
profiletools Documentation
Release 0.1

Mark Chilenski

Sep 17, 2017

Contents

1 Overview 3

2 Notes 5

3 Contents 7
3.1 The profiletools data model . 7

3.1.1 The Profile class . 7
3.1.2 Channels . 7
3.1.3 Linearly transformed quantities . 7
3.1.4 Averaging data . 8
3.1.5 gptools integration . 8

3.2 Plasma profile data . 8
3.2.1 Data model . 8
3.2.2 Tokamak coordinate systems . 8
3.2.3 Constraints for Gaussian process regression . 8

3.3 Accessing Alcator C-Mod data . 9
3.3.1 Example . 9

3.3.1.1 Loading the data . 9
3.3.1.2 Selecting a time window or specific time points 9
3.3.1.3 Time averaging or using all points . 9
3.3.1.4 Plotting the data and smoothing it with a Gaussian process 10
3.3.1.5 Gradients and linear transformations . 10
3.3.1.6 Complete example . 11

3.3.2 Signals supported . 11
3.3.2.1 Electron density . 11
3.3.2.2 Electron temperature . 11
3.3.2.3 X-ray emissivity . 12

3.4 Additional patterns and examples . 12
3.4.1 Weighted versus unweighted averaging . 12
3.4.2 Multiple time slices . 12

3.5 profiletools package . 13
3.5.1 Submodules . 13
3.5.2 profiletools.CMod module . 13
3.5.3 profiletools.core module . 28
3.5.4 Module contents . 42

4 Indices and tables 43

i

Python Module Index 45

ii

profiletools Documentation, Release 0.1

Source home: https://github.com/markchil/profiletools

Contents 1

https://github.com/markchil/profiletools

profiletools Documentation, Release 0.1

2 Contents

CHAPTER 1

Overview

profiletools is a Python package that provides a convenient, powerful and extensible way of working with
multivariate data, particularly profile data from magnetic plasma confinement devices. profiletools features
deep integration with gptools to support Gaussian process regression (GPR).

3

profiletools Documentation, Release 0.1

4 Chapter 1. Overview

CHAPTER 2

Notes

profiletools has been developed and tested on Python 2.7 and scipy 0.14.0. It may work just as well on other
versions, but has not been tested.

profiletools uses the module gptools for GPR. You can find the source at https://github.com/markchil/gptools/
and the documentation at http://gptools.readthedocs.org/

profiletools uses the module eqtools for tokamak coordinate transformations. You can find the source at
https://github.com/PSFCPlasmaTools/eqtools/ and the documentation at http://eqtools.readthedocs.org/

If you find this software useful, please be sure to cite it:

M.A. Chilenski (2014). profiletools: Classes for working with profile data of arbitrary dimension, GNU General
Public License. github.com/markchil/profiletools

Once I put together a formal publication on this software and its applications, this readme will be updated with the
relevant citation.

5

https://github.com/markchil/gptools/
http://gptools.readthedocs.org/
https://github.com/PSFCPlasmaTools/eqtools/
http://eqtools.readthedocs.org/

profiletools Documentation, Release 0.1

6 Chapter 2. Notes

CHAPTER 3

Contents

The profiletools data model

The Profile class

The core class of profiletools is the Profile. This class is designed primarily to hold point measurements
of some quantity, which may depend on an arbitrary number of variables and can be sampled at arbitrary locations
– there is no implicit assumption that observations lie on an orderly grid. Internally, a Profile instance stores the
independent variables in attribute X. X is an array with shape (M, X_dim), where M is the number of observations and
X_dim is the number of independent variables. The observations themselves are stored in the attribute y, which is an
array of shape (M,). This is essentially how a sparse matrix is stored and is how profiletools can be so flexible
about how many independent variables there are and where they are sampled. There can be uncertainties on both the
independent variables (stored in the attribute err_X) and on the dependent variable (stored in the attribute err_y).

Channels

profiletools understands that particular data should be treated as a unit during averaging and so forth. Such a unit
could correspond to all of the points taken at a given time, or all of the points taken by a given instrument. The attribute
channels is an array with shape (M, X_dim). By default this array is just a copy of X such that measurements at the
exact same locations are grouped together. But, suppose you have sensors at different locations taking time-resolved
measurements. Hence, X_dim is two: the first column of X is the time and the second is the spatial coordinate of the
sensor. But say each sensor has a coordinate that varies slightly in time: just using the default choice for channels will
cause each individual measurement from each sensor to be treated as an independent channel, and time averaging will
not have the desired effect. Instead, the second column of channels can be set such that all measurements from a given
sensor have the same value and are hence treated together when averaging data.

Linearly transformed quantities

Profile objects can also incorporate quantities which are linear transformations of the underlying point measure-
ments stored in X and y. Each channel of a transformed sensor is stored in a Channel object. This object stores

7

profiletools Documentation, Release 0.1

the data values in attribute y which has shape (M,) along with the associated uncertainty err_y. Each measurement 𝑦
is taken to be a linear transformation 𝑦 = 𝑇𝑓(𝑋) where 𝑋 is a collection of N points and 𝑓(𝑋) refers to the latent
variables (i.e., what is stored as y in the Profile itself). The transformation matrices associated with each of the
observations in y are stored in the attribute T which is an array with shape (M, N). The locations used are stored in the
attribute X which has shape (M, N, X_dim), with the associated uncertainties stored in err_X. The Channel instances
associated with a given Profile instance are stored in the attribute transformed.

Averaging data

Many different techniques for averaging the data and computing the associated uncertainties are supported, refer to
average_points() for more details. By carrying out all averaging within a given channel using this function, it
is straightforward to add additional capabilities as needed.

gptools integration

profiletools features very tight integration with the gptools package (https://github.com/markchil/gptools/,
http://gptools.readthedocs.org/) to perform Gaussian process fits. Creating a Gaussian process (GP) for data of ar-
bitrary X_dim is as simple as calling the create_gp() method of the Profile instance. The GP can then be
trained by calling find_gp_MAP_estimate(). Once this is complete, the smoothed curve can be obtained using
smooth(). If additional adjustments to the GaussianProcess instance are needed, it is kept in the gp attribute
of the Profile instance.

Plasma profile data

profiletools is primarily designed for working with profile data from magnetic confinement fusion devices,
namely the Alcator C-Mod tokamak at MIT. The BivariatePlasmaProfile class is an extension of Profile
designed for this particular use case.

Data model

Plasma profile data are functions of space (1, 2 or 3 coordinates) and time (hence the term “bivariate” even when
X_dim is greater than 2). Time is always the first column in X, with the remaining spatial coordinates forming the
other columns.

Tokamak coordinate systems

BivariatePlasmaProfile uses eqtools (https://github.com/PSFCPlasmaTools/eqtools/, http://eqtools.
readthedocs.org/) to support the myriad coordinate systems used in tokamak research. Coordinate transforms are
handled using the convert_abscissa() method.

Constraints for Gaussian process regression

BivariatePlasmaProfile provides two methods for adding constraints to the Gaussian process created with
create_gp(): constrain_slope_on_axis() applies a zero slope constraint at the magnetic axis and
constrain_at_limiter() applies approximate zero slope and value constraints at the location of the limiter.
Note, however, that both of these constraints are applied automatically when calling create_gp(). You can dis-
able them using the constrain_slope_one_axis and constrain_at_limiter keywords to create_gp(), and you can
influence their behavior with the axis_constraint_kwargs and limiter_constraint_kwargs keywords.

8 Chapter 3. Contents

https://github.com/markchil/gptools/
http://gptools.readthedocs.org/
https://github.com/PSFCPlasmaTools/eqtools/
http://eqtools.readthedocs.org/
http://eqtools.readthedocs.org/

profiletools Documentation, Release 0.1

Accessing Alcator C-Mod data

profiletools provides a collection of functions to access Alcator C-Mod data. This prevents the user from having
to remember the diverse set of MDSplus calls needed to load the data from the tree and delivers the data in the
standard BivariatePlasmaProfile class. Notice that each of these are implemented as a function and not a
class – that way all of the instances for a given quantity are the same class.

