino acid sequence of translated `rna_seq` codons.
 """

 return('')

Tie the Steps Together:

def main(dna_seq, output_fasta):
 """
 Return the first protein synthesized by a DNA sequence.

 Arguments:
 dna_seq (string): DNA sequence to parse.
 output_fasta (string): fasta file to write translated amino acid sequence to.
 Returns:
 None.
 """

 return(None)

If You Finish Early

If you finish early, here are some suggestions to extend the
functionality of your script:

	Multiple Reading Frames: A reading frame is the sliding window in which
nucleotide triplets are considered codons. A reading frame is defined by the
first start codon discovered. That is, prior to a start codon, nucleotides
are scanned by incrementing a single nucleotide each time. After a start
codon is discovered, nucleotide positions are incremented by three (i.e. the
length of a codon). This +3 incrementation is considered the reading frame.
An open reading frame (ORF) occurs when a reading frame, beginning at a start
codon, also encompasses a stop codon. An ORF represents a genomic region that
is able to code for a complete protein. It is possible a single genomic
sequence contains multiple ORFs. Modify your code to 1. find all open reading
frames in a given genomic sequence, and 2. return the amino acid sequences
associated with each ORF.

	System Arguments: Using the ``sys`` Python module it is
possible to access command-line arguments passed by a user.
Specifically, the ``sys.argv`` variable stores user-passed
information. Implement command line functionality that takes a
user-provided FASTA file, converts the DNA sequence to amino acids,
and outputs to another user-provided FASTA file.

	Defensive Programming: When you’re creating a program, usually
you have a pretty good idea of its use and how it works. However,
sometimes we’re not the only ones using our programs. Therefore, it’s
a good idea to protect against user and input error. For example,
what happens if non-recoganized letters, whitespace, or special
characters (``*``, ``-``) are included in the input sequence?
Ensure your program is able to handle these, but remember some
characters may have special meanings.

	Calculating Statistics: Higher GC content in genomic regions is
related to many important biological functions such as protein
coding. Discuss with your partner the best way to measure the GC
content of a DNA sequence. Once you’ve agreed on the best way,
implement a function that will calculate the percentage along a
provided sequence. Using the Python module ``matplotlib``, the
output of this function to visualize how the measure changes along
the sequence. In order to easily identify areas of high and low GC
content, make sure to include a line that plots the mean level
accross sequence.

	Simulating Single Nucleotide Polymorphisms: Single nucleotide
polymorphisms (SNPs) are single-point mutations that change the
nucleotide of a single base in a strand of DNA. SNPs are incredibly
important in genome-wide association studies (GWAS) that look to
infer the relationship between specific genotypes and phenotypic
outcomes such as disease status. Using a numerical library, such as
numpy/scipy, create a function to randomly select a base for
mutation. Apply some function that determines the identity of the
newly mutated base. How biologically reasonable is your model? What
biological phenomena should we consider to create an accurate
simulation?

For some exercises, you will likely need to look for, and read, library
specific documentation in order to implement the functions. This alone
is a helpful exercise, as throughout your coding career you will
continually need to reference documentation.

 Workshop 4. Reproducible Research Using Git + Snakemake

Workshop 4. Reproducible Research Using Git + Snakemake

In this workshop you will learn about two tool, git and Snakemake, that promote
reproducible research in computation sciences through version control and workflow
management, respectively.

You are expected to study the materials and go over the git, GitHub,
and Snakemake tutorials before the workshop. You will also need an account on
GitHub [https://github.com] before the workshop. In the hands-on workshop you
will develop an analysis pipeline while documentating changes on Github, so it is
important that you have a basic understanding of both tools.

Sections

	Version Control
	What is version control

	Version control platforms

	Git
	Installing and configuring git

	A basic git tutorial

	Git Workflows

	Version control for large files

	Code hosting and repositories
	What is GitHub?

	SSH vs HTTPS

	Semantic versioning

	Licensing

	README and Markdown syntax

	Bug and Issue tracking

	Snakemake and Workflow Management
	Installation and Running

	Analysis as a Directed Acyclic Graph

	Snakemake

	Workshop task
	Getting started

	Introduction

 Version control

Version control

During your career as a researcher, you will write code and create documents over time, go back and edit them, reuse parts of it, share your code with other people or collaborate with others to make tools and documents.

Have you ever lost files that weren’t saved?
Or have you gone to a conference or interview and met someone interested in your work and realized you don’t have the files on your laptop?
On a gloomy day, have you changed some part of your code when suddenly everything broke and you wished you could just go back to the previous working version, but alas there is no backup and you have tens of folders with misleading names?

Or are you familiar with the scenario, in which you are working with a group, writing a function and then notice another person simultaneously making changes to the same file and you don’t know how to merge the changes?
Or someone makes changes to your working version and now when you run it, everything crashes?
Have you experienced these or a million other situations when you felt frustrated and stressed and spent hours trying to fix things and wished there was a time machine to go back in time?
The time machine has already been invented, and it’s called version control.

What is version control

Version control [https://www.atlassian.com/git/tutorials/what-is-version-control] software keeps track of every modification to the code in a special kind of database. If a mistake is made, developers can turn back the clock and compare earlier versions of the code to help fix the mistake while minimizing disruption to all team members.

Advantages:

	You can save all your code, data, and documents on the cloud, as you develop a project.

	You can manage the versions throughout time and see which changes were made at which time, and by whom.

	You can find other projects, import their scripts and modify them to reuse them for your purpose.

	You can share your code online: it’s good for science and it’s good for your resume.

	If you are a PhD student, you can start saving your files early on, and by the time you finish, you will have all your analyses documented and easily accessible, which will help a lot when you’re writing your thesis.

There are many version control software such as git, subversion, mercurial and many others.
git is by far the most popular one.

So what is git [https://www.atlassian.com/git/tutorials/what-is-git]?
git is a open source tool, which features functionalities to make repositories, download them, get and push updates. It can allow for teams to work on the same project, manage conflicts, monitor changes and track issues.

Version control platforms

The most widely used version control platforms supporting git are GitHub [https://github.com/] and Bitbucket [https://bitbucket.org/].

	Repositories on Bitbucket are by default private and only viewable by you and your team.

	Repositories on GitHub are by default public (everyone can see them), and to make them private you need to pay.

For a more comprehensive comparison of the two platforms see this comparison by UpGuard [https://www.upguard.com/articles/github-vs-bitbucket].
When choosing a platform you must consider the limitations of each tool, and if you are employed in research, most likely, you will have to use the platform preferred by your research institute or company.
Note that Bitbucket has a limitation on the number of teams one can make for free, and after some point you will need to pay.

Another platform for git is Gitlab [https://about.gitlab.com/].

 Git

Git

	Installing and configuring git

	A basic git tutorial

	Useful tips for commit messages

	Git Workflows

	Popular git workflows

	Version control for large files

Installing and configuring git

How will you run git on your system? If you prefer the command line (which is the best way to use git), just install git and you are good to go.

You can install git on a Debian system using:

sudo apt-get install git

or on a Red Hat based system

sudo yum install git

and on Mac

brew install git

For Windows, to get a git shell you can install TortoiseGit [https://tortoisegit.org/].

If you prefer to work with a GUI, you could install GitKraken [https://www.gitkraken.com/] on all three Operating Systems.

If you are using a terminal, the first thing to do is configure git with your username and email.
The username will be printed on the commits and changes you make.
The email will be used to log in. You will be prompted for your password when pushing and pulling from the server.

git config --global user.name "[your_username]"
git config --global user.email "[your_email]"

A basic git tutorial

The basic operations with git are pretty simple.
You can find a list of commands here [https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html].

In general, the most typical use of git consists of:

	git init to initialize a new repository

	git clone <url/to/your/hosted/repository> to copy a repository onto your local computer

	git add <path_to_file_you_want_to_add> to make a list of changes you made locally

	git commit to make a log of your changes

	git push to send the changes to the online repository

	git pull to get changes.

There are plenty of nice turorials to learn git on the web.
The best way to get started with git would be to try out this short tutorial [http://rogerdudler.github.io/git-guide] on the command line to familiarize yourself with the common
commands used by git. If you would like a more in-depth tutorial, follow along with this interactive web tutorial [https://learngitbranching.js.org] which features a built-in terminal that you can use to walk through the commands step by step.
The Bibucket tutorial from Atlassian [https://www.atlassian.com/git/tutorials/setting-up-a-repository] is also a very comprehensive and detailed turorial, and overall, a good resource to find what you need.

Exercise

	Start with this tutorial [http://rogerdudler.github.io/git-guide]

	Try the interactive web tutorial [https://learngitbranching.js.org]. Finish at least the four exercises in the “Introduction Sequence” section in the “Main” tab.

For the workshop, we expect you to know how to clone a repository, add and commit changes, push to, pull from the repository and some basic knowledge for moving and modifying the source tree.

Useful tips for commit messages

Let’s go over some standards to keep in mind when using git commit.

When you are committing your changes always use meaningful messages.

git commit -m "[a brief meaningful message explaining what the change was about]"

Avoid vague messages such as changed file x and fixed function y. The commit itself shows which files have been changed. The message should explain the functionality of the change.

Another important concept is that, each commit should have one functionality. It is not a good practice to make a lot of progress then push all the changes at once. The server will not run out of space if you do several commits. Commits are very useful to track the jobs you have completed.

When you find a conflict or something is not working, do not make duplicate files. For example, having main.tex and then creating main1.tex is confusing and voids the purpose of version control.

Commits can be undone. Conflicts can be resolved so don’t be afraid to make mistakes.

[image: ../../_images/1*bLtPTIsKUeAQHPo2eGrKpw.png]
Do not let this happen to your code!

Tip

Read this guide [https://chris.beams.io/posts/git-commit/#seven-rules] on how to write better commit messages.

Git Workflows

A Git Workflow is a recipe or recommendation for how to use git to accomplish work in a consistent and productive manner.
Given git’s focus on flexibility, there is no standardized process on how to interact with git.
These workflows ensure that all the developers in a team are making changes to the project in a uniform fashion.
It is important to note that these workflows are more guidelines than strict rules.

Popular git workflows

	Centralized workflow

	Feature branch workflow

	Gitflow

	Forking workflow

You can read more about these over here [https://www.atlassian.com/git/tutorials/comparing-workflows]. In the hands-on workshop task you will be using the feature branch workflow.

Version control for large files

git is decentralized, which means that changes in large files cause git repositories to grow by the size of the file (not by the size of the change) every time the file is committed.
Luckily, there are multiple third party implementations that will try to solve the problem, many of them use similar paradigms to provide solutions.

There are many routes one could go through to achieve this result. Some of them are mentioned below:

	git-lfs:
Git Large File Storage works by storing a pointer to the file in the git repository instead of the file itself.
The blobs are written to a separate server using the Git LFS HTTP API.
Hence, in order to use git-lfs your repository hosting platform must support it.
Fortunately, GitHub, BitBucket and GitLab all support git-lfs.
Learn more here [https://git-lfs.github.com/].

	git-annex:
Git-annex works by storing the contents of files being tracked by it to separate location.
What is stored into the repository, is a symlink to the to the key under the separate location.
In order to share the large binary files between a team for example the tracked files need to be stored to a different backend (like Amazon S3).
Note that GitHub does not support git-annex (i.e. you cannot use GitHub as a backend) but GitLab does.
Learn more here [https://git-annex.branchable.com/].

	dat
Dat is a nonprofit-backed community & open protocol for building apps of the future.
Use Dat command line to share files with version control, back up data to servers, browse remote files on demand, and automate long-term data preservation.
Dat allows you to Track your files with automatic version history, share files with others over a secure peer to peer network and automate live backups to external HDs or remote servers.
Learn more here [http://datproject.org/].

The easiest way to get started with versioning your large file is by using git-lfs, but git-annex and dat offer more flexibility and are more modern options.

 Source Code Hosting

Source Code Hosting

What is GitHub?

GitHub is a web-based hosting service for version control using Git.
It offers all of the distributed version control and source code management (SCM) functionality of Git as well as adding its own features.
It provides access control and several collaboration features such as bug tracking, feature requests, task management, and wikis for every project
GitHub offers plans for both private repositories and free accounts which are commonly used to host open-source software projects.

Exercise

	Create a GitHub account

	Get familiar with GitHub

	Read this short guide [https://guides.github.com/activities/hello-world/]

SSH vs HTTPS

The connection to the server is secured with SSH or HTTPS.
GitHub explains which URL to use [https://help.github.com/articles/which-remote-url-should-i-use/].
If you use SSH you will need an SSH key.
Read here to learn how to connect to GitHub with SSH [https://help.github.com/articles/connecting-to-github-with-ssh/].

[image: ../../_images/HTTPS_SSH_github.png]
When using your_username to clone/fetch a repository from the_author, an SSH url will look like:

git@github.com:[the_author]/[repository].git

and HTTPS will look like:

https://[your_username]@github.com/[the_author]/[repository].git.

Semantic versioning

Have you ever wondered how developers decide how to number the different versions of their software?
Do they just randomly come up with numbers? No, the version number consists of 3 numbers, x.y.z where x is a major change, y is a minor change and z a patch. There is official documentation [http://semver.org/] on this, which you can read if you are interested. But assume you have a tool that reads some data and performs some function on the data. If you find a bug and fix it, you publish the fix by adding to z. If you added a small functionality, for example support for compressed data input and compatibility with other tools, increase y. If you added another function to it, increase x.

Licensing

Public repositories on GitHub are often used to share open source software.
For your repository to truly be open source, you’ll need to license it so that others are free to use, change, and distribute the software.
You’re under no obligation to choose a license.
However, without a license, the default copyright laws apply, meaning that you retain all rights to your source code and no one may reproduce, distribute, or create derivative works from your work.

For example: if you use GitHub and/or Bitbucket, you can publish your tool with the GNU licensing.
GNU is open source, and open source does not mean free.
Whenever using code with GNU licensing, you must cite the authors/developers.
For more information on the license check the GNU organization documentation [https://www.gnu.org/licenses/gpl-3.0.en.html].

This link [https://choosealicense.com/] contains useful information to help you choose a license for your project.

README and Markdown syntax

It’s a good practice to make a README for your repository.
The README file can also be edited online using the editors GitHub and Bitbucket provide.
Typically they are written in Markdown syntax, which is very simple.
You might have heard about R Markdown, but Markdown is a syntax that R has knitted into its compiler.
Again there are many tutorials to learn Markdown.
You can check the syntax on the Atlassian website [https://confluence.atlassian.com/bitbucketserver/markdown-syntax-guide-776639995.html].

A README should include information about:

	name of the tool and the version

	what is this tool about

	who are the authors

	requirements and dependencies

	how to install/clone it

	how to run it

	what is the input and output

	licensing

	how to cite it

Look at this nice outline [https://gist.github.com/PurpleBooth/109311bb0361f32d87a2] for a standard README file in Markdown syntax.
To get the source code click the Raw button on the top left.

Bug and Issue tracking

Both GitHub and Bitbucket allow for issue tracking.
Members of a team can create an issue, assign it to a developer or admin, and comment on it.
An issue can be marked according to its importance and type, for example, fixing a bug or adding functionality; and the issue can be resolved once it is has been taken care of.
Issues can be linked to commits, to show which commit resulted in resolving an issue.

When a repository is publicly accessible, you can create issues to inform the developers there is a bug or a functionality you would be interested in.
So, the next time you find an issue with some tool that you can’t resolve after trying for a few days, just post an issue on their GitHub repository.
You can also link/mention issues and commits from different repositories.

Read this useful guide [https://guides.github.com/features/issues/] to learn more.

 Snakemake and Workflow Management

Snakemake and Workflow Management

	Installation and Running

	Analysis as a Directed Acyclic Graph

	Snakemake

	Introduction

	A More Thorough Example

	Using Python and R with Snakemake

	Rule Parameters, Configuration Files, Input Functions, Oh My!

Installation and Running

To install Snakemake, you will first need to have conda installed. Conda is
a package manager that comes with Anaconda, which you should have installed for
the Python workshop. To install Snakemake, simply execute the following command
in a terminal with conda available:

conda install snakemake

For more thorough instructions, you can take a look at the Snakemake documentation [https://snakemake.readthedocs.io/en/stable/getting_started/installation.html]

Assuming Snakemake is installed, it can be run by issuing the snakemake command in
a terminal where the working directory contains a file called Snakefile, which
details the workflow for Snakemake to execute.

Analysis as a Directed Acyclic Graph

Traditional bioinformatics analyses often involves many steps across many
different files. Files are often large, analysis can be time consuming, and
multiple tools will likely be used in order to get from the raw data to final
interpretable results. The entire process, starting from raw data and the
subsequent analysis steps performed to generate the final produce, is called a
workflow or a pipeline. It is often helpful to break a workflow into single steps, where the
output from one step is used an input to another. In this way, we can model a
workflow as a directed acyclic graph (DAG).

[image: Basic schematic of analysis steps as a directed acyclic graph (DAG).]
By modeling a workflow as a DAG, identifying dependencies and necessary orders of
executions is relatively simple. This is is where workflow managers, such as Snakemake, come in. At
a high level, workflow managers have been developed to execute the workflow DAG
in order. Theoretically, it would be possible to oversee such execution yourself,
or perhaps you could even get a little fancy and write a bash script to run
each step. However, workflow managers provide several benefits:

	Perform the same task across many files without writing extra code.

	Track sucessful execution of each task to easily allow start-up from failure.

	Centralize description of analysis workflow to single file.

	Produce integrated reports [https://koesterlab.github.io/resources/report.html] for each step.

	Re-run entire pipelines for new data or new parameters with minimal changes.

	Many other niceties such as cluster integration,

While there are many workflow/pipeline management tools around, such as
Nextflow [https://www.nextflow.io/], Luigi [https://github.com/spotify/luigi],
and many others, we will be using Snakemake [https://snakemake.readthedocs.io/en/stable/].

Snakemake

Introduction

Snakemake is a python-based workflow/pipeline management tool. It’s based on
GNU Make [https://www.gnu.org/software/make/] and follows a file-based production
rule implementation. That is, a rule is an operation that takes an input one file,
and operates onto it to produce another file.

In the above example, we created a rule called copy_file that copies one file
to another location. The input file(s) is specified by the input block, the
expected output file(s) to produce is denoted by the output block, and the
operations to generate the output file are implemented by the shell block.
Input and output file names are passed to the shell command using curly brackets {},
as shown above.

A More Thorough Example

To go over the general structure of rules and how to string them together, we
will look at an example pipeline from the Snakemake documentation. [https://snakemake.readthedocs.io/en/stable/tutorial/short.html]
This example workflow will go through some example steps to perform variant calling [https://www.ebi.ac.uk/training/online/courses/human-genetic-variation-introduction/variant-identification-and-analysis/]

You are encouraged to read over the general structure and syntax of snakemake here,
before following the linked tutorial for a more interactive introduction.

The raw data, target output, and required analysis steps for this pipeline can
be broken down as:

	Starting Data
- Short read sequences in fastq format
- Publicly available genome fasta file

	Target Output
- VCF file of found variants

	Required Steps
- Map reads to genome
- Sort and index mapped reads
- Call variants

To begin, we create a rule to generate a genomic index (required for alignment).

rule index:
 input:
 "data/genome.fa"
 output:
 "data/genom_index"
 shell:
 "bwa index -p genome_index {input}"

Here we have created the rule index that takes the input file data/genome.fa
(assumed to exist) and creates the data/genome_index file by calling bwa index
(bwa is an alignment tool [http://bio-bwa.sourceforge.net/]).

Once the index has been created, we can now map our fastq files to the genome,
also using bwa. Such a rule would look like this:

rule bwa_map:
 input:
 index="data/genome_index"
 fq="data/samples/A.fastq"
 output:
 "mapped_reads/A.bam"
 shell:
 "bwa mem {input.index} {input.fq} | samtools view -Sb -> {output}"

The above rule introduces the possibility of working with multiple input/output
files. These files can be specified using key words (i.e. “index” and “fq”). Individual
files can then be accessed individually using . accessors as shown above.
Because the above file uses “data/genome_index” as input, and because our previous
rule index generates the “data/genome_index” file, Snakemake will know index
must be executed before bwa_map.

While the bwa_map map successfully aligns reads to generate alignments,
however, as written we would need to write a separate bwa_map rule for each
fastq file we have. To get around this, we use wildcards wildcards are automatically
detected by snakemake using existing file names. For this example, assume we have two
fastq files “data/samples/A.fastq” and “data/samples/B.fastq”. To modify bwa_map
recognize it should align both fastq files, we again use curly brackets {} to mark
wildcard regions in filenames:

rule bwa_map:
 input:
 index="data/genome_index"
 fq="data/samples/{sample}.fastq"
 output:
 "mapped_reads/{sample}.bam"
 shell:
 "bwa mem {input.index} {input.fq} | samtools view -Sb -> {output}"

As written, snakemake will automatically detect that bwa_map should be run for
both fastq files.

Before calling variants, we must first sort the our newly created alignment files.
To do so, we create the rule samtools_sort.

rule samtools_sort:
 input:
 "mapped_reads/{sample}.bam"
 output:
 bam="sorted_reads/{sample}.bam"
 bai="sorted_reads/{sample}.bam.bai"
 shell:
 "samtools sort -T sorted_reads/{wildcards.sample} "
 "-O bam {input.bam} > {output};"
 "samtools index {output}"

Because the above rule makes use the sample wildcard, snakemake will again
know it will need to execute the rule for each .bam file produced by bwa_map.
As shown in the shell block, you are able to explicity reference wildcards for each
run as shown by {wildcards.sample}. Now that we have sorted alignments, we
can peform the final step of the pipeline and call variants using bcftools.

SAMPLES = ["A", "B"]
rule bcftools_call:
 input:
 fa="data/genome.fa",
 bam=expand("sorted_reads/{sample}.bam",
 sample=SAMPLES),
 bai=expand("sorted_reads/{sample}.bam.bai},
 sample=SAMPLES)
 output:
 "calls/all.vcf"
 shell:
 "samtools mpileup -g -f {input.fa} {input.bam} "
 "| bcftools call -mv -> {output}"

Above, the rule bcftools_call uses the expand function from snakemake to
to aggregate inputs accross wildcards. In this specific case bam and bai
input “files” are actually two separate lists of files containing generated bam
and bam.bai files for both “A” and “B” samples. An important note, is that
expand functions in Snakemake are often required in order to for Snakemake
to recognize allowable wildcard values.

Finally, we we can put the entire pipeline together in a single Snakefile,
while also specifying an all rule which tells Snakemake which file should be
the default target.

SAMPLES = ["A", "B"]
rule all:
 "calls/all.vcf"

rule index:
 input:
 "data/genome.fa"
 output:
 "data/genom_index"
 shell:
 "bwa index -p genome_index {input}"

rule bwa_map:
 input:
 index="data/genome_index"
 fq="data/samples/{sample}.fastq"
 output:
 "mapped_reads/{sample}.bam"
 shell:
 "bwa mem {input.index} {input.fq} | samtools view -Sb -> {output}"

rule samtools_sort:
 input:
 "mapped_reads/{sample}.bam"
 output:
 bam="sorted_reads/{sample}.bam"
 bai="sorted_reads/{sample}.bam.bai"
 shell:
 "samtools sort -T sorted_reads/{wildcards.sample} "
 "-O bam {input.bam} > {output};"
 "samtools index {output}"

rule bcftools_call:
 input:
 fa="data/genome.fa",
 bam=expand("sorted_reads/{sample}.bam",
 sample=SAMPLES),
 bai=expand("sorted_reads/{sample}.bam.bai},
 sample=SAMPLES)
 output:
 "calls/all.vcf"
 shell:
 "samtools mpileup -g -f {input.fa} {input.bam} "
 "| bcftools call -mv -> {output}"

Using network diagrams, we can visualze the above workflow as a simple DAG:

[image: ../../_images/bwa_2sample.png]
The above image shows not only the dependence of rules on other rules, but also
the execution order of each step. Without changing the pipeline as written, but
instead expanding the samples wildcard to include more samples, we can easily
run the pipeline for an arbitrary number of samples.

[image: ../../_images/bwa_10sample.png]

Using Python and R with Snakemake

In the above example, through the shell block, we only used rules that could execute their necessary
commands via bash. A shell block is nice if you are working with command-line tools,
however, we will often want to perform analysis either in R or Python
scripts. Snakemake is able to handle passing input and parameters to both R
and Python scripts using a script block. Assuming a Python script
copy.py that copies one file to another, our basic copy rule could be replaced
with:

input:
 txt="test.txt"
output:
 txt="test_copy.txt"
script:
 "copy.py"

where copy.py might be implemented as:

import shutil
if __name__ == '__main__':
 try:
 snakemake
 except NameError:
 snakemake = None
 if snakemake is not None:
 shutil.copy(snakemake.input['txt'], snakemake.output['txt'])

Meanwhile, Snakemake parameters passed to an R script using the @ operator
(e.g. snakemake@input[['txt]] and snakemake@output[['txt']])

Rule Parameters, Configuration Files, Input Functions, Oh My!

Often we will want to pass parameters to each rule, set configuration files for
each run of data, and might require some more sophisticated specifications for
our input files. Now that you’ve been introduced to the basic motivation, syntax,
and structure behind Snakemake, you should follow along interactively with the
tutorial as described on the Snakemake website [https://snakemake.readthedocs.io/en/stable/tutorial/setup.html].
Because we will need to run our own pipeline during the workshop, it is suggested
to implement + run the pipeline on either your local computer, or on the scc –
whichever you’ll be using during the actual workshop. By the end of the tutorial,
you should know the basics for writing and running Snakemake pipelines. If you
complete up until te “Additional Features” step, you should have enough knowledge
to complete the upcoming workshop.

