

ProDy Manual

This is a partial copy of ProDy documentation. Please visit
ProDy Homepage [http://prody.csb.pitt.edu] for complete
documentation with tutorials.

	Installation

	Applications

	Reference Manual

	Developer’s Guide

	Release Notes

	About ProDy

	Index

	Module Index

	Search Page

	Release

	1.9.4

	Date

	Nov 29, 2018

Installation

Required Software

	Python [http://www.python.org] 2.6, 2.7, 3.2 or later

Windows: You need to use 32-bit Python on Windows to be able to
install NumPy and ProDy.

	NumPy [http://www.numpy.org] 1.7 or later

When compiling from source, on Linux for example, you will need a C compiler
(e.g. gcc) and Python developer libraries (i.e. python.h).
If you don’t have Python developer libraries installed on your machine,
use your package manager to install python-dev package.

In addition, matplotlib [http://matplotlib.org] is required for using plotting functions.
ProDy, ProDy Applications, and Evol Applications can be operated without
this package.

Quick Install

If you have pip [https://pypi.python.org/pypi/pip] installed, type the following:

pip install -U ProDy

If you don’t have pip [https://pypi.python.org/pypi/pip], please download an installation file and
follow the instructions.

Download & Install

After installing the required packages, you will need to download a suitable
ProDy source or installation file from http://python.org/pypi/ProDy.
For changes and list of new features see Release Notes.

Linux

Download ProDy-x.y.z.tar.gz. Extract tarball contents and run
setup.py as follows:

$ tar -xzf ProDy-x.y.z.tar.gz
$ cd ProDy-x.y.z
$ python setup.py build
$ python setup.py install

If you need root access for installation, try sudo python setup.py install.
If you don’t have root access, please consult alternate and custom installation
schemes in Installing Python Modules [http://docs.python.org/install/index.html].

Mac OS

For installing ProDy, please follow the Linux installation instructions.

Windows

Remove previously installed ProDy release from Uninstall a program
in Control Panel.

Download ProDy-0.x.y.win32-py2.z.exe and run to install ProDy.

To be able use ProDy Applications and Evol Applications in command prompt
(cmd.exe), append Python and scripts folders (e.g.
C:\Python27 and C:\Python27\Scripts) to PATH [https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH]
environment variable.

Recommended Software

	Scipy [http://www.scipy.org], when installed, replaces linear algebra module of Numpy.
Scipy linear algebra module is more flexible and can be faster.

	IPython [http://ipython.org] is a must have for interactive ProDy sessions.

	PyReadline [http://ipython.org/pyreadline.html] for colorful IPython sessions on Windows.

	MDAnalysis [http://code.google.com/p/mdanalysis] for reading molecular dynamics trajectories.

Included in ProDy

Following software is included in the ProDy installation packages:

	pyparsing [http://pyparsing.wikispaces.com] is used to define the atom selection grammar.

	Biopython [http://biopython.org] KDTree package and pairwise2 module are used for distance based
atom selections and pairwise sequence alignment, respectively.

	argparse [http://code.google.com/p/argparse/] is used to implement applications and provided for
compatibility with Python 2.6.

Source Code

Source code is available at https://github.com/prody/ProDy.

Applications

ProDy comes with two sets of applications that automate structural dynamics
and sequence coevolution analysis:

	ProDy Applications
	prody align

	prody anm

	prody biomol

	prody blast

	prody catdcd

	prody contacts

	prody eda

	prody fetch

	prody gnm

	prody pca

	prody select

	Evol Applications
	evol coevol

	evol conserv

	evol fetch

	evol filter

	evol merge

	evol occupancy

	evol rankorder

	evol refine

	evol search

On Linux, when installing ProDy from source, application scripts are placed
into a default folder that is included in PATH [https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH] environment variable,
e.g. /usr/local/bin/.

On Windows, installer places the scripts into the Scripts folder under
Python distribution folder, e.g. C:\Python27\Scripts. You may need
to add this path to PATH [https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH] environment variable yourself.

ProDy Applications

ProDy applications are command line programs that automates structure
processing and structural dynamics analysis:

	prody align

	prody anm

	prody biomol

	prody blast

	prody catdcd

	prody contacts

	prody eda

	prody fetch

	prody gnm

	prody pca

	prody select

Running prody command will provide a description of applications:

$ prody

usage: prody [-h] [-c] [-v]
 {anm,gnm,pca,eda,align,blast,biomol,catdcd,contacts,fetch,select}
 ...

ProDy: A Python Package for Protein Dynamics Analysis

optional arguments:
 -h, --help show this help message and exit
 -c, --cite print citation info and exit
 -v, --version print ProDy version and exit

subcommands:
 {anm,gnm,pca,eda,align,blast,biomol,catdcd,contacts,fetch,select}
 anm perform anisotropic network model calculations
 gnm perform Gaussian network model calculations
 pca perform principal component analysis calculations
 eda perform essential dynamics analysis calculations
 align align models or structures
 blast blast search Protein Data Bank
 biomol build biomolecules
 catdcd concatenate dcd files
 contacts identify contacts between a target and ligand(s)
 fetch fetch a PDB file
 select select atoms and write a PDB file

See 'prody <command> -h' for more information on a specific command.

Detailed information on a specific application can be obtained
by typing the command and application names as prody anm -h.

Running prody anm application as follows will perform ANM
calculations for the p38 MAP kinase structure, and will write
eigenvalues/vectors in plain text and NMD Format [http://prody.csb.pitt.edu/manual/reference/dynamics/nmdfile.html#nmd-format]:

$ prody anm 1p38

In the above example, the default parameters (cutoff=15. and gamma=1.)
and all of the Cα atoms of the protein structure 1p38 are used.

In the example below, the cutoff distance is changed to 14 Å,
and the Cα atoms of residues with numbers smaller than 340 are used,
the output files are prefixed with p38_anm:

$ prody anm -c 14 -s "calpha resnum < 340" -p p38_anm 1p38

The output file p38_anm.nmd can be visualized using NMWiz [http://csb.pitt.edu/NMWiz].

prody align

Usage

Running prody align -h displays:

usage: prody align [-h] [--quiet] [--examples] [-s SEL] [-m INT] [-i INT]
 [-o INT] [-p STR] [-x STR]
 pdb [pdb ...]

positional arguments:
 pdb PDB identifier(s) or filename(s)

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

atom/model selection:
 -s SEL, --select SEL reference structure atom selection (default: calpha)
 -m INT, --model INT for NMR files, reference model index (default: 1)

chain matching options:
 -i INT, --seqid INT percent sequence identity (default: 90)
 -o INT, --overlap INT
 percent sequence overlap (default: 90)

output options:
 -p STR, --prefix STR output filename prefix (default: PDB filename)
 -x STR, --suffix STR output filename suffix (default: _aligned)

Examples

Running prody align --examples displays:

Align models in a PDB structure or multiple PDB structures and save
aligned coordinate sets. When multiple structures are aligned, ProDy
will match chains based on sequence alignment and use best match for
aligning the structures.

Fetch PDB structure 2k39 and align models (reference model is the
first model):

 $ prody align 2k39

Fetch PDB structure 2k39 and align models using backbone of residues
with number less than 71:

 $ prody align 2k39 --select "backbone and resnum < 71"

Align 1r39 and 1zz2 onto 1p38 using residues with number less than
300:

 $ prody align --select "resnum < 300" 1p38 1r39 1zz2

Align all models of 2k39 onto 1aar using residues 1 to 70 (inclusive):

 $ prody align --select "resnum 1 to 70" 1aar 2k39

Align 1fi7 onto 1hrc using heme atoms:

 $ prody align --select "noh heme and chain A" 1hrc 1fi7

prody anm

Usage

Running prody anm -h displays:

usage: prody anm [-h] [--quiet] [--examples] [-n INT] [-s SEL] [-c FLOAT]
 [-g FLOAT] [-m INT] [-a] [-o PATH] [-e] [-r] [-u] [-q] [-v]
 [-z] [-t STR] [-b] [-l] [-k] [-p STR] [-f STR] [-d STR]
 [-x STR] [-A] [-R] [-Q] [-B] [-K] [-F STR] [-D INT]
 [-W FLOAT] [-H FLOAT]
 pdb

positional arguments:
 pdb PDB identifier or filename

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

parameters:
 -n INT, --number-of-modes INT
 number of non-zero eigenvectors (modes) to calculate
 (default: 10)
 -s SEL, --select SEL atom selection (default: "protein and name CA or
 nucleic and name P C4' C2")
 -c FLOAT, --cutoff FLOAT
 cutoff distance (A) (default: 15.0)
 -g FLOAT, --gamma FLOAT
 spring constant (default: 1.0)
 -m INT, --model INT index of model that will be used in the calculations

output:
 -a, --all-output write all outputs
 -o PATH, --output-dir PATH
 output directory (default: .)
 -e, --eigenvs write eigenvalues/vectors
 -r, --cross-correlations
 write cross-correlations
 -u, --heatmap write cross-correlations heatmap file
 -q, --square-fluctuations
 write square-fluctuations
 -v, --covariance write covariance matrix
 -z, --npz write compressed ProDy data file
 -t STR, --extend STR write NMD file for the model extended to "backbone"
 ("bb") or "all" atoms of the residue, model must have
 one node per residue
 -b, --beta-factors write beta-factors calculated from GNM modes
 -l, --hessian write Hessian matrix
 -k, --kirchhoff write Kirchhoff matrix

output options:
 -p STR, --file-prefix STR
 output file prefix (default: pdb_anm)
 -f STR, --number-format STR
 number output format (default: %12g)
 -d STR, --delimiter STR
 number delimiter (default: " ")
 -x STR, --extension STR
 numeric file extension (default: .txt)

figures:
 -A, --all-figures save all figures
 -R, --cross-correlations-figure
 save cross-correlations figure
 -Q, --square-fluctuations-figure
 save square-fluctuations figure
 -B, --beta-factors-figure
 save beta-factors figure
 -K, --contact-map save contact map (Kirchhoff matrix) figure

figure options:
 -F STR, --figure-format STR
 pdf (default: pdf)
 -D INT, --dpi INT figure resolution (dpi) (default: 300)
 -W FLOAT, --width FLOAT
 figure width (inch) (default: 8.0)
 -H FLOAT, --height FLOAT
 figure height (inch) (default: 6.0)

Examples

Running prody anm --examples displays:

Perform ANM calculations for given PDB structure and output results in
NMD format. If an identifier is passed, structure file will be
downloaded from the PDB FTP server.

Fetch PDB 1p38, run ANM calculations using default parameters, and
write NMD file:

 $ prody anm 1p38

Fetch PDB 1aar, run ANM calculations using default parameters for
chain A carbon alpha atoms with residue numbers less than 70, and save
all of the graphical output files:

 $ prody anm 1aar -s "calpha and chain A and resnum < 70" -A

prody biomol

Usage

Running prody biomol -h displays:

usage: prody biomol [-h] [--quiet] [--examples] [-p STR] [-b INT] pdb

positional arguments:
 pdb PDB identifier or filename

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit
 -p STR, --prefix STR prefix for output files (default: pdb_biomol_)
 -b INT, --biomol INT index of the biomolecule, by default all are generated

Examples

Running prody biomol --examples displays:

Generate biomolecule coordinates:

 $ prody biomol 2bfu

prody blast

Usage

Running prody blast -h displays:

usage: prody blast [-h] [--quiet] [--examples] [-i FLOAT] [-o FLOAT] [-d PATH]
 [-z] [-f STR] [-e FLOAT] [-l INT] [-s INT] [-t INT]
 sequence

positional arguments:
 sequence sequence or file in fasta format

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit
 -i FLOAT, --identity FLOAT
 percent sequence identity (default: 90.0)
 -o FLOAT, --overlap FLOAT
 percent sequence overlap (default: 90.0)
 -d PATH, --output-dir PATH
 download uncompressed PDB files to given directory
 -z, --gzip write compressed PDB file

Blast Parameters:
 -f STR, --filename STR
 a filename to save the results in XML format
 -e FLOAT, --expect FLOAT
 blast search parameter
 -l INT, --hit-list-size INT
 blast search parameter
 -s INT, --sleep-time INT
 how long to wait to reconnect for results (sleep time
 is doubled when results are not ready)
 -t INT, --timeout INT
 when to give up waiting for results

Examples

Running prody blast --examples displays:

Blast search PDB for the first sequence in a fasta file:

 $ prody blast seq.fasta -i 70

Blast search PDB for the sequence argument:

 $ prody blast MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

Blast search PDB for avidin structures, download files, and align all
files onto the 2avi structure:

 $ prody blast -d . ARKCSLTGKWTNDLGSNMTIGAVNSRGEFTGTYITAVTATSNEIKESPLHGTQNTINKRTQPTFGFTVNWKFSESTTVFT

 $ prody align 2avi.pdb *pdb

prody catdcd

Usage

Running prody catdcd -h displays:

usage: prody catdcd [-h] [--quiet] [--examples] [-s SEL] [-o FILE] [-n]
 [--psf PSF] [--pdb PDB] [--first INT] [--last INT]
 [--stride INT] [--align SEL]
 dcd [dcd ...]

positional arguments:
 dcd DCD filename(s) (all must have same number of atoms)

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit
 -s SEL, --select SEL atom selection (default: all)
 -o FILE, --output FILE
 output filename (default: trajectory.dcd)
 -n, --num print the number of frames in each file and exit
 --psf PSF PSF filename (must have same number of atoms as DCDs)
 --pdb PDB PDB filename (must have same number of atoms as DCDs)
 --first INT index of the first output frame, default: 0
 --last INT index of the last output frame, default: -1
 --stride INT number of steps between output frames, default: 1
 --align SEL atom selection for aligning frames, a PSF or PDB file
 must be provided, if a PDB is provided frames will be
 superposed onto PDB coordinates

Examples

Running prody catdcd --examples displays:

Concatenate two DCD files and output all atmos:

 $ prody catdcd mdm2.dcd mdm2sim2.dcd

Concatenate two DCD files and output backbone atoms:

 $ prody catdcd mdm2.dcd mdm2sim2.dcd --pdb mdm2.pdb -s bb

prody contacts

Usage

Running prody contacts -h displays:

usage: prody contacts [-h] [--quiet] [--examples] [-s SELSTR] [-r FLOAT]
 [-t STR] [-p STR] [-x STR]
 target ligand [ligand ...]

positional arguments:
 target target PDB identifier or filename
 ligand ligand PDB identifier(s) or filename(s)

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit
 -s SELSTR, --select SELSTR
 selection string for target
 -r FLOAT, --radius FLOAT
 contact radius (default: 4.0)
 -t STR, --extend STR output same residue, chain, or segment as contacting
 atoms
 -p STR, --prefix STR output filename prefix (default: target filename)
 -x STR, --suffix STR output filename suffix (default: _contacts)

Examples

Running prody contacts --examples displays:

Identify contacts of a target structure with one or more ligands.

Fetch PDB structure 1zz2, save PDB files for individual ligands, and
identify contacting residues of the target protein:

 $ prody select -o B11 "resname B11" 1zz2

 $ prody select -o BOG "resname BOG" 1zz2

 $ prody contacts -r 4.0 -t residue -s protein 1zz2 B11.pdb BOG.pdb

prody eda

Usage

Running prody eda -h displays:

usage: prody eda [-h] [--quiet] [--examples] [-n INT] [-s SEL] [-a] [-o PATH]
 [-e] [-r] [-u] [-q] [-v] [-z] [-t STR] [-j] [-p STR] [-f STR]
 [-d STR] [-x STR] [-A] [-R] [-Q] [-J STR] [-F STR] [-D INT]
 [-W FLOAT] [-H FLOAT] [--psf PSF | --pdb PDB] [--aligned]
 dcd

positional arguments:
 dcd file in DCD or PDB format

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit
 --psf PSF PSF filename
 --pdb PDB PDB filename
 --aligned trajectory is already aligned

parameters:
 -n INT, --number-of-modes INT
 number of non-zero eigenvectors (modes) to calculate
 (default: 10)
 -s SEL, --select SEL atom selection (default: "protein and name CA or
 nucleic and name P C4' C2")

output:
 -a, --all-output write all outputs
 -o PATH, --output-dir PATH
 output directory (default: .)
 -e, --eigenvs write eigenvalues/vectors
 -r, --cross-correlations
 write cross-correlations
 -u, --heatmap write cross-correlations heatmap file
 -q, --square-fluctuations
 write square-fluctuations
 -v, --covariance write covariance matrix
 -z, --npz write compressed ProDy data file
 -t STR, --extend STR write NMD file for the model extended to "backbone"
 ("bb") or "all" atoms of the residue, model must have
 one node per residue
 -j, --projection write projections onto PCs

output options:
 -p STR, --file-prefix STR
 output file prefix (default: pdb_pca)
 -f STR, --number-format STR
 number output format (default: %12g)
 -d STR, --delimiter STR
 number delimiter (default: " ")
 -x STR, --extension STR
 numeric file extension (default: .txt)

figures:
 -A, --all-figures save all figures
 -R, --cross-correlations-figure
 save cross-correlations figure
 -Q, --square-fluctuations-figure
 save square-fluctuations figure
 -J STR, --projection-figure STR
 save projections onto specified subspaces, e.g. "1,2"
 for projections onto PCs 1 and 2; "1,2 1,3" for
 projections onto PCs 1,2 and 1, 3; "1 1,2,3" for
 projections onto PCs 1 and 1, 2, 3

figure options:
 -F STR, --figure-format STR
 pdf (default: pdf)
 -D INT, --dpi INT figure resolution (dpi) (default: 300)
 -W FLOAT, --width FLOAT
 figure width (inch) (default: 8.0)
 -H FLOAT, --height FLOAT
 figure height (inch) (default: 6.0)

Examples

Running prody eda --examples displays:

This command performs PCA (or EDA) calculations for given multi-model
PDB structure or DCD format trajectory file and outputs results in NMD
format. If a PDB identifier is given, structure file will be
downloaded from the PDB FTP server. DCD files may be accompanied with
PDB or PSF files to enable atoms selections.