Example

Loading the data

To load the electron density profile from shot 1101014006, simply call the ne() function:

p = ne(1101014006, include=['CTS', 'ETS'])

The optional keyword include specifies which signal are included – in this case core and edge Thomson scattering. If
you want the data expressed in a specific coordinate system, use the abscissa keyword:

p = ne(1101014006, abscissa='r/a')

Or, call convert_abscissa():

p = ne(1101014006)
p.convert_abscissa('r/a')

Selecting a time window or specific time points

To request data only from a certain time window, use the t_min and t_max keywords. For instance, to get the data from
1.0s to 1.5s, you would type:

p = ne(1101014006, t_min=1.0, t_max=1.5)

If you want to remove points after having created the BivariatePlasmaProfile, then you can use the
remove_points() method:

p.remove_points((p.X[:, 0] < t_min) | (p.X[:, 0] > t_max))

If you want to only keep points at specific times (such as points at a specific sawtooth phase), you can use the
keep_times() method. For each time point designated, this will find the point in the profile which is closest.
If there are many missing datapoints, blindly applying this technique can result in data far from the desired point being
included. Hence, the tol keyword will cause keep_times() to only keep points that are within tol of the target. So,
to keep the points within 1ms of 1.0s, 1.1s and 1.3s, you would type:

p.keep_times([1.0, 1.1, 1.3], tol=1e-3)

Time averaging or using all points

Once the data are loaded and confined to the desired window, you can time-average them. Thomson scattering data
have computed uncertainties in the tree, so you can (and should) use a weighted average:

p.time_average(weighted=True)

3.3. Accessing Alcator C-Mod data 9

profiletools Documentation, Release 0.1

There are a wide variety of options for how the data are averaging depending on the specific application – see
average_points() for more details.

If instead you want to keep all of the points within the designated time window, you can simply drop that axis from X.
Recall that time is always the first column, so you would call:

p.drop_axis(0)

Plotting the data and smoothing it with a Gaussian process

You can plot the data simply by calling plot_data().

Once you have picked the slices you want and/or time-averaged the data, you can fit a Gaussian process with the
following steps:

p.create_gp()
p.find_gp_MAP_estimate()
p.plot_gp(ax='gca')

This will plot the smoothed profile on a somewhat sensible grid on the axis created in the previous call to
plot_data(). plot_data() is a convenience method to get a quick look at the smoothed profile. To evalu-
ate the profile on a specific grid, use the smooth() method:

roa = scipy.linspace(0, 1.2, 100)
mean, stddev = p.smooth(roa)

You can also have smooth() plot the fit at the same time using the plot keyword:

ax, mean, stddev = p.smooth(roa, plot=True)

Gradients and linear transformations

You can compute gradients simply by passing the n keyword:

mean_gradient, stddev_gradient = p.smooth(roa, n=1)

You can even compute a mixture of values and gradients at once:

roa2 = scipy.concatenate((roa, roa))
n = scipy.concatenate((scipy.zeros_like(roa), scipy.ones_like(roa)))
mean, stddev = p.smooth(roa2, n=n)

You can even get the covariances by using the return_cov keyword:

mean, cov = p.smooth(roa2, n=n, return_cov=True)

See the documentation for gptools.GaussianProcess.predict() for more details (http://gptools.
readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.predict).

To compute linearly-transformed quantities (such as line or volume integrals), pass your transformation matrix into
the output_transform keyword:

mean, stddev = p.smooth(roa_vals, output_transform=T)

10 Chapter 3. Contents

http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.predict
http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.predict

profiletools Documentation, Release 0.1

Here, roa_vals are the M points the density is evaluated at and T is a transformation matrix with shape (N, M) that
transforms the values at those M points into the N transformed outputs. compute_volume_average() is a
convenience method that uses this approach to compute the volume average and its uncertainty.

compute_a_over_L() is a convenience method to compute the normalized inverse gradient scale length. This
calculation uses the covariance between values and gradients to properly propagate the uncertainty. Since the error
propagation equation breaks down in the edge where the value goes to zero, you can set full_MC = True to use full
Monte Carlo error propagation.

When computing gradients (either directly with smooth() or indirectly with compute_a_over_L())
it is important to use Markov chain Monte Carlo (MCMC) to integrate over the possible hyperparameters
of the model in order to fully capture the uncertainty in the fit. This is accomplished by leaving out the
call to find_gp_MAP_estimate() and instead setting use_MCMC=True when calling smooth() or
compute_a_over_L(). You can control the properties of the MCMC sampler using the keywords for
gptools.GaussianProcess.compute_from_MCMC() (http://gptools.readthedocs.org/en/latest/gptools.
html#gptools.gaussian_process.GaussianProcess.compute_from_MCMC) and gptools.GaussianProcess.
sample_hyperparameter_posterior() (http://gptools.readthedocs.org/en/latest/gptools.html#gptools.
gaussian_process.GaussianProcess.sample_hyperparameter_posterior).

Complete example

The complete example to load and plot the electron density data as a function of r/a from shot 1101014006 averaged
over 1.0s to 1.5s is:

p = ne(1101014006, t_min=1.0, t_max=1.5, abscissa='r/a')
p.time_average()
p.plot_data()
p.create_gp()
p.find_gp_MAP_estimate()
roa = scipy.linspace(0, 1.2, 100)
ax, mean, std = p.smooth(roa, plot=True, ax='gca')

Signals supported

Electron density

The following diagnostics are supported:

• neCTS(): Core Thomson scattering.

• neETS(): Edge Thomson scattering.

• neTCI(): Two-color interferometer. This is a line- integrated diagnostic. Loading the data is rather slow
because the quadrature weights must be computed. Fitting the data is rather slow because of the computational
cost of including all of the quadrature points in the Gaussian process. There are several parameters that let you
adjust the tradeoff between computational time and accuracy, see the documentation for more details.

• neReflect(): Scape-off layer reflectometer. Because of how these data are stored and processed you need
to be very careful about how you include them in your fits.

Electron temperature

The following diagnostics are supported:

• TeCTS(): Core Thomson scattering.

3.3. Accessing Alcator C-Mod data 11

http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.compute_from_MCMC
http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.compute_from_MCMC
http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.sample_hyperparameter_posterior
http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.sample_hyperparameter_posterior

profiletools Documentation, Release 0.1

• TeETS(): Edge Thomson scattering.

• TeFRCECE(): High spatial resolution ECE system.

• TeGPC(): Grating polychromator ECE system.

• TeGPC2(): Second grating polychromator ECE system.

• TeMic(): Michelson interferometer. High frequency space resolution but low temporal resolution.

X-ray emissivity

You must be careful when interpreting the uncertainties on these fits since they are already inverted/smoothed. This is
mostly useful for getting a rough look at the results of combining the two AXUV systems.

emissAX() supports both AXA and AXJ through use of the required system argument.

Additional patterns and examples

Weighted versus unweighted averaging

Diagnostics like CTS and ETS have computed uncertainties that can be used to weight the data during averaging to
give a better representation of the sample statistics. But, the other diagnostics do not: an assumed value (typically
10%) is used when the data are loaded. This should be replaced with the unweighted sample standard deviation when
the data are averaged in order to give an honest assessment of the variability in the quantity. To combine weighted and
unweighted averaging, you should create the profiles separately:

p = Te(1101014006, include=['CTS', 'ETS'], abscissa='r/a', t_min=1.0, t_max=1.5)
p.time_average(weighted=True)
p_ECE = Te(1101014006, include=['GPC', 'GPC2', 'FRCECE'], abscissa='r/a', t_min=1.0,
→˓t_max=1.5)
p_ECE.time_average(weighted=False)
p.add_profile(p_ECE)

This example uses the add_profile() method to merge the data from p_ECE into p.

Multiple time slices

There is considerable overhead associated with loading the data from the tree and performing coordinate conversions.
Since time averaging mutates the BivariatePlasmaProfile instance in place, it is necessary to keep a copy of
the master profile with all of the data. This is accomplished using copy.deepcopy():

p_master = ne(1101014006, include=['CTS', 'ETS'], abscissa='r/a')
windows = [(1.0, 1.1), (1.1, 1.2)]
for w in windows:

p = copy.deepcopy(p_master)
p.remove_points((p.X[:, 0] < w[0]) | (p.X[:, 0] > w[1]))
p.time_average(weighted=True)
p.find_gp_MAP_estimate()
mean, std = p.smooth(roa)

Unless the plasma is changing rapidly you can probably save some time by setting the optimal hyperparameters from
one time slice as the initial guess for the next time slice and setting random_starts to zero.

12 Chapter 3. Contents

profiletools Documentation, Release 0.1

profiletools package

Submodules

profiletools.CMod module

Provides classes for working with Alcator C-Mod data via MDSplus.

class profiletools.CMod.BivariatePlasmaProfile(X_dim=1, X_units=None, y_units=’‘,
X_labels=None, y_label=’‘,
weightable=True)

Bases: profiletools.core.Profile

Class to represent bivariate (y=f(t, psi)) plasma data.

The first column of X is always time. If the abscissa is ‘RZ’, then the second column is R and the third is Z.
Otherwise the second column is the desired abscissa (psinorm, etc.).

remake_efit_tree()
Remake the EFIT tree.

This is needed since EFIT tree instances aren’t pickleable yet, so to store a
BivariatePlasmaProfile in a pickle file, you must delete the EFIT tree.

convert_abscissa(new_abscissa, drop_nan=True, ddof=1)
Convert the internal representation of the abscissa to new coordinates.

The target abcissae are what are supported by rho2rho from the eqtools package. Namely,

psinorm Normalized poloidal flux
phinorm Normalized toroidal flux
volnorm Normalized volume
Rmid Midplane major radius
r/a Normalized minor radius

Additionally, each valid option may be prepended with ‘sqrt’ to return the square root of the desired
normalized unit.