 Workshop 4. Reproducible Research with Snakemake and Git

Workshop 4. Reproducible Research with Snakemake and Git

Instructors: Dakota Hawkins and Emma Briars

	Getting started

	Introduction

In this workshop you will use Snakemake to implement a basic pipeline to download,
preprocess, and cluster single-cell RNA sequencing (scRNA-seq) datasets. During
development, you will use git and GitHub for version control to track changes
and complete to-dos. You can either complete the tasks on the Shared Computing
Cluster (SCC) or on your local computer. We will be using the git command
line interface throughout this workshop.

Tip

To login to the SCC use: ssh <username>@scc1.bu.edu

Tip

Once on the scc, start an interactive session using: qrsh -pe omp 2 -l mem_per_core=4

Getting started

A basic skeleton pipeline is hosted on the BRITE github here. [https://github.com/BRITE-REU/snakemake-workshop]
To begin, login to GitHub using your personal log-in, navigate to the skeleton repository,
and fork the repo.

[image: ../../_images/to_fork.png]
Forking the repo will give you access to your own independent version of the
repository.

Once you’ve forked the repo to your own Github profile, clone the repo to either
your local computer or the scc using git clone. This workshop will require
several packages necessary for analysis. To install these packages we have
provided an install.sh bash script. However, because of conda weirdness,
you’ll need to execute the script line-by-line.

Introduction

While the packages are installing, navigate to the issues tab in your forked
version of the repository.

[image: ../../_images/issues.png]
Here you will see a list of “issues” that need to be resolved. We will implement
the analysis pipeline by resolving each issue in order. Which issues need to be
worked on, and which issues have already been completed, can be visualized using
project boards.

[image: ../../_images/projects.png]
To actually implement the fixes necessary to produce a working pipeline, we will
be modifying the workflow file, Snakefile, to specify target input, parameters,
and output. We will also need to make small modifications to the called scripts
to ensure they are correctly handling the arguments passed by snakemake.

Once you’ve completed a task, you should add, commit and push the
modified files to your remote repository on GitHub. When commiting, specify
issue the commit is resolving in order to automatically close the respective
issue. For example, assuming I have modified Snakefile and
scripts/download_data.py to correctly download the pbmc3k dataset, I
would write:

git commit -m 'Now downloads pbmc3k dataset. Fixes #1'

By including Fixes followed by the issue number (i.e. #1) GitHub
recognizes that the changes fixes the outstanding issue and closes it. Once
pushed, go look at the issues and project board on your repository to see what’s
changed. Repeat this process for all listed issues and by the end you’ll have a
functional pipeline!

 Workshop 5: Visualization

Workshop 5: Visualization

Introduction

This workshop will serve as an introduction to popular visualization tools and
plots used in bioinformatics. While not exhaustive, the workshop should
hopefully aid students in not only understandings how to interpret common
plots, but also how to create them themselves.

The workshop is broken in to two parts: a basic introduction to visualization
tools, and a problem based workshop. The workshop will be done in Python, so
while a small section of the introduction mentions plotting tools in R, the
major focus will be on Python. The workshop will be done using
paired programming, with both students alternating who “drives” on a regular
basis. It is important that you read and actively engage in the introductory
material before the workshop.

Installation

You should either have already installed Anaconda/conda for the python
workshop, or have access to a Python IDE like Jupyter Notebook via the
BU Shared Computing Cluster <https://scc-ondemand1.bu.edu/pun/sys/dashboard/batch_connect/sessions>.

This workshop will use a conda environment to make sure all required packages
are installed without version issues. However, if choose to work in a Jupyter
Notebook we will first need to install the nb_conda_kernels package. This
will ensure the conda environment is discoverable when working in a Notebook.

To install, issue the following command in a terminal:

conda install -c conda-forge nb_conda_kernels

Conda environments are isolated installations of software that are kept
seperate from each other. For example, if we wanted to have both Python 2.7 and
Python 3.x installed on a machine – without conflicting with one another –
we could run the following commands:

conda create --name p2 python=2
conda create --name p3 python=3

This will create two conda environments (“p2” and “p3”) that we can access by
typing

conda activate p2

or

conda activate p3

For this workshop, we will create a conda environment named “viz”. However,
instead of manually entering all necessary packages, we will install all the
packages from a specification file called “environment.yaml”. To do this, first
download the specification file, and
navigate to the directory containing the downloaded “environment.yaml” file.
Run the following command in a terminal:

conda env create --name viz --file environment.yaml

Jupyter

If you would prefer to go through the introductory material in a Jupyter
Notebook, you can download the complete notebook.

Notebook.

However, before doing so, you will need to
follow the above installation instructions to both install the required packages
and gain access to the installed conda environment. Once you’ve activated
either Jupyter Lab or Jupyter Notebook, click the kernel tab, go to
change kernel, and select “Python [conda env:viz]”. You should now have
access to all required packages.

Troubleshooting

If you follow the above instructions, and you do not see
“Python [conda env:viz]” in selectable the list of selectable kernels, make sure
you started Jupyter from the base conda environment (i.e. you don’t see
“(viz)” at the beginning of your terminal prompt). Otherwise, try restarting.

Workshop Materials

	Workshop 5: Data Visualization
	Visualization Philosophy

	Pick the Correct Plot to Represent Your Data

	Include the Least Amount of Necessary Information

	Plotting Libraries
	Plotting Tools in Python

	Plotting Libraries in R

	Packages for this workshop

	Matplotlib Basics

	Data Frames

	Types of Plots
	Relational

	Categorical

	Matrix Plots

	Distribution Plots

	Seaborn Cheat Sheet

	An Example of Exploratory Data Analysis with ggplot
	Loading Packages and Data

	Summarize Data

	Make Some Plots

	Workshop
	The Data Set

	Task 0: Import Libraries and Data

	Task 1: Visualize Dataset Demographics

	Task 2: Volcano Plots

	Task 3: Subplots and Facet Grids

 Workshop 5: Data Visualization

Workshop 5: Data Visualization

In this online workshop you will learn the basic components neccessary
for appropriate and effective data visualization. In the in-class
workshop, you will put this information to test as you create unique
data visualization for relevant biological data.

Visualization Philosophy

While science is often thought of as simply running experiments and
processing results, communicating those results is one of the most
important steps! Data visualization is a pivotal step that not only aids
in processing results, but also communicating key take aways. However,
not all visualizations are created equal, and poor visualizations may
obscure or even mislead important findings.

While not exhaustive, here are few guidelines to consider when making
visualizations:

Pick the Correct Plot to Represent Your Data

It is important to pick the plot that best represents the data, and
supports conclusions.

Plotting Only Summary Statistics May Lead to Incorrect Conclusions

There are many plots you can use to represent similar ideas. Boxplots,
violin plots, point plots, and beeswarm plots can all be used to
visualize the distribution of values within a feature. However, some
methods may better represent the actual distribution of your data, as
demonstrated below. The below image shows the potential danger of only
plotting summary statistics (boxplots simply plot the 1st, 2nd, and 3rd
quartile) while ignoring the raw data.

[image: ../../_images/BoxViolin.gif]

The above plot was taken from
https://www.autodeskresearch.com/publications/samestats, and
contains more interesting examples showing the potential downside of
plotting only summary statistics. Of course, some of these
visualizations are easier to interpret than others, and a simpler plot
may be better at communicating the main take away. It is important,
however, to ensure that such a plot does accurately show the underlying
patterns in your data.

Overplotting May Obscure Real Patterns

In single-cell biology, it is common to plot each cell in a scatter plot
using some reduced dimension (PCA, t-SNE, UMAP, etc.). This not only
allows you to visualize potential cell types in your dataset, but also
lets you easily visualize how gene expression patterns may change as a
function of cells types. One of these plots, is shown below.

[image: ../../_images/ggplot-decreasing-1.png]
Looking at the above figure, it seems gene expression does not differ
from the major clusters in the dataset. However, single-cell datasets
are often quite large, and such plots can suffer from overplotting –
when one datapoint obscures another. Indeed, the below plot is the same
dataset plotted in the same dimensions, but cells are plotted in a
different order. Because the order changed, the cells with higher
expression were plotted atop the cells with lower expression that were
previously obscuring them.

[image: ../../_images/ggplot-increasing-1.png]
To avoid creating potentially misleading plots, the schex
package [https://github.com/SaskiaFreytag/schex] summarizes
neighborhoods of data and plots those summarized areas on a hexgrid.
This plot still allows viewers to easily distinguish clusters in the
dataset, while also more accurately displaying gene expression patterns.

[image: ../../_images/schex-1.png]

Color Choice May Introduce Artifical Artifacts

The above scatterplots and hexgrids represented gene expression values
by plotting different colors along a color map gradient: darker, purple
values represented low expression while brigther, yellow values
represented high expression. The color map used is known as “viridis”,
and is a “perceptually uniform color map”. This means the color map is a
monotonic function in lightness (either only increasing or decreasing,
but not changing direction), as demonstrated below.

[image: image2]

Perceptually uniform color maps ensure that an increase in the raw data
by \(x\), will also lead to a perceived increase in color by
\(x\). If your chosen color map is not perceptually uniform – such
as jet and rainbow color maps shown below – you have no such
guarantee, and small changes in data more appear larger or more
important than the data supports.

[image: image3]

Poorly chosen color maps leading to false conclusions can best
demonstrated in the below example:

	A matrix dataset is simulated that features sinusoidal oscillations.

	The dataset is plotted using four different color maps: jet, a
grayscale representation of jet, viridis, and simple gray scale

	Both jet and grayscale jet appear to show some ellipsoid-type
characteristics near the top of plots.

	However, viridis and normal grayscale show these are actually
artifacts introduced by the colormaps, instead of representative of
the underlying data.

More information on perceptually uniform color maps can be found
here [https://matplotlib.org/users/colormaps.html] and
here [http://colorcet.pyviz.org/].

taken from: https://jakevdp.github.io/blog/2014/10/16/how-bad-is-your-colormap/

import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

x = np.linspace(0, 6)
y = np.linspace(0, 3)[:, np.newaxis]
z = 10 * np.cos(x ** 2) * np.exp(-y)

def grayify_cmap(cmap):
 """Return a grayscale version of the colormap"""
 cmap = plt.cm.get_cmap(cmap)
 colors = cmap(np.arange(cmap.N))

 # convert RGBA to perceived greyscale luminance
 # cf. http://alienryderflex.com/hsp.html
 RGB_weight = [0.299, 0.587, 0.114]
 luminance = np.sqrt(np.dot(colors[:, :3] ** 2, RGB_weight))
 colors[:, :3] = luminance[:, np.newaxis]

 return cmap.from_list(cmap.name + "_grayscale", colors, cmap.N)

cmaps = [plt.cm.jet, grayify_cmap('jet'), plt.cm.viridis, plt.cm.gray]
fig, axes = plt.subplots(2, 2, figsize=(12, 9))

for cmap, ax in zip(cmaps, axes.flatten()):
 im = ax.imshow(z, cmap=cmap)
 ax.set_title(cmap.name)
 divider = make_axes_locatable(ax)
 cax = divider.append_axes("right", size="5%", pad=0.05)
 plt.colorbar(im, cax=cax)

plt.tight_layout()

[image: ../../_images/colormaps.png]

Include the Least Amount of Necessary Information

What this means is to include all information necessary to accurately
and quickly interpret a given figure, but to leave out excessive
annotations that do aid readers understanding. Busy plots are hard to
parse. It’s easy to get lost in excessive annotations, and information
that was meant to aide interpretation can hinder it. It is hard to set
hard and fast rules for what information is necessary in a plot, and
what information is excessive. Take, for example, the heatmap plotted
below.

[image: ../../_images/messy_heatmap.png]
By looking at the heatmap we know two things are being clustered, shown
by the dendrogram. We know the two things are different entities – given
by different entry labels along the rows and columns. However, we don’t
know what they represent (e.g. What does GSMXXXXX mean? And how does it
relate to MOBP?). Further, we can se there’s a difference between the
value plotted in some regions of the graph, but we don’t know what that
value represents. Compare the previous plot with the image below.

[image: ../../_images/clean_heatmap.png]
The data is the same as above, but now we know that columns are
repsented by genes and rows are represented by samples: we’re looking at
a \(sample \times gene\) heatmap! Further, the “Z-score” label by
the color bar lets us know we’re looking at standardized expression
values. You might think we’re losing information by losing the previous
entry labels, but plotted data actually consists of 205 samples and 1000
genes! The previous heatmap definitely didn’t include 1000 gene names or
even 205 sample names, potentially misleading readers on both the number
of genes and samples.

In the above example, we increase clarity by both removing information
(entry labels along the rows and columns) and adding information (labeling
rows/columns and labeling the color bar). This is often the type of balance we
need to strike when creating clean and clear figures.

Plotting Libraries

While numerical libraries help us generate results, the results would do
little good if we were not able to display them in a digestable manner.
Thankfully, due to the recent surge in popularity/demand for data
scientists and data science tools, there are now more plotting libraries
to choose from in the data science ecosystem than ever before.

Plotting Tools in Python

There are many plotting libraries to chose from when plotting in Python.
Many of them excel in one area or another, so knowing what type of graph
you want to create, how you want people to interact with the plot, and
what type of environment you will be working in will help you determine
which library is best for your needs.

Matplotlib

Matplotlib is the go-to standard for plotting in Python. It’s a
behometh of a package with excellent user control and options that will
cover most, if not all use cases. However, extreme user control comes at
the cost of a fair amount of overhead compared to other, high-level
plotting libraries such as Seaborn or ggplot2 in R.

More information can be found here [https://matplotlib.org/].

Example:

from matplotlib import pyplot as plt
import seaborn as sns
plt.rcParams['figure.figsize'] = (10.0, 8.0)
iris = sns.load_dataset("iris")
for each in iris['species'].unique():
 subset = iris[iris['species'] == each]
 plt.scatter(x=subset['sepal_length'], y=subset['petal_width'], label=each)
plt.xlabel('Sepal Length')
plt.ylabel('Petal Width')
plt.legend()

<matplotlib.legend.Legend at 0x7efd0ca8bba8>

[image: ../../_images/intro_5_1.png]

Seaborn

Seaborn is a high-level statistical plotting library that extends
matplotlib. All plots are still created using matplotlib, but the
seaborn API makes creating interesting plots much more straight forward.
This allows users to generate complex plots relatively easily, while
still having access to the more in-depth control matplotlib offers.

More information can be found here [https://seaborn.pydata.org/].

Example

sns.scatterplot(x='sepal_length', y='petal_width', hue='species', data=iris)

<matplotlib.axes._subplots.AxesSubplot at 0x7efd0c816908>

[image: ../../_images/intro_7_1.png]

Bokeh

Bokeh is a lower-level plotting library that produces interactive
plots made for modern web browsers. It is an extremely useful library if
you’re making visualizations for a website, server-backed apps, or any
situation where collaborators or viewers would benefit from an
interactive plot.

While Bokeh likely has limited use-cases for creating publication
figures, it can still be useful during data exploration or when creating
a supporting website.

More information can be found
here [https://bokeh.pydata.org/en/latest/].

Example

from bokeh.plotting import figure, show, output_file
from bokeh.io import output_notebook, show
output_notebook()
TOOLS="hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,"
colormap = {'setosa': 'blue', 'versicolor': 'orange', 'virginica': 'green'}
colors = [colormap[x] for x in iris['species']]
p = figure(title='Iris Morphology', tools=TOOLS)
p.xaxis.axis_label = 'Sepal Length'
p.yaxis.axis_label = 'Petal Width'
p.circle(iris['sepal_length'], iris['petal_width'], color=colors, size=10)
show(p)

Altair

Altair is a higher-level, declarative statistical plotting library
that produces interactive plots with less overhead compared to bokeh.
However, Altair was specifically designed to work in Jupyter Notebooks
and similar technologies (Jupyter Lab, Google Collab, etc.). Therefore,
if you do not work in such environments, it will likely have limited
use. However, if you do work in such environments, it provides a
powerful way to easily explore and visualize data.

More information can be found
here [https://altair-viz.github.io/index.html].

Example

import altair as alt

alt.Chart(iris).mark_circle(size=100).encode(
 alt.X('sepal_length', scale=alt.Scale(zero=False)),
 y='petal_width',
 color='species',
 tooltip=['species', 'sepal_length', 'petal_width']).interactive()

[image: ../../_images/intro_11_0.png]

Plotting Libraries in R

Like Python, R also boasts some very impressive plotting libraries,
namely the famous ggplot2 library.

Base R

Unlike Python, R has basic plotting as a part of the standard library.
While lacking some the frills of other plotting tools, you can still
make clean and readable graphs using basic functionality

Example

plot(iris$Sepal.Length, iris$Petal.Width, col=iris$Species)

[image: ../../_images/iris-baseR.png]

ggplot2

If there’s any package that causes the greatest envy between Python and
R users, it is definitely ggplot2. ggplot2 is a declarative plotting
library that implements the so-called “grammar of graphics” framework,
as expalined in the book Grammar of Graphics by Leland
Wilkinson [https://www.springer.com/in/book/9780387245447?source=post_page---------------------------].
It is an extremely user friendly package that makes it easy to produce
nice and clean looking graphs, while also providing power-users with the
ability to easily modify graphs to their liking.

You can find more information about the package
here [https://ggplot2.tidyverse.org/].

Example

library(ggplot2)
ggplot(data=iris, aes(x=Sepal.Length, y=Petal.Width, col=Species)) +
geom_point()

[image: ../../_images/iris_ggplot.png]

Packages for this workshop

The hands-on portion of this workshop will be done in Python, and we
will be using the matplotlib and Seaborn packages. Installation of
all required packages can be done by downloading the provided
environment.yaml file, navigating to the directory where the file is
located, and issueing the following command in a terminal window:

conda create env --name viz --file environment.yaml

This will install a virtual environment that can be loaded by issuing
the following command:

conda activate viz

A virtual environment is just an isolated installion of software – in
this case python packages – that won’t interfere with other
installations of the same software. In this case we’re using a virtual
environment known as a conda environment, but there are other
options out there such as
pipenv [https://docs.pipenv.org/en/latest/].

Matplotlib Basics

As mentioned above, matplotlib is a massive package, and it would be
impossible to cover all aspects of the library in a single workshop. For
now, we’ll just be going over the extreme basic to get started.

To interact with matplotlib we first have to import it.
Generally, instead of importing the entire package, we import the pyplot module
from matplotlib import pyplot as plt # it is cononical to import pyplot as "plt"
import numpy as np # also cononical to import numpy as np, numpy is a numerical library

get values from -20, 20
x = np.arange(-20, 21)
calculate the square of each value
y = x ** 2
plot the values as line plot using the "plot" function
plt.plot(x, y)

[<matplotlib.lines.Line2D at 0x7efce6fe7748>]

[image: ../../_images/intro_14_1.png]
Note If you are working in a non-notebook environment (i.e. a python
script or another python interpreter), you’ll need to issue the command
plt.show() in order to view the plot window.

plot the individual data points using a scatter plot
plt.scatter(x, y)

<matplotlib.collections.PathCollection at 0x7efce6fd4978>

[image: ../../_images/intro_16_1.png]
make the same plot, but with red stars!
plt.scatter(x, y, color='red', marker='*')

<matplotlib.collections.PathCollection at 0x7efce6f447f0>

[image: ../../_images/intro_17_1.png]
color="red" and marker="*" are called keyword arguments: they
are optional styling arguments that are set by passing a key (e.g
“color”) and a value (“red”). There are a lot of possible keyword
arguments you can change, but they are generally consistent across
plotting functions.

plot data points as well as the line graph
plt.scatter(x, y)
plt.plot(x, y)

[<matplotlib.lines.Line2D at 0x7efce6f11be0>]

[image: ../../_images/intro_19_1.png]
plot a bar plot of counts 10, 7, and 5 for groups A, B, and C, respectively
plt.bar(['A', 'B', 'C'], [10, 7, 5])

<BarContainer object of 3 artists>

[image: ../../_images/intro_20_1.png]
plot a histogram of sampled values from a standard normal distribution
norm_x = np.random.randn(1000)
__ = plt.hist(norm_x)

[image: ../../_images/intro_21_0.png]
plot the square of the provided data label
label axes using plt.xlabel and plt.ylabel functions
data = np.array([55.3846,97.1795,51.5385,96.0256, 46.1538,94.4872,42.8205,91.4103,
40.7692,88.3333,38.7179,84.8718,35.641,79.8718,33.0769,77.5641,
28.9744,74.4872,26.1538,71.4103,23.0769,66.4103,22.3077,61.7949,
22.3077,57.1795,23.3333,52.9487,25.8974,51.0256,29.4872,51.0256,
32.8205,51.0256,35.3846,51.4103,40.2564,51.4103,44.1026,52.9487,
46.6667,54.1026,50,55.2564,53.0769,55.641,56.6667,56.0256,
59.2308,57.9487,61.2821,62.1795,61.5385,66.4103,61.7949,69.1026,
57.4359,55.2564,54.8718,49.8718,52.5641,46.0256,48.2051,38.3333,
49.4872,42.1795,51.0256,44.1026,45.3846,36.4103,42.8205,32.5641,
38.7179,31.4103,35.1282,30.2564,32.5641,32.1795,30,36.7949,
33.5897,41.4103,36.6667,45.641,38.2051,49.1026,29.7436,36.0256,
29.7436,32.1795,30,29.1026,32.0513,26.7949,35.8974,25.2564,
41.0256,25.2564,44.1026,25.641,47.1795,28.718,49.4872,31.4103,
51.5385,34.8718,53.5897,37.5641,55.1282,40.641,56.6667,42.1795,
59.2308,44.4872,62.3077,46.0256,64.8718,46.7949,67.9487,47.9487,
70.5128,53.718,71.5385,60.641,71.5385,64.4872,69.4872,69.4872,
46.9231,79.8718,48.2051,84.1026,50,85.2564,53.0769,85.2564,
55.3846,86.0256,56.6667,86.0256,56.1538,82.9487,53.8462,80.641,
51.2821,78.718,50,78.718,47.9487,77.5641,29.7436,59.8718,
29.7436,62.1795,31.2821,62.5641,57.9487,99.4872,61.7949,99.1026,
64.8718,97.5641,68.4615,94.1026,70.7692,91.0256,72.0513,86.4103,
73.8462,83.3333,75.1282,79.1026,76.6667,75.2564,77.6923,71.4103,
79.7436,66.7949,81.7949,60.2564,83.3333,55.2564,85.1282,51.4103,
86.4103,47.5641,87.9487,46.0256,89.4872,42.5641,93.3333,39.8718,
95.3846,36.7949,98.2051,33.718,56.6667,40.641,59.2308,38.3333,
60.7692,33.718,63.0769,29.1026,64.1026,25.2564,64.359,24.1026,
74.359,22.9487,71.2821,22.9487,67.9487,22.1795,65.8974,20.2564,
63.0769,19.1026,61.2821,19.1026,58.7179,18.3333,55.1282,18.3333,
52.3077,18.3333,49.7436,17.5641,47.4359,16.0256,44.8718,13.718,
48.7179,14.8718,51.2821,14.8718,54.1026,14.8718,56.1538,14.1026,
52.0513,12.5641,48.7179,11.0256,47.1795,9.8718,46.1538,6.0256,
50.5128,9.4872,53.8462,10.2564,57.4359,10.2564,60,10.641,
64.1026,10.641,66.9231,10.641,71.2821,10.641,74.359,10.641,
78.2051,10.641,67.9487,8.718,68.4615,5.2564,68.2051,2.9487,
37.6923,25.7692,39.4872,25.3846,91.2821,41.5385,50,95.7692,
47.9487,95,44.1026,92.6923])
__ = plt.hist(data)
plt.xlabel('Values')
plt.ylabel('Counts')

Text(0, 0.5, 'Counts')

[image: ../../_images/intro_22_1.png]
make the data into a 142 by 2 data matrix
plot the values as a scatterplot
label the axes and set a title using the "title" function
hi = data.reshape(142, 2)
plt.scatter(hi[:, 0], hi[:, 1])
plt.xlabel('x')
plt.ylabel('y')
plt.title("Where's Sam Neill When You Really Need Him?", loc="left")

Text(0.0, 1.0, "Where's Sam Neill When You Really Need Him?")

[image: ../../_images/intro_23_1.png]

Data Frames

A data frame is a two-dimensional data structure used for storing
data tables. It is componsed of lists (or vectors in R) of equal length.
Data frames contain a header (column names), row names, and the
actual data stored in cells.

Today’s workshop will focus on using data frames in python (using the
pandas library), but this data structure is also commonly used in R.
For more information on data frames in R, please reference the following
resource: http://www.r-tutor.com/r-introduction/data-frame

There are numerous ways for creating a data frame using pandas, and they
are enumerated here:
https://www.geeksforgeeks.org/creating-a-pandas-dataframe/ Choose the
method that works best for your data. An example of creating a
dictionary from a set of lists is below:

Example Data Frame
Import Libraries
import pandas as pd

Create Lists of Data
avengers = ['Iron Man', 'Captain America', 'Thor', 'Black Widow', 'Hawkeye', 'Hulk']
num_appearances = [9, 9, 7, 8, 4, 7]
num_lines = [2788, 924, 856, 463, 148, 472]

Make Data Frame
dict = {'Avengers': avengers, 'Num_Appearances': num_appearances, 'Num_Lines': num_lines}
marvel_stats = pd.DataFrame(dict)
print(marvel_stats)

 Avengers Num_Appearances Num_Lines
0 Iron Man 9 2788
1 Captain America 9 924
2 Thor 7 856
3 Black Widow 8 463
4 Hawkeye 4 148
5 Hulk 7 472

More commonly, your data will be stored in an excel or .csv file. In
order to work with these data as a data frame, you can read in the data
using built-in pandas functions.