Fetch pdb 2k39, perform PCA calculations, and output NMD file:

 $ prody pca 2k39

Fetch pdb 2k39 and perform calculations for backbone of residues up to
71, and save all output and figure files:

 $ prody pca 2k39 --select "backbone and resnum < 71" -a -A

Perform EDA of MDM2 trajectory:

 $ prody eda mdm2.dcd

Perform EDA for backbone atoms:

 $ prody eda mdm2.dcd --pdb mdm2.pdb --select backbone

prody fetch

Usage

Running prody fetch -h displays:

usage: prody fetch [-h] [--quiet] [--examples] [-d PATH] [-z] pdb [pdb ...]

positional arguments:
 pdb PDB identifier(s) or a file that contains them

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit
 -d PATH, --dir PATH target directory for saving PDB file(s)
 -z, --gzip write compressed PDB file(S)

Examples

Running prody fetch --examples displays:

Download PDB file(s) by specifying identifiers:

 $ prody fetch 1mkp 1p38

prody gnm

Usage

Running prody gnm -h displays:

usage: prody gnm [-h] [--quiet] [--examples] [-n INT] [-s SEL] [-c FLOAT]
 [-g FLOAT] [-m INT] [-a] [-o PATH] [-e] [-r] [-u] [-q] [-v]
 [-z] [-t STR] [-b] [-k] [-p STR] [-f STR] [-d STR] [-x STR]
 [-A] [-R] [-Q] [-B] [-K] [-M STR] [-F STR] [-D INT]
 [-W FLOAT] [-H FLOAT]
 pdb

positional arguments:
 pdb PDB identifier or filename

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

parameters:
 -n INT, --number-of-modes INT
 number of non-zero eigenvectors (modes) to calculate
 (default: 10)
 -s SEL, --select SEL atom selection (default: "protein and name CA or
 nucleic and name P C4' C2")
 -c FLOAT, --cutoff FLOAT
 cutoff distance (A) (default: 10.0)
 -g FLOAT, --gamma FLOAT
 spring constant (default: 1.0)
 -m INT, --model INT index of model that will be used in the calculations

output:
 -a, --all-output write all outputs
 -o PATH, --output-dir PATH
 output directory (default: .)
 -e, --eigenvs write eigenvalues/vectors
 -r, --cross-correlations
 write cross-correlations
 -u, --heatmap write cross-correlations heatmap file
 -q, --square-fluctuations
 write square-fluctuations
 -v, --covariance write covariance matrix
 -z, --npz write compressed ProDy data file
 -t STR, --extend STR write NMD file for the model extended to "backbone"
 ("bb") or "all" atoms of the residue, model must have
 one node per residue
 -b, --beta-factors write beta-factors calculated from GNM modes
 -k, --kirchhoff write Kirchhoff matrix

output options:
 -p STR, --file-prefix STR
 output file prefix (default: pdb_gnm)
 -f STR, --number-format STR
 number output format (default: %12g)
 -d STR, --delimiter STR
 number delimiter (default: " ")
 -x STR, --extension STR
 numeric file extension (default: .txt)

figures:
 -A, --all-figures save all figures
 -R, --cross-correlations-figure
 save cross-correlations figure
 -Q, --square-fluctuations-figure
 save square-fluctuations figure
 -B, --beta-factors-figure
 save beta-factors figure
 -K, --contact-map save contact map (Kirchhoff matrix) figure
 -M STR, --mode-shape-figure STR
 save mode shape figures for specified modes, e.g. "1-3
 5" for modes 1, 2, 3 and 5

figure options:
 -F STR, --figure-format STR
 pdf (default: pdf)
 -D INT, --dpi INT figure resolution (dpi) (default: 300)
 -W FLOAT, --width FLOAT
 figure width (inch) (default: 8.0)
 -H FLOAT, --height FLOAT
 figure height (inch) (default: 6.0)

Examples

Running prody gnm --examples displays:

This command performs GNM calculations for given PDB structure and
outputs results in NMD format. If an identifier is passed, structure
file will be downloaded from the PDB FTP server.

Fetch PDB 1p38, run GNM calculations using default parameters, and
results:

 $ prody gnm 1p38

Fetch PDB 1aar, run GNM calculations with cutoff distance 7 angstrom
for chain A carbon alpha atoms with residue numbers less than 70, and
save all of the graphical output files:

 $ prody gnm 1aar -c 7 -s "calpha and chain A and resnum < 70" -A

prody pca

Usage

Running prody pca -h displays:

usage: prody pca [-h] [--quiet] [--examples] [-n INT] [-s SEL] [-a] [-o PATH]
 [-e] [-r] [-u] [-q] [-v] [-z] [-t STR] [-j] [-p STR] [-f STR]
 [-d STR] [-x STR] [-A] [-R] [-Q] [-J STR] [-F STR] [-D INT]
 [-W FLOAT] [-H FLOAT] [--psf PSF | --pdb PDB] [--aligned]
 dcd

positional arguments:
 dcd file in DCD or PDB format

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit
 --psf PSF PSF filename
 --pdb PDB PDB filename
 --aligned trajectory is already aligned

parameters:
 -n INT, --number-of-modes INT
 number of non-zero eigenvectors (modes) to calculate
 (default: 10)
 -s SEL, --select SEL atom selection (default: "protein and name CA or
 nucleic and name P C4' C2")

output:
 -a, --all-output write all outputs
 -o PATH, --output-dir PATH
 output directory (default: .)
 -e, --eigenvs write eigenvalues/vectors
 -r, --cross-correlations
 write cross-correlations
 -u, --heatmap write cross-correlations heatmap file
 -q, --square-fluctuations
 write square-fluctuations
 -v, --covariance write covariance matrix
 -z, --npz write compressed ProDy data file
 -t STR, --extend STR write NMD file for the model extended to "backbone"
 ("bb") or "all" atoms of the residue, model must have
 one node per residue
 -j, --projection write projections onto PCs

output options:
 -p STR, --file-prefix STR
 output file prefix (default: pdb_pca)
 -f STR, --number-format STR
 number output format (default: %12g)
 -d STR, --delimiter STR
 number delimiter (default: " ")
 -x STR, --extension STR
 numeric file extension (default: .txt)

figures:
 -A, --all-figures save all figures
 -R, --cross-correlations-figure
 save cross-correlations figure
 -Q, --square-fluctuations-figure
 save square-fluctuations figure
 -J STR, --projection-figure STR
 save projections onto specified subspaces, e.g. "1,2"
 for projections onto PCs 1 and 2; "1,2 1,3" for
 projections onto PCs 1,2 and 1, 3; "1 1,2,3" for
 projections onto PCs 1 and 1, 2, 3

figure options:
 -F STR, --figure-format STR
 pdf (default: pdf)
 -D INT, --dpi INT figure resolution (dpi) (default: 300)
 -W FLOAT, --width FLOAT
 figure width (inch) (default: 8.0)
 -H FLOAT, --height FLOAT
 figure height (inch) (default: 6.0)

Examples

Running prody pca --examples displays:

This command performs PCA (or EDA) calculations for given multi-model
PDB structure or DCD format trajectory file and outputs results in NMD
format. If a PDB identifier is given, structure file will be
downloaded from the PDB FTP server. DCD files may be accompanied with
PDB or PSF files to enable atoms selections.

Fetch pdb 2k39, perform PCA calculations, and output NMD file:

 $ prody pca 2k39

Fetch pdb 2k39 and perform calculations for backbone of residues up to
71, and save all output and figure files:

 $ prody pca 2k39 --select "backbone and resnum < 71" -a -A

Perform EDA of MDM2 trajectory:

 $ prody eda mdm2.dcd

Perform EDA for backbone atoms:

 $ prody eda mdm2.dcd --pdb mdm2.pdb --select backbone

prody select

Usage

Running prody select -h displays:

usage: prody select [-h] [--quiet] [--examples] [-o STR] [-p STR] [-x STR]
 select pdb [pdb ...]

positional arguments:
 select atom selection string
 pdb PDB identifier(s) or filename(s)

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

output options:
 -o STR, --output STR output PDB filename (default: pdb_selected.pdb)
 -p STR, --prefix STR output filename prefix (default: PDB filename)
 -x STR, --suffix STR output filename suffix (default: _selected)

Examples

Running prody select --examples displays:

This command selects specified atoms and writes them in a PDB file.

Fetch PDB files 1p38 and 1r39 and write backbone atoms in a file:

 $ prody select backbone 1p38 1r39

Evol Applications

Evol applications are command line programs that automate retrieval,
refinement, and analysis of multiple sequence alignments:

	evol coevol

	evol conserv

	evol fetch

	evol filter

	evol merge

	evol occupancy

	evol rankorder

	evol refine

	evol search

Running evol command will provide a description of applications:

$ evol

usage: evol [-h] [-c] [-v] [-e]

 {search,fetch,filter,refine,merge,occupancy,conserv,coevol,rankorder}
 ...

Evol: Sequence Evolution and Dynamics Analysis

optional arguments:
 -h, --help show this help message and exit
 -c, --cite print citation info and exit
 -v, --version print ProDy version and exit
 -e, --examples show usage examples and exit

subcommands:
 {search,fetch,filter,refine,merge,occupancy,conserv,coevol,rankorder}
 search search Pfam with given query
 fetch fetch MSA files from Pfam
 filter filter an MSA using sequence labels
 refine refine an MSA by removing gapped rows/colums
 merge merge multiple MSAs based on common labels
 occupancy calculate occupancy of rows and columns in MSA
 conserv analyze conservation using Shannon entropy
 coevol analyze co-evolution using mutual information
 rankorder identify highly coevolving pairs of residues

See 'evol <command> -h' for more information on a specific command.

Detailed information on a specific application can be obtained
by typing the command and application names as evol search -h.

Running prody search application as follows will search Pfam
database for protein families that match the proteins in PDB structure 2w5i:

$ evol search 2w5i

evol coevol

Usage

Running evol coevol -h displays:

usage: evol coevol [-h] [--quiet] [--examples] [-n] [-c STR] [-m STR] [-t]
 [-p STR] [-f STR] [-S] [-L FLOAT] [-U FLOAT] [-X STR]
 [-T STR] [-D INT] [-H FLOAT] [-W FLOAT] [-F STR]
 msa

positional arguments:
 msa refined MSA file

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

calculation options:
 -n, --no-ambiguity treat amino acids characters B, Z, J, and X as non-
 ambiguous
 -c STR, --correction STR
 also save corrected mutual information matrix data and
 plot, one of apc, asc
 -m STR, --normalization STR
 also save normalized mutual information matrix data
 and plot, one of sument, minent, maxent, mincon,
 maxcon, joint

output options:
 -t, --heatmap save heatmap files for all mutual information matrices
 -p STR, --prefix STR output filename prefix, default is msa filename with
 _coevol suffix
 -f STR, --number-format STR
 number output format (default: %12g)

figure options:
 -S, --save-plot save coevolution plot
 -L FLOAT, --cmin FLOAT
 apply lower limits for figure plot
 -U FLOAT, --cmax FLOAT
 apply upper limits for figure plot
 -X STR, --xlabel STR specify xlabel, by default will be applied on ylabel
 -T STR, --title STR figure title
 -D INT, --dpi INT figure resolution (dpi) (default: 300)
 -H FLOAT, --height FLOAT
 figure height (inch) (default: 6)
 -W FLOAT, --width FLOAT
 figure width (inch) (default: 8)
 -F STR, --figure-format STR
 figure file format, one of svgz, rgba, png, pdf, eps,
 svg, ps, raw (default: pdf)

Examples

Running evol coevol --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

evol conserv

Usage

Running evol conserv -h displays:

usage: evol conserv [-h] [--quiet] [--examples] [-n] [-g] [-p STR] [-f STR]
 [-S] [-H FLOAT] [-W FLOAT] [-F STR] [-D INT]
 msa

positional arguments:
 msa refined MSA file

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

calculation options:
 -n, --no-ambiguity treat amino acids characters B, Z, J, and X as non-
 ambiguous
 -g, --gaps do not omit gap characters

output options:
 -p STR, --prefix STR output filename prefix, default is msa filename with
 _conserv suffix
 -f STR, --number-format STR
 number output format (default: %12g)

figure options:
 -S, --save-plot save conservation plot
 -H FLOAT, --height FLOAT
 figure height (inch) (default: 6)
 -W FLOAT, --width FLOAT
 figure width (inch) (default: 8)
 -F STR, --figure-format STR
 figure file format, one of raw, png, ps, svgz, eps,
 pdf, rgba, svg (default: pdf)
 -D INT, --dpi INT figure resolution (dpi) (default: 300)

Examples

Running evol conserv --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

evol fetch

Usage

Running evol fetch -h displays:

usage: evol fetch [-h] [--quiet] [--examples] [-a STR] [-f STR] [-o STR]
 [-i STR] [-g STR] [-t INT] [-d PATH] [-p STR] [-z]
 acc

positional arguments:
 acc Pfam accession or ID

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

download options:
 -a STR, --alignment STR
 alignment type, one of full, seed, ncbi, metagenomics
 (default: full)
 -f STR, --format STR Pfam supported MSA format, one of selex, fasta,
 stockholm (default: selex)
 -o STR, --order STR ordering of sequences, one of tree, alphabetical
 (default: tree)
 -i STR, --inserts STR
 letter case for inserts, one of upper, lower (default:
 upper)
 -g STR, --gaps STR gap character, one of dashes, dots, mixed (default:
 dashes)
 -t INT, --timeout INT
 timeout for blocking connection attempts (default: 60)

output options:
 -d PATH, --outdir PATH
 output directory (default: .)
 -p STR, --outname STR
 output filename, default is accession and alignment
 type
 -z, --compressed gzip downloaded MSA file

Examples

Running evol fetch --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

evol filter

Usage

Running evol filter -h displays:

usage: evol filter [-h] [--quiet] [--examples] (-s | -e | -c) [-F] [-o STR]
 [-f STR] [-z]
 msa word [word ...]

positional arguments:
 msa MSA filename to be filtered
 word word to be compared to sequence label

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

filtering method (required):
 -s, --startswith sequence label starts with given words
 -e, --endswith sequence label ends with given words
 -c, --contains sequence label contains with given words

filter option:
 -F, --full-label compare full label with word(s)

output options:
 -o STR, --outname STR
 output filename, default is msa filename with _refined
 suffix
 -f STR, --format STR output MSA file format, default is same as input
 -z, --compressed gzip refined MSA output

Examples

Running evol filter --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

evol merge

Usage

Running evol merge -h displays:

usage: evol merge [-h] [--quiet] [--examples] [-o STR] [-f STR] [-z]
 msa [msa ...]

positional arguments:
 msa MSA filenames to be merged

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

output options:
 -o STR, --outname STR
 output filename, default is first input filename with
 _merged suffix
 -f STR, --format STR output MSA file format, default is same as first input
 MSA
 -z, --compressed gzip merged MSA output

Examples

Running evol merge --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

evol occupancy

Usage

Running evol occupancy -h displays:

usage: evol occupancy [-h] [--quiet] [--examples] [-o STR] [-p STR] [-l STR]
 [-f STR] [-S] [-X STR] [-Y STR] [-T STR] [-D INT]
 [-W FLOAT] [-F STR] [-H FLOAT]
 msa

positional arguments:
 msa MSA file

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

calculation options:
 -o STR, --occ-axis STR
 calculate row or column occupancy or both., one of
 row, col, both (default: row)

output options:
 -p STR, --prefix STR output filename prefix, default is msa filename with
 _occupancy suffix
 -l STR, --label STR index for column based on msa label
 -f STR, --number-format STR
 number output format (default: %12g)

figure options:
 -S, --save-plot save occupancy plot/s
 -X STR, --xlabel STR specify xlabel
 -Y STR, --ylabel STR specify ylabel
 -T STR, --title STR figure title
 -D INT, --dpi INT figure resolution (dpi) (default: 300)
 -W FLOAT, --width FLOAT
 figure width (inch) (default: 8)
 -F STR, --figure-format STR
 figure file format, one of png, pdf, raw, svg, eps,
 ps, svgz, rgba (default: pdf)
 -H FLOAT, --height FLOAT
 figure height (inch) (default: 6)

Examples

Running evol occupancy --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

evol rankorder

Usage

Running evol rankorder -h displays:

usage: evol rankorder [-h] [--quiet] [--examples] [-z] [-d STR] [-p STR]
 [-m STR] [-l STR] [-n INT] [-q INT] [-t FLOAT] [-u]
 [-o STR]
 mutinfo

positional arguments:
 mutinfo mutual information matrix

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

input options:
 -z, --zscore apply zscore for identifying top ranked coevolving
 pairs
 -d STR, --delimiter STR
 delimiter used in mutual information matrix file
 -p STR, --pdb STR PDB file that contains same number of residues as the
 mutual information matrix, output residue numbers will
 be based on PDB file
 -m STR, --msa STR MSA file used for building the mutual info matrix,
 output residue numbers will be based on the most
 complete sequence in MSA if a PDB file or sequence
 label is not specified
 -l STR, --label STR label in MSA file for output residue numbers

output options:
 -n INT, --num-pairs INT
 number of top ranking residue pairs to list (default:
 100)
 -q INT, --seq-sep INT
 report coevolution for residue pairs that are
 sequentially separated by input value (default: 3)
 -t FLOAT, --min-dist FLOAT
 report coevolution for residue pairs whose CA atoms
 are spatially separated by at least the input value,
 used when a PDB file is given and --use-dist is true
 (default: 10.0)
 -u, --use-dist use structural separation to report coevolving pairs
 -o STR, --outname STR
 output filename, default is mutinfo_rankorder.txt