Parameters new_abscissa : str

The new abscissa to convert to. Valid options are defined above.

drop_nan : bool, optional

Set this to True to drop any elements whose value is NaN following the conversion.
Default is True (drop NaN elements).

ddof : int, optional

Degree of freedom correction to use when time-averaging a conversion.

time_average(**kwargs)
Compute the time average of the quantity.

Stores the original bounds of t to self.t_min and self.t_max.

All parameters are passed to average_data().

drop_axis(axis)
Drops a selected axis from X.

Parameters axis : int

3.5. profiletools package 13

profiletools Documentation, Release 0.1

The index of the axis to drop.

keep_times(times, **kwargs)
Keeps only the nearest points to vals along the time axis for each channel.

Parameters times : array of float

The values the time should be close to.

**kwargs : optional kwargs

All additional kwargs are passed to keep_slices().

add_profile(other)
Absorbs the data from another profile object.

Parameters other : Profile

Profile to absorb.

remove_edge_points(allow_conversion=True)
Removes points that are outside the LCFS.

Must be called when the abscissa is a normalized coordinate. Assumes that the last column of self.X is
space: so it will do the wrong thing if you have already taken an average along space.

Parameters allow_conversion : bool, optional

If True and self.abscissa is ‘RZ’, then the profile will be converted to psinorm and the
points will be dropped. Default is True (allow conversion).

constrain_slope_on_axis(err=0, times=None)
Constrains the slope at the magnetic axis of this Profile’s Gaussian process to be zero.

Note that this is accomplished approximately for bivariate data by specifying the slope to be zero at the
magnetic axis for a number of points in time.

It is assumed that the Gaussian process has already been created with a call to create_gp().

It is required that the abscissa be either Rmid or one of the normalized coordinates.

Parameters err : float, optional

The uncertainty to place on the slope constraint. The default is 0 (slope constraint is
exact). This could also potentially be an array for bivariate data where you wish to have
the uncertainty vary in time.

times : array-like, optional

The times to impose the constraint at. Default is to use the unique time values in X[:,
0].

constrain_at_limiter(err_y=0.01, err_dy=0.1, times=None, n_pts=4, expansion=1.25)
Constrains the slope and value of this Profile’s Gaussian process to be zero at the GH limiter.

The specific value of X coordinate to impose this constraint at is determined by finding the point of the GH
limiter which has the smallest mapped coordinate.

If the limiter location is not found in the tree, the system will instead use R=0.91m, Z=0.0m as the limiter
location. This is a bit outside of where the limiter is, but will act as a conservative approximation for cases
where the exact position is not available.

Note that this is accomplished approximately for bivariate data by specifying the slope and value to be
zero at the limiter for a number of points in time.

It is assumed that the Gaussian process has already been created with a call to create_gp().

14 Chapter 3. Contents

profiletools Documentation, Release 0.1

The abscissa cannot be ‘Z’ or ‘RZ’.

Parameters err_y : float, optional

The uncertainty to place on the value constraint. The default is 0.01. This could also
potentially be an array for bivariate data where you wish to have the uncertainty vary in
time.

err_dy : float, optional

The uncertainty to place on the slope constraint. The default is 0.1. This could also
potentially be an array for bivariate data where you wish to have the uncertainty vary in
time.

times : array-like, optional

The times to impose the constraint at. Default is to use the unique time values in X[:,
0].

n_pts : int, optional

The number of points outside of the limiter to use. It helps to use three or more points
outside the plasma to ensure appropriate behavior. The constraint is applied at n_pts
linearly spaced points between the limiter location (computed as discussed above) and
the limiter location times expansion. If you set this to one it will only impose the
constraint at the limiter. Default is 4.

expansion : float, optional

The factor by which the coordinate of the limiter location is multiplied to get the outer
limit of the n_pts constraint points. Default is 1.25.

remove_quadrature_points_outside_of_limiter()
Remove any of the quadrature points which lie outside of the limiter.

This is accomplished by setting their weights to zero. When create_gp() is called, it will call
GaussianProcess.condense_duplicates() which will remove any points for which all of the
weights are zero.

This only affects the transformed quantities in self.transformed.

get_limiter_locations()
Retrieve the location of the GH limiter from the tree.

If the data are not there (they are missing for some old shots), use R=0.91m, Z=0.0m.

create_gp(constrain_slope_on_axis=True, constrain_at_limiter=True, axis_constraint_kwargs={},
limiter_constraint_kwargs={}, **kwargs)

Create a Gaussian process to handle the data.

Calls create_gp(), then imposes constraints as requested.

Defaults to using a squared exponential kernel in two dimensions or a Gibbs kernel with tanh warping in
one dimension.

Parameters constrain_slope_on_axis : bool, optional

If True, a zero slope constraint at the magnetic axis will be imposed after creating the
gp. Default is True (constrain slope).

constrain_at_limiter : bool, optional

If True, a zero slope and value constraint at the GH limiter will be imposed after creating
the gp. Default is True (constrain at axis).

axis_constraint_kwargs : dict, optional

3.5. profiletools package 15

profiletools Documentation, Release 0.1

The contents of this dictionary are passed as kwargs to
constrain_slope_on_axis().

limiter_constraint_kwargs : dict, optional

The contents of this dictionary are passed as kwargs to
constrain_at_limiter().

**kwargs : optional kwargs

All remaining kwargs are passed to Profile.create_gp().

compute_a_over_L(X, force_update=False, plot=False, gp_kwargs={}, MAP_kwargs={},
plot_kwargs={}, return_prediction=False, special_vals=0, special_X_vals=0,
compute_2=False, **predict_kwargs)

Compute the normalized inverse gradient scale length.

Only works on data that have already been time-averaged at the moment.

Parameters X : array-like

The points to evaluate a/L at.

force_update : bool, optional

If True, a new Gaussian process will be created even if one already exists. Set this if
you have added data or constraints since you created the Gaussian process. Default is
False (use current Gaussian process if it exists).

plot : bool, optional

If True, a plot of a/L is produced. Default is False (no plot).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to create_gp() if it gets called.
Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to find_gp_MAP_estimate()
if it gets called. Default is {}.

plot_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to plot when plotting the mean of
a/L. Default is {}.

return_prediction : bool, optional

If True, the full prediction of the value and gradient are returned in a dictionary. Default
is False (just return value and stddev of a/L).

special_vals : int, optional

The number of special return values incorporated into output_transform that should be
dropped before computing a/L. This is used so that things like volume averages can be
efficiently computed at the same time as a/L. Default is 0 (no extra values).

special_X_vals : int, optional

The number of special points included in the abscissa that should not be included in the
evaluation of a/L. Default is 0 (no extra values).

compute_2 : bool, optional

16 Chapter 3. Contents

profiletools Documentation, Release 0.1

If True, the second derivative and some derived quantities will be computed and added
to the output structure (if return_prediction is True). You should almost always have r/a
for your abscissa when using this: the expressions for other coordinate systems are not
as well-vetted. Default is False (don’t compute second derivative).

**predict_kwargs : optional parameters

All other parameters are passed to the Gaussian process’ predict() method.

compute_volume_average(return_std=True, grid=None, npts=400, force_update=False,
gp_kwargs={}, MAP_kwargs={}, **predict_kwargs)

Compute the volume average of the profile.

Right now only supports data that have already been time-averaged.

Parameters return_std : bool, optional

If True, the standard deviation of the volume average is computed and returned. Default
is True (return mean and stddev of volume average).

grid : array-like, optional

The quadrature points to use when finding the volume average. If these are not provided,
a uniform grid over volnorm will be used. Default is None (use uniform volnorm grid).

npts : int, optional

The number of uniformly-spaced volnorm points to use if grid is not specified. Default
is 400.

force_update : bool, optional

If True, a new Gaussian process will be created even if one already exists. Set this if
you have added data or constraints since you created the Gaussian process. Default is
False (use current Gaussian process if it exists).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to create_gp() if it gets called.
Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to find_gp_MAP_estimate()
if it gets called. Default is {}.

**predict_kwargs : optional parameters

All other parameters are passed to the Gaussian process’ predict() method.

Returns mean : float

The mean of the volume average.

std : float

The standard deviation of the volume average. Only returned if return_std is True. Note
that this is only sufficient as an error estimate if you separately verify that the integration
error is less than this!

compute_peaking(return_std=True, grid=None, npts=400, force_update=False, gp_kwargs={},
MAP_kwargs={}, **predict_kwargs)

Compute the peaking of the profile.

Right now only supports data that have already been time-averaged.

Uses the definition from Greenwald, et al. (2007): 𝑤(𝜓𝑛 = 0.2)/⟨𝑤⟩.