Read in a csv file
#csv_data = pd.read_csv("csv_example.csv")
Read in an excel file
#excel_data = pd.read_excel('excel_samples.xlsx')

Oftentimes, your tabular data is not stored in this data frame
structure, e.g. is “unstacked” and common attributes are spread across
different columns. For these cases it is important to be able to
reshape your data into the data frame structure. This reshaped data
is sometimes called tidy data.

TASK: Read about tidy data here. [https://vita.had.co.nz/papers/tidy-data.pdf] Understanding
effective data pre-processing (tidying) is crucial to efficient data
visualization!

Some useful functions for reshaping data with pandas:

	stack()

	Stack method works with the MultiIndex objects in DataFrame, it

returning a DataFrame with an index with a new inner-most level of
row labels. It changes the wide table to a long table.

	unstack()

	Unstack is similar to stack method, It also works with multi-index

objects in dataframe, producing a reshaped DataFrame with a new
inner-most level of column labels.

	melt()

	Melt reshapes the dataframe from wide format to long format. It
uses the “id_vars[‘col_names’]” to melt the dataframe by column
names.

Note: In R, it is useful to use the ‘tidyverse’ packages to reshape
data!

Types of Plots

Relational

Relational plots are a type that many people are comfortable using. It
displays the relationship between two numerical variables. The intent
of these plots is to draw a causal relationship between the two
variables.

Biological Example: Expression of one gene over time

Types of Plots: Scatter plot, line plot

Seaborn API:

- Seaborn
Scatterplot [https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot]:
Draws a scatter plot

- Seaborn
Lineplot [https://seaborn.pydata.org/generated/seaborn.lineplot.html#seaborn.lineplot]:
Draws a line plot
- Seaborn
Relplot [https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot]:
Figure-level interface for drawing relational plots onto a
FacetGrid.

- Data must be passed in a long-form DataFrame with variables
specified by passing strings to x, y, and other parameters - Use the
kind parameter to specify which underlying plotting fucntion to use
(e.g. kind = “scatter”)

- Can do the same things as the figure-level functions (scatterplot()
and lineplot(), but can also facet and do other nice features)

Load Sample Data
tips = sns.load_dataset("tips")

Use scatterplot() to generate a scatter plot
plt.title("This Scatter Plot was Made with scatterplot()")
sns.scatterplot(x="total_bill", y="tip", hue="day", data=tips)

Use relplot() to generate a scatter plot
g1 = sns.relplot(x="total_bill", y="tip", hue="day", data=tips, kind='scatter')
g1.fig.suptitle("This Scatter Plot was Made with relplot()");

[image: ../../_images/intro_30_0.png]
[image: ../../_images/intro_30_1.png]
Load Sample Data
fmri = sns.load_dataset("fmri")

Use lineplot() to generate a line plot
plt.title("These Line Plots were Made with lineplot()");
sns.lineplot(x="timepoint", y="signal", hue="event", data=fmri)

Use relplot() to generate a line plot
g3 = sns.relplot(x="timepoint", y="signal", hue="event", style="event",
 col="region", kind="line", data=fmri)
g3.fig.suptitle("These Line Plots were Made with relplot()");

[image: ../../_images/intro_31_0.png]
[image: ../../_images/intro_31_1.png]

Categorical

Categorical plots show the relationship between one numerical variable
and one or more categorical variables.

Types of Plots:

* Categorical Scatter Plots * Categorical
Distribution Plots * Categorical Estimate Plots

Seaborn API:

* Categorical Scatter Plots * Strip
plot [https://seaborn.pydata.org/generated/seaborn.stripplot.html#seaborn.stripplot]
* Swarm
plot [https://seaborn.pydata.org/generated/seaborn.swarmplot.html#seaborn.swarmplot]
* Categorical Distribution Plots * Box
plot [https://seaborn.pydata.org/generated/seaborn.boxplot.html#seaborn.boxplot]
* Violin
plot [https://seaborn.pydata.org/generated/seaborn.violinplot.html#seaborn.violinplot]
* Categorical Estimate Plots * Point
plot [https://seaborn.pydata.org/generated/seaborn.pointplot.html#seaborn.pointplot]
* Bar
plot [https://seaborn.pydata.org/generated/seaborn.barplot.html#seaborn.barplot]
* Count
plot [https://seaborn.pydata.org/generated/seaborn.countplot.html#seaborn.countplot]
* Seaborn
Catplot [https://seaborn.pydata.org/generated/seaborn.catplot.html#seaborn.catplot]:
Figure-level interface for drawing categorical plots onto a
FacetGrid. * Data must be passed in a long-form DataFrame with
variables specified by passing strings to x, y, and other parameters
* Use the kind parameter to specify which underlying plotting
fucntion to use (e.g. kind = “scatter”)

* Can do the same things as the figure-level functions, but can also
facet and do other nice features

Excercise: Look at the different representations of the data below.
Which plot(s) are best suited for showing the relationship between
amount of excercise and pulse? Are there any plots that are misleading
or innaporpriate?

Load Sample Data
exercise = sns.load_dataset("exercise")
g = sns.catplot(x="time", y="pulse", hue="kind", data=exercise, kind="strip")
g. fig.suptitle("Strip Plot (Default)");
g = sns.catplot(x="time", y="pulse", hue="kind", data=exercise, kind="swarm")
g. fig.suptitle("Swarm Plot");
g = sns.catplot(x="time", y="pulse", hue="kind", data=exercise, kind="box")
g. fig.suptitle("Box Plot");
g = sns.catplot(x="time", y="pulse", hue="kind", data=exercise, kind="violin")
g. fig.suptitle("Violin Plot")
g = sns.catplot(x="time", y="pulse", hue="kind", data=exercise, kind="point")
g. fig.suptitle("Point Plot");
g = sns.catplot(x="time", y="pulse", hue="kind", data=exercise, kind="bar")
g. fig.suptitle("Bar Plot");
g = sns.catplot(y="pulse", hue="kind", data=exercise, kind="count")
g. fig.suptitle("Count Plot");

[image: ../../_images/intro_33_0.png]
[image: ../../_images/intro_33_1.png]
[image: ../../_images/intro_33_2.png]
[image: ../../_images/intro_33_3.png]
[image: ../../_images/intro_33_4.png]
[image: ../../_images/intro_33_5.png]
[image: ../../_images/intro_33_6.png]

Matrix Plots

Matrix plots – often referred ot as “heatmaps” – take an
\(N \times M\) data matrix and plot each cell value as a specified
color. The color of each cell is determine by the value in the cell, and
where the value falls along the specific color map – note: a color map
is a mapping from a value range (e.g. \([0, 1]\)) to specified
colors representing these values (e.g. the closer to zero a number is
the more blue it will appear, and the closer to 1 the value is the more
red the color will be). In this way, matrix plots allow the
visualization of multidimensional data fairly easily. In Bioinformatics,
these plots are often used to display gene expression pattens for a
large number of genes across a large number of samples.

Example Using the heatmap function in seaborn, plot the number
of flight passengers for each month through the years 1949 - 1960.

Load in the dataset
flights = sns.load_dataset("flights")
print("Upon loading, the `flights` dataset is 'long' formatted.\n")
print(flights.head())
print('\n\n')
print("By 'pivoting' the dataset, we get a data matrix of (months x years)" +
 " and will be able to plot the data as a heatmap.\n")
flights = flights.pivot("month", "year", "passengers")
print(flights.head())
ax = sns.heatmap(flights, cmap="viridis")

Upon loading, the flights dataset is 'long' formatted.

 year month passengers
0 1949 January 112
1 1949 February 118
2 1949 March 132
3 1949 April 129
4 1949 May 121

By 'pivoting' the dataset, we get a data matrix of (months x years) and will be able to plot the data as a heatmap.

year 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 month
January 112 115 145 171 196 204 242 284 315 340 360
February 118 126 150 180 196 188 233 277 301 318 342
March 132 141 178 193 236 235 267 317 356 362 406
April 129 135 163 181 235 227 269 313 348 348 396
May 121 125 172 183 229 234 270 318 355 363 420

year 1960
month
January 417
February 391
March 419
April 461
May 472

[image: ../../_images/intro_35_1.png]
To better visualize patterns in the data, it is often useful to cluster
rows and columns of a data matrix before plotting the data matrix as a
heatmap. In seaborn, this is done with the clustermap() function.

Example To visualize pattens between the number of passengers
throughout years and months, plot a clustered heatmap.

sns.clustermap(flights, cmap='viridis')

<seaborn.matrix.ClusterGrid at 0x7efce51ca5f8>

[image: ../../_images/intro_37_1.png]
When looking at a heatmap – even when clustered – it can be difficult to
adequately visualize distinct clusters. Heatmaps, and clustered
heatmaps, can also be used on distance matrices to visualize distances
between samples or features to better visualize simmilarity between
categories of interest.

Example Plot a clustered heatmap showing the distance between the
number of passengers for each month throughout the years.

from scipy import spatial
import pandas as pd
calculate pairwise euclidean distances using scipy
dist_matrix = spatial.distance.squareform(spatial.distance.pdist(flights.T))
dist_df = pd.DataFrame(dist_matrix, columns=flights.index, index=flights.index)
sns.clustermap(dist_df, cmap='viridis')

/home/dakota/miniconda3/envs/viz/lib/python3.7/site-packages/seaborn/matrix.py:603: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix
 metric=self.metric)

<seaborn.matrix.ClusterGrid at 0x7efce503beb8>

[image: ../../_images/intro_39_2.png]

Distribution Plots

The basis for all parametric statistical analysis are the underlying
distributions of the sample data. Therefore, it is often informative to
plot the distribution of features of interest. This can either be done
using a histogram, modelling the underlying distribution, or even
plotting a histogram against an assumed distribution for comparison. In
either case, Seaborn makes this easy using the distplot function.

Example

Plot the distribution of sepal lengths in the iris dataset as a
histogram.

sns.distplot(iris['sepal_length'], kde=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7efce51ad2e8>

[image: ../../_images/intro_41_1.png]
If we prefer to use matplotlib directly, instead of using Seaborn we
can simply use the hist function.

Example Plot a histogram of petal width for each species in the iris
dataset. Plot them on the same graph.

for each in iris['species'].unique():
 subset = iris[iris['species'] == each]
 plt.hist(subset['petal_width'], bins=5, label=each, alpha=0.5)

[image: ../../_images/intro_43_0.png]
Sometimees we might prefer to plot the estimated distribution with a
probability distribution instead of using a histogram. In Seaborn,
this can be done by setting the parameter kde=True in the
distplot function.

Example Plot the estimated distrubtion of petal width for each
species in the iris dataset. Note: while many Seaborn functions allow
you to pass a vector/Series/array of labels that will automatically
segegrate samples, this is not true for distplot, and we must do it
ourselves.

create an axes object to plot on
ax = plt.subplot()
colormap = {x:c for x, c in zip(iris['species'].unique(), ['blue', 'orange', 'green'])}
subset the dataset to each species, plot on the shared axes object.
for each in iris['species'].unique():
 subset = iris[iris['species'] == each]
 sns.distplot(subset['petal_width'], hist=False, kde=True, color=colormap[each], ax=ax,
 kde_kws={'shade': True})

[image: ../../_images/intro_45_0.png]
While plotting univariate distriubtions is nice, we can also plot joint
distributions between two random variables. These plots are useful if we
want to see the relationship between two features. To do so using
Seaborn, we simply use the kdeplot function.

Example Plot the joint distrubtion of petal width and sepal length
for all samples in the iris dataset.

sns.kdeplot(iris['petal_width'], iris['sepal_length'], shade=True, cmap='magma', cbar=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7efce4f06dd8>

[image: ../../_images/intro_47_1.png]
Unlike previous plots, we can not easily plot the species-dependent
distributions all on the same graph. Well, we could if we wanted to, but
it could get a little messy.

Example Plot a joint distriubtion of sepal length and petal width
all on the same graph. Plot each species as a different color.

create an axes object to plot on
ax = plt.subplot()
subset the dataset to each species, plot on the shared axes object.
colormaps = ['Blues', 'Greens', 'Reds']
for i, each in enumerate(iris['species'].unique()):
 subset = iris[iris['species'] == each]
 sns.kdeplot(subset['petal_width'], subset['sepal_length'], ax=ax,
 shade=True, cmap=colormaps[i], alpha=0.5)

[image: ../../_images/intro_49_0.png]
That’s defnitely pretty gross. It would probably be better to plot each
distribution on its own graph and show the three distributions
side-by-side. To do that, we’ll need to use the subplots command
from matplob lib.

Example Plot the joint distribution of petal width and sepal length
for each species on a different graph. Display the plots side-by-side on
the same figure.

create an axes object to plot on
fig, axes = plt.subplots(nrows=1, ncols=3)
subset the dataset to each species, plot on the shared axes object.
colormaps = ['Blues', 'Greens', 'Reds']
for i, each in enumerate(iris['species'].unique()):
 subset = iris[iris['species'] == each]
 sns.kdeplot(subset['petal_width'], subset['sepal_length'], ax=axes[i],
 shade=True, cmap=colormaps[i])

[image: ../../_images/intro_51_0.png]

Seaborn Cheat Sheet

Seaborn Cheat
Sheet [https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Seaborn_Cheat_Sheet.pdf]

An Example of Exploratory Data Analysis with ggplot

Loading Packages and Data

library(palmerpenguins)
library(tidyverse)
theme_set(theme_bw())
data(package = "palmerpenguins")

Summarize Data

summary(penguins)

species island bill_length_mm bill_depth_mm
Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
Chinstrap: 68 Dream :124 1st Qu.:39.23 1st Qu.:15.60
Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30
Mean :43.92 Mean :17.15
3rd Qu.:48.50 3rd Qu.:18.70
Max. :59.60 Max. :21.50
NA's :2 NA's :2
flipper_length_mm body_mass_g sex year
Min. :172.0 Min. :2700 female:165 Min. :2007
1st Qu.:190.0 1st Qu.:3550 male :168 1st Qu.:2007
Median :197.0 Median :4050 NA's : 11 Median :2008
Mean :200.9 Mean :4202 Mean :2008
3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
Max. :231.0 Max. :6300 Max. :2009
NA's :2 NA's :2

Make Some Plots

Let’s start by just plotting two of the quantitiative variables against
each other

ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm, color = island)) +
 geom_point()

Warning: Removed 2 rows containing missing values (geom_point).

[image: image4]

ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
 geom_point()

Warning: Removed 2 rows containing missing values (geom_point).

[image: image5]

The islands do some work separating the penguins, but the separation is
crystal clear when using species. If we want to make separate
scatterplots for each category in a categorical variable, we can use
facet_wrap

ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
 geom_point() + facet_wrap(. ~ island)

Warning: Removed 2 rows containing missing values (geom_point).

[image: image6]

ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
 geom_point() + facet_wrap(. ~ species)

Warning: Removed 2 rows containing missing values (geom_point).

[image: image7]

It looks like the distribution of species across islands isn’t uniform;
let’s make a plot to visualize the interaction between those variables

ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
 geom_point() + facet_wrap(. ~ island)

Warning: Removed 2 rows containing missing values (geom_point).

[image: image8]

Of course, if we’re just interested in the relationship between the
species and the islands we can just do a table:

table(penguins$species, penguins$island)

##
Biscoe Dream Torgersen
Adelie 44 56 52
Chinstrap 0 68 0
Gentoo 124 0 0

On a completely unrelated note, let’s see how body mass differs by sex

ggplot(penguins, aes(x = sex, y = body_mass_g)) +
 geom_boxplot()

Warning: Removed 2 rows containing non-finite values (stat_boxplot).

[image: image9]

Let’s take a minute to really spruce up the aesthetic appeal of this
plot. The axis labels could be a bit nicer looking (who likes looking at
underscores), and the plot could use a title. Also it might be nice if
the interiors of the boxplots were colored.

ggplot(penguins, aes(x = sex, y = body_mass_g)) +
 geom_boxplot(fill = "skyblue") +
 labs(x = "Sex", y = "Body Mass (in grams)", title = "Male Penguins Typically Have Higher Body Masses Than Females")

Warning: Removed 2 rows containing non-finite values (stat_boxplot).

[image: image10]

Just for fun, let’s see what that looks like as a violin plot

ggplot(penguins, aes(x = sex, y = body_mass_g)) +
 geom_violin(fill = "skyblue") +
 labs(x = "Sex", y = "Body Mass (in grams)", title = "Male Penguins Typically Have Higher Body Masses Than Females")

Warning: Removed 2 rows containing non-finite values (stat_ydensity).

[image: image11]

That’s a bit concerning; we’ve got some bimodal distributions going on
here. Once again, let’s use color and facet_wrap to see if we
can find a categorical variable that separates these distributions.

ggplot(penguins, aes(x = sex, y = body_mass_g, fill = species)) +
 geom_violin()

Warning: Removed 2 rows containing non-finite values (stat_ydensity).

[image: image12]

ggplot(penguins, aes(x = sex, y = body_mass_g, fill = species)) +
 geom_violin() + facet_wrap(. ~ species)

Warning: Removed 2 rows containing non-finite values (stat_ydensity).

[image: image13]

I’ve decided I don’t like the fact that the little boxes with the facet
labels are grey and the legend is redunant with the facet labels; let’s
fix those (and also bring back the nice axis labels I dropped)

ggplot(penguins, aes(x = sex, y = body_mass_g, fill = species)) +
 geom_violin() + facet_wrap(. ~ species) +
 theme(strip.background = element_rect(fill = "white"), legend.position = "none") +
 labs(x = "Sex", y = "Body Mass (in grams)", title = "Body Mass Distributions By Sex and Species")

Warning: Removed 2 rows containing non-finite values (stat_ydensity).

[image: image14]

theme can do all sorts of fun things; it can be hard to remember all
of the different arguments there are for theme, but it’s usually
pretty easy to google those sorts of things

 Introduction

Introduction

Welcome to the in-class portion of the visualization workshop in Python! Feel
free to work in either a Jupyter Notebook or a typical text editor/IDE,
depending on your preference.

If you would like to use a Notebook, you can download that here:

Notebook

Otherwise, you can follow along here and use the following skeleton code
provided in a Python file:

Python.

In case you don’t finish, there are, of course, solutions provided:

Notebook Solutions.

Python Solutions.

With that out of the way, let’s get started!

The Data Set

In today’s workshop, we will revisit the data set you worked with in the
Machine Learning workshop. As a refresher: this data set is from the
GSE53987 dataset on Bipolar disorder (BD) and major depressive disorder
(MDD) and schizophrenia:

Lanz TA, Joshi JJ, Reinhart V, Johnson K et al. STEP levels are
unchanged in pre-frontal cortex and associative striatum in post-mortem
human brain samples from subjects with schizophrenia, bipolar disorder
and major depressive disorder. PLoS One 2015;10(3):e0121744. PMID:
25786133

This is a microarray data on platform GPL570 (HG-U133_Plus_2, Affymetrix
Human Genome U133 Plus 2.0 Array) consisting of 54675 probes.

The raw CEL files of the GEO series were downloaded, frozen-RMA normalized [https://bioconductor.org/packages/release/bioc/html/frma.html] , and the probes have been converted to HUGO gene symbols using the annotate package [https://www.bioconductor.org/packages/release/bioc/html/annotate.html] averaging on genes. The sample clinical data (meta-data) was parsed from the series matrix file [ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE53nnn/GSE53987/matrix/]. You can download it here:

GSE53987_combined.csv

In total there are 205 rows consisting of 19 individuals diagnosed with
BPD, 19 with MDD, 19 schizophrenia and 19 controls. Each sample has gene
expression from 3 tissues (post-mortem brain). There are a total of
13768 genes (numeric features) and 10 meta features and 1 ID (GEO sample
accession):

	Age

	Race (W for white and B for black)

	Gender (F for female and M for male)

	Ph: pH of the brain tissue

	Pmi: post mortal interval

	Rin: RNA integrity number

	Patient: Unique ID for each patient. Each patient has up to 3 tissue
samples. The patient ID is written as disease followed by a number
from 1 to 19

	Tissue: tissue the expression was obtained from.

	Disease.state: class of disease the patient belongs to: bipolar,
schizophrenia, depression or control.

	source.name: combination of the tissue and disease.state

Workshop Goals

This workshop will walk you through an analysis of the GSE53987
microarray data set. This workshop has the following three tasks:

1. Visualize the demographics of the data set

2. Cluster gene expression data and appropriately visualize the
cluster results 3. Compute differential gene expression and visualize
the differential expression

Each task has a required section and a bonus section. Focus on
completing the three required sections first, then if you have time
at the end, revisit the bonus sections.

Finally, as this is your final workshop, we hope that you will this as
an opportunity to integrate the different concepts that you have learned
in previous workshops.

Workshop Logistics

As mentioned in the pre-workshop documentation, you can do this workshop
either in a Jupyter Notebook, or in a python script. Please make sure
you have set-up the appropriate environment for youself. This workshop
will be completed using “paired-programming” and the “driver” will
switch every 15 minutes. Also, we will be using the python plotting
libraries matplotlib and seaborn.

Task 0: Import Libraries and Data

	Download the data set (above) as a .csv file

	Initialize your script by running the first cell and ensuring the data file
is pointing to the correct location on your local computer.

Import Necessary Libraries
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn import cluster, metrics, decomposition
from matplotlib import pyplot as plt
import itertools
data = pd.read_csv('GSE53987_combined.csv', index_col=0)
genes = data.columns[10:]

Task 1: Visualize Dataset Demographics

Required Workshop Task:

	Use the skeleton code to write 3 plotting functions:

	plot_distribution()

	Returns a distribution plot object given a dataframe and one
observation

	plot_relational()

	Returns a distribution plot object given a dataframe and (x,y)
observations

	plot_categorical()

	Returns a categorical plot object given a dataframe and (x,y)
observations

	Use these functions to produce the following plots:

	Histogram of patient ages

	Histogram of gene expression for 1 gene

	Scatter plot of gene expression for 1 gene by ages

	Box plot of gene expression for 1 gene by disease state

	Violin plot of gene expression for 1 gene by Tissue

Your plots should satisfy the following critical components:

* Axis titles * Figure title * Legend (if applicable) * Be
readable

Bonus Task:

	Return to these functions and include functionality to customize
color palettes, axis legends, etc. You can choose to define your own
plotting “style” and keep that consistent for all of your plotting
functions.

	Clean up any axis or tick labels so that all labels are clearly
visible. This may include playing with text size, rotation, or some
other parameter.

Function to Plot a Distribtion
def plot_distribution(df, obs1, obs2=''):
 """
 Create a distribution plot for at least one observation

 Arguments:
 df (pandas data frame): data frame containing at least 1 column of numerical values
 obs1 (string): observation to plot distribution on
 obs2 (string, optional)
 Returns:
 axes object
 """
 ax = None
 return ax

Function to Plot Relational (x,y) Plots
def plot_relational(df, x, y, hue=None, kind=None):
 """
 Create a plot for an x,y relationship (default = scatter plot)
 Optional functionality for additional observations.

 Arguments:
 df (pandas data frame): data frame containing at least 2 columns of numerical values
 x (string): observation for the independent variable
 y (string): observation for the dependent variable
 hue (string, optional): additional observation to color the plot on
 kind (string, optional): type of plot to create [scatter, line]
 Returns:
 axes object
 """
 ax = None
 return ax

def plot_categorical(df, x, y, hue=None, kind=None):
 """
 Create a plot for an x,y relationship where x is categorical (not numerical)

 Arguments:
 df (pandas data frame): data frame containing at least 2 columns of numerical values
 x (string): observation for the independent variable (categorical)
 y (string): observation for the dependent variable
 hue (string, optional): additional observation to color the plot on
 kind (string, optional): type of plot to create. Options should include at least:
 strip (default), box, and violin
 """
 ax = None
 return ax

def main():
 """
 Generate the following plots:
 1. Histogram of patient ages
 2. Histogram of gene expression for 1 gene
 3. Scatter plot of gene expression for 1 gene by ages
 4. Scatter plot of gene expression for 1 gene by disease state
 """

def bh_adjust(pvalues):
 from scipy.stats import rankdata
 ranked_pvalues = rankdata(pvalues)
 fdr = pvalues * len(pvalues) / ranked_pvalues
 fdr[fdr > 1] = 1

 return fdr

def differential_expression(data, group_col, features, reference=None):
 """
 Perform a one-way ANOVA across all provided features for a given grouping.

 Arguments

 data : (pandas.DataFrame)
 DataFrame containing group information and feature values.
 group_col : (str)
 Column in `data` containing sample group labels.
 features : (list, numpy.ndarray):
 Columns in `data` to test for differential expression. Having them
 be gene names would make sense. :thinking:
 reference : (str, optional)
 Value in `group_col` to use as the reference group. Default is None,
 and the value will be chosen.

 Returns

 pandas.DataFrame
 A DataFrame of differential expression results with columns for
 fold changes between groups, maximum fold change from reference,
 f values, p values, and adjusted p-values by Bonferroni correction.
 """
 if group_col not in data.columns:
 raise ValueError("`group_col` {} not found in data".format(group_col))
 if any([x not in data.columns for x in features]):
 raise ValueError("Not all provided features found in data.")
 if reference is None:
 reference = data[group_col].unique()[0]
 print("No reference group provided. Using {}".format(reference))
 elif reference not in data[group_col].unique():
 raise ValueError("Reference value {} not found in column {}.".format(
 reference, group_col))
 by_group = data.groupby(group_col)
 reference_avg = by_group.get_group(reference).loc[:,features].mean()
 values = []
 results = {}
 for each, index in by_group.groups.items():
 values.append(data.loc[index, features])
 if each != reference:
 key = f"{each.replace(' ', '_')}_foldchange"
 results[key] = np.log2(data.loc[index, features].mean()) \
 - np.log2(reference_avg)
 fold_change_cols = list(results.keys())
 fvalues, pvalues = stats.f_oneway(*values)
 results['f_value'] = fvalues
 results['p_value'] = pvalues
 results['neg_log10_pvalue'] = - np.log10(pvalues)
 results['adj_p_value'] = bh_adjust(pvalues)
 results_df = pd.DataFrame(results)
 def largest_deviation(x):
 i = np.where(abs(x) == max(abs(x)))[0][0]
 return x[i]
 if len(fold_change_cols) > 0:
 results_df['max_foldchange'] = results_df[fold_change_cols].apply(
 lambda x: largest_deviation(x.values), axis=1)

 return results_df

Task 2: Volcano Plots

Volcano plots are ways to showcase the number of differentially
expressed genes found during high throughput sequencing analysis. Log
fold changes are plotted along the x-axis, while p-values are plotted
along the y-axis. Genes are marked significant if they exceed some
absolute Log fold change theshold as well some p-value level for
significance. This can be seen in the plot below.