Examples

Running evol rankorder --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

evol refine

Usage

Running evol refine -h displays:

usage: evol refine [-h] [--quiet] [--examples] [-l STR] [-s FLOAT] [-c FLOAT]
 [-r FLOAT] [-k] [-o STR] [-f STR] [-z]
 msa

positional arguments:
 msa MSA filename to be refined

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

refinement options:
 -l STR, --label STR sequence label, UniProt ID code, or PDB and chain
 identifier
 -s FLOAT, --seqid FLOAT
 identity threshold for selecting unique sequences
 -c FLOAT, --colocc FLOAT
 column (residue position) occupancy
 -r FLOAT, --rowocc FLOAT
 row (sequence) occupancy
 -k, --keep keep columns corresponding to residues not resolved in
 PDB structure, applies label argument is a PDB
 identifier

output options:
 -o STR, --outname STR
 output filename, default is msa filename with _refined
 suffix
 -f STR, --format STR output MSA file format, default is same as input
 -z, --compressed gzip refined MSA output

Examples

Running evol refine --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

evol search

Usage

Running evol search -h displays:

usage: evol search [-h] [--quiet] [--examples] [-b] [-s] [-g] [-e FLOAT]
 [-t INT] [-o STR] [-d STR]
 query

positional arguments:
 query protein UniProt ID or sequence, a PDB identifier, or a
 sequence file, where sequence have no gaps and 12 or
 more characters

optional arguments:
 -h, --help show this help message and exit
 --quiet suppress info messages to stderr
 --examples show usage examples and exit

sequence search options:
 -b, --searchBs search Pfam-B families
 -s, --skipAs do not search Pfam-A families
 -g, --ga use gathering threshold
 -e FLOAT, --evalue FLOAT
 e-value cutoff, must be less than 10.0
 -t INT, --timeout INT
 timeout in seconds for blocking connection attempt
 (default: 60)

output options:
 -o STR, --outname STR
 name for output file, default is standard output
 -d STR, --delimiter STR
 delimiter for output data columns (default:)

Examples

Running evol search --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

 $ evol search 2w5i

Download Pfam MSA file:

 $ evol fetch RnaseA

Refine MSA file:

 $ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

 $ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

 $ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

 $ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

 $ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-sep 3

Reference Manual

	Atomic Data

	Database Support

	Dynamics Analysis

	Ensemble Analysis

	KDTree

	Measurement Tools

	Protein Structure

	Sequence Analysis

	Trajectory I/O

	ProDy Utilities

	Applications API

	Configuration & Logging

Atomic Data

Atom

Atom Group

Atomic Base

Atom Map

Bond

Chain

Atom Data Fields

Atom Flags

Supporting Functions

Hierarchical Views

Atom Pointer

Residue

Segment

Atom Selections

Selection

Atom Subsets

Database Support

Pfam Access Functions

Dynamics Analysis

Analysis Functions

Anisotropic Network Model

Comparison Functions

NMA Model Editing

Supporting Functions

Custom Gamma Functions

Gaussian Network Model

Heatmapper Functions

Normal Mode

Mode Set

Normal Mode Analysis

NMD File

Principal Component Analysis

Plotting Functions

Rotation Translation Blocks

Sampling Functions

Ensemble Analysis

Conformation

Conformational Ensemble

Supporting Functions

PDB Structure Ensemble

KDTree

KD Tree

Measurement Tools

Contact Identification

Measurement Tools

Transformations

Protein Structure

PDB Blast Search

Structure Comparison

DSSP Tools

Miscellaneous Tools

PDB File Header

Local PDB Handlers

PDB Sequence Clusters

PDB File

PDB Ligands

Stride Tools

wwPDB Tools

Sequence Analysis

Analysis Functions

Multiple Sequence Alignment

MSA File

Plotting Functions

Sequence

Trajectory I/O

DCD File

Frame

PSF File

Trajectory Base

Trajectory

Trajectory File

ProDy Utilities

Type Checkers

Documentation Tools

Package Logger

Miscellaneous Tools

Path Tools

Package Settings

Applications API

Coevolution Application

Conservation Application

Pfam MSA Fetcher

MSA File Filter

MSA File Merger

MSA Occupancy Calculation

Identify Coevolving Pairs

MSA Refinement

Pfam Search

PDB Model/Structure Alignment

ANM Application

Biomolecule Builder

Blast Search PDB

DCD Files Concatenation

Contact Identification

PDB File Fetcher

GNM Application

PCA Application

Atom Selection

Configuration & Logging

This module defines functions for logging in files, configuring ProDy,
and running tests.

	confProDy() [http://prody.csb.pitt.edu/manual/reference/prody.html#prody.confProDy]

	checkUpdates() [http://prody.csb.pitt.edu/manual/reference/prody.html#prody.checkUpdates]

	startLogfile() [http://prody.csb.pitt.edu/manual/reference/prody.html#prody.startLogfile]

	closeLogfile() [http://prody.csb.pitt.edu/manual/reference/prody.html#prody.closeLogfile]

	plog() [http://prody.csb.pitt.edu/manual/reference/prody.html#prody.plog]

Developer’s Guide

	Contributing to ProDy

	Documenting ProDy

	How to Make a Release

	Style Guide for ProDy

	Testing ProDy

	Writing Tutorials

	Making Windows Installers

	Cross-platform Issues

Contributing to ProDy

	Install Git and a GUI

	Fork and Clone ProDy

	Setup Working Environment

	Modify, Test, and Commit

	Push and Pull Request

	Update Local Copy

Install Git and a GUI

ProDy source code is managed using Git [http://git-scm.com/downloads] distributed revision controlling
system. You need to install git, and if you prefer a GUI for it,
on your computer to be able to contribute to development of ProDy.

On Debian/Ubuntu Linux, for example, you can run the following to install
git and gitk:

$ sudo apt-get install git gitk

For other operating systems, you can obtain installation instructions and
files from Git [http://git-scm.com/downloads].

You will only need to use a few basic git commands. These commands
are provided below, but usually without an adequate description. Please refer
to Git book [http://git-scm.com/book] and Git docs [http://git-scm.com/docs] for usage details and examples.

Fork and Clone ProDy

ProDy source code an issue tracker are hosted on Github [http://github.com/prody/ProDy]. You need to create
an account on this service, if you do not have one already.

If you work on Mac OS or Windows, you may consider getting GitHub Mac [http://mac.github.com] or
GitHub Windows [http://windows.github.com] to help you manage a copy of the repository.

Once you have an account, you need to make a fork of ProDy, which is
creating a copy of the repository in your account. You will see
a link for this on ProDy [http://prody.csb.pitt.edu] source code page. You will have write access to
this fork and later will use it share your changes with others.

The next step is cloning the fork from your online account to your local
system. If you are not using the GitHub software, you can do it as follows:

$ git clone https://github.com/prody/ProDy.git

git

This will create ProDy folder with a copy of the project files in it:

$ cd ProDy
$ ls
bdist_wininst.bat docs INSTALL.rst LICENSE.rst Makefile
MANIFEST.in prody README.rst scripts setup.py

Setup Working Environment

You can use ProDy directly from this clone by adding ProDy folder
to your PYTHONPATH [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH] environment variable, e.g.:

export PYTHONPATH=$PYTHONPATH:$/home/USERNAME/path/to/ProDy

This will not be enough though, since you also need to compile C extensions.
You can run the following series of commands to build and copy C modules to where they need to be:

$ cd ProDy
$ python setup.py build_ext --inplace --force

or, on Linux you can:

$ make build

You may also want to make sure that you can run ProDy Applications from anywhere
on your system. One way to do this by adding ProDy/scripts folder
to your PATH [https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH] environment variable, e.g.:

export PATH=$PATH:$/home/USERNAME/path/to/ProDy/scripts

Modify, Test, and Commit

When modifying ProDy files you may want to follow the Style Guide for ProDy.
Closely following the guidelines therein will allow for incorporation of your
changes to ProDy quickly.

If you changed .py files, you should ensure to check the integrity
of the package. To do this, you should at least run fast ProDy tests as
follows:

$ cd ProDy
$ nosetests

See Testing ProDy for alternate and more comprehensive ways of testing.
ProDy unittest suit may not include a test for the function or the class
that you just changed, but running the tests will ensure that the ProDy
package can be imported and run without problems.

After ensuring that the package runs, you can commit your changes as follows:

$ git commit modified_file_1.py modified_file_2.py

or:

$ git commit -a

This command will open a text editor for you to describe the changes that
you just committed.

Push and Pull Request

After you have committed your changes, you will need to push them to your
Bitbucket account:

git push origin master

This step will ask for your account user name. If you are going to push
to your GitHub/Bitbucket account frequently, you may add an SSH key for
automatic authentication. To add an SSH key for your system, go to
Edit Your Profile ‣ SSH keys page on GitHub or
Manage Account ‣ SSH keys page on Bitbucket.

After pushing your changes, you will need to make a pull request from your
to notify ProDy developers of the changes you made and facilitate their
incorporation to ProDy.

Update Local Copy

You can also keep an up-to-date copy of ProDy by pulling changes from the
master ProDy [http://prody.csb.pitt.edu] repository on a regular basis. You need add to the master
repository as a remote to your local copy. You can do this running the
following command from the ProDy project folder:

$ cd prody
$ git remote add prodymaster git@github.com:abakan/ProDy.git

or:

$ cd prody
$ git remote add prodymaster git@bitbucket.org:abakan/prody.git

You may use any name other than prodymaster, but origin, which points to
the ProDy fork in your account.

After setting up this remote, calling git pull command will
fetch latest changes from ProDy [http://prody.csb.pitt.edu] master repository and merge them to your
local copy:

$ git pull prodymaster master

Note that when there are changes in C modules, you need to run the following
commands again to update the binary module files:

$ python setup.py build_ext --inplace --force

Documenting ProDy

	Building Manual

	Building Website

ProDy documentation is written using reStructuredText [http://docutils.sf.net/rst.html] markup and prepared
using Sphinx [http://sphinx.pocoo.org/]. You may install Sphinx using easy_install, i.e.
easy_install -U Sphinx, or using package manager on your Linux machine.

Building Manual

ProDy Manual in HTML and PDF formats can be build as follows:

$ cd docs
$ make html
$ make pdf

If all documentation strings and pages are properly formatted according to
reStructuredText [http://docutils.sf.net/rst.html] markup, documentation pages should compile without any
warnings. Note that to build PDF files, you need to install latex
and pdflatex programs.

Read the Docs

A copy of ProDy manual is hosted on Read the Docs [https://readthedocs.org/]
and can be viewed at http://prody.readthedocs.org/. Read the Docs is configured
to build manual pages for the devel branch (latest) and the recent stable
versions. The user name for Read the Docs is prody.

Building Website

ProDy-website source is hosted at https://github.com/prody/ProDy-website
This project contains tutorial files and the home pages for ProDy and other
related software.

Latest version

To build website on ProDy server, start with pulling changes:

$ cd ProDy-website
$ git pull

Running the following command will build HTML pages for the latest stable
release of ProDy:

$ make html

HTML pages for manual and all tutorials are build as a single project,
which allows for referencing from manual to tutorials.

PDF files for the manual and tutorials, and also download files are build
as follows:

$ make pdf

PDF and TGZ/ZIP files are copied to appropriate places after they are built.

How to Make a Release

	Make sure ProDy imports and passes all unit tests both Python 2 and
Python 3, and using nose nosetests command:

$ cd ProDy
$ nosetests
$ nosetests3

See Testing ProDy for more on testing.

	Update the version number in:

	prody/__init__.py

Also, commend + '-dev' out, so that documentation will build
for a stable release.

	Update the most recent changes and the latest release date in:

	docs/release/vX.Y_series.rst.

If there is a new incremental release, start a new file.

	Make sure the following files are up-to-date.

	README.txt

	MANIFEST.in

	setup.py

If there is a new file format, that is a new extensions not captured in
MANIFEST.in, it should be included.

If there is a new C extension, it should be listed in setup.py.

After checking these files, commit change and push them to GitHub [http://github.com/prody/ProDy].

	Generate the source distributions:

$ cd ..
$ python setup.py sdist --formats=gztar,zip

	Prepare and test Windows installers (see Making Windows Installers).

Installers should be prepared for the following versions of Python:

$ C:\Python26\python setup.py bdist_wininst
$ C:\Python27\python setup.py bdist_wininst
$ C:\Python32\python setup.py bdist_wininst
$ C:\Python33\python setup.py bdist_wininst

Alternatively, use bdist_wininst.bat to run these commands.
When there is a newer Python major release, it should be added to this
list. Don’t forget to pull most recent changes to your Windows machine.

A good practice is installing ProDy using all newly created installers
and checking that it works. ProDy script can be used to check that, e.g.:

$ C:\Python33\Scripts\prody.bat anm 1ubi

If this command runs for all supported Python versions, release is good
to go.

	Put all installation source and executable in dist directory.

	Upload the new release files to the PyPI [http://pypi.python.org/pypi/ProDy] using twine:

$ twine upload dist/*

This will offer a number of options. ProDy on PyPI is owned by user
prody.devel.

	Commit final changes, if there are any:

$ cd ..
$ git commit -a

	Tag the repository with the current version number and push new tag:

$ git tag vX.Y
$ git push --tags

	Rebase devel branch to master:

$ git checkout master
$ git rebase devel
$ git push

	Update the documentation on ProDy [http://prody.csb.pitt.edu] website. See Documenting ProDy.

	Now that you made a release, you can go back to development.
You may start with appending '-dev' to __release__ in
prody/__init__.py.

Style Guide for ProDy

	Introduction

	Code Layout

	Whitespaces

	Naming Conventions

	Variable Names

Introduction

PEP 8 [https://www.python.org/dev/peps/pep-0008], the Style Guide for Python Code, is adopted in the development of
ProDy package. Contributions to ProDy shall follow PEP 8 [https://www.python.org/dev/peps/pep-0008] and the
specifications and additions provided in this addendum.

Code Layout

Indentation

Use 4 spaces per indentation level in source code (.py) and never use
tabs as a substitute.

In documentation files (.rst), use 2 spaces per indentation level.

Maximum line length

Limit all lines to a maximum of 79 characters in both source code and
documentation files. Exceptions may be made when tabulating data in
documentation files and strings. The length of lines in a paragraph
may be much less than 79 characters if the line ends align better with
the first line, as in this paragraph.

Encodings

In cases where an encoding for a .py file needs to be specified,
such as when characters like α, β, or Å are used in docstrings, use UTF-8
encoding, i.e. start the file with the following line:

-*- coding: utf-8 -*-

Imports

In addition to PEP 8#imports [https://www.python.org/dev/peps/pep-0008#imports] recommendations regarding imports, the
following should be applied:

	relative intra-ProDy imports are discouraged, use
from prody.atomic import AtomGroup not from atomic import AtomGroup

	always import from second top level module, use
from prody.atomic import AtomGroup and not
from prody.atomic.atomgroup import AtomGroup,
because file names may change or files that grow too big may be split
into smaller modules, etc.

Here is a series of properly formatted imports following a module documentation
string:

"""This module defines a function to calculate something interesting."""

import os.path
from collections import defaultdict
from time import time

import numpy as np

from prody.atomic import AtomGroup
from prody.measure import calcRMSD
from prody.tools import openFile
from prody import LOGGER, SETTINGS

__all__ = ['calcSomething']

Whitespaces

In addition to recommendations regarding whitespace use in Python code
(PEP 8#whitespace-in-expressions-and-statements [https://www.python.org/dev/peps/pep-0008#whitespace-in-expressions-and-statements]), two whitespace
characters should follow a period in documentation files and strings
to help reading documentation in terminal windows and text editors.

Naming Conventions

ProDy naming conventions aim at making the library suitable for interactive
sessions, i.e. easy to remember and type.

Class names

Naming style for classes is CapitalizedWords (or CapWords, or
CamelCase). Abbreviations and/or truncated names should be used to
keep class names short. Some class name examples are:

	ANM for Anisotropic Network Model

	HierView for Hierarchical View

Exception names

Prefer using a suitable standard-library exception over defining a new
one. If you absolutely need to define one, use the class naming convention.
Use the suffix “Error” for exception names, when exception is an error:

	SelectionError, the only exception defined in ProDy package

Method and function names

Naming style for methods and functions is mixedCase, that differs from
CapWords by initial lowercase character. Starting with a lowercase
(no shift key) and using no underscore characters decreases the number of
key strokes by half in many cases in interactive sessions.

Method and function names should start with a verb, suggestive on the action,
and followed by one or two names, where the second name may start with a lower
case letter. Some examples are moveAtoms(), wrapAtoms(),
assignSecstr(), and calcSubspaceOverlap().

Abbreviations and/or truncated names should be used and obvious words
should be omitted to limit number of names to 20 characters. For example,
buildHessian() is preferred over buildHessianMatrix().
Another example is the change from using getResidueNames() to
using AtomGroup.getResnames(). In fact, this was part of a series of
major Release Notes aimed at refining the library for interactive usage.

In addition, the following should be applied to enable grouping of methods and
functions based on their action and/or return value:

	buildSomething(): methods and functions that calculate a matrix
should start with build, e.g. GNM.buildKirchhoff() and
buildDistMatrix()

	calcSomething(): methods that calculate new data but does not
necessarily return anything and especially those that take timely actions,
should start with calc, e.g. PCA.calcModes()

	getSomething(): methods, and sometimes functions, that return a copy
of data should start with get, such as listReservedWords()

	setSomething(): methods, and sometimes functions, that alter internal
data should start with set

Variable Names

Variable names in functions and methods should contain only lower case letters,
and may contain underscore characters to increase readability.

Testing ProDy

	Running Unittests

	Unittest Development

Running Unittests

The easiest way to run ProDy unit tests is using nose [http://nose.readthedocs.org]. The following will
run all tests:

$ nosetests prody

To skip tests that are slow, use the following:

$ nosetests prody -a '!slow'

To run tests for a specific module do as follows:

$ nosetests prody.tests.atomic prody.tests.sequence

Unittest Development

Unit test development should follow these guidelines:

	For comparing Python numerical types and objects, e.g. int, list, tuple,
use methods of unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase].