3.5. profiletools package 17

profiletools Documentation, Release 0.1

Parameters return_std : bool, optional

If True, the standard deviation of the volume average is computed and returned. Default
is True (return mean and stddev of peaking).

grid : array-like, optional

The quadrature points to use when finding the volume average. If these are not provided,
a uniform grid over volnorm will be used. Default is None (use uniform volnorm grid).

npts : int, optional

The number of uniformly-spaced volnorm points to use if grid is not specified. Default
is 400.

force_update : bool, optional

If True, a new Gaussian process will be created even if one already exists. Set this if
you have added data or constraints since you created the Gaussian process. Default is
False (use current Gaussian process if it exists).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to create_gp() if it gets called.
Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to find_gp_MAP_estimate()
if it gets called. Default is {}.

**predict_kwargs : optional parameters

All other parameters are passed to the Gaussian process’ predict() method.

profiletools.CMod.neCTS(shot, abscissa=’RZ’, t_min=None, t_max=None, electrons=None,
efit_tree=None, remove_edge=False, remove_zeros=True, Z_shift=0.0)

Returns a profile representing electron density from the core Thomson scattering system.

Parameters shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

18 Chapter 3. Contents

profiletools Documentation, Release 0.1

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

remove_zeros: bool, optional

If True, will remove points that are identically zero. Default is True (remove zero
points). This was added because clearly bad points aren’t always flagged with a sentinel
value of errorbar.

Z_shift: float, optional

The shift to apply to the vertical coordinate, sometimes needed to correct EFIT mapping.
Default is 0.0.

profiletools.CMod.neETS(shot, abscissa=’RZ’, t_min=None, t_max=None, electrons=None,
efit_tree=None, remove_edge=False, remove_zeros=True, Z_shift=0.0)

Returns a profile representing electron density from the edge Thomson scattering system.

Parameters shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

remove_zeros: bool, optional

If True, will remove points that are identically zero. Default is True (remove zero
points). This was added because clearly bad points aren’t always flagged with a sentinel
value of errorbar.

Z_shift: float, optional

The shift to apply to the vertical coordinate, sometimes needed to correct EFIT mapping.
Default is 0.0.

profiletools.CMod.neTCI(shot, abscissa=’r/a’, t_min=None, t_max=None, elec-
trons=None, efit_tree=None, quad_points=20, Z_point=-3.0,
theta=0.7853981633974483, thin=1, flag_threshold=0.001, ds=0.001)

Returns a profile representing electron density from the two color interferometer system.

Parameters shot : int

3.5. profiletools package 19

profiletools Documentation, Release 0.1

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘r/a’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree instance open to the electrons tree of the correct shot. The shot
of the given tree is not checked! Default is None (open tree).

efit_tree : :py:class‘eqtools.CModEFITTree‘, optional

An eqtools.CModEFITTree instance open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

quad_points : int or array of float, optional

The quadrature points to use. If an int, then quad_points linearly- spaced points be-
tween 0 and 1.2 will be used. Otherwise, quad_points must be a strictly monotonically
increasing array of the quadrature points to use.

Z_point : float

Z coordinate of the starting point of the rays (should be well outside the tokamak). Units
are meters.

theta : float

Angle of the chords. Units are radians.

thin : int

Amount by which the data are thinned before computing weights and averages. Default
is 1 (no thinning).

flag_threshold : float, optional

The threshold below which points are considered bad. Default is 1e-3.

ds : float, optional

The step size TRIPPy uses to form the beam. Default is 1e-3

profiletools.CMod.neTCI_old(shot, abscissa=’RZ’, t_min=None, t_max=None, electrons=None,
efit_tree=None, npts=100, flag_threshold=0.001)

Returns a profile representing electron density from the two color interferometer system.

Parameters shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

20 Chapter 3. Contents

profiletools Documentation, Release 0.1

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

npts : int, optional

The number of points to use for the line integral. Default is 20.

flag_threshold : float, optional

The threshold below which points are considered bad. Default is 1e-3.

profiletools.CMod.neReflect(shot, abscissa=’Rmid’, t_min=None, t_max=None, electrons=None,
efit_tree=None, remove_edge=False, rf=None)

Returns a profile representing electron density from the LH/SOL reflectometer system.

Parameters shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

rf : MDSplus.Tree, optional

An MDSplus.Tree object open to the RF tree of the correct shot. The shot of the given
tree is not checked! Default is None (open tree).

profiletools.CMod.ne(shot, include=[’CTS’, ‘ETS’], TCI_quad_points=None,
TCI_flag_threshold=None, TCI_thin=None, TCI_ds=None, **kwargs)

Returns a profile representing electron density from both the core and edge Thomson scattering systems.

Parameters shot : int

The shot number to load.

include : list of str, optional

3.5. profiletools package 21

profiletools Documentation, Release 0.1

The data sources to include. Valid options are:

CTS Core Thomson scattering
ETS Edge Thomson scattering
TCI Two color interferometer
reflect SOL reflectometer

The default is to include all TS data sources, but not TCI or the reflectometer.

**kwargs

All remaining parameters are passed to the individual loading methods.

profiletools.CMod.neTS(shot, **kwargs)
Returns a profile representing electron density from both the core and edge Thomson scattering systems.

profiletools.CMod.TeCTS(shot, abscissa=’RZ’, t_min=None, t_max=None, electrons=None,
efit_tree=None, remove_edge=False, remove_zeros=True, Z_shift=0.0)

Returns a profile representing electron temperature from the core Thomson scattering system.

Parameters shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

remove_zeros: bool, optional

If True, will remove points that are identically zero. Default is True (remove zero
points). This was added because clearly bad points aren’t always flagged with a sentinel
value of errorbar.

Z_shift: float, optional

The shift to apply to the vertical coordinate, sometimes needed to correct EFIT mapping.
Default is 0.0.

profiletools.CMod.TeETS(shot, abscissa=’RZ’, t_min=None, t_max=None, electrons=None,
efit_tree=None, remove_edge=False, remove_zeros=False, Z_shift=0.0)

Returns a profile representing electron temperature from the edge Thomson scattering system.

Parameters shot : int

22 Chapter 3. Contents

profiletools Documentation, Release 0.1

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

remove_zeros: bool, optional

If True, will remove points that are identically zero. Default is False (keep zero points).
This was added because clearly bad points aren’t always flagged with a sentinel value
of errorbar.

Z_shift: float, optional

The shift to apply to the vertical coordinate, sometimes needed to correct EFIT mapping.
Default is 0.0.

profiletools.CMod.TeFRCECE(shot, rate=’s’, cutoff=0.15, abscissa=’Rmid’, t_min=None,
t_max=None, electrons=None, efit_tree=None, remove_edge=False)

Returns a profile representing electron temperature from the FRCECE system.

Parameters shot : int

The shot number to load.

rate : {‘s’, ‘f’}, optional

Which timebase to use – the fast or slow data. Default is ‘s’ (slow).

cutoff : float, optional

The cutoff value for eliminating cut-off points. All points with values less than this will
be discarded. Default is 0.15.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

3.5. profiletools package 23

profiletools Documentation, Release 0.1

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

profiletools.CMod.TeGPC2(shot, abscissa=’Rmid’, t_min=None, t_max=None, electrons=None,
efit_tree=None, remove_edge=False)

Returns a profile representing electron temperature from the GPC2 system.

Parameters shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

profiletools.CMod.TeGPC(shot, cutoff=0.15, abscissa=’Rmid’, t_min=None, t_max=None, elec-
trons=None, efit_tree=None, remove_edge=False)

Returns a profile representing electron temperature from the GPC system.

Parameters shot : int

The shot number to load.

cutoff : float, optional

The cutoff value for eliminating cut-off points. All points with values less than this will
be discarded. Default is 0.15.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

24 Chapter 3. Contents

profiletools Documentation, Release 0.1

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

profiletools.CMod.TeMic(shot, cutoff=0.15, abscissa=’Rmid’, t_min=None, t_max=None, elec-
trons=None, efit_tree=None, remove_edge=False, remove_zeros=True)

Returns a profile representing electron temperature from the Michelson interferometer.

Parameters shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

profiletools.CMod.Te(shot, include=[’CTS’, ‘ETS’, ‘FRCECE’, ‘GPC2’, ‘GPC’, ‘Mic’],
FRCECE_rate=’s’, FRCECE_cutoff=0.15, GPC_cutoff=0.15, re-
move_ECE_edge=True, **kwargs)

Returns a profile representing electron temperature from the Thomson scattering and ECE systems.

Parameters shot : int

The shot number to load.

include : list of str, optional

The data sources to include. Valid options are:

3.5. profiletools package 25

profiletools Documentation, Release 0.1

CTS Core Thomson scattering
ETS Edge Thomson scattering
FRCECE FRC electron cyclotron emission
GPC Grating polychromator
GPC2 Grating polychromator 2

The default is to include all data sources.

FRCECE_rate : {‘s’, ‘f’}, optional

Which timebase to use for FRCECE – the fast or slow data. Default is ‘s’ (slow).