[image: ../../_images/volcanoplot.png]
Your first task will be to generate some Volcano plots:

Requirements

	Use the provided function to perform an ANOVA (analysis of variance)
between control and experimental groups in each tissue.

	Perform a separate analysis for each tissue.

	Implement the skeleton function to create a volcano plot to visualize
both the log fold change in expression values and the p-values from
the ANOVA comparison

	Highlight significant genes with distinct colors

hints: 1. You might find the palette argument for seaborn plots
helpful when coloring each gene 2. Volcano plots are typically a little
strange where significance is determined by adjusted p-values, but
raw -\(log_{10}\) p-values are plotted along the y-axis

def volcano_plot(data, x_col, y_col, sig_col, sig_thresh, fc_thresh):
 """
 Generate a volcano plot to showcasing differentially expressed genes.

 Parameters

 data : (pandas.DataFrame)
 A data frame containing differential expression results
 x_col : str
 Column to plot along x-axis, typically log2(foldchange)
 y_col : str
 Column to plot along y-axis, typically -log10(p-value)
 sig_col : str
 Column in `data` with adjusted p-values.
 sig_thresh : float
 Threshold for statistical significance.
 fc_thresh : float
 Threshold for biological significance
 """
 data['significant'] = False
 def get_direction(fc, p_value):
 if p_value < sig_thresh and abs(fc) > fc_thresh:
 if fc > 0:
 return "Up"
 else:
 return "Down"
 else:
 return "Not Sig."
 data["DE"] = data.apply(lambda x: get_direction(x[x_col], x[sig_col]), axis=1)
 return ax

Generate and Plot Tissue-specific Volcano Plots

Hippocampus DE

Here's some pre-subsetted data
hippocampus = data[data["Tissue"] == "hippocampus"]

hippo_de = differential_expression(hippocampus, "Disease.state", features=data.columns[10:], reference="control")
volcano_plot()

Pre-frontal Cortex Volcano Plot

pf_cortex = data[data["Tissue"] == "Pre-frontal cortex (BA46)"]
pf_de = differential_expression(pf_cortex, "Disease.state", features=data.columns[10:], reference="control")
volcano_plot()

Associative Striatum Volcano Plot

as_striatum = data[data["Tissue"] == "Associative striatum"]
as_de = differential_expression(as_striatum, "Disease.state", features=data.columns[10:], reference="control")
volcano_plot()

Task 2b: Plot the Top 100 Differentially Expressed Genes

Clustered heatmaps are hugely popular for displaying differences in gene
expression values. To reference such a plot, look back at the
introductory material. Here we will be plotting the 1000 most
differentially expressed genes for each of the analysis performed
before.

Requirements

	Implement the skeleton function below

	Z normalize gene values

	To visualize the effects of row and cluster ordering on data
presentation, make heatmaps that are both clustered and not clustered

	Use a diverging and perceptually uniform colormap

	Annotate rows using row_colors parameter in sns.clustermap to
color rows by disease status or tissue of origin

Hints: 1. Look over all the options for
sns.clustermap() [https://seaborn.pydata.org/generated/seaborn.clustermap.html].
It might make things easier. 2. The data we are plotting is the
expression values, not the direct DE results 3. We’ve provided a
helper function to get the top \(n\) genes from a DE comparison
get_top_genes() as well as to generate and additional legend

def get_top_genes(de_results, pval_col, n_genes):
 """
 Return to the top n genes from a differential expression analysis comparison.

 Parameters

 de_results : pd.DataFrame
 A table containing results from a DE analysis run
 pval_col : str
 A column in `de_results` containing p-values
 n_genes : int
 The number of genes to return
 """
 return de_results.sort_values(pval_col, ascending=True).iloc[:n_genes, :].index.values

def plot_legend(palette_dict, col_name):
 """Generate plot legend using a dictionary mapping values to color codes"""
 from matplotlib import patches as mpatches
 handles = [
 mpatches.Patch(facecolor=each)
 for each in palette_dict.values()
]
 plt.legend(
 handles,
 list(palette_dict.keys()),
 title=col_name,
 bbox_to_anchor=(1, 1),
 bbox_transform=plt.gcf().transFigure,
 loc="upper left",
)

def heatmap(data, genes, row_color, cluster=False):
 """
 Plot heatmap over provided genes.

 Parameters

 data : pd.DataFrame
 A (sample x gene) data matrix containing gene expression values for each sample.
 genes : list, str
 List of genes to plot
 row_color : str
 Column in `data` containing categorical data to color rows by
 cluster : bool
 Whether to order rows and column by dendrogram.
 """
 plot_data = data.loc[:, genes]
 fig = None
 return fig

top_genes = get_top_genes(de_res, 'p_value', 100)
heatmap()

Bonus

The above results were all done on disease comparisons across multiple
tissues. Another question we could ask is if there are any genes that
are differntially expressed between the tissues themselves. Repeat the
above analysis by subsetting the data down to control samples only, and
perform DE analysis betweeen tissues. Plot the results as a volcano plot
as well as a clustered heatmap

hint: we used a very low \(log_2\) fold change cutoff during the
previous steps, it may be worth increasing that threshold for this
analysis

controls = data[data['Disease.state'] == 'control']
tissue_res = differential_expression(controls, "Tissue", features=data.columns[10:], reference="hippocampus")
volcano_plot()

top_genes = get_top_genes(tissue_res, 'p_value', 100)
heatmap()

Task 3: Subplots and Facet Grids

Often we want to combine multiple plots into one larger figure for presentations, articles, publications. This is where plt.subplots comes in handy!

Task 3a: Combining Violin Plots into one figure

For Task 2B, we found the top 100 DE genes in order to plot a heatmap. For the top 3 DE genes, let’s compare the expression of control samples vs. schizophrenia samples in each of the three tissues.

Hints
- plt.subplots() creates a grid of individual axes. You can access each of these individual axes using indices e.g. axs[0]
- sns.violinplot has options for x,y, and hue. Assigning hue to the Disease.state allows for easy comparisons between control and schizophrenia.
- You might get too many legends! You can control which axis has a legend using ax.legend().set_visible(False)

def main():
 top_three = top_genes[:3]
 tissues = data['Tissue'].unique()
 data_disease_state_filter = data[(data['Disease.state'] == 'control') | (data['Disease.state'] == 'schizophrenia')]

 fig, axs = plt.subplots()

main()

[image: ../../_images/violins_subplots.png]

Task 3b: Combining Volcano plots into one figure

Requirements

	Implement the skeleton function to create a figure with three volcano plots for each of the three tissues using both plt.subplots

	Highlight significant genes for each plot

	Add titles for each of the sub-plots

Hints
- Look for axes options in [sns.scatterplot()](https://seaborn.pydata.org/generated/seaborn.scatterplot.html).

hippo_de = differential_expression(hippocampus, "Disease.state", features=data.columns[10:], reference="control")
pf_de = differential_expression(pf_cortex, "Disease.state", features=data.columns[10:], reference="control")
as_de = differential_expression(as_striatum, "Disease.state", features=data.columns[10:], reference="control")

combined_de = [hippo_de, pf_de, as_de]
labels = ['Hippocampus', 'Pre-frontal cortex', 'Associative striatum']

def volcano_plot_combined(dfs, labels, x_col, y_col, sig_col, sig_thresh, fc_thresh):
 """
 Generate a volcano plot to showcasing differentially expressed genes.

 Parameters

 dfs : List of pandas.DataFrame
 A list of data frames containing differential expression results
 labels : List of str
 x_col : str
 Column to plot along x-axis, typically log2(foldchange)
 y_col : str
 Column to plot along y-axis, typically -log10(p-value)
 sig_col : str
 Column in `df` with adjusted p-values.
 sig_thresh : float
 Threshold for statistical significance.
 fc_thresh : float
 Threshold for biological significance
 """
 # Helper function to find the adjusted p-value cutoff for plotting purposes
 def find_sig_y(df, x_col, y_col, sig_col, sig_thresh, fc_thresh):
 df['significant'] = False
 def get_direction(fc, p_value):
 if p_value < sig_thresh and abs(fc) > fc_thresh:
 if fc > 0:
 return "Up"
 else:
 return "Down"
 else:
 return "Not Sig."

 df["DE"] = df.apply(lambda x: get_direction(x[x_col], x[sig_col]), axis=1)
 sig_y = df[df.DE != "Not Sig."][y_col].min()
 return sig_y

 # Plot each volcano plot onto the same figure
 n_dfs = len(dfs)
 n_rows = 1
 n_cols = n_dfs
 fig, axs = plt.subplots(n_rows, n_cols, figsize=(15,5))

 return axs

[image: ../../_images/volcano_subplots.png]

 Workshop 6: Machine Learning

Workshop 6: Machine Learning

This workshop provides a basic introduction to machine learning.
We will introduce a general framework for performing unsupervised and supervised learning.

You are expected to study the the following content:

	
	Learning models
	
	Unsupervised learning

	Supervised learning

In the workshop, do some basic data exploration and modeling.

	Machine Learning Workshop

Tutorials

	Introduction

	Supervised
	Examples of supervised learning

	Assessing model performance

	Unsupervised
	Dimensionality reduction

	Clustering

	Machine Learning Workshop
	Workshop tasks

 Workshop 5: Introduction

Workshop 5: Introduction

Machine learning is a broad field concerned with devoloping and using computational algorithms to learn something and/or make better use of our data. The term machine learning is used in a lot of different contexts, such that defining it any more specific terms turns out to be very tricky. It is heavily related to the concept of artificial inteligence, however the definition of artificial intelligence is a somewhat moving target and seems to change throughout the years. Linear regression is most certainly a method to perform a machine learning task, but is it considered it a method for artificial intelligence? Certainly not on its own.

For the analysis of biological data, machine learning tasks can almost always fit into one of two categories:

	Supervised learning

	Unsupervised

For supervised learning, we employ learning algorithms which are able to generate estimates of an outcome variable based on a set of predictor variables. In contrast, for unsupervised learning, we do not have an outcome variable. Instead we employ learning algorithms in order to identify previously unknown relationships between observations. The most common type of unsupervised learning is clustering, in which we split our data points into relatively closely related clusters based on a measure of their similarity. For biological inference, this is typically followed by a additional analyses to assign meaning to these labels.
Both R and Python versions are available for this workshop.

 Supervised learning

Supervised learning

For supervised learning, we employ learning algorithms which are able to generate estimates of an outcome variable based on a set of predictor variables.

There are two types of supervised learning: regression and classification. For regression the outcome variable is a numeric value, for which learning algorithms try to minimize the error or distance of the predictions of this value and the true value. For classification the outcome variable is a label or category for which learning algorithms try to minimize the rate at which our prediction of this label or category is wrong. Often the same or slightly tweaked versions of a method can be employed to perform either task. Below we list some examples of supervised learning algorithms.

Examples of supervised learning

Generalized linear regression

	Linear regression learns a linear combination of the values of the predictor variables to make unbiased estimates of a numeric outcome variable.

	Logistic regression is similar to linear regression but applies to a binary outcome variable. It estimates the log-odds that an outcome variable is of one-of-two labels based on a linear combinations of the values of a predictor variables.

Linear classifiers

	Support Vector Machine (SVM) learns a hyperplane which separates the values of a binary outcome variable based on a set of predictor variables.

	Linear Discrimant Analysis learns multivariate gaussian distribution for each label of a categorical outcome variable based on the set of predictor variables. Predictions are then made based on the relative probability that an new observation came from each distribution.

Probability based

These models use probability to predict the label.

	Naive-bayes uses Bayes theorem on the feature distribution and probabilities. Usually is used as a baseline model (default or worse).

	K nearest neighbors (KNN) predicts each sample based on majority vote of its K nearest neighbors (the K most similar samples).

Tree based

	Decision trees learn a set of rules for predicting the outcome variable from a set of predictor variables by recursively splitting the data into two-or-more subsets. For each split, it finds a rule for which the outcome variable of the observations that follow that rule are more similar than those that do not. These are handy for both regression and classification tasks.

Below is a decision tree to predict if a sample is a vampire. Each branch ask a question and based on that divides the samples. Following the branches you get to a leaf which is labeled by the label majority of the train samples ending there.

[image: ../../_images/vampire-decsion-tree.jpg]

	Random forest is an algorithm which generates a set of decision trees. For each tree the forest, it perturbs the data using one-or-more sampling methods, in order to create trees that are relatively uncorrelated and will make different predicitons. Random forests is referred to as an ensemble method because the final prediction is based on ensemble of predictions made by each tree.

Assessing model performance

A common problem in supervised machine learning is what is called overfitting. Overfitting arises when the error of predicting the values of the outcome variable of the observations used to learn or train the model is very low, but the model is not useful for predicting the values of outcome variables for new observations which were not used for learning the model. For this reason, model performance is commonly assessed by randomly separating an initial data set into a training set, and a test set. The model is learned (or trained) using the training data and then the error is estimated using the test data. A critical part in supervised learning is to make sure the train data does not leak into the test, meaning no data in the train set should be present also in the test set - whether at normalization, feature selection, or when learning the model.

If enough data is available, it is common to randomly split the data into three subsets. Here, a validation data set is used to tune the parameters of the model generated by the training data.

Cross validation

Cross validation is a method employed for assessing model performance and model tuning. In either case, the main advantage of cross validation is it greatly reduces the amount of data necessary for training and testing a model.

An illustration of cross validation is shown below. Here we divide the data into K subsets of equal or near equal size. For example in 10-fold crossvalidation, we divide the data into ten subsets. We then train 10 different models, each model is trained using 90% and then the model is tested on the remaining 10%. The final performance will be based on the testing error across all 10 models.

[image: ../../_images/cross_validation.png]
A workflow that incorporates cross-validation in model training is shown below …

[image: ../../_images/supervised_flowchart.png]

Performance of a regression model

Assessing the performance of a regression model is fairly straight forward. We have to measure the error of the prediction, e.g. how close to the real values are the predicted values. Two fitness measures for regression are:

	Mean Squared Error (MSE)

\[MSE = \frac{1}{N} \sum{(label_{predicted} - label_{actual})^2}\]

	Root Mean Squared Deviation (RMSD)

\[RMSD = \sqrt{\frac{\sum{(label_{predicted} - label_{actual})^2}}{N}}\]

Performance of a classification model

On the other hand, assessing the performance of a classification model is more nuanced. There are many different performance metrics and the level to which one regards one compared to another is specific to the task at hand.

Confusion matrix is a table showing how the samples were classified. The columns show the actual labels and the rows are the predicted labels.

[image: ../../_images/confusion_matrix.png]
TN=true negative (samples predicted to be in class negative and that was correct)
TP=true positive (samples predicted to be in class positive and that was correct)
FN=true negative (samples predicted to be in class negative and that was incorrect)
FP=true positive (samples predicted to be in class positive and that was incorrect)

If you show the performance of the model as a confusion matrix, fitness can be measured by 4 main criteria:

	Accuracy

\[\frac{TP + TN}{TP + FP + TN + FN}\]

	Sensitivity

\[\frac{TP}{TP + FN}\]

	Precision

\[\frac{TP}{TP + FP}\]

	Specificity

\[\frac{TN}{TN + FP}\]

	Receiver operating characteristic (ROC) curve illustrates the performance of a model based on different decision boundaries when making binary predictions. For each decision boundary we calculate the sensitivity and specificity and plot the resulting curve. The area under the curve (AUC) is simply the error under this curve. If there exists a decision boundary for which the sensitivity and specificity are both perfect, i.e. 1, then the AUC will be 1. In contrast, poorly fit models will have AUC close to 0.5.

[image: ../../_images/roc_curve.png]

 Unsupervised learning

Unsupervised learning

“Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labeled responses. The most common unsupervised learning method is cluster analysis, which is used for exploratory data analysis to find hidden patterns or grouping in data.” read more… [https://www.mathworks.com/discovery/unsupervised-learning.html]

[image: ../../_images/unsupervised_flowchart.png]

Dimensionality reduction

Dimensionality refers to the number of variables in a data set. Problems that arise when analyzing a dataset with high-dimensionality include: computational efficiency and visualization. By transforming our data into a smaller set of variables that still contain most of the useful information, we can reduce the run-time of performing certain machine learning tasks, as well as visually observe patterns in our data via plotting.

	Principal Component Analysis (PCA) is among the most commonly used dimensionality reduction method. It transforms a high-dimensional data set into a smaller set of variables. Each variable is associated to a weight, proportional to the relative amount of the variance of the original data set it accounts for. The set of these features that account for an adequate proportion of the total amount of variance in the original data set are referred to as the principal components.

PCA is done by performing an eigen decomposition on the covariance matrix of the original data set. The new variables and weights (loadings) are the eigen vectors and eigen values respectively of this covariance matrix.

[image: ../../_images/grz_tissues_PCA.png]

	Singular-value decomposition (SVD) is similar to PCA, except that the new features and weights are calculated directly from the data matrix. It is sometimes preferred to PCA due to the round-off errors when estimating the covariance matrix for PCA.

Read more here [http://andrew.gibiansky.com/blog/mathematics/cool-linear-algebra-singular-value-decomposition/].

Clustering

Clustering algorithms try to divide the data samples based on some sort of similarity into different clusters. An example is to cluster single cell gene expression data to find tissue types.

	Hierarchical clustering is a clustering algorithm which estimates a tree-like structure between observations based on their relative distance, such that observations that are most similar to each other are connected at the terminal parts of the tree. The tree is most often generated using a bottom-up or agglomerative approach, in which samples are initially in their own clusters and then iteratively the most similar clusters are combined to create super-clusters. Alternatively, top-down hierarchical clustering is call divisive clustering.

[image: ../../_images/hierarchical_clustering.png]

 Machine learning workshop

Machine learning workshop

In this workshop, we will study GSE53987 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53987] dataset on Bipolar disorder (BD) and major depressive disorder (MDD) and schizophrenia:

Lanz TA, Joshi JJ, Reinhart V, Johnson K et al. STEP levels are unchanged in pre-frontal cortex and associative striatum in post-mortem human brain samples from subjects with schizophrenia, bipolar disorder and major depressive disorder. PLoS One 2015;10(3):e0121744. PMID: 25786133 [https://www.ncbi.nlm.nih.gov/pubmed/25786133]

This is a microarray data on platform GPL570 (HG-U133_Plus_2, Affymetrix Human Genome U133 Plus 2.0 Array) consisting of 54675 probes.

The raw CEL files of the GEO series were downloaded, frozen-RMA normalized [https://bioconductor.org/packages/release/bioc/html/frma.html] , and the probes have been converted to HUGO gene symbols using the annotate package [https://www.bioconductor.org/packages/release/bioc/html/annotate.html] averaging on genes. The sample clinical data (meta-data) was parsed from the series matrix file [ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE53nnn/GSE53987/matrix/]. You can download it here [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/04_Machine_learning/data/GSE53987_combined.csv].

GSE53987_combined.csv

In total there are 205 rows consisting of 19 individuals diagnosed with BPD, 19 with MDD, 19 schizophrenia and 19 controls. Each sample has gene expression from 3 tissues (post-mortem brain).
There are a total of 13768 genes (numeric features) and 10 meta features and 1 ID (GEO sample accession).

	Age

	Race (W for white and B for black)

	Gender is F for female and M for male

	Ph is the ph of the brain tissue

	Pmi is the post mortal interval

	Rin is the RNA integrity number

	Patient is unique for each patient. Each patient has up to 3 tissue samples. The patient ID is written as disease followed by a number from 1 to 19

	Tissue is the tissue the expression was obtained from.

	Disease.state is the class of disease the patient belongs to: bipolar, schizophrenia, depression or control.

	source.name is the combination of the tissue and disease.state

Workshop tasks

Jupyter Notebook (Python)

Solutions (Python)

R Workshop

R Solutions

	Check all the features. Which features are numeric, which are categorical? Understanding the nature of your data is a very important and necessary first step before proceeding with any analysis.

	What type of distributions exist within the features? Is Gender a balanced feature (roughly equal representation between both men and women)? Are numerical values normally distributed? Explore numerical distributions by plotting histograms for Age, an Age + Gender histogram, and one of your favorite genes found in the dataset.

	Some features display factor dependent values. That is, whether a subject is a male or a female might effect the expression patterns of a given gene. Explore factor and feature relationships by creating boxplots to observe how Age is dependent on Tissue, Gender and Disease.status.

	Principal Component Analysis (PCA) is a commonly used technique to create linearly uncorrelated features from a set of possibly correlated features. The procedure is done in such a way that the first feature produced by PCA, the first principal component – PC1, explains the largest amount of variability possible. In this way, PCA is a dimension reduction technique, as the first few principal components often explain upwards of 90% of the variability found within a dataset. It is important to note that if we’re planning on predicting anything using the principal components, such as tissue type or Disease.status, those features should not be included in the input matrix. Before performing PCA, create a new data frame containing only explanatory values (i.e. the features we want to use to predict class membership).

	Explore how much variation is explained by the principal components. How much variation is explained by the first two principal components? How many principal components are required to explain 75%, 85%, 90%, 95%, and 99% of the variation within our dataset?

	Visually explore this separation to plot the first two principal components and color samples according to Tissue and Disease.status. What effect does plotting the third principal component have on sample separation?

	Subset the dataset into three disjoint datasets by Tissue. Run PCA on all three of these datasets, plot the first two principal components, and color the dots according to Disease.status. Does there appear to be a meaningful difference in the separation between disease classes between the three different datasets?

	Feature selection is a commonly performed step in statistics/machine learning to distinguish the most informative variable to use in model creation. There are several different ways to perform feature selection, and many of these can be application specific. In this workshop we’ll explain two possible avenues for feature selection in gene expression data analysis: 1) removing the least variable features 2) univariate feature selection

	Unsupervised learning can be thought of as applying an algorithm to a dataset in order to discover latent structure that exists between samples. We’ve already been exposed to some of these algorithms via PCA. However, one of the most common techniques in machine learning, and especially bioinformatics, is clustering. Cluster the data using the k-means algorithm.

	Supervised learning is a technique to teach an algorithm to distinguish between previously labelled groups, such as Tissue, Gender, or Disease.status. However, all supervised methods require data to learn how to differentiate between classes. Therefore, it is necessary to separate data into test/train sets. The training set is used to train the model, while the test set is used to evaluate performance. Cross-validation, a method of partitioning the data into disjoint subsets and continually re-training and re-testing with different partition combinations, is often used to evaluate models. In this section, we will build various classifiers using logistic regression to predict different classes from our data. You should evaluate your models’ performances using confusion matrices and accuracy scores.

 Workshop 7: SQL

Workshop 7: SQL

Tutorials

	Relational Databases
	Database Design

	Adding Data

	Querying Data

	SQL Workshop
	Tasks

	SQLite Dot Commands

	Solutions to Common Queries

 Workshop 7: An Introduction to Relational Detabases

Workshop 7: An Introduction to Relational Detabases

This workshop provides a basic introduction to Relational Databases using the SQLite program.

There are three main aspects of database usage,

	database design and construction

	loading data

	querying the data

Below I discuss the main points of each and introduce use of the SQL language in the context of the sqlite3 database management program. This document contains the following sections:

	Database Design

	Adding Data

	Querying Data

Database Design

Relational databases, the most common type, are designed around entities and relationships between entities. Database design deals with these.

For example, a movie database might contain information on movies and actors. These are entities. The relationship that ties certain actors to certain movies can be called the cast. The figure below is part of the design of such a database. In it, the rectangles are entities and the diamond is a relationship. The lines connect the entities to the relationship.

[image: ../../_images/movies.actors.cast.er.diagram.png]
Relational databases consist of tables of data. Each table consists of rows. In an entity table, each row contains data about one instance of that entity. For example, in a movie table, each row has information about one movie. The following is a description of a table to hold movie data written is SQL. This description is used to create the movie table.

CREATE TABLE movies (
 mid integer primary key,
 title text,
 year integer,
 genres text
);

The data in a row is divided into fields. Each field holds a particular piece of data. In our movie rows, the individual fields are:

	mid – a unique integer identifier for the row

	title – the movie title, stored as a text string

	year – the year the movie came out, stored as an integer

	genres – a list of classification labels for the movie content, stored as a text string

The primary key notation on the mid field indicates that the data will be sorted for fast lookup on this field.
The following are a few rows of data from the movies table. This data comes from the publicly available IMDb (Internet Movie Database) at https://www.imdb.com/interfaces/ .

mid title year genres
---------- ------------------------------ ---- --------------------
369610 Jurassic World 2015 Action,Adventure,Sci
1326190 Aliens: Zone-X 2015 Sci-Fi
1392190 Mad Max: Fury Road 2015 Action,Adventure,Sci
1828251 Journey to Mt. Fuji 2015 Adventure,Family,Sci
2395427 Avengers: Age of Ultron 2015 Action,Adventure,Sci
2577662 The Rise of the Robots 2015 Sci-Fi
2651352 Ratpocalypse 2015 Fantasy,Sci-Fi

Similarly, each row in an actors table holds data about an actor. The following is a description of a table to hold actor data written is SQL. Again, this description is used to create the actor table.