	For comparing Numpy arrays, use assertions available in
numpy.testing module.

	All test files should be stored in tests folder in the ProDy
package directory, i.e. prody/tests/

	All tests for functions and classes in a ProDy module should be in a
single test file named after the module,
e.g. test_atomic/test_select.py.

	Data files for testing should be located in tests/test_datafiles.

Writing Tutorials

	Tutorial Setup

	Style and Organization

	Input/Output Files

	Including Code

	Including Figures

	Testing Code

	Publishing Tutorial

This is a short guide for writing ProDy tutorials that are published as part
of online documentation pages, and also as individual downloadable PDF files.

Tutorial Setup

First go to doc folder in ProDy package and generate necessary files
for your tutorial using start-tutorial.sh script:

$ cd doc
$./start-tutorial.sh
Enter tutorial title: ENM Analysis using ProDy
Enter a short title: ENM Analysis
Enter author name: First Last

Tutorial folders and files are prepared, see tutorials/enm_analysis

This will generate following folder and files:

$ cd tutorials/enm_analysis/
$ ls -lgo
-rw-r--r-- 1 328 Apr 30 16:48 conf.py
-rw-r--r-- 1 395 Apr 30 16:48 index.rst
-rw-r--r-- 1 882 Apr 30 16:48 intro.rst
-rw-r--r-- 1 1466 Apr 30 16:48 Makefile
lrwxrwxrwx 1 13 Apr 30 16:48 _static -> ../../_static

Note that short title will be used as filename and part of the URL of the
online documentation pages.

If tutorial logo/image that you want to use is different from ProDy logo,
update the following line in conf.py:

tutorial_logo = u'enm.png' # default is ProDy logo
tutorial_prody_version = u'' # default is latest ProDy version

Also, note ProDy version if the tutorial is developed for a specific release.

Style and Organization

ProDy documentation and tutorials are written using reStructuredText [http://docutils.sourceforge.net/rst.html],
an easy-to-read/write file format. See reStructuredText Primer [http://sphinx-doc.org/rest.html] for a
quick introduction.

reStructuredText is stored in plain-text files with .rst extension,
and converted to HTML and PDF pages using Sphinx [http://sphinx-doc.org/].

index.rst and intro.rst files are automatically generated.
index.rst file should include title and table of contents of the
tutorial. Table of contents is just a list of .rst files that are
part of the tutorial. They be listed in the order that they should appear
in the final PDF file:

.. _enm-analysis:

.. use "enm-analysis" to refer to this file, i.e. :ref:`enm-analysis`

ENM Analysis using ProDy

.. add .rst files to `toctree` in the order that you want them

.. toctree::
 :glob:
 :maxdepth: 2

 intro

Add more .rst files as needed. See other tutorials in
doc/tutorials folder as examples.

Input/Output Files

All files needed to follow the tutorial should be stored in
tutorial_name_files folder. There is usually no need to provide
PDB files, as ProDy automatically downloads them when needed. Optionally,
output files can also be provided.

Note

Small input and output files that contain textual information may
be included in the git repository, but please avoid including
large files in particular those that contain binary data.

Including Code

Python code in tutorials should be included using IPython Sphinx directive [http://ipython.org/ipython-doc/dev/development/ipython_directive.html].
In the beginning of each .rst file, you should make necessary imports
as follows:

.. ipython:: python

 from prody import *
 from matplotlib.pylab import *
 ion()

This will convert to the following:

In [1]: from prody import *

ImportErrorTraceback (most recent call last)
<ipython-input-1-5d14cc12dc44> in <module>()
----> 1 from prody import *

/home/docs/checkouts/readthedocs.org/user_builds/prody/envs/devel/local/lib/python2.7/site-packages/prody/__init__.pyc in <module>()
 53 __all__ = ['checkUpdates', 'confProDy', 'startLogfile', 'closeLogfile', 'plog']
 54
---> 55 from . import utilities
 56 from .utilities import *
 57 from .utilities import PackageLogger, PackageSettings

/home/docs/checkouts/readthedocs.org/user_builds/prody/envs/devel/local/lib/python2.7/site-packages/prody/utilities/__init__.py in <module>()
 71 from .doctools import *
 72
---> 73 from . import catchall
 74 from .catchall import *
 75 __all__.extend(catchall.__all__)

/home/docs/checkouts/readthedocs.org/user_builds/prody/envs/devel/local/lib/python2.7/site-packages/prody/utilities/catchall.py in <module>()
 7 from scipy import spatial
 8 from .misctools import addBreaks, interpY
----> 9 from Bio import Phylo
 10
 11 __all__ = ['calcTree', 'clusterMatrix', 'showLine', 'showMatrix', 'reorderMatrix', 'findSubgroups']

ImportError: No module named Bio

In [2]: from matplotlib.pylab import *

In [3]: ion()

Then you can add the code for the tutorial:

.. ipython:: python

 pdb = parsePDB('1p38')

In [4]: pdb = parsePDB('1p38')

NameErrorTraceback (most recent call last)
<ipython-input-4-08265ebed54c> in <module>()
----> 1 pdb = parsePDB('1p38')

NameError: name 'parsePDB' is not defined

Including Figures

IPython directive should also be used for including figures:

.. ipython:: python

 @savefig tutorial_name_figure_name.png width=4in
 plot(range(10))

 @savefig tutorial_name_figure_two.png width=4in
 plot(range(100)); # used ; to suppress output

@savefig decorator was used to save the figure.

Note

Figure names needs to be unique within the tutorial and should be prefixed
with the tutorial name.

Note that in the second plot() [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot] call, we used a
semicolon to suppress the output of the function.

If you want to make modifications to the figure, save it after the last
modification:

.. ipython:: python

 plot(range(10));
 grid();
 xlabel('X-axis')
 @savefig tutorial_name_figure_three.png width=4in
 ylabel('Y-axis')

Testing Code

If there is any particular code output that you want to test, you can use
@doctest decorator as follows:

.. ipython::

 @doctest
 In [1]: 2 + 2
 Out[1]: 4

In [5]: 2 + 2
Out[5]: 4

Failing to produce the correct output will prevent building the documentation.

Publishing Tutorial

To see how your .rst files convert to HTML format, use the following
command:

$ make html

You will find HTML files in _build/html folder.

Once your tutorial is complete and looks good in HTML (no code execution
problems), following commands can be used to generate a PDF file and
tutorial file achieves:

$ make pdf
$ make files

ProDy online documentation will contain these files as well as tutorial pages
in HTML format.

Making Windows Installers

MinGW [http://www.mingw.org/] can be used for compiling C modules when
making Windows installers. Install MinGW and make distutils.cfg file
in PythonXY\Lib\distutils folder that contains:

[build]
compiler = mingw32

Cross-platform Issues

	Numpy integer type

	Relative paths

This section describes cross-platform issues that may emerge and provides
possible solutions for them.

Numpy integer type

Issues may arise when comparing Numpy integer types with Python int().
Python int() equivalent Numpy integer type on Windows (Win7 64bit,
Python 32bit) is int32, while on Linux (Ubuntu 64bit) it is
int64. For example, the statement
isinstance(np.array([1], np.int64), int) may return False resulting
in unexpected behavior in ProDy functions or methods. If Numpy integer type
needs to be specified, using int seems a safe option.

Relative paths

os.path.relpath() [https://docs.python.org/3/library/os.path.html#os.path.relpath] function raises exceptions when the working
directory and the path of interest are on separate drives, e.g. trying
to write a C:\temp while running tests on D:\ProDy.
Instead of this os.path.relpath() [https://docs.python.org/3/library/os.path.html#os.path.relpath], ProDy function relpath()
should be used to avoid problems.

Release Notes

	ProDy 1.9 Series
	1.9.4 (Feb 02, 2018)

	1.9.3 (Oct 09, 2017)

	1.9.2 (Aug 29, 2017)

	1.9.1 (Aug 18, 2017)

	1.9 (May 23, 2017)

	ProDy 1.8 Series
	1.8.2 (Jun 5, 2016)

	1.8.1 (May 28, 2016)

	1.8 (May 13, 2016)

	ProDy 1.7 Series
	1.7.1 (May 31, 2015)

	1.7 (Dec 23, 2013)

	ProDy 1.6 Series
	1.6.1 (May 31, 2015)

	1.5 (Dec 23, 2013)

	ProDy 1.5 Series
	1.5.1 (Dec 24, 2013)

	1.5 (Dec 23, 2013)

	ProDy 1.4 Series
	1.4.9 (Nov 14, 2013)

	1.4.8 (Nov 4, 2013)

	1.4.7 (Oct 29, 2013)

	1.4.6 (Oct 16, 2013)

	1.4.5 (Sep 6, 2013)

	1.4.4 (July 22, 2013)

	1.4.3 (June 14, 2013)

	1.4.2 (April 19, 2013)

	1.4.1 (Dec 16, 2012)

	1.4 (Dec 2, 2012)

	ProDy 1.3 Series
	1.3.1 (Nov 6, 2012)

	1.3 (Sep 30, 2012)

	ProDy 1.2 Series
	1.2.1 (Sep 6, 2012)

	1.2 (Aug 30, 2012)

	ProDy 1.1 Series
	1.1 (June 1, 2012)

	ProDy 1.0 Series
	1.0.4 (May 2, 2012)

	1.0.3 (May 1, 2012)

	1.0.2 (May 1, 2012)

	1.0.1 (Apr 6, 2012)

	1.0 (Mar 7, 2012)

	ProDy 0.9 Series
	0.9.4 (Feb 4, 2012)

	0.9.3 (Feb 1, 2012)

	0.9.2 (Jan 11, 2012)

	0.9.1 (Nov 9, 2011)

	0.9 (Nov 8, 2011)

	ProDy 0.8 Series
	0.8.3 (Oct 16, 2011)

	0.8.2 (Oct 14, 2011)

	0.8.1 (Sep 16, 2011)

	0.8 (Aug 24, 2011)

	ProDy 0.7 Series
	0.7.2 (Jun 21, 2011)

	0.7.1 (Apr 28, 2011)

	0.7 (Apr 4, 2011)

	ProDy 0.6 Series
	0.6.2 (Mar 16, 2011)

	0.6.1 (Mar 2, 2011)

	0.6 (Feb 22, 2011)

	ProDy 0.5 Series
	0.5.3 (Feb 11, 2011)

	0.5.2 (Jan 12, 2011)

	0.5.1 (Dec 31, 2010)

	0.5 (Dec 21, 2010)

	ProDy 0.2 Series
	0.2 (Nov 16, 2010)

	ProDy 0.1 Series
	0.1.2 (Nov 9, 2010)

	0.1.1 (Nov 8, 2010)

	0.1 (Nov 7, 2010)

ProDy 1.9 Series

	1.9.4 (Feb 02, 2018)

	1.9.3 (Oct 09, 2017)

	1.9.2 (Aug 29, 2017)

	1.9.1 (Aug 18, 2017)

	1.9 (May 23, 2017)

1.9.4 (Feb 02, 2018)

	Undocumented release and fixes.

1.9.3 (Oct 09, 2017)

Bugfixes

	Bug fix about http and ftp based pdb downloads.

	Bug fixes in PRS calculations.

1.9.2 (Aug 29, 2017)

** New Features**:

Migration to pypi.org

	All repositories are moved to pypi.org

1.9.1 (Aug 18, 2017)

** New Features**:

PDB Secondary Structures

	It is possible to write secondary structure infrmation to PDBs.

Bugfixes

	Fixed the problem about clang compiler for saxs tools.

	If FTP client is not working, HTTP client will be used when downloading PDBs.

1.9 (May 23, 2017)

New Features:

Perturbation Response Scanning

	Perturbation Response Scanning method is fully implemented with
new plotting tools.

	Effectors and sensors are calculated from PRS tool.

Visualization with py3Dmol

	In jupyter notebook, if you have installed py3Dmol you can use

py3Dmol visualization directly instead of simple matplotlib
visualization.

mmcif parser

	Another structural format cif is also a part of ProDy parser now.

Bugfixes

	Various indexing issues are fixed.

	Some of the obsolete pdbs will not be downloaded anymore, instead

replaced pdbs will be downloaded. This will change the priority
between ftp and http servers.

ProDy 1.8 Series

	1.8.2 (Jun 5, 2016)

	1.8.1 (May 28, 2016)

	1.8 (May 13, 2016)

	MechStiff

1.8.2 (Jun 5, 2016)

	addCoordset() in PDBEnsemble class, has an additional
argument for NMR models.

1.8.1 (May 28, 2016)

Bugfixes

	getHits() in PDBBlastRecord class, default overlap
threshold changed to 0.7 to match with mapOntoChain().

	calcModes() in RTB have a bug on number of modes and fixed.

	Tab and indentation errors with Python 3.4 are fixed.

1.8 (May 13, 2016)

MechStiff

	Identification of the weakest/strongest elements of the structure
architecture provided together with 3D vizualization and statistics
analysis.

	Determination of the effective spring constant for selected pair
of residues - useful for Single Molecule Force Spectroscopy (SMFS, AFM)
and Steered Molecular Dynamics simulations.

	Evaluating the contributions of each mode to selected deformations

New Features:

Python 2 and 3 Support

	ProDy has been refactored to support Python 2.7 and 3.4. Windows installers for
Python 2.7 and 3.4 are available in Installation.

	Unit tests are compatible with Python 2.7 and 3.4, and running them with
other versions gives errors due to unavailability of some unittest [https://docs.python.org/3/library/unittest.html#module-unittest]
features.

Bugfixes

	Various indexing issues are fixed.

	Compatibility issue of searchPfam() with Python 2.7.11 is fixed.

ProDy 1.7 Series

	1.7.1 (May 31, 2015)

	1.7 (Dec 23, 2013)

1.7.1 (May 31, 2015)

Changes:

	searchPfam() uses hmmer for given sequence inputs instead of pfam search.

1.7 (Dec 23, 2013)

New Features:

	buildPCMatrix() is implemented for calculation of coevolution with PSICOV
method from multiple sequence alignments.

	specMergeMSA() is implemented for merging multiple sequence alignment files
based on the species identifiers of sequences.

	exANM is implemented for explicit membrane ANM calculations.

	writeMembranePDB() is implemented for writing PDB structures of created membranes for exANM class.

ProDy 1.6 Series

	1.6.1 (May 31, 2015)

	1.5 (Dec 23, 2013)

1.6.1 (May 31, 2015)

Changes:

	searchPfam() uses hmmer for given sequence inputs instead of pfam search.

1.5 (Dec 23, 2013)

New Features:

	buildPCMatrix() is implemented for calculation of coevolution with PSICOV
method from multiple sequence alignments.

	specMergeMSA() is implemented for merging multiple sequence alignment files
based on the species identifiers of sequences.

	exANM is implemented for explicit membrane ANM calculations.

	writeMembranePDB() is implemented for writing PDB structures of created membranes for exANM class.

ProDy 1.5 Series

	1.5.1 (Dec 24, 2013)

	1.5 (Dec 23, 2013)

1.5.1 (Dec 24, 2013)

Changes:

	PDBBlastRecord become picklable.

1.5 (Dec 23, 2013)

New Features:

	buildDirectInfoMatrix() and calcMeff() are implemented
for calculation of direct information from multiple sequence alignments.

	showDirectInfoMatrix() and showSCAMatrix() functions
are implemented for displaying coevolutionary data.

	RTB is implemented for Rotations-Translations of Blocks
calculations. Optional arguments also permit imANM calculations.

Availability:

	Source is moved from lib/prody to prody.

	Source code will be hosted only at GitHub [http://github.com/prody/ProDy].

Improvements:

	DCDFile and parseDCD() support DCD files written by
cpptraj.

Testing:

	ProDy test command (prody test) and function prody.test()
has been removed for easier maintenance of testing functions.
See Testing ProDy for more information on how to test ProDy.

ProDy 1.4 Series

	1.4.9 (Nov 14, 2013)

	1.4.8 (Nov 4, 2013)

	1.4.7 (Oct 29, 2013)

	1.4.6 (Oct 16, 2013)

	1.4.5 (Sep 6, 2013)

	1.4.4 (July 22, 2013)

	1.4.3 (June 14, 2013)

	1.4.2 (April 19, 2013)

	1.4.1 (Dec 16, 2012)

	Normal Mode Wizard

	1.4 (Dec 2, 2012)

1.4.9 (Nov 14, 2013)

Upcoming changes:

	Support for Python 3.1 and NumPy 1.5 will be dropped, meaning no Windows
installers will be built for these versions of them.

Improvements:

	HierView can handle Residue instances that have
same segment [http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-segment] name, chain [http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-chain] identifier, and resnum [http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-resnum],
if PDB file contains TER lines to terminate these residues. If
these three identifiers are shared by multiple residues, indexing
AtomGroup instances will return a list of residues. This
behavior can be used as follows. Note that in v1.5, this will be the
default behavior.

>>> pdb_lines = """
... ATOM 1 O WAT A 1 4.694 -3.891 -0.592 1.00 1.00
... ATOM 2 H1 WAT A 1 5.096 -3.068 -0.190 1.00 1.00
... ATOM 3 H2 WAT A 1 5.420 -4.544 -0.808 1.00 1.00
... TER
... ATOM 4 O WAT A 1 -30.035 19.116 -2.193 1.00 1.00
... ATOM 5 H1 WAT A 1 -30.959 18.736 -2.244 1.00 1.00
... ATOM 6 H2 WAT A 1 -29.993 19.960 -2.728 1.00 1.00
... TER
... ATOM 7 O WAT A 1 -77.584 -21.524 -37.894 1.00 1.00
... ATOM 8 H1 WAT A 1 -77.226 -21.966 -38.717 1.00 1.00
... ATOM 9 H2 WAT A 1 -77.023 -20.726 -37.674 1.00 1.00
... TER"""
>>> from StringIO import StringIO
>>> atoms = parsePDBStream(StringIO(pdb_lines))

Current behavior:

>>> print(atoms.numResidues())
1
>>> atoms['A', 1]
<Residue: WAT 1 from Chain A from Unknown (9 atoms)>

To activate the new behavior (which will be the default behavior in v1.5):

>>> hv = atoms.getHierView(ter=True)
>>> print(hv.numResidues())
>>> hv['A', 1]

	parsePDB() reads TER records in PDB files. Atoms and hetero
atoms (hetatm [http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-hetatm]) that are followed by a TER record are now
flagged as pdbter [http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-pdbter].