FRCECE_cutoff : float, optional

The cutoff value for eliminating cut-off points from FRCECE. All points with values
less than this will be discarded. Default is 0.15.

GPC_cutoff : float, optional

The cutoff value for eliminating cut-off points from GPC. All points with values less
than this will be discarded. Default is 0.15.

remove_ECE_edge : bool, optional

If True, the points outside of the LCFS for the ECE diagnostics will be removed. Note
that this overrides remove_edge, if present, in kwargs. Furthermore, this may lead to
abscissa being converted to psinorm if an incompatible option was used.

**kwargs

All remaining parameters are passed to the individual loading methods.

profiletools.CMod.TeTS(shot, **kwargs)
Returns a profile representing electron temperature data from the Thomson scattering system.

Includes both core and edge system.

profiletools.CMod.emissAX(shot, system, abscissa=’Rmid’, t_min=None, t_max=None, tree=None,
efit_tree=None, remove_edge=False)

Returns a profile representing emissivity from the AXA system.

Parameters shot : int

The shot number to load.

system : {AXA, AXJ}

The system to use.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

tree : MDSplus.Tree, optional

An MDSplus.Tree object open to the cmod tree of the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

26 Chapter 3. Contents

profiletools Documentation, Release 0.1

An eqtools.CModEFITTree object open to the correct shot. The shot of the given tree
is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert the abscissa to
psinorm if necessary. Default is False (keep edge).

profiletools.CMod.emiss(shot, include=[’AXA’, ‘AXJ’], **kwargs)
Returns a profile representing emissivity.

Parameters shot : int

The shot number to load.

include : list of str, optional

The data sources to include. Valid options are: {AXA, AXJ}. The default is to include
both data sources.

**kwargs

All remaining parameters are passed to the individual loading methods.

profiletools.CMod.read_plasma_csv(*args, **kwargs)
Returns a profile containing the data from a CSV file.

If your data are bivariate, you must ensure that time ends up being the first column, either by putting it first in
your CSV file or by specifying its name first in X_names.

The CSV file can contain metadata lines of the form “name data” or “name data,data,...”. The following metadata
are automatically parsed into the correct fields:

shot shot number
times comma-separated list of times included in the data
t_min minimum time included in the data
t_max maximum time included in the data
coordinate the abscissa the data are represented as a function of

If you don’t provide coordinate in the metadata, the program will try to use the last entry in X_labels to infer
the abscissa. If this fails, it will simply set the abscissa to the title of the last entry in X_labels. If you provide
your data as a function of R, Z it will look for the last two entries in X_labels to be R and Z once surrounding
dollar signs and spaces are removed.

Parameters are the same as read_csv().

profiletools.CMod.read_plasma_NetCDF(*args, **kwargs)
Returns a profile containing the data from a NetCDF file.

The file can contain metadata attributes specified in the metadata kwarg. The following metadata are automati-
cally parsed into the correct fields:

shot shot number
times comma-separated list of times included in the data
t_min minimum time included in the data
t_max maximum time included in the data
coordinate the abscissa the data are represented as a function of

If you don’t provide coordinate in the metadata, the program will try to use the last entry in X_labels to infer
the abscissa. If this fails, it will simply set the abscissa to the title of the last entry in X_labels. If you provide
your data as a function of R, Z it will look for the last two entries in X_labels to be R and Z once surrounding
dollar signs and spaces are removed.

Parameters are the same as read_NetCDF().

3.5. profiletools package 27

profiletools Documentation, Release 0.1

profiletools.core module

Provides the base Profile class and other utilities.

profiletools.core.average_points(X, y, err_X, err_y, T=None, ddof=1, robust=False,
y_method=’sample’, X_method=’sample’, weighted=False)

Find the average of the points with the given uncertainties using a variety of techniques.

Parameters X : array, (M, D) or (M, N, D)

Abscissa values to average.

y : array, (M)

Data values to average.

err_X : array, same shape as X

Uncertainty in X.

err_y : array, same shape as y

Uncertainty in y.

T : array, (M, N), optional

Transform for y. Default is None (y is not transformed).

ddof : int, optional

The degree of freedom correction used in computing the standard deviation. The default
is 1, the standard Bessel correction to give an unbiased estimate of the variance.

robust : bool, optional

Set this flag to use robust estimators (median, IQR). Default is False.

y_method : {‘sample’, ‘RMS’, ‘total’, ‘of mean’, ‘of mean sample’}, optional

The method to use in computing the uncertainty in the averaged y.

• ‘sample’ computes the sample standard deviation.

• ‘RMS’ computes the root-mean-square of the individual error bars.

• ‘total’ computes the square root of the sum of the sample variance and the mean
variance. This is only statistically reasonable if the points represent sample
means/variances already.

• ‘of mean’ computes the uncertainty in the mean using error propagation with the
given uncertainties.

• ‘of mean sample’ computes the uncertainty in the mean using error propagation with
the sample variance. Should not be used with weighted estimators!

Default is ‘sample’ (use sample variance).

X_method : {‘sample’, ‘RMS’, ‘total’, ‘of mean’, ‘of mean sample’}, optional

The method to use in computing the uncertainty in the averaged X. Options are the same
as y_method. Default is ‘sample’ (use sample variance).

weighted : bool, optional

Set this flag to use weighted estimators. The weights are 1/err_y^2. Default is False
(use unweighted estimators).

Returns mean_X : array, (D,) or (N, D)

28 Chapter 3. Contents

profiletools Documentation, Release 0.1

Mean of abscissa values.

mean_y : float

Mean of data values.

err_X : array, same shape as mean_X

Uncertainty in abscissa values.

err_y : float

Uncertainty in data values.

T : array, (N,) or None

Mean of transformation.

class profiletools.core.Channel(X, y, err_X=0, err_y=0, T=None, y_label=’‘, y_units=’‘)
Bases: object

Class to store data from a single channel.

This is particularly useful for storing linearly transformed data, but should work for general data just as well.

Parameters X : array, (M, N, D)

Abscissa values to use.

y : array, (M,)

Data values.

err_X : array, same shape as X

Uncertainty in X.

err_y : array, (M,)

Uncertainty in data.

T : array, (M, N), optional

Linear transform to get from latent variables to data in y. Default is that y represents
untransformed data.

y_label : str, optional

Label for the y data. Default is empty string.

y_units : str, optional

Units of the y data. Default is empty string.

keep_slices(axis, vals, tol=None, keep_mixed=False)
Only keep the indices closest to given vals.

Parameters axis : int

The column in X to check values on.

vals : float or 1-d array

The value(s) to keep the points that are nearest to.

keep_mixed : bool, optional

Set this flag to keep transformed quantities that depend on multiple values of X[:, :,
axis]. Default is False (drop mixed quantities).

3.5. profiletools package 29

profiletools Documentation, Release 0.1

Returns still_good : bool

Returns True if there are still any points left in the channel, False otherwise.

average_data(axis=0, **kwargs)
Average the data along the given axis.

Parameters axis : int, optional

Axis to average along. Default is 0.

**kwargs : optional keyword arguments

All additional kwargs are passed to average_points().

remove_points(conditional)
Remove points satisfying conditional.

Parameters conditional : array, same shape as self.y

Boolean array with True wherever a point should be removed.

Returns bad_X : array

The removed X values.

bad_err_X : array

The uncertainty in the removed X values.

bad_y : array

The removed y values.

bad_err_y : array

The uncertainty in the removed y values.

bad_T : array

The transformation matrix of the removed y values.

class profiletools.core.Profile(X_dim=1, X_units=None, y_units=’‘, X_labels=None, y_label=’‘,
weightable=True)

Bases: object

Object to abstractly represent a profile.

Parameters X_dim : positive int, optional

Number of dimensions of the independent variable. Default value is 1.

X_units : str, list of str or None, optional

Units for each of the independent variables. If X_dim‘=1, this should given as a single
string, if ‘X_dim>1, this should be given as a list of strings of length X_dim. Default
value is None, meaning a list of empty strings will be used.

y_units : str, optional

Units for the dependent variable. Default is an empty string.

X_labels : str, list of str or None, optional

Descriptive label for each of the independent variables. If X_dim‘=1, this should be
given as a single string, if ‘X_dim>1, this should be given as a list of strings of length
X_dim. Default value is None, meaning a list of empty strings will be used.

y_label : str, optional

30 Chapter 3. Contents

profiletools Documentation, Release 0.1

Descriptive label for the dependent variable. Default is an empty string.

weightable : bool, optional

Whether or not it is valid to use weighted estimators on the data, or if the error bars are
too suspect for this to be valid. Default is True (allow use of weighted estimators).