CREATE TABLE actors (
 aid integer primary key,
 name text
);

Rows in this table hold only two values:

	aid – a unique integer identifier for the row

	name – the name of the actor, stored as a text string

The following are a few rows of data from the actors table.

aid name
---------- ------------------------------
1 Fred Astaire
2 Lauren Bacall
3 Brigitte Bardot
4 John Belushi
5 Ingmar Bergman
6 Ingrid Bergman
7 Humphrey Bogart
8 Marlon Brando
9 Richard Burton
10 James Cagney

Relationship tables are different. They hold values that tie the entities together. Instead of using actual data, the identifiers are used in a relationship table. The following is a description of the cast table.

CREATE TABLE cast (
 mid integer,
 aid integer,
 role text
);

The fields are:

	mid – an integer identifier from the movies table

	aid – an integer identifier from the actors table

	role – a description of the actor’s role in the movie, stored as a text string

Movies typically have more than one actor, so the cast table will typically have more than one row for the same movie, each with a different actor. For example, the movie “Wonder Woman” has the following row in the movies table:

mid title year genres
---------- ------------ ---------- ------------------------
451279 Wonder Woman 2017 Action,Adventure,Fantasy

Note the movie row identifier mid = 451279. In order to tie the movies to its actors, the same identifier, is used in the cast table.

mid aid role
---------- ---------- ------------------------------
451279 2933757 ["Diana"]
451279 1517976 ["Steve Trevor"]
451279 705 ["Antiope"]
451279 205063 ["Etta"]

Who are these actors? The only way to find out is to go to the actors table and look for the rows with the corresponding aid identifiers.

aid name
---------- --------------------
2933757 Gal Gadot
1517976 Chris Pine
705 Robin Wright
205063 Lucy Davis

Adding Data

In sqlite3, the easiest way to add data to a table is to load it from a file. sqlite3 has a special command for this called .import that is one of a series of commands that start with a period and are called Dot Commands [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/06_SQL/Workshop_SQL.rst#sqlite-dot-commands].

The file should:

	contain rows of data

	
	have in each row
	
	one value for each field

	fields in the same order as the create table statement

	
	all fields separated by the same character, such as
	
	a tab “\t” (a tab separated file or tsv)

	a comma “,” (a comma separated file or csv)

For example, importing movie data into the movies table can be done as follows. First, create a tab separated file with the data. We’ll arbitrarily call it movies.tsv. Next, set the type of field separator in sqlite. This can be done with .mode tabs command (or .mode csv if your file is comma separated). Finally import the data from the file movies.tsv using the .import command including the file name and the destination table. Note that the prompt sqlite> appears when the sqlite3 program is running.

sqlite>.mode tabs
sqlite>.import movies.tsv movies

Querying Data

Data is queried with SQL select statements. The basic form of an SQL query (Structured Query Language) for a single table is:

SELECT field name, field name, ...
FROM table name
WHERE condition [AND|OR condition etc.]
GROUP BY field name
HAVING condition [AND|OR condition etc.]
ORDER BY field name [asc|desc] ...
LIMIT integer

The individual query parts are referred to as clauses. The Select and From clauses are required, all others are optional.

	Select – lists the fields in the output, any order

	From – lists the table(s) where the data is stored

	Where – gives boolean condition(s) (true/false) limiting the rows used

	Group by – used with aggregates like count(*)

	Having – gives boolean conditions limiting output after a GROUP BY

	Order by – sorts the output by field(s), either ascending (ASC) or descending (DESC)

	Limit – restricts the output to a maximum number of rows

The simplest query returns the whole table. Limit is used in this example because the table contains over 100,000 rows. Here, “*” means “all fields.”

SELECT *
FROM Movies
LIMIT 10

mid title year genres
------ -------------- ---- ----------
35423 Kate & Leopold 2001 Comedy,Fan
66853 Na Boca da Noi 2016 Drama
69049 The Other Side 2018 Drama
88751 The Naked Mons 2005 Comedy,Hor
94859 Chief Zabu 2016 Comedy
96056 Crime and Puni 2002 Drama
97540 Responso 2004 \N
100275 The Wandering 2017 Comedy,Dra
102362 Istota 2000 Drama,Roma
107706 Stupid Lovers 2000 \N

Note that \N means NULL or no value.

To restrict the fields, use field names:

SELECT title, genres, year
FROM Movies
LIMIT 10

title genres year
-------------- -------------------- ----
Kate & Leopold Comedy,Fantasy,Roman 2001
Na Boca da Noi Drama 2016
The Other Side Drama 2018
The Naked Mons Comedy,Horror,Sci-Fi 2005
Chief Zabu Comedy 2016
Crime and Puni Drama 2002
Responso \N 2004
The Wandering Comedy,Drama,Fantasy 2017
Istota Drama,Romance 2000
Stupid Lovers \N 2000

To restrict records, impose a condition

SELECT title, genres, year
FROM Movies
WHERE year = 2018
LIMIT 10

title genres year
-------------------------- -------------------- ----
The Other Side of the Wind Drama 2018
T.G.M. - osvoboditel \N 2018
To Chase a Million Action,Drama 2018
Fahrenheit 451 Drama,Sci-Fi,Thrille 2018
Nappily Ever After Comedy,Drama,Romance 2018
Alita: Battle Angel Action,Adventure,Rom 2018
Surviving in L.A. Comedy,Drama,Romance 2018
Escape from Heaven Comedy,Fantasy 2018
The Last Full Measure Drama,War 2018
Caravaggio and My Mother t Comedy,Drama 2018

For string comparison several options are available.

	= – strings must match exactly (usage: field = “pattern”)

	CaSe SeNsItIvE

	LIKE – strings must match exactly (usage: field LIKE “pattern”)

	can use wildcards in pattern

	‘%’ for zero or more “I don’t care” letters

	‘_’ for one letter

	not case sensitive

The following example uses a condition on the title and genres to restrict the output to titles which begin with “star” and where “sci-fi” occurs somewhere in the genres field.

sqlite> select title, genres, year
 ...> from movies
 ...> where year = 2017 and title like "star%" and genres like "%sci-fi%"
 ...> limit 10;

title genres year
----------------------------- -------------------- ----
Star Wars: The Fallen Brother Action,Fantasy,Sci-F 2017
Starwatch Action,Drama,Sci-Fi 2017
Star Wars: The Dark Reckoning Sci-Fi 2017
Star Trek: The Paradise Maker Adventure,Animation, 2017

Joins

When you want to combine data from different tables, joins are used. This is how to retrieve information on both actors and movies in the same query. Joins occur in the FROM clause. All the required tables are listed and the columns that should be used to join the rows are specified. Recall the actors – cast – movies diagram from above. Now it’s labeled with the columns that join the entity and relationship tables.

[image: ../../_images/movies.actors.cast.er.diagram.with.primary.keys.png]
Going back to the Wonder Woman example. Here is a query that returns the actors by looking for the movie name. The results are shown after the query.

sqlite> select mid, title, aid, name, role
 ...> from movies join cast using(mid) join actors using(aid)
 ...> where title like "wonder woman";

mid title aid name role
---------- ------------ ---------- ---------- --------------------
451279 Wonder Woman 2933757 Gal Gadot ["Diana"]
451279 Wonder Woman 1517976 Chris Pine ["Steve Trevor"]
451279 Wonder Woman 705 Robin Wrig ["Antiope"]
451279 Wonder Woman 205063 Lucy Davis ["Etta"]

Notice the joins in the from clause. The first one is

movies join cast using(mid)

This indicates that rows from movie should be combined with rows from cast when they share the same mid value. In effect, this produces an intermediate table with the following columns: mid, title, year, genries, aid, role as can be seen in the following query.

sqlite> select *
from movies join cast using (mid)
limit 10;

mid title year genres aid role
------ -------------- ---- ---------- -------- --------------
35423 Kate & Leopold 2001 Comedy,Fan 212 ["Kate McKay"]
35423 Kate & Leopold 2001 Comedy,Fan 413168 ["Leopold"]
35423 Kate & Leopold 2001 Comedy,Fan 630 ["Stuart Besse
35423 Kate & Leopold 2001 Comedy,Fan 5227 ["Charlie McKa
66853 Na Boca da Noi 2016 Drama 180878 ["Vítor Hugo"
66853 Na Boca da Noi 2016 Drama 206883 ["Hugo"]
66853 Na Boca da Noi 2016 Drama 94426 \N
66853 Na Boca da Noi 2016 Drama 138681 \N
69049 The Other Side 2018 Drama 1379 ["Jake Hannafo
69049 The Other Side 2018 Drama 709947 ["John Dale"]

The second join is:

X join actors using (aid)

where X is the result of the first join. This indicates that rows from the first join should be combined with rows from actors when they share the same aid. Again, this has the effect of producing an intermediate table with one additional field, name.

sqlite> select *
from movies join cast using (mid) join actors using (aid)
limit 10;

mid title year genres aid role name
------ -------------- ---- ---------- -------- -------------- --------------------
35423 Kate & Leopold 2001 Comedy,Fan 212 ["Kate McKay"] Meg Ryan
35423 Kate & Leopold 2001 Comedy,Fan 413168 ["Leopold"] Hugh Jackman
35423 Kate & Leopold 2001 Comedy,Fan 630 ["Stuart Besse Liev Schreiber
35423 Kate & Leopold 2001 Comedy,Fan 5227 ["Charlie McKa Breckin Meyer
66853 Na Boca da Noi 2016 Drama 180878 ["Vítor Hugo" Rubens Correia
66853 Na Boca da Noi 2016 Drama 206883 ["Hugo"] Ivan de Albuquerque
66853 Na Boca da Noi 2016 Drama 94426 \N Roberto Bonfim
66853 Na Boca da Noi 2016 Drama 138681 \N Marilia Carneiro
69049 The Other Side 2018 Drama 1379 ["Jake Hannafo John Huston
69049 The Other Side 2018 Drama 709947 ["John Dale"] Robert Random

To obtain the results we’re interested in, sqlite searches the rows in the final intermediate table for those whose titles match “wonder woman”.

 SQL Workshop

SQL Workshop

Tasks

In the workshop, we’ll do the following. See the instructions below for guidance in each task.

	Task 1: Create tables for movies, actors, and cast.

	Task 2: Add data to the tables using the files movies.tsv, actors.tsv, cast.tsv.

	Task 3: Write queries to get answers for questions about the data.

Abbreviated workshop only

If this is an abbreviated workshop, we’ll skip Tasks 1 and 2 and instead load a pre-existing sqlite database. This can be done as follows:

	Create a directory for this workshop called SQLworkshop. Do this on the SCC under your directory. All your work should be done in this directory. Open a terminal window and `cd` to your `SQLworkshop` directory. Note that % is used below as an arbitrary symbol for your system prompt.

%mkdir SQLworkshop
%cd SQLworkshop

	Load sqlite3.

Use module load.

%module load sqlite3

	Copy the pre-existing database file to your SQLworkshop directory.

cp /projectnb/bubpwtf/SQL_workshop/mymovies.db .

	Open the pre-existing sqlite database file.

%sqlite3 mymovies.db

	Use .schema to see the tables in the database. This will list the CREATE TABLE and CREATE INDEX statements that were used to create the database tables. Note that “sqlite>” is the sqlite prompt.

sqlite> .schema

	Stop sqlite and restart (so you can see how this is done).

sqlite> .quit
%sqlite3 mymovies.db

	Set the viewing parameters in sqlite.

sqlite> .mode columns
sqlite> .width 18 18 18 18 18 18 18
sqlite> .headers on

*Note: If the columns are too narrow to see all the content, you can always switch columns off using

sqlite> .mode list

	Skip ahead to Task 3.

Task 1

	Create a directory for this workshop called SQLworkshop. Do this on the SCC under your directory. All your work should be done in this directory. Open a terminal window and cd to your SQLworkshop directory. Note that % is used below as an arbitrary symbol for your system prompt.

%mkdir SQLworkshop
%cd SQLworkshop

	Load sqlite3.

Use module load.

%module load sqlite3

	Create the database file

Starting sqlite3 with a file name creates a database file with that name or uses that file if it already exists. Create a file called mymovies.db.

%sqlite3 mymovies.db

Now, stop sqlite. Note that “sqlite>” is the sqlite prompt.

sqlite> .quit

	Create the database tables

Create a file create.sql in an editor and enter the CREATE TABLE statements for movies, actors, and cast. You can copy and paste the statements below.

CREATE TABLE movies (
 mid integer primary key,
 title text,
 year integer,
 genres text
);

CREATE TABLE actors (
 aid integer primary key,
 name text
);

CREATE TABLE cast (
 mid integer,
 aid integer,
 role text
);

Also add the following two lines at the bottom of your create.sql file. They create indexes which sort the data in the cast table for fast lookup. This is necessary because the cast table doesn’t have a primary key.

CREATE INDEX mid_aid_index on cast (mid, aid);
CREATE INDEX aid_mid_index on cast (aid, mid);

Restart sqlite with mymovies.db. Then use .read to read in the file create.sql. This will execute the statements in the file and create the tables.

%sqlite3 mymovies.db

sqlite> .read create.sql

Use .schema to see that all the tables were created. This will list the CREATE TABLE and CREATE INDEX statements.

sqlite> .schema

If you’ve made a mistake at this point, quit sqlite, delete the mymovies.db file in SQLworkshop and start again.

Task 2

	Data for the three tables, in tab separated format, has been stored on the SCC in the following files:
	
	/projectnb/bubpwtf/SQL_workshop/movies.tsv

	/projectnb/bubpwtf/SQL_workshop/actors.tsv

	/projectnb/bubpwtf/SQL_workshop/cast.tsv

	Note that these files are also stored at the following location if you want to download them to your own computer. Click on the names and use the download button on the next page.
	
	“movies.tsv [https://github.com/BRITE-REU/programming-workshops/blob/master/movies.tsv]”

	“actors.tsv [https://github.com/BRITE-REU/programming-workshops/blob/master/actors.tsv]”

	“cast.tsv [https://github.com/BRITE-REU/programming-workshops/blob/master/cast.tsv]”

Load each file into its own table. Use the following for the movies.tsv file.

sqlite> .mode tabs
sqlite> .import /projectnb/bubpwtf/SQL_workshop/movies.tsv movies

Confirm that data has been loaded into the movies table using the following command that counts the number of records in the table. The answer should be 102754.

sqlite> select count(*) from movies;

Note that if you get the continuation symbol …> it means you hit return before the command was complete. Either continue typing or add a missing semicolon (;) at the end.

sqlite> select count(*) from movies
...>;

Now repeat for the other two files. The counts are: actors: 223146, cast: 420000.

To view the contents of an individual table, use a select command like the following, which lists the first 10 lines from a table. Note that the .mode and .headers commands make the output easy to read. select * means output all fields of each row.

sqlite> .mode column
sqlite> .headers on
sqlite> select * from movies limit 10;

Task 3

Write SQL select statements to get the answers to the listed questions. Use the format shown below.

SELECT field name, field name, ...
FROM table name
WHERE condition [AND|OR condition etc.]
GROUP BY field name
HAVING condition [AND|OR condition etc.]
ORDER BY field name [asc|desc] ...
LIMIT integer

Using SELECT and WHERE in a single table

	Pick a movie you know from year 2000 or later and find out its mid. Try using the `LIKE’ keyword for pattern matching so you don’t have to write out the entire name. (answer is mid, title, i.e., use SELECT mid, title …)

	Pick an actor you know and find out her, his, or their aid. (answer is aid, name)

	Pick a year from 2000 or later and list the first five movies in the year you picked with titles that start with a “b” and with “comedy” in the genres column. (answer is five rows, each containing year, title, genre)

Using count()

	How many actors have a first name that starts “Amy”? (answer is a count)

	How many actors have a last name beginning with “C”? (answer is a count)

	How many movies are in the comedy genre? (answer is a count)

	How many movies have the word “bride” in the title? “groom” in the title? (answer for each is a count)

	How many movies have both comedy and romance listed in their genres? (answer is a count)

Using GROUP BY

	List the number of movies in each year. (answer is multiple rows, each containing year and count)

Using GROUP BY, HAVING, ORDER BY

	List the top genre combinations, i.e, those that occur at least 500 times. List them in descending order by the number of occurrences.

You’ll have to adjust the column widths to see the entire genre names. Use this:

sqlite> .width 30 10

Using joins

	Pick a favorite actor and list all titles, years, and roles of the movies that person appears in. (answer is multiple rows, each containing name, title, year, role)

	Pick a movie and find all the actors that appeared in it. (answer is multiple rows, each containing title, name, role, year)

	List the actors in descending order by their number of roles and limit the list to the top ten. (answer is multiple rows, each containing name, count of roles)

	Find actors who have appeared in at least five comedies. Limit to 30. First do this without any ordering. Then, list them in descending order of number of comedies. (answer is multiple rows, each containing name, count of movies)

	(Hard) Find actors who have appeared in at least five comedies and five dramas. Limit to 30. First do this without any ordering, then list them in descending order of the combined number of comedies and dramas. (answer is multiple rows, each containing name, count of comedies, count of dramas, total count)

Try It At Home

Follow these steps to add movie ratings to your database.

	
	Create a ratings table. It should have three fields:
	
	mid – a unique integer identifier for the movie (set this as the primary key)

	rating – a floating point value for the movie rating (datatype: real)

	votes – an integer value for the number of votes received by the movie

	The data file is on the SCC at /projectnb/bubpwtf/SQL_workshop/ratings.tsv (or download at “ratings.tsv [https://github.com/BRITE-REU/programming-workshops/blob/master/ratings.tsv]” by clicking on the name and selecting Raw on the next page.)

	Import the data into your table. There should be 66781 records.

Answer these queries

	How many movies are rated? (answer is a count)

	How many movies have more than 5000 votes? (answer is a count)

	What are the top ten rated movies with at least 5000 votes? With at least 50,000 votes? With less than 5000 votes? (answer is multiple rows, each with a title, rating, votes)

	What is the range of ratings (use min() for low and max() for high)? (answer is two values)

	Show the ratings, votes, and year of Star Wars movies with at least 100,000 votes, ordered by rating from highest to lowest. (answer is multiple rows, each with a year, title, rating, votes)

	What is the distribution of ratings in bins of size 1 (i.e., how many are rated from 0 to 0.999, from 1 to 1.999, etc). To do this you can use 1) the round() function on the ratings and 2) GROUP BY. (answer is multiple rows, each with a rounded rating and count)

SQLite Dot Commands

sqlite3 dot commands

.quit Exit sqlite3
.headers on|off Turn display of field names on or off
.help Show this message
.import FILE TABLE Import data from FILE into TABLE
.mode OPTION Set output/input mode where OPTION is one of:
 csv Comma-separated values
 tabs Tab-separated values
 list Values delimited by .separator strings
 column Left-aligned columns for display (use with .width)
.open FILE Close existing database and open FILE database
.output FILE|stdout Send output (such as result of SQL query) to FILE or screen
.read FILE Execute SQL in FILE
.schema Show the CREATE statements in this database
.separator "x" Change the column separator to x for both .import and .output
.show Show the current values for various settings
.width n1 n2 … Set column widths for "column" mode, 0 means auto set column,
 negative values right-justify

 Solutions to Common Queries

Solutions to Common Queries

Number of movies

select count(*)
from movies;

Number of actors

select count(*)
from actors;

Number of rows in cast

select count(*)
from cast;

Movies in a range of mid values

select *
from movies
where mid>112303 and mid <114000
limit 10;

Movies named “Frozen” (case sensitive)

select *
from movies
where title = "Frozen"
limit 10;

Movies name “frozen” (case insensitive)

select *
from movies
where title like "frozen"
limit 10;

Movies with title containing “star”.

select *
from movies
where title like "%star%"
limit 10;

Movies with “adventure” in genres

select *
from movies
where genres like "%adventure%"
limit 10;

Minimum year of movies in database

select min(year)
from movies;

Maximum year of movies in database

select max(year)
from movies;

Count of movies per year

select year, count(year)
from movies
group by year
limit 20;

Average number of actors per movie (uses subquery)

select avg(n)
from (
 select count(aid) as n
 from cast
 group by mid
);

Actors in movies titled “Frozen”

select mid, title, year, name, role, aid
from movies join cast using(mid) join actors using(aid)
where title like "Frozen";

Movies for Emma Stone sorted descending by year

select name, title, year
from movies join cast using(mid) join actors using(aid)
where name="Emma Stone"
order by year desc;

Movies for Chris Evans sorted by title

select name, title, year
from movies join cast using(mid) join actors using(aid)
where name="Chris Evans"
order by title;

Movies for George Clooney sorted by title

select name, title, year
from movies join cast using(mid) join actors using(aid)
where name="George Clooney"
order by title;

Top actors (most movies over 30)

select name, count(mid) as c
from cast join actors using(aid)
group by name
having c >= 30
order by c desc
limit 10;

Top actors (most movies since 2015)

select name, count(mid)
from movies join cast using(mid) join actors using(aid)
where year >= 2015
group by name
order by count(mid) desc
limit 10;

Same two actors in two movies (complete version, note less than (<) instead of not equal (<>) in final part of the where to avoid reversed duplicates)

[image: ../../_images/two.actors.two.movies.png]
select a1.name, a2.name, m1.title, m2.title
from actors a1 join cast c1 using (aid)
 join cast as c2 using(mid)
 join cast as c3 on c1.aid=c3.aid
 join cast as c4 on c2.aid = c4.aid and c3.mid=c4.mid
 join actors a2 on c4.aid=a2.aid
 join movies as m1 on m1.mid=c1.mid
 join movies as m2 on m2.mid=c4.mid
where c1.aid <> c2.aid and c1.mid < c3.mid
limit 10;

Same two actors in two movies, one of which is Emma Stone

select a1.name, a2.name, m1.title, m2.title
from actors a1 join cast c1 using (aid)
 join cast as c2 using(mid)
 join cast as c3 on c1.aid=c3.aid
 join cast as c4 on c2.aid = c4.aid and c3.mid=c4.mid
 join actors a2 on c4.aid=a2.aid
 join movies as m1 on m1.mid=c1.mid
 join movies as m2 on m2.mid=c4.mid
where c1.aid <> c2.aid and c1.mid < c3.mid and a1.name like "Emma Stone"
limit 10;

 Posters

Posters

	Abstracts
	Abstract Draft Guidelines

	Posters
	Poster Templates

	BU logo files

	ABRCMS Poster Presentation Guidelines

	ABRCMS Poster Judging Guidelines

	Poster Draft Guidelines

	What to look for when reading a poster

	Submission Deadlines
	ABRCMS Travel Award

	ABRCMS Abstract

	NSF Bio REU Travel Award

 Abstracts

Abstracts

Abstract Draft Guidelines

	Length
	
	max 2500 characters, excluding spaces

	Include:
	
	Title

	Authors (you and your mentors)

	Motivation and Background

	Question or Goal

	Methods and Data

	Results

	Discussion and Future work

	Avoid:
	
	undefined words or phrases

	vagueness

	sloppy grammar

From the ABRCMS National Conference website: “Your abstract must contain a hypothesis or statement about the problem under investigation, a statement of the experimental methods/methodology used, essential results provided in summary form (even if preliminary), and a conclusion that explains how the work contributes to the hypothesis or statement of problem.”

See, also, the ABRCMS guidelines for preparing an abstract: https://abrcms.org/index.php/present-at-abrcms/competitive-abstract

 Posters

Posters

Poster Templates

The following are suggested posters templates.

	Three column red [https://github.com/BRITE-REU/programming-workshops/raw/master/source/workshops/08_posters/data/36x48_phdposters_template%20red.pptx]

	Three column blue [https://github.com/BRITE-REU/programming-workshops/raw/master/source/workshops/08_posters/data/36x48_phdposters_template%20blue.pptx]

BU logo files

	Red rectangular “Boston University” logo eps file [https://github.com/BRITE-REU/programming-workshops/raw/master/source/workshops/08_posters/data/BOSTON_UNIV_CMYK.eps]

	Black rectangular “Boston University” logo eps file [https://github.com/BRITE-REU/programming-workshops/raw/master/source/workshops/08_posters/data/BOSTON_UNIV_BLACK.eps]

ABRCMS Poster Presentation Guidelines

	ABRCMS Poster Presentation Guidelines [Will be updated when available]

ABRCMS Poster Judging Guidelines

	ABRCMS Poster Judging Guidelines [https://github.com/BRITE-REU/programming-workshops/raw/master/source/workshops/08_posters/data/ABRCMS_Judges_Rubric.pdf]

Poster Draft Guidelines

	Title

	Authors

	Affiliations of Authors

	Yours should be your school and “Boston University Bioinformatics BRITE REU Program, Summer 2022”

	Abstract

	Text for

	Motivation and Background

	Methods

	Results

	Discussion and Future Work

	Figures

	References

	Acknowledgements

	Include: “This work was funded, in part, by NSF grant DBI-1949968, awarded to the Boston University Bioinformatics BRITE REU program, [and if other grants] and <grant agency, like NSF or NIH> grant <grant number>.”

What to look for when reading a poster

Contents

	Does the abstract say briefly what the authors did, why they did it (including importance), what results they got?

	Is there an introduction to basic concepts?

	Does it use diagrams or flowcharts to increase clarity?

	Does the methods section describe briefly what was done and how? what data was used?

	Does the results section make clear what was the outcome?

	Are graphs and figures clear, well labeled, and described. Are important results highlighted?

	Does the conclusion discuss the importance of the results and what further work needs to be done?

	Is there a reference section with relevant articles and books?

	Is there an acknowledgement section that contains grant support information?

Appearance and overall effect

	Is it interesting?

	Is there a good mix of text and figures?

	Was there a good flow in the story?

	Did you learn something from it?