Bugfixes:

	Fixed memory leaks in uniqueSequences() and
buildSeqidMatrix().

1.4.8 (Nov 4, 2013)

New Features:

	New analysis functions buildOMESMatrix() and buildSCAMatrix()
are implemented.

	New AtomGroup.numBytes() method returns an estimate of memory usage.

	New countBytes() utility function is added for counting bytes used
by NumPy arrays.

Improvements:

	parsePDB() resizes data arrays to decrease memory usage.

Bugfixes:

	Fixed memory leaks in MSA analysis functions.

	Fixed potential problems with importing contributed libraries.

1.4.7 (Oct 29, 2013)

Improvements:

	AtomGroup, Selection, and other Atomic
classes are picklable.

	Improved equality tests for AtomGroup. Two different instances
are considered equal if they contain identical data and coordinate sets.

1.4.6 (Oct 16, 2013)

Bugfixes:

	Selection problem with using resid [http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-resid] is fixed (issue 160 [https://github.com/prody/ProDy/issues/160])

	Fixed a memory leak in MSA parsers written in C. When dealing with
large files, leak would cause a segmentation fault.

	Fixed a memory leak in MSA parsers written in C. When dealing with
large files, leak would cause a segmentation fault.

	Fixed a reference counting problem in MSA parsers in C that would
cause segmentation fault when reading files that uses the same
label for multiple sequences.

	Updated fetchPDBLigand() to use PDB for fetching XML files.

	Revised handling of MSA file formats to avoid exceptions for unknown
extensions.

1.4.5 (Sep 6, 2013)

New Features:

	parsePDBHeader() function can parse space group information
from header section specified as REMARK 290, e.g.
parsePDBHeader('1mkp', 'space_group') or
parsePDBHeader('1mkp')['space_group']

	heavy [http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-heavy] selection flag is defined as an alias for noh [http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-noh].

	matchChains() function can match non-hydrogen atoms using
subset='heavy' keyword argument.

	Added update_coords keyword argument to PCA.builCovariance(),
so that average coordinates calculated internally can be stored in
ensemble or trajectory objects used as input.

Improvements:

	Unit tests can be run with Python 2.6 when unittest2 module is installed.

Bugfixes:

	Fixed problems with reading compressed PDB files using Python 3.3.

	Fixed a bug in parseSTRIDE() function that prevented reading files.

	Improved parsing of biomolecular transformations.

	Fixed memory allocation in C code used by parseMSA() (Python 2.6).

	Fixed a potential name error in trajectory classes.

	Fixed problems in handling compressed files when using Python 2.6 and 3.3.

	Fixed a problem with indexing NMA instances in Python 3 series.

1.4.4 (July 22, 2013)

Improvements:

	writeNMD() and parseNMD() write and read segment names.
NMWiz is also improved to handle segment names. Improvements
will be available in VMD v1.9.2.

Bugfixes:

	A bug in saveAtoms() that would cause KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] when
bonds are set but fragments are not determined is fixed.

	Import ProDy would fail when HOME [https://matplotlib.org/faq/environment_variables_faq.html#envvar-HOME] is not set. Changed
PackageSettings to handle this case graciously.

1.4.3 (June 14, 2013)

Changes:

	getVMDpath() and setVMDpath() functions are deprecated for
removal, use pathVMD() instead.

	Increased blastPDB() timeout to 60 seconds.

	extendModel() and extendMode() functions have a new option
for normalizing extended mode(s).

	sampleModes() and traverseMode() automatically normalizes
input modes.

Bugfixes:

	A bug in applyTransformation() is fixed. The function would
interpret some external transformation matrices incorrectly.

	A bug in fetchPDBLigand() function is fixed.

1.4.2 (April 19, 2013)

Improvements:

	fetchPDB() and fetchPDBfromMirror() functions can handle
partial PDB mirrors. See pathPDBMirror() for setting a mirror path.

Changes:

	MSE [http://www.pdb.org/pdb/ligand/ligandsummary.do?hetId=MSE] is
included in the definition of non-standard amino acids, i.e.
nonstdaa [http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-nonstdaa].

Bugfixes:

	Atom selection problems related to using all [http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-all] and none [http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-none] in
composite selections, e.g. 'calpha and all', is fixed by defining these
keywords as Atom Flags.

	Fasta files with sequence labels using multiple pipe characters would
cause C parser (and so parseMSA()) to fail. This issue is fixed
by completely disregarding pipe characters.

	Empty chain identifiers for PDB hits would cause a problem in parsing
XML results file and blastPDB() would throw an exception. This
case is handled by slicing the chain identifier string.

	A problem in viewNMDinVMD() related to module imports is fixed.

	A problem with handling weights in loadEnsemble() is fixed.

1.4.1 (Dec 16, 2012)

New Features:

	buildSeqidMatrix() and uniqueSequences() functions
are implemented for comparing sequences in an MSA object.

	showHeatmap(), parseHeatmap(), and writeHeatmap()
functions are implemented to support VMD plugin Heat Mapper [http://www.ks.uiuc.edu/Research/vmd/plugins/heatmapper/] file format.

	Sequence is implemented to handle individual sequence records
and point to sequences in MSA instances.

	evol occupancy application is implemented for refined MSA
quality checking purposes.

	mergeMSA() function and evol merge application are
implemented for merging Pfam MSA to study multi-domain proteins.

Improvements:

	refineMSA() function and evol refine application
can perform MSA refinements by removing similar sequences.

	writePDB() function takes beta and occupancy arguments
to be outputted in corresponding columns.

	MSA indexing and slicing are revised and improved.

	parseMSA() is improved to handle indexing of sequences that
have the same label in an MSA file, e.g. domains repeated in a protein.

	prody anm, prody gnm, and prody pca applications
can write heatmap files for visualization using NMWiz and Heatmapper
plugins.

	Several improvements made to handling sequence labels in Pfam MSA files.
Files that contain sequence parts with same protein UniProt ID are
handled delicately.

Changes:

	ProDy will not emit a warning message when a wwPDB server is not set
using wwPDBServer(), and use the default US server.

	Indexing MSA returns Sequence instances.

	Iterating over MSA and MSAFile yields
Sequence instances.

Bugfixes:

	Fixed a syntax problem that prevented running ProDy using Python 2.6.

	Fixed NMA indexing problem that was introduced in v1.4.

Normal Mode Wizard

	NMWiz can visualize heatmaps linked to structural view via Heatmapper.
Clicking on the heatmap will highlight atom or residue pairs.

	ProDy interface has the option to write and load cross-correlations.

	NMWiz can determined whether a model is an extended model. For extended
models plotting mobility has been improved. Only a single value per residue
will be plotted, and clicking on the plot will highlight all of the
residue atoms.

1.4 (Dec 2, 2012)

New Features:

Python 3 Support

	ProDy has been refactored to support Python 3. Windows installers for
Python 2.6, 2.7, 3.1, and 3.2 are available in Installation.

	Unit tests are compatible with Python 2.7 and 3.2, and running them with
other versions gives errors due to unavailability of some unittest [https://docs.python.org/3/library/unittest.html#module-unittest]
features.

Sequence Analysis

	New applications Evol Applications are available.

	searchPfam() and fetchPfamMSA() functions are implemented
for searching and retrieving Pfam data. See MSA Files [http://prody.csb.pitt.edu/tutorials/evol_tutorial/msafiles.html#msafiles] for usage
examples.

	MSAFile class, parseMSA() and writeMSA() functions
are implemented for reading and writing multiple sequence alignments.
See MSA Files [http://prody.csb.pitt.edu/tutorials/evol_tutorial/msafiles.html#msafiles] for usage examples.

	MSA class has been implemented for storing and manipulating
MSAs in memory.

	calcShannonEntropy(), buildMutinfoMatrix(), and
calcMSAOccupancy() functions are implemented implemented for
MSA analysis. See Evolution Analysis [http://prody.csb.pitt.edu/tutorials/evol_tutorial/msaanalysis.html#msa-analysis] for usage examples.

	showShannonEntropy(), showMutinfoMatrix(), and
showMSAOccupancy() functions are implemented implemented for
MSA analysis. See Evolution Analysis [http://prody.csb.pitt.edu/tutorials/evol_tutorial/msaanalysis.html#msa-analysis] for usage examples.

	applyMutinfoCorr() and applyMutinfoNorm() functions are
implemented for applying normalization and corrections to mutual
information matrices.

	calcRankorder() function is implemented for identifying highly
correlated/co-evolving pairs of residues.

Bugfix:

	Fixed selection issues involving use of x or negative numbers.

ProDy 1.3 Series

	1.3.1 (Nov 6, 2012)

	1.3 (Sep 30, 2012)

1.3.1 (Nov 6, 2012)

New Features:

	Added fetchPDBviaHTTP() and fetchPDBviaFTP() functions.

	Added copyFile() function to utilities.

	Added prody test command for convenient testing of ProDy package.

Improvements:

	Improved gunzip() function to handle .gz extensions and
string buffers.

Changes:

	getWWPDBFTPServer() and setWWPDBFTPServer() are deprecated
for removal in v1.4, use wwPDBServer() instead.

	getPDBLocalFolder() and setPDBLocalFolder() are deprecated
for removal in v1.4, use pathPDBFolder() instead.

	getPDBMirrorPath() and setPDBMirrorPath() are deprecated
for removal in v1.4, use pathPDBMirror() instead.

	getPDBCluster() is deprecated for removal in v1.4, use
listPDBCluster() instead.

	getReservedWords() is deprecated for removal in v1.4, use
listReservedWords() instead.

	getNonstdProperties() is deprecated for removal in v1.4, use
listNonstdAAProps() instead.

Bugfix:

	Fixed a bug in HierView that would cause wrong assignment of
residue/chain indices to atoms when residue or chain atoms are separated
by atoms of other entities. This would also caused problems when making
keyword selections, such as protein [http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-protein].

	Added dummy atom check in Ensemble.setAtoms() and
Trajectory.setAtoms() methods to avoid indexing problems.

1.3 (Sep 30, 2012)

Improvements:

	select module and its documentation are completely
rewritten. Select class uses simplest possible parser
to evaluate selection strings and achieves more than 25% speed-up
on average.

	Atom Selections become more forgiving of small typos, but will issue
warning messages when they are detected via SelectionWarning.
These messages can be turned of using confProDy()

	Functions used in ProDy Applications have been refactored to allow for using
them directly. See apps for their documentation.

Bugfix:

	A problem in prody catdcd command that was introduced when
refactoring trajectory [http://prody.csb.pitt.edu/manual/reference/trajectory/index.html#module-prody.trajectory] classes is fixed.

ProDy 1.2 Series

	1.2.1 (Sep 6, 2012)

	1.2 (Aug 30, 2012)

	Normal Mode Wizard

1.2.1 (Sep 6, 2012)

If you are upgrading from ProDy v1.1, see also the below changes introduced in
v1.2.

Bugfix:

	A problem in select [https://docs.python.org/3/library/select.html#module-select] module regarding Numpy numeric types
is fixed. Problem would emerge on platforms which do not offer
some numeric types, e.f. np.float16.

	Fixed problems in prody anm, prody gnm, and
prody fetch related to writing output files.

Changes:

	The way that prody fetch command handles files containing PDB
identifiers has changed.

1.2 (Aug 30, 2012)

Important Changes:

Package folder prody is moved into lib folder to prevent
exceptions related to importing compiled packages from the installation
folder.

Some changes in Trajectory and Ensemble methods related
to linking, setting, and selecting atoms were made to make the interface
more intuitive. These changes, which may break your code, are as follows:

	AtomGroup instances can be linked to a Trajectory
using Trajectory.link() method and linking status of an instance
can be checked using Trajectory.isLinked() medhod.

	Trajectory.setAtoms() method accepts AtomGroup and
Selection instances and should be used to select a subset
of atoms. This method will not link AtomGroup instance to the
trajectory and also will not update the reference coordinates of the
instance.

	Trajectory.select() and Ensemble.select() methods are removed
and their functions are overloaded to Trajectory.setAtoms()
and Ensemble.setAtoms() methods, respectively.

	Trajectory.getSelection() and Ensemble.getSelection()
methods are removed, use Trajectory.getAtoms() and
Ensemble.getAtoms() instead.

	Trajectory reference coordinates must be changed using
Trajectory.setCoords() method.

For usage examples see Trajectory Analysis [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory.html#trajectory], Trajectory Analysis II [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory2.html#trajectory2], Frames and Atom Groups [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/frame.html#frame],
and Trajectory Output [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/outputtraj.html#outputtraj].

New Features:

	Atom Flags, that are used in Atom Selections, is implemented. See its
documentation for handy usage examples.

	sortAtoms() function is implemented.

	pickCentralConf() function is implemented to pick the conformation
or the active coordinate set that is closest to the average of coordinate
sets.

	writePSF(), a simple PSF file writer, is implemented.

	glob() utility function is implemented.

	iterPDBFilenames() function is implemented, which can be used to
iterate over all PDB files stored in a local mirror of Protein Data Bank.

	findPDBFiles() function is implemented, which can be used to access
PDB files in a path.

Improvements:

	HierView instances are built more efficiently. Two times
speed-up is achieved by delaying instantiation of Chain and
Residue instances until they are needed.

	Multiple Atom Flags can be used in Atom Selections without using
'and' operator, e.g. 'sidechain carbon' is the same as
'sidechain and carbon'.

	writePDB() accepts Ensemble, Conformation,
and Frame instances as atoms argument.

	writePDB() function is around 25% faster.

	pickCentral() is extended to accept Atomic and
Ensemble instances. Old function is now pickCentralAtom().

	prody align command and prody_align() function can handle
non-protein atom selections (see examples for prody align).

	parsePDB() and writePDB() supports 100K and more atoms.

Changes:

	showOverlapTable() displays first set of modes along x axis of the
plot.

	AtomGroup.setData() does not accept arrays with boolean data type,
use AtomGroup.setFlags() instead.

	writePDB() function argument model is changed to csets that
indicates the coordinate set index of atoms argument.

	PackageLogger.timing() does not return elapsed time, only logs this
information.

	PackageLogger.startLogfile() is deprecated for removal in v1.3, use
PackageLogger.start() instead.

	PackageLogger.closeLogfile() is deprecated for removal in v1.3, use
PackageLogger.close() instead.

	from prody.utilities import * will not work anymore due to potential
name conflicts with Python standard library functions. Import required
functions explicitly.

	writePDB() appends .pdb extension to filename when it is not
present

	prody select command positional argument order is changed to allow
for handling multiple PDBs at a time. Old older will be supported until
v1.4, but a warning message will be issued.

	select argument in alignCoordsets() is removed, make selection
outside of the function instead.

Deprecations:

	AtomGroup.getHeteros() method has been deprecated for removal in
v1.3, use getFlags('hetatm') instead.

	AtomMap.getMappedFlags() and AtomMap.getDummyFlags()
methods have been deprecated for removal in v1.3, use
getFlags('mapped') and getFlags('dummy') instead.

	getVerbosity() and setVerbosity() are deprecated for removal
in v1.3, use confProDy() instead which save changes permanently.

	NMA.getModes() and ModeSet.getModes() methods are deprecated
for removal in v1.3, use list(), e.g. list(model), instead.

Bugfixes:

	Fixed a bug in prody contacts command that arose problems when
when selecting a subset of the target atoms.

Normal Mode Wizard

Improvements:

	ProDy Interface shows the size of the trajectory output file
for PCA calculations.

	Mode Graphics Options allows for copying arrows settings from
one mode to another.

	Color scale method and midpoint for protein coloring based on mobility and
bfactors can be adjusted from Protein Graphics Options panel.

ProDy 1.1 Series

	1.1 (June 1, 2012)

	Normal Mode Wizard

1.1 (June 1, 2012)

New Features:

	iterFragments() function is added.

	findNeighbors() function is added.

	calcMSF() and calcRMSF() functions are added.

	wrapAtoms() functions is added.

	extendMode() and extendVector() functions are added.

	prody contacts command is added.

Improvements:

	moveAtoms() function is improved to move atoms to a specified
location.

	DCDFile and parseDCD() take astype keyword argument for
automatic type recasting for coordinate arrays. This option can be used
to convert 32-bit coordinate arrays to 64-bit automatically for higher
precision calculations.

	Commands prody anm, prody gnm, and prody pca can
extend a coarse grained model to backbone or all atoms of the residues.
See their documentation pages.

Changes:

	Color scale used by showOverlapTable() is normalized by default.

	tools module is depracated for removal, use utilities
instead.

	array argument in moveAtoms() is replaced with by keyword
argument.

	which argument in AtomGroup.copy() method is deprecated for
removal in version 1.2.

	DCDFile does not log information for most common type of DCD
file, i.e. 32-bit CHARMM format.

	Trajectory.getNextIndex() method is deprecated for removal in v1.2,
use nextIndex() instead.

Bugfixes:

	Fixed several problems in iterNeighbors() function and
Contacts class that were introduced after transition to new
KDTree interface.

	Fixed a problem in setting selection strings of fragments identified using
findFragments().

	Fixed a problem in calcCenter() related to weighted center
calculation.

	Fixed a problem of in copying AtomMap instances, which would
emerge when bond information was present in unusual mappings, such as
when atom orders are changed or an atom is present multiple times in the
mapping.

Normal Mode Wizard

Improvements:

	Mode scaling options are improved.