Attributes

y (Array, (M,)) The M dependent variables.
X (Matrix, (M, X_dim)) The M independent variables.
err_y (Array, (M,)) The uncertainty in the M dependent variables.
err_X (Matrix, (M, X_dim)) The uncertainties in each dimension of the M independent variables.
channels (Matrix, (M, X_dim)) The logical groups of points into channels along each of the

independent variables.
X_dim (positive int) The number of dimensions of the independent variable.
X_units (list of str, (X_dim,)) The units for each of the independent variables.
y_units (str) The units for the dependent variable.
X_labels (list of str, (X_dim,)) Descriptive labels for each of the independent variables.
y_label (str) Descriptive label for the dependent variable.
weightable (bool) Whether or not weighted estimators can be used.
trans-
formed

(list of Channel) The transformed quantities associated with the Profile instance.

gp (gptools.GaussianProcess instance) The Gaussian process with the local and
transformed data included.

add_data(X, y, err_X=0, err_y=0, channels=None)
Add data to the training data set of the Profile instance.

Will also update the Profile’s Gaussian process instance (if it exists).

Parameters X : array-like, (M, N)

M independent variables of dimension N.

y : array-like, (M,)

M dependent variables.

err_X : array-like, (M, N), or scalar float, or single array-like (N,), optional

Non-negative values only. Error given as standard deviation for each of the N dimen-
sions in the M independent variables. If a scalar is given, it is used for all of the values.
If a single array of length N is given, it is used for each point. The default is to assign
zero error to each point.

err_y : array-like (M,) or scalar float, optional

Non-negative values only. Error given as standard deviation in the M dependent vari-
ables. If err_y is a scalar, the data set is taken to be homoscedastic (constant error).
Otherwise, the length of err_y must equal the length of y. Default value is 0 (noiseless
observations).

channels : dict or array-like (M, N)

Keys to logically group points into “channels” along each dimension of X. If not passed,
channels are based simply on which points have equal values in X. If only certain di-
mensions have groupings other than the simple default equality conditions, then you can

3.5. profiletools package 31

profiletools Documentation, Release 0.1

pass a dict with integer keys in the interval [0, X_dim-1] whose values are the arrays of
length M indicating the channels. Otherwise, you can pass in a full (M, N) array.

Raises ValueError

Bad shapes for any of the inputs, negative values for err_y or n.

add_profile(other)
Absorbs the data from one profile object.

Parameters other : Profile

Profile to absorb.

drop_axis(axis)
Drops a selected axis from X.

Parameters axis : int

The index of the axis to drop.

keep_slices(axis, vals, tol=None, **kwargs)
Keeps only the nearest points to vals along the given axis for each channel.

Parameters axis : int

The axis to take the slice(s) of.

vals : array of float

The values the axis should be close to.

tol : float or None

Tolerance on nearest values – if the nearest value is farther than this, it is not kept. If
None, this is not applied.

**kwargs : optional kwargs

All additional kwargs are passed to keep_slices().

average_data(axis=0, **kwargs)
Computes the average of the profile over the desired axis.

If X_dim is already 1, this returns the average of the quantity. Otherwise, the Profile is mutated to
contain the desired averaged data. err_X and err_y are populated with the standard deviations of the
respective quantities. The averaging is carried out within the groupings defined by the channels attribute.

Parameters axis : int, optional

The index of the dimension to average over. Default is 0.

**kwargs : optional kwargs

All additional kwargs are passed to average_points().

plot_data(ax=None, label_axes=True, **kwargs)
Plot the data stored in this Profile. Only works for X_dim = 1 or 2.

Parameters ax : axis instance, optional

Axis to plot the result on. If no axis is passed, one is created. If the string ‘gca’ is
passed, the current axis (from plt.gca()) is used. If X_dim = 2, the axis must be 3d.

label_axes : bool, optional

If True, the axes will be labelled with strings constructed from the labels and units set
when creating the Profile instance. Default is True (label axes).

32 Chapter 3. Contents

profiletools Documentation, Release 0.1

**kwargs : extra plotting arguments, optional

Extra arguments that are passed to errorbar/errorbar3d.

Returns The axis instance used.

remove_points(conditional)
Remove points where conditional is True.

Note that this does NOT remove anything from the GP – you either need to call create_gp() again or
act manually on the gp attribute.

Also note that this does not include any provision for removing points that represent linearly-transformed
quantities – you will need to operate directly on transformed to remove such points.

Parameters conditional : array-like of bool, (M,)

Array of booleans corresponding to each entry in y. Where an entry is True, that value
will be removed.

Returns X_bad : matrix

Input values of the bad points.

y_bad : array

Bad values.

err_X_bad : array

Uncertainties on the abcissa of the bad values.

err_y_bad : array

Uncertainties on the bad values.

remove_outliers(thresh=3, check_transformed=False, force_update=False, mask_only=False,
gp_kwargs={}, MAP_kwargs={}, **predict_kwargs)

Remove outliers from the Gaussian process.

The Gaussian process is created if it does not already exist. The chopping of values assumes that any
artificial constraints that have been added to the GP are at the END of the GP’s data arrays.

The values removed are returned.

Parameters thresh : float, optional

The threshold as a multiplier times err_y. Default is 3 (i.e., throw away all 3-sigma
points).

check_transformed : bool, optional

Set this flag to check if transformed quantities are outliers. Default is False (don’t check
transformed quantities).

force_update : bool, optional

If True, a new Gaussian process will be created even if one already exists. Set this if
you have added data or constraints since you created the Gaussian process. Default is
False (use current Gaussian process if it exists).

mask_only : bool, optional

Set this flag to return only a mask of the non-transformed points that are flagged. Default
is False (completely remove bad points). In either case, the bad transformed points will
ALWAYS be removed if check_transformed is True.

gp_kwargs : dict, optional

3.5. profiletools package 33

profiletools Documentation, Release 0.1

The entries of this dictionary are passed as kwargs to create_gp() if it gets called.
Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to find_gp_MAP_estimate()
if it gets called. Default is {}.

**predict_kwargs : optional parameters

All other parameters are passed to the Gaussian process’ predict() method.

Returns X_bad : matrix

Input values of the bad points.

y_bad : array

Bad values.

err_X_bad : array

Uncertainties on the abcissa of the bad values.

err_y_bad : array

Uncertainties on the bad values.

transformed_bad : array of Channel

Transformed points that were removed.

remove_extreme_changes(thresh=10, logic=’and’, mask_only=False)
Removes points at which there is an extreme change.

Only for univariate data!

This operation is performed by looking for points who differ by more than thresh * err_y from each of
their neighbors. This operation will typically only be useful with large values of thresh. This is useful for
eliminating bad channels.

Note that this will NOT update the Gaussian process.

Parameters thresh : float, optional

The threshold as a multiplier times err_y. Default is 10 (i.e., throw away all 10-sigma
changes).

logic : {‘and’, ‘or’}, optional

Whether the logical operation performed should be an and or an or when looking at
left-hand and right-hand differences. ‘and’ is more conservative, but ‘or’ will help if
you have multiple bad channels in a row. Default is ‘and’ (point must have a drastic
change in both directions to be rejected).

mask_only : bool, optional

If True, only the boolean mask indicated where the bad points are will be removed, and
it is up to the user to remove them. Default is False (actually remove the bad points).

create_gp(k=None, noise_k=None, upper_factor=5, lower_factor=5, x0_bounds=None,
mask=None, k_kwargs={}, **kwargs)

Create a Gaussian process to handle the data.

Parameters k : Kernel instance, optional

34 Chapter 3. Contents

profiletools Documentation, Release 0.1

Covariance kernel (from gptools) with the appropriate number of dimensions, or
None. If None, a squared exponential kernel is used. Can also be a string from the
following table:

SE Squared exponential
gibbstanh Gibbs kernel with tanh warping
RQ Rational quadratic
SEsym1d 1d SE with symmetry constraint

The bounds for each hyperparameter are selected as follows:

sigma_f [1/lower_factor, upper_factor]*range(y)
l1 [1/lower_factor, upper_factor]*range(X[:, 1])
... And so on for each length scale

Here, eps is sys.float_info.epsilon. The initial guesses for each parameter are set to be
halfway between the upper and lower bounds. For the Gibbs kernel, the uniform prior
for sigma_f is used, but gamma priors are used for the remaining hyperparameters.
Default is None (use SE kernel).

noise_k : Kernel instance, optional

The noise covariance kernel. Default is None (use the default zero noise kernel, with all
noise being specified by err_y).

upper_factor : float, optional

Factor by which the range of the data is multiplied for the upper bounds on both length
scales and signal variances. Default is 5, which seems to work pretty well for C-Mod
data.

lower_factor : float, optional

Factor by which the range of the data is divided for the lower bounds on both length
scales and signal variances. Default is 5, which seems to work pretty well for C-Mod
data.

x0_bounds : 2-tuple, optional

Bounds to use on the x0 (transition location) hyperparameter of the Gibbs covariance
function with tanh warping. This is the hyperparameter that tends to need the most
tuning on C-Mod data. Default is None (use range of X).

mask : array of bool, optional

Boolean mask of values to actually include in the GP. Default is to include all values.

k_kwargs : dict, optional

All entries are passed as kwargs to the constructor for the kernel if a kernel instance is
not provided.