 Submission Deadlines

Submission Deadlines

2022 ABRCMS National Conference

November 9-12, 2022

Anaheim, CA

ABRCMS Travel Award

Deadline Aug 23 at 11:59 p.m. PDT

Apply for an ABRCMS travel award [https://www.abrcms.org/index.php/register/apply-for-a-travel-award]

ABRCMS Abstract

Deadline Sept 9 at 11:59 p.m. PDT

Submit an ABRCMS abstract [https://www.abrcms.org/index.php/present-at-abrcms/submit-an-abstract]

NSF Bio REU Travel Award

No deadline. No eligibility restrictions. Apply after you’ve been accepted to present your research at a conference.

Apply for an NSF Bio REU travel award [https://bioreu.org/travel-funds-reu-students-0/]

 Index

Index

 4. File editing in the terminal

4. File editing in the terminal

Typically, you’d want to turn on X-11 forwarding or mount the server onto your machine to work on some sort of GUI or IDE, but sometimes you just want to make a quick change to a file that you have write permissions. Well, I will describe vim, because that is our most used terminal editor. Vim is a very popular text editors these days, and has been around since the 1970s.

You activate vim by typing vim followed by a file name. If the file doesn’t already exist, then it will be created when you save you work.

When you first enter vim, you will be in normal mode. Here, you can go into other modes to perform commands, or you can go into editor mode by pressing i once. Once in editor mode, you can type your code. You can only move the cursor in the four directions, no mouse. However, if you go back into normal mode, you can do some navigating tricks:

	^ - This brings you to the beginning of a line

	$ - This brings you to the end of a line

	G - This brings you to the end of the file

	gg- This brings you to the beginning of the file

	0 - Often synonymous with ^

-/.*- It’s a find function. After typing a forward slash, you may write anything. upon pressing enter, vim will search the document and bring your cursor to the first instance of that string.

You can also do some editting tricks with vim:

	[0-9]* dd - type a number and then dd. This will delete that many lines below you.

	D - delete until the end of a line

	u - undo the last action

	[0-9]* y - “yank.” It means to copy. Regular select control-c works.

	p - Paste. Regular control-p works too, not in conjunction with yank, though.

if you ever type control-s, vim will keep recording your actions, but not display them, appearing to be stuck. Press control-q to get out of that jam.

To leave vim, go into normal mode from editor mode by pressing escape. Then press :. You can follow this with:

	q - quit. No changes made.

	q! - quit. Discard changes made.

	w - save. returns you to normal mode afterwards.

	wq - save and return to CLI.

Other text editors exist, such as emacs and nano. Find the one that works best for you and learn all of their tricks!

 Linux/Bash introduction

Linux/Bash introduction

UNIX and Linux

UNIX is an operating system which was first developed in the 1960s, and has been under constant development ever since. It is a stable, multi-user, multi-tasking system for servers, desktops and laptops. There are many different versions of UNIX, although they share common similarities. The most popular varieties of UNIX are Sun Solaris, GNU/Linux, and MacOS X.

The UNIX operating system is made up of three parts; the kernel, the shell and the programs.

	The kernel: The kernel of UNIX is the hub of the operating system: it allocates time and memory to programs and handles the filestore and communications in response to system calls.

	The shell: The shell acts as an interface between the user and the kernel. The shell is a command line interpreter (CLI). It interprets the commands the user types in and arranges for them to be carried out. The commands are themselves programs.

	The programs: Programs are instructions that tell the computer what to do.

Everything in UNIX is either a file or a process. A process is an executing program identified by a unique PID (process identifier). A file is a collection of data. They are created by users using text editors, running compilers etc.

 6. Processes

6. Processes

Concepts covered in the video:

	PID - Process identifier

	init - Initial process that starts all the other processes

	Parent PID

	UID - User identifier

	Process priority

	ps - print out information on running processes

	TTY - terminal process is associated with

	fg - brings background job to foreground

	kill - Terminate a process

	top - Browse processes

 8. Tips and tricks

8. Tips and tricks

Customizing your .bashrc

 R Workshop: RNA-seq Airway Data and Differential Expression Analysis

R Workshop: RNA-seq Airway Data and Differential Expression Analysis

In this workshop, we will focus on learning how to load packages, import data, perform exploratory analysis with built in functions as well as functions from packages installed, performing differential expression analysis of RNA-seq data with the DESeq2 package, and visualizing the results using ggplot2.

We will work in R Markdown, a .Rmd file written in markdown and contains chunks of embedded R code.

The R Mardown file and two csv files containing count data (airway_scaledcounts.csv) and meta data file (airway_metadata.csv) can be downloaded from here:

	airway_metadata.csv [https://github.com/BRITE-REU/programming-workshops/tree/master/source/workshops/02_R/files/airway_metadata.csv]

	airway_scaledcounts.csv [https://github.com/BRITE-REU/programming-workshops/tree/master/source/workshops/02_R/files/airway_scaledcounts.csv]

	Workshop R Markdown file [https://github.com/BRITE-REU/programming-workshops/tree/master/source/workshops/02_R/files/R_Workshop.Rmd]

Load Packages

We will begin by loading the necessary packages:

Go ahead and install these packages using install.packages():

	readr

	ggplot2

	dplyr

	magrittr

We will use packages from the bioconductor repository, which provides tools for analysis of high-throughput genomic data.

source(“https://bioconductor.org/biocLite.R”)

Use BiocManager::install(“package_name”) function to install packages SummarizedExperiment, DESeq2 and airway.

Note: If package base is not already installed, please install that as well.

packages <- c("readr", "ggplot2", "dplyr", "magrittr")
install.packages(packages, dependencies = TRUE)

if(!require("BiocManager", quietly = TRUE))
 install.packages("BiocManager")
BiocManager::install(version = "3.15")

BiocManager::install("SummarizedExperiment", dependencies = TRUE)
BiocManager::install("DESeq2", dependencies = TRUE)
BiocManager::install("airway", dependencies = TRUE)

Load these libraries using library(“package_name”) function:

#library(base) in case it's not loaded
library(readr)
library(dplyr)
library(ggplot2)
library(magrittr)
library(SummarizedExperiment)
library(DESeq2)
library(airway)
library(enrichR)

Import Airway Data

If you have not downloaded the R_Workshop folder already, please do that now.

Let’s begin first by setting our working directory. Set your working directory to where the R_Workshop folder is located on your computer.

#Find working directory
getwd()

#Set working directory path
setwd("/Users/tanyatk/Desktop/R_Workshop/")

#Check working directory again
getwd()

Today we will work with the airway dataset. This data set comes from an RNA-Seq experiment, a high throughput sequencing method, on four human airway smooth muscle cell lines treated and untreated with dexamethasone. We will work with read counts or expression matrix for this dataset (i.e. processed files).

Note: The sequencing files of this experiment are available on the GEO database with GEO Series Number GSE52778, and can be downloaded using SRA toolkit.

Use the read.csv(“file”) function to import the airway_scalecounts.csv (count data) and airway_metadata.csv (meta data) files from the downloaded folder R_Workshop.

Use read.csv() function to import airway_scaledcounts.csv and airway_metadata.csv files into R
scaledcounts <- read.csv("airway_scaledcounts.csv")
metadata <- read.csv("airway_metadata.csv")

Use base functions to describe and look at the airway data: scaledcounts and metadata.

	dim() - Dimensions

	head() - Print first lines of data

	tail() - Print last few lines of data

	str() - Describe data object structure and information

1 Use base functions to gain an initial view of the data

2 Look at scaledcounts variable
dim(scaledcounts)

head(scaledcounts)

tail(scaledcounts)

str(scaledcounts)

3 Look at metadata variable
dim(metadata)

head(metadata)

tail(metadata)

str(metadata)

Working with data.frame objects

Looking at scaledcounts we can see that the first column, “ensgene”, gives the gene identifier for each gene, while each successive column gives the expression values for this gene.

This is okay, but it’s a little clunky. Alternatively we can set the gene identifiers as row names to index rows directly.

Asking R for help

Alternative to steps 1 + 2 above, we could have set gene identifiers to row names when we read in the file.

Working with matrix objects

The main difference between a data.frame object and a matrix object is that each column of a data.frame is free to have it’s own format, whereas all values within an entire matrix must have the same format. One nice thing about matrix objects is that functions in R can be applied to all values at once. Note, that after setting the gene identifiers to row names, all values in scaledcounts is now a number.

For gene expression it is common to work with log-scaled count data because these tend to adhere more closely to normal distributions than count data. The one caveat to this that log(0) = -Inf. To overcome this, it is common practice to add a small value prior to performing log-transformations, most commonly by adding one to every value, log(1) = 0.

Running simple comparative statistical analyses

Later in this workshop, we will use a fancy Bioconductor package to run differential gene expression analysis. The basis for this type of analysis is common when analyzing high-throughput data. It has the following steps

	Extract the expression values for a single gene.

	Run compare the mean expression between two groups using a statistical test.

	Repeat steps 1 + 2 for every gene.

Running one test

The t-test is a common choice for performing a differential analysis. The “dex” column in metadata gives group values for treated and control samples.

Note that the syntax at the begining of this function, you will see it a lot. Look up ?formula for more information. This is common in functions for statistical modelling, as well as base R plotting functions. For example, instead of running a t-test we could run a linear model.

Note, that the p-value for the linear model is equal to the p-value for the t-test. This is because simple linear regression models are equivalent to a pooled variance t-test.

Next, we can use a similar syntax to create boxplots of the expression values for either group.

As we can see, the difference in mean is very small relative to the variance, hence the large p-value.

Wrapper functions

If we want to run a test one any gene we can greatly reduce the amount of code we need to write by writing a function that takes a gene identifier as an argument, runs the t-test, and returns information we are interested in. For example, below is a function that takes the arguments, geneid and returns a vector with two values: the difference in mean and p-value.

Function to run ttest for a given gene ID
ttestGene <- function(geneid) {

 # Create data matrix
 genedata <- data.frame(ex = scaledcounts[geneid,], group = metadata$dex)

 # Run t-test
 ttestRes <- t.test(ex ~ group, data = genedata)

 # Get difference in mean
 diffMean <- ttestRes$estimate[2] - ttestRes$estimate[1]

 # Get difference and p-value
 results <- c(diffMean, pvalue = ttestRes$p.value)

 # Given these values a name
 names(results) <- c("diff", "pvalue")

 return(results)
}

Run it on "ENSG00000002549"
ttestGene("ENSG00000002549")

Apply loops

We can run this analysis using an apply loop. In are there are several choices of apply loops, for this case we will use the sapply() function. sapply() takes two arguments: a vector and a function. You may want to check the help page, ?apply, for other options.

Matrix operations

Loops are great and often necessary, but whenever possible utilizing matrix operations is a great way to speed up runtime. For example, the maximum likelihood estimates of linear regression coefficients can be estimated using the following formula,

\[\hat{\beta} = (X^TX)^{-1}X^Ty.\]

Here, \(X\) is and \(N+1\times P\) design matrix of variables, and \(y\) can be a vector of outcome variables, in this case gene expression values for specific gene. \(X^T\) denotes that a given matrix is transposed and \(()^{-1}\) denotes taking the inverse of the items in the parathesis.

The three basic matrix operations functions in R are:

	t(): Transpose matrix input.

	solve(): Take the inverse of matrix input.

	%*%: Multiply matrices on the left and right.

In actuality, \(y need not be a vector, but instead a :math:\) matrix, where \(Q\) is a set of variables for which you’d like to indepedently test the relationships to \(X\).

Loading data from R packages

This data set is also available in a package called “airway” in Bioconductor.

Tip

Bioconductor (www.bioconductor.org) is an R programming language open-source and open-development software project for the analysis and interpretation of genomic data. It is comparable to CRAN for packages that are oriented towards biological data analysis. Open development means that the community is made aware of the development plans for each of the tools and in some instances, encouraged to contribute additions and modifications to the software itself.

The dataset is saved as something called an S4 object. The S4 object class is a somewhat complicated concept, but in this case, all you need to know is that there are named components of the object called “slots”, which are accessed using the specialised subsetting operator @ (pronounced at). The set of slots, and their classes, forms an important part of the definition of an S4 class. In R analyses of experiment data, you will often come across S4 objects that contain matrices of gene expression count data, sample metadata, and other information important to the data in fields or slots in the object.

To load the airway data we can use the data(“data_name”) function and call airway to add the dataset to our workspace. You’ll notice that the class is called RangedSummarizedExperiment (i.e. an S4 object), which is used to store matrices of experimental results such as the count data and meta data. This class is from the SummarizedExperiment package which is used often to store sequencing and microarray data. A descriptive and fairly concise tutorial of SummarizedExperiment objects is available here [https://bioconductor.org/packages/release/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html].

Call airway data using data() and print airway data to save to workspace

data("airway")
airway

Since we imported the same data set twice, we can remove data from our workspace using the rm() function.

Let’s remove the variables scaledcounts and metadata from our workspace. We’ll keep the airway object since it will be easier to work with for downstream analysis.

Remove scaledcounts and metadata variable
rm(scaledcounts)
rm(metadata)

Explore Airway Dataset

Let’s first do some preliminary work with the airway dataset. The sample/metadata information is saved under the slot colData which can be extracted using airway@colData or colData(airway).

First check the data structure of the colData(airway) dataset.

Hint: Built in functions to check data structure

Let’s set colData(airway) as a data frame.

Hint: We will use the as.data.frame() function to do this.

Check mode of colData(airway) and make change the structure to a data frame.

mode(colData(airway))

dat_airway <- as.data.frame(colData(airway))

dat_airway

The count data is saved under the slot assay. We can extract the count matrix by calling airway@assay or assay(airway). We can also use descriptive statistics to look at the expression acrosss samples. We will sum the expression of each column and scale by 1e6 to get scaled expression value. We will then use the summary() function to look at the range of expression between the samples.

Determine a way to sum the expression of each column.

Hint: You can use a for loop, apply function, or base functions such as colSums()

1 Sum the expression of each column, divide by 1e6
2 Use summary function to see the range of values between each sample

 head(assay(airway))
 summary(colSums(assay(airway))/1e6)

Differential Expression Analysis using DESeq2

We will use DESeq2 package for differential expression analysis of the airway data set to find differentially expressed genes between untreated and treated samples. We will first load DESeq2 and set up the data to be compatible with DESeq by using the function DESeqDataSet().

We can use the help(“function_name”) or ?function_name to look up the function to get a description.

A description or help pages will show up under the Help tab in the bottom right corner.

Look up DESeqDataSet() function description
help("DESeqDataSet")
?DESeqDataSet

We can also go to the bioconductor page for DESeq2 and look at the manual for functions as well as a tutorial of using the package itself. Click here to see the page [https://bioconductor.org/packages/release/bioc/html/DESeq2.html].

The function DESeqDataSet includes an argument called design which asks for a formula that expresses how the counts for each gene depends on the variables in colData. In this case we choose variables cell and dex because we care about the cell line and which samples are treated with dexamethasone versus which samples are untreated controls.

DE_airway <- DESeqDataSet(airway, design = ~ cell + dex)
DE_airway

Before we continue, we must set our control group as our reference level for comparison in our differential expression analysis.

DE_airway@colData$dex <- relevel(DE_airway@colData$dex, ref = "untrt")

Now we wil run the differential expression analysis steps through the function DESeq(). Again we can look up the function to learn more about what it does and the arguments needed to run it. We use the results() function to generate a results table with log2 fold changes, p values and adjusted p values for each gene. The log2 fold change and the Wald test p value is based on the last variable in the design formula, in this case variable dex. Therefore our results will show which genes are differentially expressed between the untreated and treated groups.

help("DESeq")

DE_airway <- DESeq(DE_airway)
res <- results(DE_airway)

res

How do we order the results table (res) based on the p-value?
There are already available functions in R that we can use to sort the dataframe.
Hint: Use function order() to order the rows based on p-value

Use order() to order the results table based on the p-value
res[order(res$pvalue),]

In DESeq2, the function plotMA generates an MA Plot commonly used to visualize the differential expression results. The plot shows the log2 fold changes attributable to a given variable over the mean of normalized counts for all the samples in the DESeqDataSet. Points represent genes and will be colored red if the adjusted p value is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either up or down.

plotMA(res, ylim=c(-2,2))

Manipulate and Visualize Results

Let’s add a column that tell us whether each gene is significant. Using the mutate() function from library dplyr, we can add a column showing whether the significance is TRUE or FALSE based on cutoff padj < 0.01.

1 Add column with gene names (using row names of matrix)
res$gene <- rownames(res)

2 Change res to a tibble format to work with dplyr
res <- tbl_df(res)

3 Add sig column to show which genes are significant or not by using mutate() from dplyr
res <- mutate(res, sig=padj<0.01)

4 We can use the symbol %>% from library magrittr to represent a pipe. Pipes take the output from one function and feed it to the first argument of the next function. You may have seen something similar in unix with |

res <- res %>% mutate(sig=padj<0.01)

head(res)

Let’s use the filter() function from dplyr to filter out results based on padj < 0.01, and write this to a csv file using write_csv() function from readr.

Try using piping format %>% to do this!

Filter res based on cutoff padj < 0.01 and save this result into a csv file called significant_results.csv

res %>%
filter(padj<0.01) %>%
write_csv("significant_results.csv")

What if we want to generate our own plots? We can use ggplot2 to create our own volcano plot of the differential expression results between the untreated and treated groups.

Now let’s try generating a volcano plot using ggplot2?

Hint: log2FoldChange for x-axis, -1*log10(pvalue) for y-axis, sig to color the points.

Make sure to include argument for points and include the title “Volcano plot”

Bonus: Change the axis titles to something more readable and change the point shapes, or play around with any other parameters to get a feel for how ggplot2 works.

Create Volcano plot using ggplot2
ggplot(res, aes(log2FoldChange, -1*log10(padj), col=sig)) + geom_point() + ggtitle("Volcano plot")
res %>% ggplot(aes(log2FoldChange, -1*log10(padj), col=sig)) + geom_point() + ggtitle("Volcano plot")

How would you generate the same MA plot above using ggplot2?
Hint: Use baseMean for x-axis, log2FoldChange for y-axis, sig for color.

Make sure to have points and to use a log10 scale for the x-axis (i.e. scale_x_log10()).

Add the title “MA plot” to your plot as well.

Create MA plot using ggplot2

ggplot(res, aes(baseMean, log2FoldChange, col=sig)) + geom_point() + scale_x_log10() + ggtitle("MA plot")

Gene Set Enrichment using enrichR

Gene set enrichment analysis (GSEA) is a method to identify classes of genes that are over-represented in a large set of genes. This is performed by comparing the input gene set with annotated gene sets from online functional databases such as Gene Ontology (GO) [http://geneontology.org] and KEGG [https://www.kegg.jp]. This is a common step in bioinformatics as it aids with the biological interpretation of results.

In this section of the workshop, we will perform GSEA on the set of differentially-expressed genes we identified earlier in this workshop using the enrichR [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987924/] tool. Please note that this section will require a working internet connection.

Let’s start by keeping only the set of genes that showed statistically-significant change in expression between conditions. Remember from the previous section that our threshold is be a false discovery rate (FDR) of 0.1 (i.e. no more than 10% chance that the observed change in expression is due to chance). Not all the genes in the results from DESeq2 were assigned p-values so we’ll start by filtering out the genes without p-values followed by storing the significant genes separately.

1 Filter out genes with no p-values
res <- res[!is.na(res$padj),]

2 Keep significant genes only
sigGenes <- res[res$sig == TRUE,]

3 How many significant genes did we get?
nrow(sigGenes)

There’s one more step before we carry out GSEA. The genes in this dataset use Ensembl indentifiers, while enrichR expects gene symbols. We’ll use the biomaRt package to map our Ensembl IDs to gene symbols.

1 Load package (remember to install it if you haven't)
library("biomaRt")

2 Load human reference genome
ensembl <- useMart("ensembl",dataset="hsapiens_gene_ensembl")

3 Map Ensembl IDs to gene symbols (might take a couple of minutes)
geneSymbols <- getBM(attributes='hgnc_symbol',
 filters = 'ensembl_gene_id',
 values = sigGenes$gene,
 mart = ensembl)

Now that we have our correctly-formatted gene symbols, we can perform GSEA. There are many different databases we can use for this step; for this workshop we will use the Gene Ontology (GO) databases: GO Biological Process, GO Molecular Function, and GO Cellular Component.

1 Find the list of all available databases from Enrichr
dbs <- listEnrichrDbs()

2 Scroll through list of available databases
View(dbs)

3 Set up list with databases of interest
dbs = c('GO_Biological_Process_2018','GO_Molecular_Function_2018', 'GO_Cellular_Component_2018')

4 Perform GSEA
enriched <- enrichr(genes = geneSymbols$hgnc_symbol, databases = dbs)

5 Check first few results for the biological process database
head(enriched$GO_Biological_Process_2018)

To conclude, we can look at our session information including the packages we loaded and worked with.

sessionInfo()

 Solutions

Solutions

Forking a repository

On Bitbucket [https://confluence.atlassian.com/bitbucket/forking-a-repository-221449527.html] you can fork from the left menu:

[image: ../../_images/fork_atlassian.gif]
 [https://confluence.atlassian.com/bitbucket/forking-a-repository-221449527.html]On GitHub [https://help.github.com/articles/fork-a-repo/] on the top left you can find the fork button.

[image: ../../_images/fork_github.png]
 [https://guides.github.com/activities/forking/]

Editing from the server

Go to the Bitbucket website, and find your repository.
Go to Source, and open the Readme file.
Click Edit to make changes to the Readme, and write your name.
Click the Commit button to save your changes.

 Data preparation

Data preparation

The data in machine learning is presented in the form of a matrix (data frame in R) consisting of N rows (samples or instances) and M columns (features).

Features

Features can be different types:

	Binominal (TRUE/FALSE)

	Categorial/nominal (different classes)

	Text - not supported by all applications

	Numeric (Real numbers)

	Integer (Natural numbers)

Note that a common mistake is to mischaracterize features. Nominal values are usually presented by numbers but cannot be compared. If not set properly, errors could occur.

Example: Many choose to set education status as 1: no college, 2: college degree, 3: post-graduate. Ask yourself, does 1.5 have a meaning?

Example: Stages of a tumor is represented by numbers (1, 2, ..) but it nominal.

Special features include the ID, label, batch, etc.
They are treated differently.
ID is excluded from models and must be unique.
Label is used for supervised learning (classification). A dataset can only have one label (per each run).

Meta-features are features made using the measured features.
For example BMI is a feature made from weight and height.
PCA vectors are features based on all features.

Data exploration

Explore the data to validate your data and potentially find new patterns. Data validation means that you should show known relations shown in the literature is present in your data. For example if a gene has been highly associated with your case studies, you should observe the same pattern in your data. Or if you have blood pressure and heart disease, they should be correlated. In addition you should show your data is representative of the real population. For example if you are working on samples from USA and you have an obesity feature (not label) you should make sure that the ratio of obese people is comparable to the ratio in USA. Or if the ratio of female to male is about 50%.

Draw many plots. Show how the features are distributed and how you expect them to be. Show your data is balanced (e.g. female and male have the same ratio) and if not be aware of the imbalance (for example rare diseases). The probability distributions in your data can result in misinterpretation.

In order to validate your data you can look for correlations between numeric features and associations between nominal features. The known relations in the literature should be validated by your data. You might find new relations and associations which can further be studied.

Let’s look at an example on as subset of features patients with diabetes type 2.

 age sex education living smoking weight height LDL HDL
Min. : 4.0 F:1688 1 :976 1 :1319 0:2148 Min. : 16.00 Min. : 83.0 Min. : 11.0 Min. : 16.0
1st Qu.:45.0 M: 757 2 :753 2 : 872 1: 130 1st Qu.: 61.00 1st Qu.:151.0 1st Qu.: 56.0 1st Qu.: 45.0
Median :52.0 3 :377 NA's: 254 2: 23 Median : 71.00 Median :157.0 Median :106.0 Median : 60.0
Mean :51.6 NA's:339 3: 144 Mean : 73.73 Mean :157.9 Mean :104.3 Mean :106.8
3rd Qu.:60.0 3rd Qu.: 87.00 3rd Qu.:165.0 3rd Qu.:141.0 3rd Qu.:160.0
Max. :89.0 Max. :161.00 Max. :196.0 Max. :700.0 Max. :665.0
NA's :15 NA's :332 NA's :620 NA's :587 NA's :404

Education is the level of education (1=finished high school, 2=college degree, 3=post graduate) and living is the type of living environment (1=city/town, 2=village). Smoking is another nominal feature (0=doesn’t smoke, 1: occasional smoker, 2=light smoker, 3=heavy smoker). HDL and LDL are good and bad cholesterol levels in blood. Missing data is represented with NAs.

1. Correlation matrix: calculate the correlation between the features and draw a heatmap.
Look at the highly correlated features. Make sure the correlations are valid (by literature) and mark down if they are direct correlations or indirect.

[image: ../../_images/corr_matrix.png]
2. Association rules: find associations between sets of features to another feature.
Each rule associates a set of features to another feature. The rule certainty is measured using two parameters: support or frequency (how much of the data supports it) and confidence (out of all applicable data points, how many follow the rule). Association rules are applied on nominal features or discrete values.