	Options added for extending coarse grained NMA models to residue backbone
or all atoms.

ProDy 1.0 Series

	1.0.4 (May 2, 2012)

	1.0.3 (May 1, 2012)

	1.0.2 (May 1, 2012)

	1.0.1 (Apr 6, 2012)

	1.0 (Mar 7, 2012)

1.0.4 (May 2, 2012)

Bugfixes:

	Fixed a problem in calcPhi() function that raised a name error.

	Fixed a problem in KDTree.getDistances() method that raised a
name error when unitcell is provided.

	Fixed a problem in buildDistMatrix() and calcDistance()
functions causing miscalculations when unitcell is given.

	Revised KDTree methods dealing with to handle special cases
where unitcell might have some dimensions zero.

Changes:

	buildKDTree() method is removed, earlier than planned due to
unexpected bugfix releases.

1.0.3 (May 1, 2012)

Bugfixes:

	Fixed kdtree [http://prody.csb.pitt.edu/manual/reference/kdtree/index.html#module-prody.kdtree] import problem.

New Features:

	buildDistMatrix() function that can take periodic boundary
conditions is implemented.

Improvements:

	calcDistance() function is improved to take periodic boundary
conditions into account when provided by the users.

1.0.2 (May 1, 2012)

New Features:

	Methods to deal with connected subsets of atoms are implemented, see
AtomGroup.iterFragments() and AtomGroup.numFragments().

	pickCentral() method is implemented for picking the atom that
is closest to the centroid of a group or subset of atoms.

	ProDy configuration option auto_secondary is implemented to
allow for parsing and assigning secondary structure information from PDB
file header data automatically. See assignSecstr() and
confProDy() for usage details.

	prody align makes use of --select when aligning
multiple structures. See usage examples: prody align

	printRMSD() function that prints minimum, maximum, and mean RMSD
values when comparing multiple coordinate sets is implemented.

	findFragments() function that identifies fragments in atom subsets,
e.g. Selection, is implemented.

	A new KDTree interface with coherent method names and capability
to handle periodic boundary conditions is implemented.

Improvements:

	Performance improvements made in saveAtoms() and loadAtoms().

	sliceMode(), sliceModel(), sliceVector(), and
reduceModel() functions accept Selection instances as
well as selection strings. In repeated use of this function, if selections
are already made out of the function, considerable speed-ups are achieved
when selection is passed instead of selection string.

	Fragment iteration (AtomGroup.iterFragments()) is improved to yield
items faster.

Changes:

	There is a change in the behavior of addition operation on instances of
AtomGroup. When operands do not have same number of coordinate
sets, the result will have one coordinate set that is concatenation of the
active coordinate sets of operands.

	buildKDTree() function is deprecated for removal, use the new
KDTree class instead.

Bugfixes:

	A problem in building hierarchical views when making selections using
resindex, chindex, and segindex keywords is fixed.

	A problem in Chain and Residue selection strings
that would emerge when a HierView is build using a selection
is fixed.

	A problem with copying AtomGroup instances whose coordinates
are not set is fixed.

	AtomGroup fragment detection algorithm is rewritten to avoid
the problem of reaching maximum recursion depth for large molecules
with the old recursive algorithm.

	A problem with picking central atom of AtomGroup instances
in pickCentral() function is fixed.

	A problem in Select class that caused exceptions when evaluating
complex macro definitions is fixed.

	Fixed a problem in handling multiple trajectory files. The problem would
emerge when a file was added (addFile()) to a
Trajectory after atoms were set (setAtoms()).
Newly added file would not be associated with the atoms and coordinates
parsed from this file would not be set for the AtomGroup
instance.

1.0.1 (Apr 6, 2012)

New Features:

	ProDy can be configured to automatically check for updates on a regular
basis, see checkUpdates() and confProDy() functions for
details.

	alignPDBEnsemble() function is implemented to align PDB files using
transformations calculated in ensemble analysis. See usage example in
Homologous Proteins [http://prody.csb.pitt.edu/tutorials/ensemble_analysis/blast.html#pca-blast] example.

	PDBConformation.getTransformation() is implemented to return
the transformation that was used to superpose conformation onto reference
coordinates. This transformation can be used to superpose the original
PDB file onto the reference PDB file.

	Amino acid sequences with regular expressions can be used to make atom
selections, e.g. 'sequence "C..C"'. See Atom Selections for usage
details.

	calcCrossProjection() function is implemented.

Improvements:

	Select class raises a SelectionError when
potential typos are detected in a selection string, e.g. 'chain AB'
is a grammatically correct selection string that will return None
since no atoms have chain identifier 'AB'. In such cases, an exception
noting that values exceed maximum number of characters is raised.

	prody align command accepts percent sequence identity and
overlap parameters used when matching chains from given multiple
structures.

	When using prody align command to align multiple structure,
all models in NMR structures are aligned onto the reference structure.

	prody catdcd command accepts --align SELSTR argument
that can be used to align frames when concatenating files.

	showProjection() and showCrossProjection() functions are
improved to evaluate list of markers, color, labels, and texts. See
usage example in Plotting [http://prody.csb.pitt.edu/tutorials/ensemble_analysis/xray_plotting.html#pca-xray-plotting].

	Trajectory instances can be used for calculating and plotting
projections using calcProjection(), showProjection(),
calcCrossProjection(), and showCrossProjection() functions.

Changes:

	Phosphorylated amino acids, phosphothreonine (TPO), O-phosphotyrosine
(PTR), and phosphoserine (SEP), are recognized as acidic protein
residues. This prevents having breaks in protein chains which contains
phosphorylated residues. See Atom Selections for definitions of
protein and acidic keywords.

	Hit dictionaries from PDBBlastRecord will use percent_overlap
instead of percent_coverage. Older key will be removed in v1.1.

	Transformation.get4x4Matrix() method is deprecated for removal in
v1.1, use Transformation.getMatrix() method instead.

Bugfixes:

	A bug in some ProDy Applications is fixed. The bug would emerge when invalid
arguments were passed to effected commands and throw an unrelated exception
hiding the error message related to the arguments.

	A bug in 'bonded to ...' is fixed that emerged when '...'
selected nothing.

	A bug in 'not' selections using . operator is fixed.

1.0 (Mar 7, 2012)

Improvements:

	ANM.buildHessian() method is not using a KDTree by default, since
with some code optimization the version not using KDTree is running faster.
Same optimization has gone into GNM.buildKirchhoff() too, but for
Kirchoff matrix, version using KDTree is faster and is the default. Both
methods have kdtree argument to choose whether to use it or not.

	prody script is updated. Importing Prody and Numpy libraries
are avoided. Script responses to help queries faster.
See ProDy Applications for script usage details.

	Added bonded to ... selection method that expands a selection to
immediately bound atoms. See Atom Selections for its description.

	fetchPDBLigand() parses bond data from the XML file.

	fetchPDBLigand() can optionally save compressed XML files into
ProDy package folder so that frequent access to same files will be more
rapid. See confProDy() function for setting this option.

	Select class is revised. All exceptions are handled delicately
to increase the stability of the class.

	Distance based atom selection is 10 to 15% faster for atom groups with
more than 5K atoms.

	Added uncompressed file saving option to prody blast command.

Changes:

	All deprecated method and functions scheduled for removal are removed.

	getEigenvector() and getEigenvalue() methods are
deprecated for removal in v1.1, use Mode.getEigvec() and
Mode.getEigval() instead.

	getEigenvectors() and getEigenvalues() methods are
deprecated for removal in v1.1, use NMA.getEigvecs() and
NMA.getEigvals() instead.

	Mode.getCovariance() and ModeSet.getCovariance() methods
are deprecated for removal in v1.1, use calcCovariance() method
instead.

	Mode.getCollectivity() method is removed, use
calcCollectivity() function instead.

	Mode.getFractOfVariance() method is removed, use the new
calcFractVariance() function instead.

	Mode.getSqFlucts() method is removed, use calcSqFlucts()
function instead.

	Renamed showFractOfVar() function as showFractVars()
function instead.

	Removed calcCumOverlapArray(), use calcCumulOverlap()
with array=True argument instead.

	Renamed extrapolateModel() as extendModel().

	The relation between AtomGroup, Trajectory, and
Frame instances have changed. See Trajectory Analysis II [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory2.html#trajectory2] and
Trajectory Output [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/outputtraj.html#outputtraj], and Frames and Atom Groups [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/frame.html#frame] usage examples.

	AtomGroup cannot be deformed by direct addition with a vector
instance.

	Unmapped atoms in AtomMap instances are called dummies.
AtomMap.numUnmapped() method, for example, is renamed as
AtomMap.numDummies().

	fetchPDBLigand() accepts only filename (instead of save and
folder) argument to save an XML file.

Bugfixes:

	A problem in distance based atom selection which would could cause problems
when a distance based selection is made from a selection is fixed.

	Changed prody blast so that when a path for downloading files
are given files are not save to local PDB folder.

ProDy 0.9 Series

	0.9.4 (Feb 4, 2012)

	0.9.3 (Feb 1, 2012)

	0.9.2 (Jan 11, 2012)

	0.9.1 (Nov 9, 2011)

	0.9 (Nov 8, 2011)

	Normal Mode Wizard

0.9.4 (Feb 4, 2012)

Changes:

	setAtomGroup() and getAtomGroup() methods are renamed as
Ensemble.setAtoms() and Ensemble.getAtoms().

	AtomGroup class trajectory methods, i.e.
AtomGroup.setTrajectory(),
AtomGroup.getTrajectory(),
AtomGroup.nextFrame(),
AtomGroup.nextFrame(), and
AtomGroup.gotoFrame()
methods are deprecated. Version 1.0 will feature a better integration
of AtomGroup and Trajectory classes.

Bugfixes:

	Bugfixes in Bond.setACSIndex(), saveAtoms(),
and HierView.getSegment().

	Bugfixes in GammaVariableCutoff and GammaStructureBased
classes.

	Bugfix in calcCrossCorr() function.

	Bugfixes in Ensemble.getWeights(), showOccupancies(),
DCDFile.flush().

	Bugfixes in ProDy commands prody blast, prody fetch, and
prody pca.

	Bugfix in calcCenter() function.

0.9.3 (Feb 1, 2012)

New Features:

	DBRef class is implemented for storing references
to sequence databases parsed from PDB header records.

	Methods for storing coordinate set labels in AtomGroup
instances are implemented: getACSLabel(), and
getACSLabel().

	calcCenter() and moveAtoms() functions
are implemented for dealing with coordinate translation.

	Hierarchical view, HierView, is completely redesigned.
PDB files that contain non-empty segment name column (or when such
information is parsed from a PSF file), new design delicately handles this
information to identify distinct chains and residues. This prevents
merging distinct chains in different segments but with same identifiers
and residues in those with same numbers. New design is also using ordered
dictionaries collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] and lists so that chain and
residue iterations yield them in the order they are parsed from file.
These improvements also bring modest improvements in speed.

	Segment class is implemented for handling segments
of atoms defined in molecular dynamics simulations setup, using
psfgen for example.

	Context manager methods are added to trajectory classes. A trajectory
file can be opened as follows:

with Trajectory('mdm2.dcd') as traj:
 for frame in traj:
 calcGyradius(frame)

	Chain slicing is implemented:

p38 = parsePDB('1p38')
chA = p38['A']
res_4to10 = chA[4:11]
res_100toLAST = chA[100:]

	Some support for bonds is implemented to AtomGroup class.
Bonds can be set using setBonds() method. All
bonds must be set at once. iterBonds() or
iterBonds() methods can be used to iterate over bonds
in an AtomGroup or an Atom.

	parsePSF() parses bond information and sets to the
atom group.

	Selection.update() method is implemented, which may be useful to
update a distance based selection after coordinate changes.

	buildKDTree() and iterNeighbors() methods
are implemented for facilitating identification of pairs of atoms that
are proximal.

	iterAtoms() method is implemented to all
atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic] classes to provide uniformity for atom iterations.

	calcAngle(), calcDihedral(), calcPhi(),
calcPsi(), and calcOmega() methods are implemented.

Improvements:

	Chain.getSelstr() and Residue.getSelstr() methods are
improved to include the selection string of a Selection when
they are built using one.

Changes:

	Residue methods getNumber(),
setNumber(), getName(),
setName() methods are deprecated and will be
removed in v1.0.

	Chain methods getIdentifier() and
setIdentifier() methods are deprecated and will be
removed in v1.0.

	Polymer attribute identifier
is renamed as chid.

	Chemical attribute identifier
is renamed as resname.

	getACSI() and setACSI() are renamed as
getACSIndex() and
setACSIndex(), respectively.

	calcRadiusOfGyration() is deprecated and will be removed
in v1.0. Use calcGyradius() instead.

Bugfixes:

	Fixed a problem in parsePDB() that caused loosing existing
coordinate sets in an AtomGroup when passed as ag
argument.

	Fixed a problem with "same ... as ..." argument of Select
that selected atoms when followed by an incorrect atom selection.

	Fixed another problem with "same ... as ..." which result in selecting
multiple chains when same chain identifier is found in multiple segments
or multiple residues when same residue number is found in multiple
segments.

	Improved handling of negative integers in indexing AtomGroup
instances.

0.9.2 (Jan 11, 2012)

New Features:

	prody catdcd command is implemented for concatenating and/or
slicing .dcd files. See prody catdcd for usage examples.

	DCDFile can be opened in write or append mode, and
coordinate sets can be added using write() method.

	getReservedWords() can be used to get a list of words
that cannot be used to label user data.

	confProDy() function is added for configuring ProDy.

	ProDy can optionally backup existing files with .BAK (or another)
extension instead of overwriting them. This behavior can be activated
using confProDy() function.

Improvements:

	writeDCD() file accepts AtomGroup or other
Atomic instances as trajectory argument.

	prody align command can be used to align multiple PDB structures.

	prody pca command allows atom selections for DCD files that are
accompanied with a PDB or PSF file.

Changes:

	DCDFile instances, when closed, raise exception, similar
to behavior of file objects in Python.

	Title of AtomGroup instances resulting from copying an
Atomic instances does not start with ‘Copy of’.

	changeVerbosity() and getVerbosityLevel() are renamed as
setVerbosity() and getVerbosity(), respectively.
Old names will be removed in v1.0.

	ProDy applications (commands) module is rewritten to use new
argparse [https://docs.python.org/3/library/argparse.html#module-argparse] module. See ProDy Applications for details of changes.

	argparse [https://docs.python.org/3/library/argparse.html#module-argparse] module is added to the package for Python versions 2.6
and older.

Bugfixes:

	Fixed problems in loadAtoms() and saveAtoms() functions.

	Bugfixes in parseDCD() and writeDCD() functions for Windows
compatability.

0.9.1 (Nov 9, 2011)

Bug Fixes:

	Fixed problems with reading and writing configuration files.

	Fixed problem with importing nose for testing.

0.9 (Nov 8, 2011)

New Features:

	PDBML [http://pdbml.pdb.org/] and mmCIF [http://mmcif.pdb.org/] files
can be retrieved using fetchPDB() function.

	getPDBLocalFolder() and setPDBLocalFolder() functions are
implemented for local PDB folder management.

	parsePDBHeader() is implemented for convenient parsing of
header data from .pdb files.

	showProtein() is implemented to allow taking a quick look
at protein structure.

	Chemical and Polymer classes are implemented for
storing chemical and polymer component data parsed from PDB header records.

Changes:

Warning

This release introduces numerous changes in method and function
names all aiming to improve the interactive usage experience. All changes
are listed below. Currently these functions and methods are present in
both old and new names, so code using ProDy must not be affected. Old
function names will be removed from version 1.0, which is expected to
happen late in the first quarter of 2012.

Old function names are marked as deprecated, but ProDy will not issue any
warnings until the end of 2011. In 2012, ProDy will automatically start
issuing DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning] upon calls using old names to remind
the user of the name change.

For deprecated methods that are present in multiple classes, only the
affected modules are listed for brevity.

Note

When modifying code using ProDy to adjust the name changes,
turning on deprecation warnings may help locating all use cases of the
deprecated names. See turnonDepracationWarnings() for this
purpose.

Functions:

The following function name changes are mainly to reduce the length of the
name in order to make them more suitable for interactive sessions:

	Old name

	New name

	applyBiomolecularTransformations()

	buildBiomolecules()

	assignSecondaryStructure()

	assignSecstr()

	scanPerturbationResponse()

	calcPerturbResponse()

	calcCrossCorrelations()

	calcCrossCorr()

	calcCumulativeOverlap()

	calcCumulOverlap()

	calcCovarianceOverlap()

	calcCovOverlap()

	showFractOfVariances()

	showFractVars()

	showCumFractOfVariances()

	showCumulFractVars()

	showCrossCorrelations()

	showCrossCorr()

	showCumulativeOverlap()

	showCumulOverlap()

	deform()

	deformAtoms()

	calcSumOfWeights()

	calcOccupancies()

	showSumOfWeights()

	showOccupancies()

	trimEnsemble()

	trimPDBEnsemble()

	getKeywordResidueNames()

	getKeywordResnames()

	setKeywordResidueNames()

	setKeywordResnames()

	getPairwiseAlignmentMethod()

	getAlignmentMethod()

	setPairwiseAlignmentMethod()

	setAlignmentMethod()

	getPairwiseMatchScore()

	getMatchScore()

	setPairwiseMatchScore()

	setMatchScore()

	getPairwiseMismatchScore()

	getMismatchScore()

	setPairwiseMismatchScore()

	setMismatchScore()

	getPairwiseGapOpeningPenalty()

	getGapPenalty()

	setPairwiseGapOpeningPenalty()

	setGapPenalty()

	getPairwiseGapExtensionPenalty()

	getGapExtPenalty()

	setPairwiseGapExtensionPenalty()

	setGapExtPenalty()

Coordinate methods:

All getCoordinates() and setCoordinates() methods in
atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic] and ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble] classes are renamed as
getCoords() and setCoords(), respectively.

getNumOf methods:

All method names starting with getNumOf now start with num. This
change brings two advantages: method names (i) are considerably shorter,
and (ii) do not suggest that there might also be corresponding set
methods.