**kwargs : optional kwargs

All additional kwargs are passed to the constructor of gptools.
GaussianProcess.

find_gp_MAP_estimate(force_update=False, gp_kwargs={}, **kwargs)
Find the MAP estimate for the hyperparameters of the Profile’s Gaussian process.

If this Profile instance does not already have a Gaussian process, it will be created. Note that the
user is responsible for manually updating the Gaussian process if more data are added or the Profile is
otherwise mutated. This can be accomplished directly using the force_update keyword.

3.5. profiletools package 35

profiletools Documentation, Release 0.1

Parameters force_update : bool, optional

If True, a new Gaussian process will be created even if one already exists. Set this if
you have added data or constraints since you created the Gaussian process. Default is
False (use current Gaussian process if it exists).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to create_gp() if it gets called.
Default is {}.

**kwargs : optional parameters

All other parameters are passed to the Gaussian process’
optimize_hyperparameters() method.

plot_gp(force_update=False, gp_kwargs={}, MAP_kwargs={}, **kwargs)
Plot the current state of the Profile’s Gaussian process.

If this Profile instance does not already have a Gaussian process, it will be created. Note that the
user is responsible for manually updating the Gaussian process if more data are added or the Profile is
otherwise mutated. This can be accomplished directly using the force_update keyword.

Parameters force_update : bool, optional

If True, a new Gaussian process will be created even if one already exists. Set this if
you have added data or constraints since you created the Gaussian process. Default is
False (use current Gaussian process if it exists).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to create_gp() if it gets called.
Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to find_gp_MAP_estimate()
if it gets called. Default is {}.

**kwargs : optional parameters

All other parameters are passed to the Gaussian process’ plot() method.

smooth(X, n=0, force_update=False, plot=False, gp_kwargs={}, MAP_kwargs={}, **kwargs)
Evaluate the underlying smooth curve at a given set of points using Gaussian process regression.

If this Profile instance does not already have a Gaussian process, it will be created. Note that the
user is responsible for manually updating the Gaussian process if more data are added or the Profile is
otherwise mutated. This can be accomplished directly using the force_update keyword.

Parameters X : array-like (N, X_dim)

Points to evaluate smooth curve at.

n : non-negative int, optional

The order of derivative to evaluate at. Default is 0 (return value). See the documentation
on gptools.GaussianProcess.predict().

force_update : bool, optional

If True, a new Gaussian process will be created even if one already exists. Set this if
you have added data or constraints since you created the Gaussian process. Default is
False (use current Gaussian process if it exists).

plot : bool, optional

36 Chapter 3. Contents

profiletools Documentation, Release 0.1

If True, gptools.GaussianProcess.plot() is called to produce a plot of the
smoothed curve. Otherwise, gptools.GaussianProcess.predict() is called
directly.

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to create_gp() if it gets called.
Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to find_gp_MAP_estimate()
if it gets called. Default is {}.

**kwargs : optional parameters

All other parameters are passed to the Gaussian process’ plot() or predict()
method according to the state of the plot keyword.

Returns ax : axis instance

The axis instance used. This is only returned if the plot keyword is True.

mean : Array, (M,)

Predicted GP mean. Only returned if full_output is False.

std : Array, (M,)

Predicted standard deviation, only returned if return_std is True and full_output is False.

full_output : dict

Dictionary with fields for mean, std, cov and possibly random samples. Only returned
if full_output is True.

write_csv(filename)
Writes this profile to a CSV file.

Parameters filename : str

Path of the file to write. If the file exists, it will be overwritten without warning.

profiletools.core.read_csv(filename, X_names=None, y_name=None, metadata_lines=None)
Reads a CSV file into a Profile.

If names are not provided for the columns holding the X and y values and errors, the names are found automat-
ically by looking at the header row, and are used in the order found, with the last column being y. Otherwise,
the columns will be read in the order specified. The column names should be of the form “name [units]”, which
will be automatically parsed to populate the Profile. In either case, there can be a corresponding column
“err_name [units]” which holds the 1-sigma uncertainty in that quantity. There can be an arbitrary number of
lines of metadata at the beginning of the file which are read into the metadata attribute of the Profile
created. This is most useful when using BivariatePlasmaProfile as you can store the shot and time
window.

Parameters X_names : list of str, optional

Ordered list of the column names containing the independent variables. The default
behavior is to infer the names and ordering from the header of the CSV file. See the
discussion above. Note that if you provide X_names you must also provide y_name.

y_name : str, optional

3.5. profiletools package 37

profiletools Documentation, Release 0.1

Name of the column containing the dependent variable. The default behavior is to infer
this name from the header of the CSV file. See the discussion above. Note that if you
provide y_name you must also provide X_names.

metadata_lines : non-negative int, optional

Number of lines of metadata to read from the beginning of the file. These are read into
the metadata attribute of the profile created.

profiletools.core.read_NetCDF(filename, X_names, y_name, metadata=[])
Reads a NetCDF file into a Profile.

The file must contain arrays of equal length for each of the independent and the dependent variable. The units
of each variable can either be specified as the units attribute on the variable, or the variable name can be of
the form “name [units]”, which will be automatically parsed to populate the Profile. For each independent
and the dependent variable there can be a corresponding column “err_name” or “err_name [units]” which holds
the 1-sigma uncertainty in that quantity. There can be an arbitrary number of metadata attributes in the file
which are read into the corresponding attributes of the Profile created. This is most useful when using
BivariatePlasmaProfile as you can store the shot and time window. Be careful that you do not overwrite
attributes needed by the class, however!

Parameters X_names : list of str

Ordered list of the column names containing the independent variables. See the discus-
sion above regarding name conventions.

y_name : str

Name of the column containing the dependent variable. See the discussion above re-
garding name conventions.

metadata : list of str, optional

List of attribute names to read into the corresponding attributes of the Profile cre-
ated.

profiletools.core.parse_column_name(name)
Parse a column header name into label and units.

profiletools.core.errorbar3d(ax, x, y, z, xerr=None, yerr=None, zerr=None, **kwargs)
Draws errorbar plot of z(x, y) with errorbars on all variables.

Parameters ax : 3d axis instance

The axis to draw the plot on.

x : array, (M,)

x-values of data.

y : array, (M,)

y-values of data.

z : array, (M,)

z-values of data.

xerr : array, (M,), optional

Errors in x-values. Default value is 0.

yerr : array, (M,), optional

Errors in y-values. Default value is 0.

38 Chapter 3. Contents

profiletools Documentation, Release 0.1

zerr : array, (M,), optional

Errors in z-values. Default value is 0.

**kwargs : optional

Extra arguments are passed to the plot command used to draw the datapoints.

profiletools.core.unique_rows(arr)
Returns a copy of arr with duplicate rows removed.

From Stackoverflow “Find unique rows in numpy.array.”

Parameters arr : Array, (m, n). The array to find the unique rows of.

Returns unique : Array, (p, n) where p <= m

The array arr with duplicate rows removed.

profiletools.core.get_nearest_idx(v, a)
Returns the array of indices of the nearest value in a corresponding to each value in v.

Parameters v : Array

Input values to match to nearest neighbors in a.

a : Array

Given values to match against.

Returns Indices in a of the nearest values to each value in v. Has the same shape as v.

class profiletools.core.RejectionFunc(mask, positivity=True, monotonicity=True)
Bases: object

Rejection function for use with full_MC mode of GaussianProcess.predict().

Parameters mask : array of bool

Mask for the values to include in the test.

positivity : bool, optional

Set this to True to impose a positivity constraint on the sample. Default is True.

monotonicity : bool, optional

Set this to True to impose a positivity constraint on the samples. Default is True.

__call__(samp)
Returns True if the sample meets the constraints, False otherwise.

profiletools.core.leading_axis_product(w, x)
Perform a product along the leading axis, as is needed when applying weights.

profiletools.core.meanw(x, weights=None, axis=None)
Weighted mean of data.

Defined as

𝜇 =

∑︀
𝑖 𝑤𝑖𝑥𝑖∑︀
𝑖 𝑤𝑖

Parameters x : array-like

The vector to find the mean of.

weights : array-like, optional

3.5. profiletools package 39

profiletools Documentation, Release 0.1

The weights. Must be broadcastable with x. Default is to use the unweighted mean.

axis : int, optional

The axis to take the mean along. Default is to use the whole data set.

profiletools.core.varw(x, weights=None, axis=None, ddof=1, mean=None)
Weighted variance of data.