> library(arules)
> rules <- apriori(data, parameter=list(support=0.10, confidence=0.50))
Apriori

Parameter specification:
 confidence minval smax arem aval originalSupport maxtime support minlen maxlen target ext
 0.5 0.1 1 none FALSE TRUE 5 0.1 1 10 rules FALSE

Algorithmic control:
 filter tree heap memopt load sort verbose
 0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 244

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[26 item(s), 2445 transaction(s)] done [0.00s].
sorting and recoding items ... [23 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 5 done [0.00s].
writing ... [477 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> rules
set of 477 rules
 > inspect(head(rules, n = 10, by ="lift"))
 lhs rhs support confidence lift count
[1] {sex=M,smoking=0,weight=[80,161]} => {height=[162,196]} 0.1132924 0.7527174 2.997384 277
[2] {sex=M,weight=[80,161]} => {height=[162,196]} 0.1525562 0.7474950 2.976588 373
[3] {sex=M,smoking=0,height=[162,196]} => {weight=[80,161]} 0.1132924 0.8683386 2.920341 277
[4] {sex=M,height=[162,196]} => {weight=[80,161]} 0.1525562 0.8477273 2.851022 373
[5] {weight=[80,161],height=[162,196]} => {sex=M} 0.1525562 0.8555046 2.763156 373
[6] {smoking=0,weight=[80,161],height=[162,196]} => {sex=M} 0.1132924 0.8195266 2.646952 277
[7] {height=[162,196]} => {weight=[80,161]} 0.1783231 0.7100977 2.388155 436
[8] {weight=[80,161]} => {height=[162,196]} 0.1783231 0.5997249 2.388155 436
[9] {sex=M,smoking=0} => {height=[162,196]} 0.1304703 0.5885609 2.343699 319
[10] {smoking=0,height=[162,196]} => {weight=[80,161]} 0.1382413 0.6954733 2.338971 338

You should make sure that all the top rules are meaningful. For example: {age=[57,89]} => {education=1} makes sense since the data was collected in a medium size city in the south of Iran, and the older people were most likely uneducated.

3. Cognitive map shows the relations known in your data and the ones you also found.

[image: ../../_images/cognitive_map.png]

Data preparation

The most important but neglected part of machine learning and data mining is preparing the data.
If your data is invalid, no matter what skills you have, the results will be invalid.
The goal of data preparation is to make sure the data is representative and correct.

1. Typos are the most common error in data. Most datasets are collected over time, manually input by operators. For any nominal value you should check the levels in the data. For example for sex make sure you only have 2 levels (F/M or female/male). For numeric values draw boxplots and histograms. Make sure the data follows the expected distribution and estimates (mean and standard deviation are same as expected). If you have nominal features, make sure the numeric values for each are correctly spread out. For example if you have sex and age in your data, make sure the age distribution for female and male are comparable.

2. Missing data is common. Make sure they are presented in a correct format recognized by the tool and code you use. Some tools take NA or blanks as missing, some use “?”. Make a table and see which data points are missing and how often. Try to understand why and if it is randomly missing or has a pattern? Decide how to handle them. Some methods accept missing values and some don’t. Understand how missing values are interpreted. If you remove them have a good explanation of your criteria. Some might choose to replace missing data with nearby datapoints if possible.

3. Normalization is an important step to make the samples and features comparable inside and in between datasets. Choose an appropriate normalization method and explain how it was done. In case of classification, the test has to be normalized in the same way but independent of the train data to avoid leaking train information into test.

Expression data is usually log2 transformed and then quantile normalized. RMA and frozen-RMA are versions of quantile normalization common for microarray datasets which handle outliers better. zscore is a intuitive normalization method but flattens the data (forces them into a normal) and range normalization keeps the distribution but is very sensitive to outliers. Centering numeric values around zero is a good practice for some models. It is a good practice to make features in the same range to be able to compare the weights assigned to each fature by a model. For example if you have a feature in the order of thousands and a feature in the order of 10, the weights might seem smaller for the former, while the truth is the weights cannot be directly compared. Note than normalizing can be applied on features (normalizing measurements over all samples) or on samples (correcting for batch effects).

4. Feature selection and reduction is used to chose relevant features. Note that the number of features should be significantly less than the sample size (M<<N). In general a model with less parameters is a better model and is less likely to overfit. Redundant features (usually very highly correlated features) should be removed for some models (any model doing determinant on the data matrix). Principle Component Analysis is a good practice to reduce the number of features while maintaining the variability. Feature selection can be done based on variability (keeping highly variable features), fold changes (difference in mean between label classes such as deferentially expressed genes in gene expression data), or recursively by applying a classification model and applying the weights (choosing the features with highest importance). Feature reduction can be done based on correlation (removing highly correlated features) or invariability (features which have similar distributions between classes). Note that in case of classification feature selection should be done only on the train data and not test.

After data preparation, you should be able to explain the data in terms of what features there are and what distributions they follow. You should show your data is representative and balanced. You should handle missing data in a rational way. You should have a well established method for choosing features.

_images/ssh_2.png
By ®» 4 @ @ % © B

FTP SFTP Serial Fie/ur Shell

Choose a session type

_images/ssh_3.png
SFTP Serial Fie/url Shell

[e et ¢ soomar st

@xiifomardng [UlConpressin Remote enveonment neracveshel

Sxeate command 100 ot et ster command ende
| Display SFTP browser [Automatialy folow current SSH folder path (experimental)

[luseprvatekey [| eaopton

[lenste Googe 2stepauhentcton

] Comnect trough ssH gateway

Use prvatekey

_images/schex-1.png
UMAP2

10

15

Mean of CD19

Ef)

UMAP1

_images/ssh_1.png
= b

(Unix utilities and X-server on GnujCyguin)
Your computer drives are accessible through the /drives path
Your DISPLAY 4 set to 126197 162.120:2.0

When using 551, your remote DISPLAY i sutomstically forvarded
Each comand status 4 specifiod by a spocial symol (v o %)

Taportant:

For more information: hi1p://sohaxtars. sobatck.net/varsions .oho

(2613-10-2 16:15.30)

[pr———

_images/Plot_Parameters.png
Scatterplot

.
.
o | ee
™
.
- .
wn
2 « 7 .
©
©))
o
.
o o % °
o o
SO o s
e
.
v _| ® .
o
T T
2 3

Car Weight

_images/RStudio_Console.png
=0

@ untited1 | Environment
& | B Osowceonsave | Q - £1] ~ [#Run | 55 | [Source @a List ~
2 @ Global Erowoan

bata
00z 84 obs. of 5 variables =]
©emp.data 5 obs. of 3 variables =]
Omtcars 32 obs. of 11 variables]
Values
op List of 9

x num [1:81 12345678

y num [1:81 12345678
Files Plots Packages Help Viewer =0

& Export ~

11| (Top Leveh = R Script +

Console ~/

VY VYUYV VYY YYDV Y Yy

_images/Plot_Example.png
[eXe}

0og

T T
14 0C

Bdwgsieoyw

Sl

oL

mtcars$wt

_images/ssh_4.png
(onix WesTivios and X sérver an Goojcypein)

Your computer drives are sccessible through the /drives path
Each comand siatus 15 specified by & specil sy

For Sors inforastion: Mitar//aabastars. sabatihk net Avhrsions 5he

_images/Plot_Functions.png
Function name Plot produced

boxploi(x) “Box and whiskers” plot

piex) Circular pie chart

hist(x) Histogram of the frequencies of x

barplot(x) Histogram of the values of x

stripchart(x) Plots values of x along a line

dotchari(x) Cleveland dot plot

pairso) For a matrix x, plots all bivariate pairs

plotis(x) Plot of x with respect to time (index values of the
vector unless specified)

contour(x,y.2) Contour plot of vectors x 2nd y, z must be a matrix of
dimension rows=x and columns=y

image(ry.z) ‘Same as contour plot but uses colorsinstead of ines

persp(xy.2) 3-d contour plot

Copyright May 2007, K Seefeld 50

_images/ssh_5.png
R PuTTY Configuration

Category:

& Sesson Basic ptons foryour PuTTY session

L roars ‘Speoty the destnation you wart to connect to
Keypoard Host N (o P aderess) Pot
Bel | 2
Features Conneciionype:

& Window ORsx OTenet ORogn @SSH O Serl
e Load, save o delee a stored session
Transition Saved Sessons
Selecton
Colours

Defak Setings

& Connecion Lo
Data Soue
Proxy
Tenet Deete
Flogn
ssH
Seral o e

OAways ONever @ Only on clean ext
oot Open Cancel

_images/cd.png
jeff@Nosferatu:~$ s

anaconda3 example notes. R
Desktop examples.desktop Pictures snap
Documents igv Prograns Templates
Downloads Music Public Videos

jeff@Nosferatu:~$ cd example/
jeff@Nosferatu:~/exanple$ ls

poem.txt prose.txt there is_nothing_in_here
jeff@Nosferatu:~/exanples |

_images/cd_root.png
jeff@Nosferatu:~$ cd /
jeff@Nosferatu:/$ s

bin home 1ib64 opt snap var

boot initrd.ing ibx32 proc srv vnlinuz
cdrom initrd.ing.old lost:found root sys vmlinuz.old
dev lib nedia run @A

etc 1ib32 mnt sbin usr

jeff@Nosferatu:/s ll

_images/bwa_10sample.png
map map map map map map
sample: A sample: B sample: C sample: D sample: £ sampl

_images/bwa_2sample.png
map map
sample: A sample: B

_images/cd_up.png
©®0 jeff@Nosferatu: ~

poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ man ls

jeff@Nosferatu:~/example$ s -1

total 8

-r--r--r-- 1 jeff jeff 470 Jun 11 ©1:69 poen.txt
-rw-rw-r-- 1 jeff jeff @ Jun 11 01:09 prose.txt
druxrwxr-x 2 jeff jeff 4096 Jun 11 01:69 there_is_nothing_i
n_here

jeff@Nosferatu:~/example$ 1s -al

total 20

druxruxr-x 3 jeff jeff 4096 Jun 11 64:20

druxr-xr-x 42 jeff jeff 4096 Jun 11 01:09 ..

-rw-rw-r-- 1 jeff jeff 17 Jun 11 01:10 .Im_hiding
-r--r--r-- 1 jeff jeff 476 Jun 11 01:09 poen.txt
-rw-rw-r-- 1 jeff jeff @ Jun 11 01:09 prose.txt
druxrwxr-x 2 jeff jeff 4096 Jun 11 01:09 there_is_nothing_
in_here

jeff@Nosferatu:~/exanple$ cd ..
jeff@Nosferatu:~$ s

anaconda3 example notes R
Desktop examples.desktop Pictures snap
Documents igv Prograns Templates
Downloads Music Public Videos

jeff@Nosferatu:~$ [l

_images/clean_heatmap.png
Z-score.

lSU
it

s
[

CIRC T

Samples

_images/python.png
D Anaconda Navigator
File Help

A Home
@ Environments

& Projects (beta)

Learning

Documentation

Developer Blog

Feedback

) ANACONDA NAVIGATOR

Applications on | base (root) <
o o
o
-
Jupyter
N
Jupyterlab notebook
Aoxa 540

An extensible environment for interactive
and reproducible computing, based on the.
Jupyter Notebook and Arct

Launch

orange3
341
Component based data mining Framework.
Data visualization and data analysis for
novice and expert. Interactive workflows
with a large toolbor.

Install

notebook environment. Edit and run

human-readable docs while describing the
data analysis.
Launch
]
rstudio
11383

Aset of integrated tools designed to help.
you be more productive with R. Includes R
‘essentials and notebooks.

Install

o
qtconsole
431
PYQE GUI that supports inline figures,
proper muliline editing with synt

highlighting, graphical calci

Launch

spyder

326
Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

Launch

]
vscode
21222
Streamlined code editor with support for

development operations like debugaing,
ask running and version control.

Launch

glueviz
0120
Multidimensional data visualization across
files. Explore relationships within and
among related datosets.

Install

Refresh

_images/roc_curve.png
True Positive rate (Sensitivity)

100

80

60

40

20

0 20 40 60 8 100
False Positve rate (100-Specificity)

_images/pushd.png
©© 0 jeff@Nosferatu: /

jeff@Nosferatu:~$ pushd example/there_is_nothing_in_here/
~/example/there_is_nothing_in_here ~
jeff@Nosferatu:~/example/there_is_nothing_in_here$ pushd /
] ~/example/there_is_nothing_in_here ~
jeff@Nosferatu:/$ |

_images/pwd.png
'©® 0 jeFf@Nosferatu: ~/example/there_is_nothing_in_here

jeff@Nosferatu:~$ pwd

Jhome/jeff

jeff@Nosferatu:~$ cd example/there_is_nothing_in_here/
jeff@Nosferatu:~/exanple/there_is_nothing_in_here$ pwd
Jhome/jeff/example/there_is_nothing_in_here
jeff@Nosferatu:~/exanple/there_is_nothing_in_heres [

_images/clustering.png
MiniBatchKMeansAffinityPropagation

MeanShift

SpectralClustering

Ward

AgglomerativeClustering DBSCAN

Birch

GaussianMixture

.02s|

nav.xhtml

 Table of Contents

 		
 Welcome to the BRITE-REU Programming Workshop!

 		
 Instructions

 		
 Instructors

 		
 Workshop schedule

 		
 Software installation

 		
 Linux and Bash

 		
 SSH

 		
 Git

 		
 Python

 		
 R

 		
 Machine Learning

 		
 SQL

 		
 Workshop 1: Linux/Bash and SCC

 		
 Linux/Bash

 		
 UNIX & Linux

 		
 Bash

 		
 The SCC

 		
 Shared Computing Cluster

 		
 Architecture

 		
 File Storage

 		
 Recovering Lost Files

 		
 SSH Login

 		
 Submitting jobs

 		
 Workshop 1.2

 		
 Workshop 2: R

 		
 R and RStudio: Introduction and Data Structures

 		
 Getting Started

 		
 Basic Operations in R

 		
 Conditional Statements and Looping

 		
 Exploring Data in R

 		
 R packages and libraries

 		
 Loading Data

 		
 Data Exploration

 		
 R Workshop

 		
 Load Packages

 		
 Import Airway Data

 		
 Working with data.frame objects

 		
 Asking R for help

 		
 Working with matrix objects

 		
 Running simple comparative statistical analyses

 		
 Running one test

 		
 Wrapper functions

 		
 The apply() Family of Functions

 		
 Matrix operations

 		
 Loading data from R packages

 		
 Explore Airway Dataset

 		
 Differential Expression Analysis using DESeq2

 		
 Manipulate and Visualize Results

 		
 Gene Set Enrichment using enrichR

 		
 Workshop 3: Python

 		
 Python 3

 		
 Getting Started

 		
 Basic Python Variables and Operations

 		
 If, Else, and Elif Statements

 		
 Iteration and Looping

 		
 For loops

 		
 Nested For Loops

 		
 While Loops

 		
 Nested While Loops

 		
 Functions

 		
 Scope

 		
 File Input and Output.

 		
 Importing Modules

 		
 Conclusion

 		
 Protein Synthesis Workshop

 		
 Instructor: Dakota Hawkins

 		
 Read FASTA Files:

 		
 Write FASTA Files:

 		
 Read codon_table.csv:

 		
 Transcribe DNA to RNA:

 		
 Translate RNA to Protein:

 		
 Tie the Steps Together:

 		
 Workshop 4: Git and Snakemake

 		
 Version Control

 		
 What is version control

 		
 Version control platforms

 		
 Git

 		
 Installing and configuring git

 		
 A basic git tutorial

 		
 Git Workflows

 		
 Version control for large files

 		
 Code hosting and repositories

 		
 What is GitHub?

 		
 SSH vs HTTPS

 		
 Semantic versioning

 		
 Licensing

 		
 README and Markdown syntax

 		
 Bug and Issue tracking

 		
 Snakemake and Workflow Management

 		
 Installation and Running

 		
 Analysis as a Directed Acyclic Graph

 		
 Snakemake

 		
 Workshop task

 		
 Getting started

 		
 Introduction

 		
 Workshop 5: Data Visualization

 		
 Introduction

 		
 Installation

 		
 Jupyter

 		
 Troubleshooting

 		
 Workshop Materials

 		
 Workshop 5: Data Visualization

 		
 Plotting Libraries

 		
 Data Frames

 		
 Types of Plots

 		
 An Example of Exploratory Data Analysis with ggplot

 		
 Make Some Plots

 		
 Workshop

 		
 Workshop 6: Machine Learning

 		
 Introduction

 		
 Supervised

 		
 Examples of supervised learning

 		
 Assessing model performance

 		
 Unsupervised

 		
 Dimensionality reduction

 		
 Clustering

 		
 Machine Learning Workshop

 		
 Workshop tasks

 		
 Workshop 7: SQL

 		
 Relational Databases

 		
 Database Design

 		
 Adding Data

 		
 Querying Data

 		
 SQL Workshop

 		
 Tasks

 		
 SQLite Dot Commands

 		
 Solutions to Common Queries

 		
 Posters

 		
 Abstracts

 		
 Abstract Draft Guidelines

 		
 Posters

 		
 Poster Templates

 		
 BU logo files

 		
 ABRCMS Poster Presentation Guidelines

 		
 ABRCMS Poster Judging Guidelines

 		
 Poster Draft Guidelines

 		
 What to look for when reading a poster

 		
 Submission Deadlines

 		
 ABRCMS Travel Award

 		
 ABRCMS Abstract

 		
 NSF Bio REU Travel Award

_images/confusion_matrix.png
Predicted: | Predicted:
n=165 NO YES
Actual:
NO TN =50 FP=10 60
Actual:
YES FN=5 TP =100 105
55 110

_images/corr_matrix.png

_images/cognitive_map.png
COGNITIVE MAP

—
Hyperlipid Distit Pregnancy
N
= =
[|
= =
= =
= =
= — =
Digestion [Sex p—
=] | == =
=
=

_images/colormaps.png
et

100

s

50

25

jet_grayscale

o 100
75
1
50
25
2
00
B 25
50
o
75
1] 0 2 B @

o
10
x
)
@
o 10)

_images/executable.png
'©® @ jeff@Nosferatu: ~/Programs
jeff@Nosferatu:~/Prograns$ ls

2 b.py out. txt

3 eval.R poker.py
add_shift.compile hello_world.py __pycache__
add_shift.cpp HoTResDB queens
add_shift.exe HW2.py starting_git.txt
a.py mypysql.py
jeff@Nosferatu:~/Programs$./hello_world.py

Hello World!

jeff@Nosferatu:~/Programss hello_world.py

hello_world.py: command not found
jeff@Nosferatu:~/Progranss 'pwd" /hello_world.py
Hello World!!
jeff@Nosferatu:~/Programss . hello_world.py

bash: hello_world.py: line 3: syntax error near unexpected
token ""Hello World
bash: hello_world.py: line 3: ‘print("Hello World!t")
jeff@Nosferatu:~/Programs$ [l

_images/file_management.png
©© 0 jeff@Nosferatu: ~/example

jeff@Nosferatu:~/example$ ls

poen.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ touch a b c
jeff@Nosferatu:~/example$ ls

a b c poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ nv a d
jeff@Nosferatu:~/example$ ls

b c d poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ nv c z
jeff@Nosferatu:~/example$ ls

b d poem.txt prose.txt there_is_nothing_in_here z
jeff@Nosferatu:~/example$ mv z there_is_nothing_in_here/
jeff@Nosferatu:~/example$ cd there_is_nothing_in_here/
jeff@Nosferatu:~/example/there_is_nothing_in_here$ ls

z

jeff@Nosferatu:~/example/there_is_nothing_in_here$ cd ..
jeff@Nosferatu:~/example$ ls

b d poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ cp poem.txt poem2.txt
jeff@Nosferatu:~/example$ ls

b poem2.txt prose.txt

d poem.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ cp poen.txt there_is_nothing_in_h
ere/

jeff@Nosferatu:~/example$ ls there_is_nothing_in_here/
poem.txt z

jeff@Nosferatu:~/example$ mkdir dir
jeff@Nosferatu:~/example$ ls

b dir poen.txt there_is_nothing_in_here

d poem2.txt prose.txt

jeff@Nosferatu:~/example$ rm b d poem2.txt there_is_nothing
_in_here/z there_is_nothing_in_here/poen. txt

rm: remove write-protected regular file 'poem2.txt'? y
rm: remove write-protected regular file 'there_is_nothing_i
n_here/poem.txt'? y

jeff@Nosferatu:~/example$ rndir dir/
jeff@Nosferatu:~/examples]

_images/cross_validation.png
Complete

Data

> - Training | | Training | | Training | [Training
= | Training - Training | | Training | | Training
= [Training | | Training - Training | | Training
=) | Training | | Training | | Training - Training
= | Training | | Training | | Training | | Training -

v v vy

_images/dag.png
Input

— \\ / BN
Step 1 ‘16Utput 1 ”: Step 2 (OUtpUt 2\ Step 3

N~

Final
Output

_images/file_permissions.png
©© O root@Nosferatu: /home/jeff/example

root@Nosferatu: /home/jeff/exanple#
total 8

-r--rwxr-- 1 root jeff 470 Jun 11
rw-rw-r-- 1 jeff jeff 0 Jun 11
drwxrwxr-x 2 jeff jeff 4696 Jun 11
n_here

root@Nosferatu: /home/jeff/exanple#
root@Nosferatu: /home/jeff/example#
total 8

-rwxrw-r-- 1 root jeff 470 Jun 11
rw-rw-r-- 1 jeff jeff 0 Jun 11
drwxrwxr-x 2 jeff jeff 4696 Jun 11
n_here

root@Nosferatu: /home/jeff/exanple#
root@Nosferatu: /home/jeff/example#
total 8

-rwxrw-r-- 1 jeff jeff 470 Jun 11
rw-rw-r-- 1 jeff jeff 0 Jun 11
drwxrwxr-x 2 jeff jeff 4696 Jun 11
n_here

root@Nosferatu: /home/jeff/example#

1s -1

01:09
01:09
05:08

chmod
1s -1

01:09
01:09
05:08

chown
1s -1

01:09
01:09
05:08

poen. txt
prose. txt
there_is_nothing_i

764 poen. txt
poen. txt

prose. txt
there_is_nothing_i
jeff poem.txt
poen. txt

prose. txt
there_is_nothing_i

_images/file_stuff_cat.png
jeff@Nosferatu: ~/example

jeff@Nosferatu:~/example$ cat poem.txt
Mary had a little lamb,

It's fleece was white as snow;

And everywhere that Mary went

The lamb was sure to go.

He followed her to school one day
which was against the rule;

It made the children laugh and play,
To see a lamb at school.

And so the teacher turned him out,
But still he lingered near;

And waited patiently about

Till Mary did appear

"What makes the lamb love Mary so?"
The eager chldren cry;
"Why, Mary loves the lamb, you know,
The teacher did reply.

jeff@Nosferatu:~/examples]

_images/file_stuff_coin.png
©© 6 jeff@Nosferatu: ~/example
jeff@Nosferatu:~/example$ head poen.txt
Mary had a little lamb,

It's fleece was white as snow;

And everywhere that Mary went

The lamb was sure to go.

He followed her to school one day
which was against the rule;

It made the children laugh and play,
To see a lamb at school.

jeff@Nosferatu:~/example$ head -3 poem.txt
Mary had a little lamb,

It's fleece was white as snow;

And everywhere that Mary went
jeff@Nosferatu:~/example$ tail poem.txt
But still he lingered near;

And waited patiently about

Till Mary did appear

What makes the lamb love Mary so?"
The eager chldren cry;

"Why, Mary loves the lamb, you know,"
The teacher did reply.

jeff@Nosferatu:~/exanple$ tail -3 poem.txt
The teacher did reply.

jeff@Nosferatu:~/examples]

_images/fork_atlassian.gif
E tutorials.git.bitbucke... tutorials account / tutorials.git.bitbucket.org

Overview
Q Overview
L ol & HTTPS ¥ https://emmapal@bitbucket.org/tut @ -
ource
Recent activity
¢ Commits i
oI VG Lo AR
Open PRs Watchers
§s Branches Language HTML/CSS e
Access level Read
9 Pull requests 3 4017 O Added my quote
. Branches Forks Pull request #4019 created in tutorials/tuto.
O pooines
B Downloads - 4 i
& Inspirational Quotes from Your Team in Space €3 Adding s quata for my team
Pull request #4017 approved in tutorials/tut...
@ Boards This page lists the inspirational quotes for you and your team in space. This is a family- Yev - § hours ago
oriented team, so only post stuff you are comfortable showing to your family. If your family
i seriously abnormal, my condolences, and I'm going to reject your sadly twisted pull € fixed quotes
request. Pull request #4018 approved in tutorials/tu...

Yev-6 h
To add a quote, edit editme.html . Please do not edit any other files. Sl

The page is hosted under: http://tutorials.git.bitbucket.org. 9 fixed quotes
Pull request #4018 created in tutorials/tuto...
Images are encouraged, but should not be committed to this repo. So please link directly to e R

externally hosted content.
€ Adding a quote for my team

The editme.html is in XHTML format. This is a little stricter than HTML and among other — " o di al

things requires every tag to be explicitly closed. For the <ing /> tag that means it MUST LLibs T a iy L b LA S o
and with {3, Paul Sties - 6 hours ago

Please don't change another user's quote as Il reject that as well. After all, some quotes € Making a change

are meaningful to the people who submit them. Pull request #4016 created in tutorials/tuto...

Akshata - 6 hours ago

s i

_images/fork_github.png
bioinform / varsim Owmcns 1 s ..

© code sues 13 Pull equests 2

VarSim: A high-fidelity simulation validation framework for high-throughput genome sequencing with cancer applications.
htp:/ibicinform. github joNvarsim/

smdason vakdaton g vougnput sequencng genomcs.

F— 21 s p—
e | o v s o [

atest commi b33530 on Sep 11
- gitub ayear ago
-
- webapp "

gignore

COPYRIGHT It

LICENSE 1

_images/file_stuff_less1.png
jeff@Nosferatu

_images/file_stuff_less2.png
@ jeff@Nosferatu: ~/example

Mary had a little lamb,
It's fleece was white as snow;
And everywhere that Mary went
The lamb was sure to go.

He followed her to school one day
which was against the rule;

It made the children laugh and play,
To see a lamb at school.

And so the teacher turned him out,
But still he lingered near;

And waited patiently about

Till Mary did appear

What makes the lamb love Mary so?"
The eager chldren cry;
"Why, Mary loves the lamb, you know,
The teacher did reply.