	Old name

	New name

	Affected modules

	getNumOfAtoms()

	numAtoms()

	atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic],
ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble],
dynamics

	getNumOfChains()

	numChains()

	atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic]

	getNumOfConfs()

	numConfs()

	ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble]

	getNumOfCoordsets()

	numCoordsets()

	atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic],
ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble]

	getNumOfDegOfFreedom()

	numDOF()

	dynamics

	getNumOfFixed()

	numFixed()

	ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble]

	getNumOfFrames()

	numFrames()

	ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble]

	getNumOfResidues()

	numResidues()

	atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic]

	getNumOfMapped()

	numMapped()

	atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic]

	getNumOfModes()

	numModes()

	dynamics

	getNumOfSelected()

	numSelected()

	ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble]

	getNumOfUnmapped()

	numUnmapped()

	atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic]

getName method:

getName() methods are renamed as getTitle() to avoid confusions
that might arise from changes in atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic] method names listed
below. All classes in atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic], ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble], and
dynamics [http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics] are affected from this change.

In line with this change, parsePDB() and
parsePQR() name arguments are changed to title, but
name argument will also work until release 1.0.

This name change conflicted with DCDFile.getTitle() method.
The conflict is resolved in favor of the general getTitle() method.
An alternative method will be implemented to handle title strings in
DCD files.

get/set methods of atomic classes:

Names of get and set methods allowing access to atomic data are all
shortened as follows:

	Old name

	New name

	getAtomNames()

	getNames()

	getAtomTypes()

	getTypes()

	getAltLocIndicators()

	getAltlocs()

	getAnisoTempFactors()

	getAnisos()

	getAnisoStdDevs()

	getAnistds()

	getChainIdentifiers()

	getChains()

	getElementSymbols()

	getElements()

	getHeteroFlags()

	getHeteros()

	getInsertionCodes()

	getIcodes()

	getResidueNames()

	getResnames()

	getResidueNumbers()

	getResnums()

	getSecondaryStrs()

	getSecstrs()

	getSegmentNames()

	getSegnames()

	getSerialNumbers()

	getSerials()

	getTempFactors()

	getBetas()

This change affects all atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic] classes,
AtomGroup, Atom, Chain,
Residue, Selection and
AtomMap.

Other changes in atomic methods:

	getSelectionString() renamed as getSelstr()

Methods handling user data (which was previously called attribute) are
renamed as follows:

	Old name

	New name

	getAttribute()

	getData()

	getAttrNames()

	getDataLabels()

	getAttrType()

	getDataType()

	delAttribute()

	delData()

	isAttribute()

	isData()

	setAttribute()

	setData()

To be removed:

Finally, the following methods will be removed, but other suitable methods
are overloaded to perform their action:

	removed AtomGroup.getBySerialRange(), overloaded
AtomGroup.getBySerial()

	removed getProteinResidueNames(), overloaded
getKeywordResnames()

	removed setProteinResidueNames(), overloaded
setKeywordResnames()

Scripts:

The way ProDy scripts work has changed. See ProDy Applications for details.
Using older scripts will start issuing deprecation warnings in 2012.

Bug Fixes:

	Bugs in execDSSP() and execSTRIDE() functions that caused
exceptions when compressed files were passed is fixed.

	A problem in scripts for PCA of DCD files is fixed.

Normal Mode Wizard

Development of NMWiz is finalized and it will not be distributed in the ProDy
installation package anymore. See Normal Mode Wizard [http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz] pages for instructions on
installing it.

ProDy 0.8 Series

	0.8.3 (Oct 16, 2011)

	0.8.2 (Oct 14, 2011)

	0.8.1 (Sep 16, 2011)

	Normal Mode Wizard

	0.8 (Aug 24, 2011)

	Normal Mode Wizard [http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz]

0.8.3 (Oct 16, 2011)

New Features:

	Functions to read and write PQR files: parsePQR() and
writePQR().

	Added PDBEnsemble.getIdentifiers() method that returns
identifiers of all conformations in the ensemble.

	ProDy tests are incorporated to the package installer. If you are using
Python version 2.7, you can run the tests by calling prody.test().

Improvements:

	blastPDB() function and PDBBlastRecord
class are rewritten to use faster and more compact code.

	New PackageLogger function is implemented to unify logging
and reporting task progression.

	Improvements in PDB ensemble support functions, e.g.
trimPDBEnsemble(), are made.

	Improvements in ensemble concatenations are made.

Bug Fixes:

	Bugfixes in PDBEnsemble() slicing operation. This may
have affected users when slicing a PDB ensemble for plotting projections
in color for different forms of the protein.

0.8.2 (Oct 14, 2011)

New Features:

	fetchPDBClusters(), loadPDBClusters(), and
getPDBCluster() functions are implemented for handling
PDB sequence cluster data. These functions can be used instead of
blastPDB() function for fast access to structures of
the same protein (at 95% sequence identity level) or similar proteins.

	Perturbation response scanning method described in [CA09] is implemented
as scanPerturbationResponse() based on the code provided
by Ying Liu.

Changes:

	fetchPDBLigand() returns the URL of the XML file in the ligand data
dictionary.

	Name of the ProDy configuration file in user home directory
is renamed as .prodyrc (used to be .prody).

	applyBiomolecularTransformations() and
assignSecondaryStructure() functions raise
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] when the function fails to perform its action
due to missing data in header dictionary.

	fetchPDB() decompresses PDB files found in the working
directory when user asks for decompressed files.

	parsePDB() appends chain and subset arguments to
AtomGroup() name.

	chain argument is added to PDBBlastRecord.getHits().

Improvements:

	Atom selection class Select is completely redesigned
to prevent breaking of the parser when evaluating invalid selection
strings.

	Improved type checking in parsePDB() function.

Bug Fixes:

	Bugfixes in parseDSSP(): one emerged problems in lines
indicating chain breaks, another did not parse bridge-partners correctly.
Both fixes are contributed by Kian Ho.

	Bugfix in parsePDB() function. When only header is desired
(header=True, model=0), would return a tuple containing an empty
atom group and the header.

Developmental:

	Unit tests for proteins and select modules are
developed.

0.8.1 (Sep 16, 2011)

New Features:

	fetchLigandData() is implemented for fetching ligand data from
Ligand Expo.

	parsePSF() function is implemented for parsing X-PLOR format PSF
files.

Changes:

	__slots__ is used in AtomGroup and Atomic
classes. This change prevents user from assigning new variables to
instances of all classes derived from the base Atomic.

	pyparsing is updated to version 1.5.6.

Bug Fixes:

	A bug in AtomGroup.copy() method is fixed. When AtomGroup
instance itself is copied, deep copies of data arrays were not made.

	A bug in Select class raising exceptions when negative
residue number values are present is fixed.

	Another bug in Select class misinterpreting
same residue as ... statement when specific chains are involved is
fixed.

	A bug in AtomGroup.addCoordset() method duplicating coordinates
when no coordinate sets are present in the instance is fixed.

Normal Mode Wizard

Changes:

	Version number in main window is iterated.

	Mode graphics material is stored for individual modes.

	Mode scaling factor is printed when active mode or RMSD is changed.

	All selections are deleted to avoid memory leaks.

0.8 (Aug 24, 2011)

Note

After installing v0.8, you may need to make a small change in your
existing scripts. If you are using Ensemble class
for analyzing PDB structures, rename it as PDBEnsemble.
See the other changes that may affect your work below and the class
documentation for more information.

New Features:

	DCDFile is implemented for handling DCD files.

	Trajectory is implemented for handling multiple
trajectory files.

	writeDCD() is implemented for writing DCD files.

	Trajectory Analysis [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory.html#trajectory] example to illustrate usage of new classes for handling
DCD files. Essential Dynamics Analysis [http://prody.csb.pitt.edu/tutorials/trajectory_analysis/eda.html#eda] example is updated to use new ProDy classes.

	PCA supports Trajectory and
DCDFile instances.

	Ensemble and PDBEnsemble classes
can be associated with AtomGroup instances. This allows
selecting and evaluating coordinates of subset of atoms. See
setAtomGroup(),
select(),
getAtomGroup(), and
getSelection() methods.

	execDSSP(), parseDSSP(), and performDSSP() functions
are implemented for executing and parsing DSSP calculations.

	execSTRIDE(), parseSTRIDE(), and performSTRIDE()
functions are implemented for executing and parsing DSSP calculations.

	parsePDB() function parses atom serial numbers. Atoms
can be retrieved from an AtomGroup instance by their
serial numbers using getBySerial() and
getBySerialRange() methods.

	calcADPs() function can be used to calculate anisotropic
displacement parameters for atoms with anisotropic temperature factor
data.

	getRMSFs() is implemented for calculating
root mean square fluctuations.

	AtomGroup and Mode or
Vector additions are supported. This adds a new
coordinate set to the AtomGroup instance.

	getAttrNames() is implemented for listing
user set attribute names.

Improvements:

	calcProjection(), showProjection(), and
showCrossProjection() functions can optionally calculate/display
RMSD along the normal mode.

	ANM, GNM, and PCA applications can optionally write compressed ProDy data
files.

	fetchPDB() function can optionally write decompressed
files and force copying a file from local mirror to target folder.

	PCA.buildCovariance() and PCA.performSVD()
methods accept Numpy arrays as coordinate sets.

	Performance of PCA.buildCovariance() method is optimized
for evaluation of PDB ensembles.

	calcRMSD() and superpose() functions are optimized for speed
and memory usage.

	Ensemble.getMSFs() is optimized for speed and memory usage.

	Improvements in memory operations in atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic],
ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble], and dynamics [http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics] modules for
faster data (PDB/NMD) output.

	Optimizations in Select and Contacts classes.

Changes:

	Ensemble does not store conformation names. Instead,
newly implemented PDBEnsemble class stores identifiers
for individual conformations (PDB IDs). This class should be used in cases
where source of individual conformations is important.

	calcProjection(), showProjection(), and
showCrossProjection() function calculate/display
root mean square deviations, by default.

	Oxidized cysteine residue abbreviation CSO is added to the definition
of protein keyword.

	getMSF() method is renamed as getMSFs().

	parseDCD() function returns Ensemble
instances.

Bug Fixes:

	A bug in select module causing exceptions when regular
expressions are used is fixed.

	Another bug in select module raising exception when
“(not ..,” is passed is fixed.

	Various bugfixes in ensemble [http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble] module.

	Problem in prody fetch that occurred when a file is found in a
local mirror is fixed.

	Bugfix in AtomPointer.copy() method.

Normal Mode Wizard [http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz]

New Features:

	NMWiz can be used to compare two structures by calculating and depicting
structural changes.

	Arrow graphics is scaled based on a user specified RMSD value.

Improvements:

	NMWiz writes DCD format trajectories for PCA using ProDy. This provides
significant speed up in cases where IO rate is the bottleneck.

Changes:

	Help is provided in a text window to provide a cleaner GUI.

ProDy 0.7 Series

	0.7.2 (Jun 21, 2011)

	0.7.1 (Apr 28, 2011)

	0.7 (Apr 4, 2011)

	Normal Mode Wizard

0.7.2 (Jun 21, 2011)

New Features:

	parseDCD() is implemented for parsing coordinate sets
from DCD files.

Improvements:

	parsePDB() parses SEQRES records in header sections.

Changes:

	Major classes can be instantiated without passing a name argument.

	Default selection in NMWiz ProDy interface is changed to ensure selection
only protein Cα atoms.

Bug Fixes:

	A bug in writeNMD() function causing problems when writing
a single mode is fixeed.

	Other bugfixes in dynamics [http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics] module functions.

0.7.1 (Apr 28, 2011)

Highlights:

	Atomic __getattribute__() is overloaded to interpret
atomic selections following the dot operator. For example,
atoms.calpha is interpreted as atoms.select('calpha'). See
:ref:`` for more details.

	AtomGroup class is integrated with
HierView class. Atom group instances now can be indexed
to get chains or residues and number of chains/residues can be retrieved.
A hierarchical view is generated and updated when needed. See
:ref:`` for more details.

New Features:

	matchAlign() is implemented for quick alignment of protein
structures. See Ligand Extraction [http://prody.csb.pitt.edu/tutorials/structure_analysis/ligands.html#extract-ligands] usage example.

	setAttribute(),
getAttribute(),
delAttribute(), and
isAttribute() functions are implemented for
AtomGroup class to facilitate storing user provided
atomic data. See Storing data in AtomGroup [http://prody.csb.pitt.edu/tutorials/prody_tutorial/atomgroup.html#id1] example.

	saveAtoms() and loadAtoms() functions
are implemented to allow for saving atomic data and loading it
This saves custom atomic attributes and much faster than parsing
data from PDB files.

	calcCollectivity() function is implemented to allow
for calculating collectivity of deformation vectors.

Improvements:

	parsePDB() can optionally return biomolecule when
biomol=True keyword argument is passed.

	parsePDB() can optionally make secondary structure
assignments when secondary=True keyword argument is passed.

	calcSqFlucts() function is changed to accept
Vector instances, e.g. deformation vectors.

Changes:

	Changes were made in calcADPAxes() function to follow
the conventions in analysis ADPs. See its documentation.

Bug Fixes:

	A in Ensemble slicing operations is fixed. Weights are
now copied to the new instances obtained by slicing.

	Bug fixes in dynamics [http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics] plotting functions
showScaledSqFlucts(), showNormedSqFlucts(),

0.7 (Apr 4, 2011)

New Features:

	Regular expressions can be used in atom selections. See
select module for details.

	User can define selection macros using defSelectionMacro()
function. Macros are saved in ProDy configuration and loaded in later
sessions. See select module for other related functions.

	parseSparseMatrix() function is implemented for parsing
matrices in sparse format. See the usage example in Using an External Matrix [http://prody.csb.pitt.edu/tutorials/enm_analysis/external.html#external-matrix].

	deform() function is implemented for deforming coordinate
sets along a normal mode or linear combination of multiple modes.

	sliceModel() function is implemented for slicing normal
mode data to be used with functions calculating atomic properties using
normal modes.

Improvements:

	Atom selections using bare keyword arguments is optimized. New keyword
definitions are added. See select module for the complete
list.

	A new keyword argument for calcADPAxes() allows for
comparing largest axis to the second largest one.

Changes:

	There are changes in function used to alter definitions of selection
keywords. See select for details.

	assignSecondaryStructure() function assigns SS identifiers
to all atoms in a residue. Residues with no SS information specified is
assigned coil conformation.

	When Ensemble and NMA classes are
instantiated with an empty string, instances are called “Unnamed”.

	sliceMode(), sliceVector() and
reduceModel() functions return the atom selection
in addition to the sliced vector/mode/model instance.

Bug Fixes:

	Default selection for calcGNM() function is set to
“calpha”.

Normal Mode Wizard

New Features:

	NMWiz supports GNM data and can use ProDy for GNM calculations.

	NMWiz can gather normal mode data from molecules loaded into VMD.
This allows NMWiz to support all formats supported by VMD.

	User can write data loaded into NMWiz in NMD format.

	An Arrow Graphics option allows the user to draw arrows in both directions.

	User can select Licorice representation for the protein if model is an
all atom mode.

	User can select Custom as the representation of the protein to prevent
NMWiz from chancing a user set representation.

	Trace is added as a protein backbone representation option.

Improvements:

	NMWiz remembers all adjustments on arrow graphics for all modes.

	Plotting Clear button clears only atom labels that are
associated with the dataset.

	Removing a dataset removes all associated molecule objects.

	Selected atom representations are turned on based on atom index.

	Padding around interface button has been standardized to provide a uniform
experience between different platforms.

ProDy 0.6 Series

	0.6.2 (Mar 16, 2011)

	0.6.1 (Mar 2, 2011)

	0.6 (Feb 22, 2011)

	Normal Mode Wizard

0.6.2 (Mar 16, 2011)

New Features:

	performSVD() function is implemented for faster
and more memory efficient principal compoment analysis.

	extrapolateModel() function is implemented for
extrapolating a coarse-grained model to an all atom model. See the
usage example Extend a coarse-grained model [http://prody.csb.pitt.edu/tutorials/enm_analysis/extend.html#extendmodel].

	plog() is implemented for enabling users to make log entries.

Improvements:

	compare functions are improved to handle insertion codes.

	HierView allows for indexing using chain identifier
and residue numbers. See usage example Hierarchical Views [http://prody.csb.pitt.edu/tutorials/prody_tutorial/hierview.html#hierview].

	Chain allows for indexing using residue number and
insertion code. See usage example Hierarchical Views [http://prody.csb.pitt.edu/tutorials/prody_tutorial/hierview.html#hierview].

	addCoordset() function accepts
Atomic and Ensemble instances
as coords argument.

	New method HierView.getAtoms() is implemented.

	AtomGroup set functions check the correctness of
dimension of data arrays to prevent runtime problems.

	prody pca script is updated to use the faster PCA method
that uses SVD.

Changes:

	“backbone” definition now includes the backbone hydrogen atom
(Thanks to Nahren Mascarenhas for pointing to this discrepancy in the
keyword definition).

Bug Fixes:

	A bug in PCA allowed calculating covariance matrix
for less than 3 coordinate sets is fixed.

	A bug in mapOntoChain() function that caused problems
when mapping all atoms is fixed.

0.6.1 (Mar 2, 2011)

New Features:

	setWWPDBFTPServer() and getWWPDBFTPServer()
functions allow user to change or learn the WWPDB FTP server that ProDy
uses to download PDB files. Default server is RCSB PDB in USA.
User can change the default server to one in Europe or Japan.

	setPDBMirrorPath() and getPDBMirrorPath()
functions allow user to specify or learn the path to a local PDB mirror.
When specified, a local PDB mirror is preferred for accessing PDB files,
over downloading them from FTP servers.

	mapOntoChain() function is improved to map backbone or
all atoms.