Defined (for ddof = 1) as

𝑠2 =

∑︀
𝑖 𝑤𝑖

(
∑︀

𝑖 𝑤𝑖)2 −
∑︀

𝑖 𝑤
2
𝑖

∑︁
𝑖

𝑤𝑖(𝑥𝑖 − 𝜇)2

Parameters x : array-like

The vector to find the mean of.

weights : array-like, optional

The weights. Must be broadcastable with x. Default is to use the unweighted mean.

axis : int, optional

The axis to take the mean along. Default is to use the whole data set.

ddof : int, optional

The degree of freedom correction to use. If no weights are given, this is the standard
Bessel correction. If weights are given, this uses an approximate form based on the
assumption that the weights are inverse variances for each data point. In this case,
the value has no effect other than being True or False. Default is 1 (apply correction
assuming normal noise dictated weights).

mean : array-like, optional

The weighted mean to use. If you have already computed the weighted mean with
meanw(), you can pass the result in here to save time.

profiletools.core.stdw(*args, **kwargs)
Weighted standard deviation of data.

Defined (for ddof = 1) as

𝑠 =

√︃ ∑︀
𝑖 𝑤𝑖

(
∑︀

𝑖 𝑤𝑖)2 −
∑︀

𝑖 𝑤
2
𝑖

∑︁
𝑖

𝑤𝑖(𝑥𝑖 − 𝜇)2

Parameters x : array-like

The vector to find the mean of.

weights : array-like, optional

The weights. Must be broadcastable with x. Default is to use the unweighted mean.

axis : int, optional

The axis to take the mean along. Default is to use the whole data set.

ddof : int, optional

The degree of freedom correction to use. If no weights are given, this is the standard
Bessel correction. If weights are given, this uses an approximate form based on the
assumption that the weights are inverse variances for each data point. In this case,
the value has no effect other than being True or False. Default is 1 (apply correction
assuming normal noise dictated weights).

40 Chapter 3. Contents

profiletools Documentation, Release 0.1

mean : array-like, optional

The weighted mean to use. If you have already computed the weighted mean with
meanw(), you can pass the result in here to save time.

profiletools.core.robust_std(y, axis=None)
Computes the robust standard deviation of the given data.

This is defined as 𝐼𝑄𝑅/(2Φ−1(0.75)), where 𝐼𝑄𝑅 is the interquartile range and Φ is the inverse CDF of the
standard normal. This is an approximation based on the assumption that the data are Gaussian, and will have
the effect of diminishing the effect of outliers.

Parameters y : array-like

The data to find the robust standard deviation of.

axis : int, optional

The axis to find the standard deviation along. Default is None (find from whole data
set).

profiletools.core.scoreatpercentilew(x, p, weights)
Computes the weighted score at the given percentile.

Does not work on small data sets!

Parameters x : array

Array of data to apply to. Only works properly on 1d data!

p : float or array of float

Percentile(s) to find.

weights : array, same shape as x

The weights to apply to the values in x.

profiletools.core.medianw(x, weights=None, axis=None)
Computes the weighted median of the given data.

Does not work on small data sets!

Parameters x : array

Array of data to apply to. Only works properly on 1d, 2d and 3d data.

weights : array, optional

Weights to apply to the values in x. Default is to use an unweighted estimator.

axis : int, optional

The axis to take the median along. Default is None (apply to flattened array).

profiletools.core.robust_stdw(x, weights=None, axis=None)
Computes the weighted robust standard deviation from the weighted IQR.

Does not work on small data sets!

Parameters x : array

Array of data to apply to. Only works properly on 1d, 2d and 3d data.

weights : array, optional

Weights to apply to the values in x. Default is to use an unweighted estimator.

axis : int, optional

3.5. profiletools package 41

profiletools Documentation, Release 0.1

The axis to take the robust standard deviation along. Default is None (apply to flattened
array).

Module contents

42 Chapter 3. Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

43

profiletools Documentation, Release 0.1

44 Chapter 4. Indices and tables

Python Module Index

p
profiletools, 42
profiletools.CMod, 13
profiletools.core, 28

45

profiletools Documentation, Release 0.1

46 Python Module Index

Index

Symbols
__call__() (profiletools.core.RejectionFunc method), 39

A
add_data() (profiletools.core.Profile method), 31
add_profile() (profiletools.CMod.BivariatePlasmaProfile

method), 14
add_profile() (profiletools.core.Profile method), 32
average_data() (profiletools.core.Channel method), 30
average_data() (profiletools.core.Profile method), 32
average_points() (in module profiletools.core), 28

B
BivariatePlasmaProfile (class in profiletools.CMod), 13

C
Channel (class in profiletools.core), 29
compute_a_over_L() (profile-

tools.CMod.BivariatePlasmaProfile method),
16

compute_peaking() (profile-
tools.CMod.BivariatePlasmaProfile method),
17

compute_volume_average() (profile-
tools.CMod.BivariatePlasmaProfile method),
17

constrain_at_limiter() (profile-
tools.CMod.BivariatePlasmaProfile method),
14

constrain_slope_on_axis() (profile-
tools.CMod.BivariatePlasmaProfile method),
14

convert_abscissa() (profile-
tools.CMod.BivariatePlasmaProfile method),
13

create_gp() (profiletools.CMod.BivariatePlasmaProfile
method), 15

create_gp() (profiletools.core.Profile method), 34

D
drop_axis() (profiletools.CMod.BivariatePlasmaProfile

method), 13
drop_axis() (profiletools.core.Profile method), 32

E
emiss() (in module profiletools.CMod), 27
emissAX() (in module profiletools.CMod), 26
errorbar3d() (in module profiletools.core), 38

F
find_gp_MAP_estimate() (profiletools.core.Profile

method), 35

G
get_limiter_locations() (profile-

tools.CMod.BivariatePlasmaProfile method),
15

get_nearest_idx() (in module profiletools.core), 39

K
keep_slices() (profiletools.core.Channel method), 29
keep_slices() (profiletools.core.Profile method), 32
keep_times() (profiletools.CMod.BivariatePlasmaProfile

method), 14

L
leading_axis_product() (in module profiletools.core), 39

M
meanw() (in module profiletools.core), 39
medianw() (in module profiletools.core), 41

N
ne() (in module profiletools.CMod), 21
neCTS() (in module profiletools.CMod), 18
neETS() (in module profiletools.CMod), 19
neReflect() (in module profiletools.CMod), 21

47

profiletools Documentation, Release 0.1

neTCI() (in module profiletools.CMod), 19
neTCI_old() (in module profiletools.CMod), 20
neTS() (in module profiletools.CMod), 22

P
parse_column_name() (in module profiletools.core), 38
plot_data() (profiletools.core.Profile method), 32
plot_gp() (profiletools.core.Profile method), 36
Profile (class in profiletools.core), 30
profiletools (module), 42
profiletools.CMod (module), 13
profiletools.core (module), 28

R
read_csv() (in module profiletools.core), 37
read_NetCDF() (in module profiletools.core), 38
read_plasma_csv() (in module profiletools.CMod), 27
read_plasma_NetCDF() (in module profiletools.CMod),

27
RejectionFunc (class in profiletools.core), 39
remake_efit_tree() (profile-

tools.CMod.BivariatePlasmaProfile method),
13

remove_edge_points() (profile-
tools.CMod.BivariatePlasmaProfile method),
14

remove_extreme_changes() (profiletools.core.Profile
method), 34

remove_outliers() (profiletools.core.Profile method), 33
remove_points() (profiletools.core.Channel method), 30
remove_points() (profiletools.core.Profile method), 33
remove_quadrature_points_outside_of_limiter() (profile-

tools.CMod.BivariatePlasmaProfile method),
15

robust_std() (in module profiletools.core), 41
robust_stdw() (in module profiletools.core), 41

S
scoreatpercentilew() (in module profiletools.core), 41
smooth() (profiletools.core.Profile method), 36
stdw() (in module profiletools.core), 40

T
Te() (in module profiletools.CMod), 25
TeCTS() (in module profiletools.CMod), 22
TeETS() (in module profiletools.CMod), 22
TeFRCECE() (in module profiletools.CMod), 23
TeGPC() (in module profiletools.CMod), 24
TeGPC2() (in module profiletools.CMod), 24
TeMic() (in module profiletools.CMod), 25
TeTS() (in module profiletools.CMod), 26
time_average() (profile-

tools.CMod.BivariatePlasmaProfile method),
13

U
unique_rows() (in module profiletools.core), 39

V
varw() (in module profiletools.core), 40

W
write_csv() (profiletools.core.Profile method), 37

48 Index

	Overview
	Notes
	Contents
	The profiletools data model
	The Profile class
	Channels
	Linearly transformed quantities
	Averaging data
	gptools integration

	Plasma profile data
	Data model
	Tokamak coordinate systems
	Constraints for Gaussian process regression

	Accessing Alcator C-Mod data
	Example
	Loading the data
	Selecting a time window or specific time points
	Time averaging or using all points
	Plotting the data and smoothing it with a Gaussian process
	Gradients and linear transformations
	Complete example

	Signals supported
	Electron density
	Electron temperature
	X-ray emissivity

	Additional patterns and examples
	Weighted versus unweighted averaging
	Multiple time slices

	profiletools package
	Submodules
	profiletools.CMod module
	profiletools.core module
	Module contents

	Indices and tables
	Python Module Index