_images/ggplot2_example.png
354

304

T T
< o
D 134

uoj[e9 Jed sallN

154
104

Car Weight

_images/ggplot2_variable.png
Miles Per Gallon

354

30| ©®
factor(cyl)
.4
254 °6
(] 8
[
.. Y qsec
® 150
204 . ° @ 175
‘ @ 20.0
PY @225
: []
151 o
4 [}
L]
10 oo
3 4

Car Weight

_images/ggplot-decreasing-1.png
umap2

10

15

Expression of CD19

o

umapt

10

cD19

_images/ggplot-increasing-1.png
umap2

10

15

Expression of CD19

o

umapt

10

cD19

_images/grz_tissues_PCA.png
PC2: 19.3% variance

PC1 vs PC2: top 750 variable genes

PC1:55.6% variance

tissue
< ban
o s
o er

age inweeks
o Swase
A Twasks
o 10mesks
® 12 wesk
. 1 wesks

_images/hierarchical_clustering.png
base trunk

leaves

intermediate
groups
(branches)

== 11 terminal groups

_images/gitkraken.png
g2« indexcdiny -

o Vewng s shouns e h @
Q. prmee

-
*

=G BB R
[e—————
| omons
| pe———
| Mrge s 8460 v0m mknar.
|t Somse>
st 6o
J————
[——
| et s 4525 rom s s
[—————

| org s 36 .. 3wk 30
[——

| Merp ot s 4577 rom e
(———
EE Y —

§ =

[———
[T ——

| M s 468 ot
e ——

7 e ot o s o pe.
L —

e a0 oyt
[———.
R T e——

B s e i o

Q@ =
pr— o
ndex: committhe changs tohe ndex
propery

N e s e g

Eovard Thamson
s s 01990

S omeates
et -
3 srecionsc

5 srrndexc

et

5 srmdenn
) sosasc

5 ssirecoutrees
[EpeR—
SR m—
5 tesstndeniamesc

5 tessindenrece

3 ssrenssesbmodiec

o oom [Feedbeck] + JNOY

_images/intro_16_1.png
00

30

00

0

20

150

100

B

_images/intro_17_1.png
00

30

00

0

20

150

100

o

B

_images/intro_11_0.png
© versicolor
© virginica

species
® setosa

wpmiesed

sepal_length

_images/intro_14_1.png
00

30

00

0

20

150

100

s

o

B

_images/intro_21_0.png

_images/intro_19_1.png
a0

50

00

0

20

150

100

B

_images/intro_20_1.png

_images/intro_30_0.png
tip

This Scatter Plot was Made with scatterplot()

way
Thur
Fi
st
Sun

B

] Ed @
otal bil

_images/intro_30_1.png
tip

This Scatter Plot was Made with relplot()

o B Ed @ E]
otal bil

way
Thur
Fi
st
S

_images/intro_22_1.png
sunoy

Values,

_images/intro_23_1.png
100

2

Where's Sam Neill When You Really Need Him?

] E] @ E] @

160

_images/intro_33_0.png
puise

150

10

130

120

10

strip Plot (Default)

kind
o st

® valking
® nnning

_images/intro_33_1.png
puise

150

10

Swarm Plot

kind
o st

® valking
® nnning

_images/intro_31_0.png
signal

These Line Plots were Made with lineplot()

event

— sim

025 — ae
020
015
010
005
000
005
010

o0 25 50 75 100 s 150 s

timepoint

_images/intro_31_1.png
signal

03

02

01

00

region = parietal These Line Plots were Made with relplot(kegion = frontal

o0

25

50

75 1o 1ws 1o s oo 25 so 75

wo 125
timepoint

timepoint

150

s

_images/intro_33_2.png
puse

150

10

130

120

10

100

Box Plot.

#

Trin 15t 30t
time

kind
-t

= valking
== wnning

_images/unnamed-chunk-3-1.png
200

150

L]

bill_length_mm

50

50

island
o Biscoe
© Dream

© Torgersen

_images/intro_33_3.png
160

10

WiE

L

Violin Plot

="

30m

_images/unnamed-chunk-4-1.png
Torgersen

Dream

p

Biscae

gih_mm

bill_len

_images/unnamed-chunk-3-2.png
200

150

4o

bill_length_mm

50

50

species
o Adelie
o Chinsrap
 Genoo

_images/unnamed-chunk-5-1.png
200

species
o Adelie

o Chinstrap

© Gentoo

150

W s w0 W s e W s e
bill_length_mm

_images/unnamed-chunk-4-2.png
Chinstrap

Gentoo

£

0

40 0
bill_length_mm

)

_images/unix_1.png
«

A |
Control Panel Homé

System and Security
Network and Internd
Hardware and Sour
Programs

User Accounts

Appearance and
Personalization

Clock Language,a
Ease of Access

Turn Windows features on or off e

To tur a feature on, select its check box. To tum a feature off, clear its
check box. A filled box means that only part of the feature s tumed on.

Introl Panel

 oft

.| Simple TCPIP services (i.. echo, daytime etc)
[0 SMB LO/CIFS FileSharing Support
D11 Teint Clent
O TP Clent
[I[] Windows Identity Foundation 3.5
Windows PowerShell2.0
D11 Windows Process Actvtion Senvice

Windows Subsystem for Linux|

[Windows TIFF [Filter

& shells and tools on Windows.

IF] Provides services and environments for rnning native user-mode Linux

%

»

_images/two.actors.two.movies.png
A1 C1 C2 C3 C4 A2
Actors Cast Cast Cast Cast Actors

aid aid, mid — mid, aid aid, mid——mid, aid aid
M1 M2
Movies Movies

mid mid

_images/unnamed-chunk-10-1.png
body_mass_g

5000

5000

4000

3000

I

Temale male

species
Adetie
Chinstrap
Gentoo

_images/unix_2.png
CT——

Home Apps Games Mo

Results for: linux

Departments Avalable on
Al departments pc

C:\> ux on
Windows? Totally.

Instaland run Ubunty, openSUSE, SLES, and Fedora id.

e, —_—

Books (155)

_images/unnamed-chunk-11-1.png
Body Mass Distributions By Sex and Species

‘Adelie Chinstrap Gentoo

5000

4000

Body Mass (in grams)

3000

female male NA female male NA female male
Sex

_images/unnamed-chunk-10-2.png
body_mass_g

5000

5000

4000

3000

‘Adelie

Chinstrap

Gentoo

Temale

N

Temale.

male
sex

N

Temale.

N

species
Adetie
Chinstrap
Gentoo

_images/HTTPS_SSH_github.png
[dileep-kishore / microbial-ai ®

<> Code Issues 21

Microbial growth simulation incorporating adaptation through reinforcement learning

feinforcementeaming fba

© 224 commits

1) Pull requests 0 [Projects 1

¥ 9 branches

2 Wiki

microbiology microblal-communities pytorch flask cobrapy.

© 2 releases

' 1 environment

@uUnwatch~ 1 kstar 3 YFork 1

Releases 2 More~ {2 Settings

deepgleaming ddqn Manage topics

22 2 contributors &M

Branch: master v || € v0.1b.

i dilep-Kishore Merge pul request 165 rom dieep-ishorelpyup-scheduled-upate 201 o

github
docs
microbial_ai
reports
tests

) coveragerc

Cland Coverage

Move nojekyll to root

fixed flakes errors

Setup

Removed print statements and fixed flakes errors

Updated coverage source

createnewfile Findfile RCTuTR

Clone with SSH® UseHTTRS ‘
Use an SSH key and passphrase ffom account.

gitagithub. con:dileep-kishore/microbi | g

Download ZIP

11 months ago

11 months ago

_images/Load_Dataset.png
LR data sets

Data sets in package ‘datasets’:

RirPassengers
BJsales
BJsales.lead (BJsales)
BOD

co2
Chickweight
DNase
EuStockMarkets
Formaldehyde
HairEyeColor
Harman23.cor
Harman74.cor
Indometh
Insectsprays
JohnsonJohnson
LakeHuron
LifeCycleSavings
Loblolly

Nile

orange
Orchardsprays
PlantGrowth
Puromycin
Seatbelts
Theoph

Titanic
ToothGrowth
UCBAdnissions
URDriverDeaths
UKgas
USAccDeaths
USArrests

data("C02")
head(C02)

Grouped Data: uptake ~ conc | Plant

Plant Type Treatment conc uptake
Qnl Quebec nonchilled 95 16.0
Qnl Quebec nonchilled 175 30.4
Qnl Quebec nonchilled 250 34.8
Qnl Quebec nonchilled 350 37.2
Qnl Quebec nonchilled 500 35.3
Qnl Quebec nonchilled 675 39.2

> dataQ)

Vouswne

— [| Environment History

€% [[#Import Dataset - &
% Global Environment «
. Data
Sales Data vith Loeding Indicevor 0wz 84 obs. of 5 variables
Sales Data with Leading Indicator
Biochemical Oxygen Demand
Cazbon Dioxide Uptake in Grass Plants
Weight versus age of chicks on different diets
Elisa assay of DNase
Daily Closing Prices of Major European Stock Indices, 1991-1998
Deternination of Formaldehyde
Hair and Bye Color of Statistics Students
Harman Example 2.3
Harman Example 7.4
Pharmacokinetics of Indomethacin
Effectiveness of Insect Sprays
Quarterly Earnings per Johnson & Johnson Share
Level of Lake Huron 1875-1972
Intercountry Life-Cycle Savings Data i
Growth of Loblolly pine trees
Flow of the River Nile
Growth of Orange Trees
Potency of Orchard Sprays
Results from an Experiment on Plant Growth
Reaction Velocity of an Enzymatic Reaction
Road Casualties in Great Britain 1969-84
Pharmacokinetics of Theophylline
Survival of passengers on the Titanic
The Bfect of Vitamin C on Tooth Growth in Guinea Pigs
Student Adnissions at UC Berkeley
Road Casualties in Great Britain 1969-84
UK Quarterly Gas Consumption
Accidental Deaths in the US 1973-1978
Violent Crime Rates by US State

Packages Help Viewer

& Export ~

=0

=0

_images/Dataset.png
LR data sets

Data sets in package ‘datasets’:

RirPassengers
BJsales
BJsales.lead (BJsales)
BOD

co2
Chickweight
DNase
EuStockMarkets
Formaldehyde
HairEyeColor
Harman23.cor
Harman74.cor
Indometh
Insectsprays
JohnsonJohnson
LakeHuron
LifeCycleSavings
Loblolly

Nile

orange
Orchardsprays
PlantGrowth
Puromycin
Seatbelts
Theoph

Titanic
ToothGrowth
UCBAdnissions
URDriverDeaths
UKgas
USAccDeaths
USArrests

Console -

data)

Monthly Airline Passenger Numbers 1949-1960
Sales Data with Leading Indicator

Sales Data with Leading Indicator
Biochemical Oxygen Demand

Carbon Dioxide Uptake in Grass Plants

Weight versus age of chicks on different diets

Elisa assay of DNase

Daily Closing Prices of Major European Stock Indices, 1991-1998

Determination of Formaldehyde
Hair and Bye Color of Statistics Students
Harman Example 2.3

Harman Example 7.4

Pharmacokinetics of Indomethacin
Effectiveness of Insect Sprays

Quarterly Earnings per Johnson & Johnson Share

Level of Lake Huron 1875-1972
Intercountry Life-Cycle Savings Data
Growth of Loblolly pine trees

Flow of the River Nile

Growth of Orange Trees

Potency of Orchard Sprays

Results from an Experiment on Plant Growth
Reaction Velocity of an Enzymatic Reaction
Road Casualties in Great Britain 1969-84
Pharmacokinetics of Theophylline

Survival of passengers on the Titanic

The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Student Admissions at UC Berkeley
Road Casualties in Great Britain 1969-84
UK Quarterly Gas Consumption

Accidental Deaths in the US 1973-1978
Violent Crime Rates by US State

— [| Environment History

€% [[#Import Dataset - &
% Gobal Environment «

Environment is empty

Files Plots Packages Help Viewer

& Export ~

=0

=0

_images/Graphical_Parameters.png
Function name Effect on plot
points(x.y) Adds points
Tines(x,y) Adds lines

texi, , label="")

Adds text (label="text”) at coordinates
&)

segments(x0,y0,x1,y1) Draws a line from point (x0,y0) to point
xly))

abline(a,b) Draws a line of slope a and intercept b;
also abline(y=) and abline(x=) will draw
horizontal and vertial lines respectively.

title(™) Adds a main titl to the plot; also can add
additional arguments to add subliles

rug(x) Draws the data on the x-axis with small

vertical lines

rect(x0,y0.x1,y1)

Draws a rectangle with specified limits
(note good for pointing out @ certain
region of the plot)

Tegend(x,y legend=,.

Adds a legend at coordinate x.y; sec
helpllegend) for further deails

axis()

'Adds additional axis to the current plot

_images/Logical_Operators.png
Operator | Functionality
& And
] o
! Not
- Equil o
Not equal to

< Less than
> Greater than

- Less than or equal to
> Greater than o equal

Copyright May 2007, K Seefeld

_images/intro_35_1.png
January.

February

March

sl

May

June

iy

fugust

September

Octoer

November

December
1989 1950 1951 1952 1953 1954 1955 1956 1957

year

_images/intro_37_1.png
- 600
50
00
00
20 1

January

February

November

March

December

May

Al

October

4[oy

fugust

June

— September
1989 1950 1953 1954 1951 1952 1959 1960 1957 1958 1955 1956

year

month

_images/intro_33_5.png
puise

10

120

100

2

Tmin

Bar Plot

15min
time

30min

kind

-t
valking

= wnning

_images/intro_33_6.png
gggggwﬁﬁwﬂnnﬁngﬁ

_images/BoxViolin.gif
Raw Data Box-plot of the Data Violin-plot of the Data

_images/intro_43_0.png

_images/Data_Exploration.png
Function name “Task performed
sum(x) Sums the elements in x

prod(x) Product of the clements in x

max(x) Maximum clement in x

minx) Minimum element in x

range(x) Range (min o max) of elements in x
length(x) Number of elements in x

mean(x) Mean (average value) of elements in x.
‘median(x) Median (middle value) of clements in
var(x) Variance of elements in x

a0 Standard deviation of elementin x
cor(ry) Correlation between x and y
quantile(xp) The p” quenile of x

covxy)

Covariance between x and y

_images/intro_45_0.png

_images/intro_39_2.png
1000

750
500
0

November

month,

December

September

- January

February

May

June

March

Al

November

December

September

October

oy

fugust

month

_images/1*bLtPTIsKUeAQHPo2eGrKpw.png
COMMENT DATE.
CREATED MAIN LOOP & TIMING CONTROL.
ENABLED CONFIG FILE PARSING

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

_images/intro_41_1.png
=

2

15

1

45

50

55

&0
sepal length

65

70

75

80

_images/intro_47_1.png
000

10 15
etal_width

_images/supervised_flowchart.png
—

study design

!

data collection

!

data preparation

!

split

—

|

performance on train
ROC curve

train
I/

normaization normaization
feature selection -~
optimize parameters | |
10X valdation ;
leam model i

B feature extraction

fnaimodel | ——> testmodel

performance on test

_images/ssh_6.png
PUTTY Security Alert

a

The server' host key i not cached nthe registry. You
have na quarantee that the server i the computer you
thinktis,

The server's rsa2 key fingerprint s

sshorsa 1024 3c6ciSci99:50:b5:c61251Sard378:Be1d2 5 70l
I you trust tis host, it Yes to add the key to

PUTTY's cache and carry on connecting,

T you want ko carry on connecting just once, without

adding the key to the cache, it No.

T you do not trust this o, hit Cancel to abandon the.
cannection.

_images/to_fork.png
B BRITE-REU / snakemake-workshop

<>Code () Issues 5

¥ master +

11 Pull requests ® Actions

£ 1branch ©4tags

& dakota-hawkins updated todo list

files
report
scripts
README.md
Snakefile

install.sh

added datasets

caption for cluster report

finalized pipeline for 3 datasets.

updated todo list

finalized pipeline for 3 datasets.

updated with report packages.

© Unwatch ~

[Projects ‘1 0 wiki @ security

comte | ncare- (RN

4p262b9 1hourago ¥ 35 commits

16 hours ago
2 hours ago
1 hour ago

1 hour ago

1 hour ago

2 hours ago

#sar 1

I Insights

About @

Workiflow managers are good
mkay

0 Readme

Releases

©atags

Create anew release

Packages

_images/terminal.png
jeff@Nosferatu

_images/intro_33_4.png
130

Trin

Point Plot

15t 30t
time

kind
o st

® valking
® nnning

_images/iris-baseR.png
iris$Petal Width

25

20

15

10

0.5

o o °
o o o
o o ocoo
oo
o oo0o o
oo ° o
o oo)
0000000 © oo
o o
o o o
o o o0 0000 0 O
o o 000 o
ooo 0000 o
o oo o
o oo
oo o oo o
o
o
oo o o
oo o oo o
© 0000000000 ©
o oo o
T T T T T T T T
45 5.0 55 6.0 6.5 70 75 8.0

iris$Sepal.Length

_images/iris_ggplot.png
Petal Width

25-

20-

15-

10~

0s-

00~

e o
ceee
.o

.
. cese
ce o
.
6

Sepal.Length

Species
o setosa
 versicolor

© virginica

_images/intro_5_1.png
Petal Width

25

20

15

10

05

00

o stosa
M M M o versicolor
. . . o irginica
o o ees -
.o .
o eee o
.o . . .
. .o .
ssscscs o .o
. .
« . .
. .
.
e csee o
. .
. .
.o . .
.
.
e o o
ee o oo .
e sssssscces o
. ee o
a5 50 55 0 &5 70 75 50

Sepal Length

_images/intro_7_1.png
25

20

10

05

00

species

o stosa N
o ersicolor M
o virginica . .
a5 50 55 0 &5 70 75 50

sepal length

_images/lightness_00.png
Lightness L™

100

o
3

o

& 2 ° >
N (;\5\ ,,,‘:& kw}(\ ,§§(\
K & N &

Perceptually Uniform Sequential colormaps

_images/lightness_05.png
wsy /Ny

100
50
[

o
IS}
=2

1

ssaujybr

WANAR

100
50

Miscellaneous colormaps

_images/issues.png
B BRITE-REU / snakemake-workshop @Umwatch v 8 ¢y Sar 1 PFok 0

<> Code 11 Pull requests ® Actions [Projects ‘1 0 wiki @ security |~ Insights

Label issues and pull requests for new contributors Dismiss
Now, GitHub will help potential first-time contributors discover issues labeled with (‘good firstissue)

R - e oo | P | ([EED

B (O 50pen 0Closed Author ~ Label + Projects + Milestones ~ Assignee + Sort+

B O 5. Create a config.yaml file to specify the parameters
#5 opened 5 hours ago by ebrars

B © 4.Implement plot_clusters rule
4 opened 5 hours ago by ebriars

B O 3.Implement the cluster_cells rule
#3 opened 5 hours ago by ebrars

#2 opened 5 hours ago by ebriars.

B O 1.Implement download_data rule

‘ B © 2.Implement the preprocess_data rule
‘ #1 opened 5 hours ago by ebriars

_images/k-means.png
step 0

Z uoisuswip.

dimension 1

_static/plus.png

_static/minus.png

_images/intro_49_0.png
H

o0 05 10 15 200 25
petal_width

_images/intro_51_0.png
85
s
60
80
70
s
55
65 o
50 65
60
55
55
a5
50
50
a5 -
40
00 o0z o0& 06 10 15 20 15 70 25

petal_width petal_width petal_width

_images/messy_heatmap.png
WREE. csm305045
- Gsi1308058
GM130505

GSMI305000

~Gsw130045
~Gsw130s048
~ Gsi1308030
Gsnr30deas
Gsw1305009
CGsi30a092
Gs1304093
~ Gsi1304999
Gsw1305047
Gswi30s017

V- GswI30dsss

oD GsMIaoass

- GsM130a585
- CGSwr3age0

- Ccsursoasns

. CGsMrzoasls

. -GSMI304868

| CGoMrzoasor

GM1302875

GSMI304517

GSM1304889

GSMI302899

| csurzoasao

- ZGwr3vagal

GSMI302527

GSMI304523

Gs1304085

GM1303585

Gsn30a028

Gsw1304970

~Gsw1304065

GSM1304367

~ Gs1304022

Gsnr30a0gs

GSM1304951

Gsw1304936

Gsw1304988

_images/movies.actors.cast.er.diagram.png
Actor

Movie

_images/man_ls-la.png
'©®® 0 jeFF@Nosferatu: ~/example

anaconda3 example notes
Desktop examples.desktop Pictures
Documents igv Prograns
Downloads Music Public

jeff@Nosferatu:~5 cd example/
jeff@Nosferatu:~/exanple$ ls

R

snap
Templates
Videos

poen.txt prose.txt there_is_nothing_in_here

jeff@Nosferatu:~/exanple$ man
jeff@Nosferatu:~/example$ 1s
total 8

1s
-l

-rw-rw-r-- 1 jeff jeff 470 Jun 11 01:09 poem.txt
-rw-rw-r-- 1 jeff jeff © Jun 11 01:09 prose.txt
druxrwxr-x 2 jeff jeff 4096 Jun 11 01:09 there_is_nothing_i

n_here
jeff@Nosferatu:~/exanple$ 1s
total 20

druxrwxr-x 3 jeff jeff 4896

drwxr-xr-x 42 jeff jeff 4096
-rw-rw-r-- 1 jeff jeff 17
-rw-rw-r-- 1 jeff jeff 470
-rw-rw-r-- 1 jeff jeff ®
druxrwxr-x 2 jeff jeff 4896
in_here

jeff@Nosferatu:~/examples]

al

Jun
Jun
Jun
Jun
Jun
Jun

11
11
11
11
11
11

o1:
01:

01
01
01
01

09
09
:10
:09
:09
:09

.In_hiding

poem. txt

prose. txt
there_is_nothing_

_images/man_ls.png
©® O jeff@Nosferatu: ~/example
Ls(1) User Commands Ls(1)

NAME
1s - list directory contents

SYNOPSIS
1s [OPTION]... [EILE]...

DESCRIPTION
List information about the FILEs (the current
directory by default). Sort entries alphabeti-
cally if none of -cftuvsUX nor --sort is speci-
fied.

Mandatory arguments to long options are mandatory
for short options too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and .

_images/projects.png
¢ Code @ lssues @ 19 Pullrequesis © Actions Mwik © Secuty | Insighis

workshop

e + Addcards [Fulscreen = Menu
Jpdated 5 hours ago
5 Todo + o 0 Inprogress + o 0 Done +
© 1. Implement download_data rule

#1 opened by ebriars.

(© 2.Implement the preprocess_data rule *-*
#2 opened by ebriars

© 3.Implement the cluster_cells rule
#3 opened by ebriars

© 4. Implement plot_clusters rule
#4 opened by ebriars

@ 5. Create a config.yaml file to specify ~ «++
the parameters

#5 opened by ebriars.

_images/movies.actors.cast.er.diagram.with.primary.keys.png
Actor

aid @ mid

Movie

_images/popd.png
OO0 jeff@Nosferatu: ~

jeff@Nosferatu:~$ pushd example/there_is_nothing_in_here/
~/example/there_is_nothing_in_here ~
jeff@Nosferatu:~/exanple/there_is_nothing_in_here$ pushd /
] ~/example/there_is_nothing_in_here ~

jeff@Nosferatu:/$ cd bin/

jeff@Nosferatu:/bin$ popd
~/example/there_is_nothing_in_here ~
jeff@Nosferatu:~/exanple/there_is_nothing_in_here$ pwd
Jhome/jeff/example/there_is_nothing_in_here
jeff@Nosferatu:~/exanple/there_is_nothing_in_here$ popd

jeff@Nosferatu:~$ pwd
Jhome/jeff
jeff@Nosferatu:~$ Il

_images/volcano_subplots.png
~log10 p-value

Hippocampus

—iog10 p-value

Pre-frontal cortex

—iog10 p-value

Associative striatum

DE
o Notsig
o Down

o1 oo o1
log: Fold Change.

02

) 01
log: Fold Change.

02

03

02

01) o1
log: Fold Change.

02

_images/violins_subplots.png
s »
u <
;
»
.
B o -l
El H = Snsaptreria
s f
‘ 7
.
[resm— e el cortx @A) Assocave o [e el cortx @A) Assocave o Nopochmpus e atal cortx (44 Assocave o
oo

Tsue Tsue

_images/volcanoplot.png
-log10(Pvalue)

* Down
© NotSig
. Up

_static/file.png

_images/unnamed-chunk-8-1.png
Male Penguins Typically Have Higher Body Masses Than Females

5000

5000

grams)

4000

i
H

3000

Temale

‘male
Sex

_images/unnamed-chunk-7-1.png
body_mass_g

6000

5000

4000

3000

Temale

_images/unsupervised_flowchart.png
study design

v
data collection

v
data preparation

v
Teature
selection/reduction

ering

——

plot and analysis.

oy

report possible
clusters

_images/unnamed-chunk-9-1.png
Male Penguins Typically Have Higher Body Masses Than Females

5000

5000

4000

Body Mass

3000

Temale ‘male NA
Sex

_images/vampire-decsion-tree.jpg
Vampire

Node 0

Category % n
o 88.661 907
es 11.339 116

Total 100.000 1023

Type of Residence
Adj. P-value=0.000, Chi-square=77.213, di=1

Apartment; Detached House; Prison; Semi-Detached; Sheltered Accommodation Castle
Node 1 Node 2
Category n Category % n
" No 96473 547 5 No 78947 360
u Ves 3527 20 B Yes 21053 96
Total 55425 567 Total 44575 456
[| E
Occupation Avoids garlic
Ad). P-value=0.004, Chi-square=13.282, df=1 Adj. P-value=0.000, Chi-square=25.679, di=1
Central Gov, Commercial; Education/Health