Improvements:

	WWPDB_PDBFetcher can download PDB files from different
WWPDB FTP servers.

	WWPDB_PDBFetcher can also use local PDB mirrors for
accessing PDB files.

Changes:

	RCSB_PDBFetcher is renamed as WWPDB_PDBFetcher.

	mapOntoChain() and matchChains() functions
accept "ca" and "bb" as subset arguments.

	Definition of selection keyword “protein” is updated to include
some non-standard amino acid abbreviations.

Bug Fixes:

	A bug in WWPDB_PDBFetcher causing exceptions when
non-string items passed in a list is fixed.

	An important bug in parsePDB() is fixed. When parsing
backbone or Cα atoms, residue names were not checked and this caused
parsing water atoms with name "O" or calcium ions with name "CA".

0.6 (Feb 22, 2011)

New Features:

	Biopython module pairwise2 and packages KDTree and Blast are incorporated
in ProDy package to make installation easier. Only NumPy needs to be
installed before ProDy can be used. For plotting, Matplotlib is still
required.

	Normal Mode Wizard [http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz] is distributed with ProDy source. On Linux, if VMD is
installed, ProDy installer locates VMD plugins folder and installs NMWiz.
On Windows, user needs to follow a separate set of instructions (see
Normal Mode Wizard [http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz]).

	Gamma class is implemented for facilitating use of
force constants based on atom type, residue type, or property. An
example derived classes are GammaStructureBased and
GammaVariableCutoff.

	calcTempFactors() function is implemented to
calculate theoretical temperature factors.

	5 new ProDy Applications are implemented, and existing scripts are improved to
output figures.

	getModel() method is implemented to make function development
easier.

	resetTicks() function is implemented to change X and/or Y
axis ticks in plots when there are discontinuities in the plotted data.

Improvements:

	ANM.buildHessian() and GNM.buildKirchhoff()
classes are improved to accept Gamma instances
or other custom function as gamma argument. See also Custom Gamma Functions [http://prody.csb.pitt.edu/tutorials/enm_analysis/gamma.html#gamma].

	Select class is changed to treat single word keywords
differently, e.g. “backbone” or “protein”.
They are interpreted 10 times faster and in use achieve much higher
speed-ups when compared to composite selections. For example, using the
keyword “calpha” instead of the name CA and protein,
which returns the same selection, works >20 times faster.

	Optimizations in Select class to increase
performance (Thanks to Paul McGuire for providing several Pythonic tips
and Pyparsing specific advice).

	applyBiomolecularTransformations() function is improved
to handle large biomolecular assemblies.

	Performance optimizations in parsePDB() and other functions.

	Ensemble class accepts Atomic instances and
automatically adds coordinate sets to the ensemble.

Changes:

	PDBlastRecord is renamed as PDBBlastRecord.

	NMA instances can be index using a list or tuple of integers,
e.g. anm[1,3,5].

	“ca”, “bb”, and “sc” keywords are defined as short-hands for “calpha”,
“backbone”, and “sidechain”, respectively.

	Behavior of calcANM() and calcGNM() functions have changed.
They return the atoms used for calculation as well.

Bug Fixes:

	A bug in assignSecondaryStructure() function is fixed.

	Bug fixes in prody anm and prody gnm.

	Bug fixes in showSqFlucts() and showProjection() functions.

Normal Mode Wizard

	NMWiz can be used as a graphical interface to ProDy. ANM or PCA
calculations can be performed for molecules that are loaded in VMD.

	User can set default color for arrow graphics and paths to ANM and PCA
scripts.

	Optionally, NMWiz can preserve the current view in VMD display window when
loading a new dataset. Check the box in the NMWiz GUI main window.

	A bug that prevented selecting residues from plot window is fixed.

ProDy 0.5 Series

	0.5.3 (Feb 11, 2011)

	0.5.2 (Jan 12, 2011)

	0.5.1 (Dec 31, 2010)

	0.5 (Dec 21, 2010)

0.5.3 (Feb 11, 2011)

New Features:

	Membership, equality, and non-equality test operation are defined for all
atomic [http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic] classes. See Operations on Selections [http://prody.csb.pitt.edu/tutorials/prody_tutorial/selection.html#selection-operations].

	Two functions are implemented for dealing with anisotropic temperature
factors: calcADPAxes() and buildADPMatrix().

	NMA.setEigens() and NMA.addEigenpair() methods are
implemented to assist analysis of normal modes calculated using
external software.

	parseNMD() is implemented for parsing NMD files.

	parseModes() is implemented for parsing normal mode data.

	parseArray() is implementing for reading numeric data, particularly
normal mode data calculated using other software for analysis using ProDy.

	The method in [BH02] to calculate overlap between covariance matrices is
implemented as calcCovOverlap() function.

	trimEnsemble() to trim Ensemble instances is implemented.

	checkUpdates() to check for ProDy updates is implemented.

Changes:

	Change in default behavior of parsePDB() function. When
alternate locations exist, those indicated by A are parsed. For parsing
all alternate locations user needs to pass altloc=True argument.

	getSumOfWeights() is renamed as calcSumOfWeights().

	mapAtomsToChain() is renamed as mapOntoChain().

	ProDyStartLogFile() is renamed as startLogfile().

	ProDyCloseLogFile() is renamed as closeLogfile().

	ProDySetVerbosity() is renamed as changeVerbosity().

Improvements:

	A few bugs in ensemble and dynamics classes are fixed.

	Improvements in RCSB_PDBFetcher allow it not to miss a
PDB file if it exists in the target folder.

	writeNMD() is fixed to output B-factors (Thanks to Dan Holloway for
pointing it out).

0.5.2 (Jan 12, 2011)

Bug Fixes:

	An important fix in sampleModes() function was made
(Thanks to Alberto Perez for finding the bug and suggesting a solution).

Improvements:

	Improvements in ANM.calcModes(), GNM.calcModes(),
and PCA.calcModes() methods prevent Numpy/Scipy throwing an
exception when more than available modes are requested by the user.

	Improvements in blastPDB() enable ProDy throw an exception when no
internet connection is found, and warn user when downloads fail due to
restriction in network regulations (Thanks to Serkan Apaydin for helping
identify these improvements).

	New example Write PDB file [http://prody.csb.pitt.edu/tutorials/structure_analysis/pdbfiles.html#writepdb].

0.5.1 (Dec 31, 2010)

Changes in dependencies:

	Scipy (linear algebra module) is not required package anymore. When
available it replaces Numpy (linear algebra module) for greater flexibility
and efficiency. A warning message is printed when Scipy is not found.

	Biopython KDTree module is not required for ENM calculations (specifically
for building Hessian (ANM) or Kirchoff (GNM) matrices). When available it
is used to increase the performance. A warning message is printed when
KDTree is not found.

0.5 (Dec 21, 2010)

New Features:

	AtomPointer base class for classes pointing to
atoms in an AtomGroup.

	AtomPointer instances (Selection, Residue, etc.)
can be added. See Operations on Selections [http://prody.csb.pitt.edu/tutorials/prody_tutorial/selection.html#selection-operations] for examples.

	Select.getIndices() and Select.getBoolArray()
methods to expand the usage of Select.

	sliceVector() and sliceMode() functions.

	saveModel() and loadModel() functions
for saving and loading NMA data.

	parsePDBStream() can now parse specific chains or
alternate locations from a PDB file.

	alignCoordsets() is implemented to superimpose
coordinate sets of an AtomGroup instance.

Bug Fixes:

	A bug in parsePDBStream() that caused unidentified errors
when a model in a multiple model file did not have the same number of
atoms is fixed.

Changes:

	Iterating over a Chain instance yields Residue
instances.

	Vector instantiation requires an array only. name
is an optional argument.

	Functions starting with get and performing a calculations are renamed
to start with calc, e.g. getRMSD() is now calcRMSD().

ProDy 0.2 Series

	0.2 (Nov 16, 2010)

	Normal Mode Wizard

0.2 (Nov 16, 2010)

Important Changes:

	Single word keywords not followed by “and” logical operator are not
accepted, e.g. “protein within 5 of water” will raise a
SelectionError, use “protein and within 5 of water” instead.

	findMatchingChains() is renamed to matchChains().

	showOverlapMatrix() is renamed to showOverlapTable().

	Modules are reorganized.

New Features:

	Atomic for easy type checking.

	Contacts for faster intermolecular contact identification.

	Select can identify intermolecular contacts. See Intermolecular Contacts [http://prody.csb.pitt.edu/tutorials/structure_analysis/contacts.html#contacts]
for an examples and details.

	sampleModes() implemented for sampling conformations along normal
modes.

Improvements:

	proteins.compare functions are improved. Now they perform sequence
alignment if simple residue number/identity based matchin does not work,
or if user passes pwalign=True argument. This impacts the speed
of X-ray ensemble analysis.

	Select can cache data optionally. This results in speeds up from
2 to 50 folds depending on number of atoms and selection operations.

	Implementation of showProjection() is completed.

Normal Mode Wizard

Release 0.2.3

	For each mode a molecule for drawing arrows and a molecule for showing
animation is formed in VMD on demand. NMWiz remembers a color associated
with a mode.

	Deselecting a residue by clicking on a plot is possible.

	A bug causing incorrect parsing of NMD files from ANM server is fixed.

Release 0.2.2

	Selection string option allows user to show a subset of arrows matching
a VMD selection string. Optionally, this selection string may affect
protein and animation representations.

	A bug that caused problems when over plotting modes is removed.

	A bug affecting line width changes in plots is removed.

	Selected residue representations are colored according to the color of the
plot.

Release 0.2.1

	Usability improvements.

	Loading the same data file more than once is prevented.

	If a GUI window for a dataset is closed, it can be reloaded from the main
window.

	A dataset and GUI can be deleted from the VMD session via the main window.

Release 0.2

	Instant documentation is improved.

	Problem with clearing selections is fixed.

	Plotting options frame is populated.

	Multiple modes can be plotted on the same canvas.

ProDy 0.1 Series

	0.1.2 (Nov 9, 2010)

	0.1.1 (Nov 8, 2010)

	0.1 (Nov 7, 2010)

0.1.2 (Nov 9, 2010)

	Important bug fixes and improvements in NMA helper and plotting functions.

	Documentation updates and improvements.

0.1.1 (Nov 8, 2010)

	Important bug fixes and improvements in chain comparison functions.

	Bug fixes.

	Source clean up.

	Documentation improvements.

0.1 (Nov 7, 2010)

	First release.

About ProDy

ProDy is a free and open-source Python package for protein structural dynamics
and sequence evolution analysis. It is designed as a flexible and responsive
API suitable for interactive usage and application development.

	People

	Citing

	Credits

	Funding

	License

People

ProDy is being developed in the Bahar Lab [http://www.ccbb.pitt.edu/faculty/bahar/] at the University of Pittsburgh [http://www.pitt.edu/]
with support from NIH R01 GM099738 award.

Development Team

Ahmet Bakan [http://ahmetbakan.com] initiated the ProDy project, designed and developed
ProDy, NMWiz, Evol, and DruGUI.

Cihan Kaya [http://pitt.edu/~cihank] is currently overseeing the overall development of
ProDy.

She (John) Zhang [http://www.csb.pitt.edu/Faculty/bahar/lab.html] is currently helping on maintaining and developing
ProDy.

Hongchun Li [http://www.csb.pitt.edu/Faculty/bahar/lab.html] is currently maintaining and developing ANM and GNM servers.

Anindita Dutta [http://www.linkedin.com/pub/anindita-dutta/5a/568/a90] contributed to the development of Evol,
database and sequence [http://prody.csb.pitt.edu/manual/reference/sequence/index.html#module-prody.sequence] modules.

Tim Lezon contributed to development of Rotations and Translation of
Blocks and Membrane ENM.

Wenzhi Mao [http://www.linkedin.com/pub/wenzhi-mao/2a/29a/29] contributed to development of MSA analysis functions.

Lidio Meireles [http://www.linkedin.com/in/lidio] provided insightful comments on the design of ProDy,
and contributed to the development of ProDy Applications.

Contributors

In addition to the development team members, we acknowledge
contributions and feedback from the following individuals:

Ying Liu [http://www.linkedin.com/pub/ying-liu/15/48b/5a9] provided the code for Perturbation Response Scanning method.

Kian Ho [https://github.com/kianho] contributed with bug fixes and unit tests for DSSP functions.

Gökçen Eraslan [http://blog.yeredusuncedernegi.com/] contributed with bug fixes and development and maintenance
insights.

Citing

When using ProDy or NMWiz in published work, please cite:

Bakan A, Meireles LM, Bahar I.

ProDy: Protein Dynamics Inferred from Theory and Experiments.

Bioinformatics 2011 27(11):1575-1577.

When using pairwise2 or KDTree modules in published work, please cite:

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,
Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ.

Biopython: freely available Python tools for computational molecular
biology and bioinformatics.

Bioinformatics 2009 25(11):1422-3.

Credits

ProDy makes use of the following great software:

pyparsing [http://pyparsing.wikispaces.com] is used to define the sophisticated atom selection grammar.
This makes every user a power user by enabling fast access to and
easy handling of atomic data via simple selection statements.

Biopython [http://biopython.org] KDTree package and pairwise2 module, which are distributed ProDy,
significantly enrich and improve the ProDy user experience. KDtree package
allows for fast distance based selections making atom selections suitable for
contact identification. pairwise2 module enables performing sequence alignment
for protein structure comparison and ensemble analysis.

ProDy requires NumPy [http://www.numpy.org] for almost all major functionality including, but not
limited to, storing atomic data and performing normal mode calculations.
The power and speed of NumPy makes ProDy suitable for interactive and
high-throughput structural analysis.

Finally, ProDy can benefit from SciPy [http://www.scipy.org] and Matplotlib [http://matplotlib.org] packages. SciPy
makes ProDy normal calculations more flexible and on low memory machines
possible. Matplotlib allows greatly enriches user experience by allowing
plotting protein dynamics data calculated using ProDy.

Funding

Continued development of protein dynamics software ProDy is supported by NIH
through R01 GM099738 award.

License

ProDy

ProDy is available under the MIT License [http://opensource.org/licenses/MIT]:

ProDy: A Python Package for Protein Dynamics Analysis

Copyright (C) 2010-2014 University of Pittsburgh

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Biopython

Biopython [http://biopython.org] KDTree package and pairwise2 module are distributed with the ProDy
package. Biopython is developed by The Biopython Consortium and is available
under the Biopython license [http://www.biopython.org/DIST/LICENSE]:

 Biopython License Agreement

Permission to use, copy, modify, and distribute this software and its
documentation with or without modifications and for any purpose and
without fee is hereby granted, provided that any copyright notices
appear in all copies and that both those copyright notices and this
permission notice appear in supporting documentation, and that the
names of the contributors or copyright holders not be used in
advertising or publicity pertaining to distribution of the software
without specific prior permission.

THE CONTRIBUTORS AND COPYRIGHT HOLDERS OF THIS SOFTWARE DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

Pyparsing

The pyparsing [http://pyparsing.wikispaces.com] module is distributed with the ProDy package. Pyparsing is
developed by Paul T. McGuire and is available under the MIT License [http://opensource.org/licenses/MIT]:

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Argparse

The argparse module [http://code.google.com/p/argparse/] is distributed
with the ProDy package. Argparse is developed by Steven J. Bethard and
is available under the Python Software Foundation License [http://docs.python.org/license.html].

CEalign

CEalign module is distributed with ProDy. The original CE method was developed
by Ilya Shindyalov and Philip Bourne. The Python version which is used by ProDy
is developed by Jason Vertrees and available under the New BSD license:

Copyright (c) 2007, Jason Vertrees.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 prody	

Index

 E
 | H
 | P

E

 	
 	
 environment variable

 	HOME

 	PATH, [1], [2], [3]

 	PYTHONPATH

H

 	
 	HOME

P

 	
 	PATH, [1], [2], [3]

 	prody (module)

 	
 Python Enhancement Proposals

 	PEP 8, [1]

 	PEP 8#imports

 	PEP 8#whitespace-in-expressions-and-statements

 	
 	PYTHONPATH

 _static/gallery/p38_modes_123_sm.png

_static/gallery/p38_msf.png
—reiarcz
Z & annes

« Binding posiat
r<om

_static/gallery/p38_mode_1_sm.png

_static/gallery/p38_modes_123.png

_static/gallery/showprotein_sm.png

_static/img/glyphicons-halflings-white.png
VO a
SO U

_static/gallery/p38_network.png

_static/gallery/p38_network_sm.png

_static/img/glyphicons-halflings.png
TnQ=e® x %28 S vxQaQaQqoOue

ALOALOOGOQOCCEEM™O=< w5l

SSEFRAa2@ABIITT L~

/79006CCE &K KU <>

000000406000« - *

0EsFHYOOALE XM -
A NN -]

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/file.png

_static/logo.png
BProDy

Protein Dynamics & Sequence Analusis

_static/down.png

_static/nm.png

_static/nmwiz.png
MENMWIz

Novrmal Mode Wizard for VMD

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 ProDy Manual

 		
 Installation

 		
 Required Software

 		
 Quick Install

 		
 Download & Install

 		
 Recommended Software

 		
 Included in ProDy

 		
 Source Code

 		
 Applications

 		
 ProDy Applications

 		
 prody align

 		
 prody anm

 		
 prody biomol

 		
 prody blast

 		
 prody catdcd

 		
 prody contacts

 		
 prody eda

 		
 prody fetch

 		
 prody gnm

 		
 prody pca

 		
 prody select

 		
 Evol Applications

 		
 evol coevol

 		
 evol conserv

 		
 evol fetch

 		
 evol filter

 		
 evol merge

 		
 evol occupancy

 		
 evol rankorder

 		
 evol refine

 		
 evol search

 		
 Reference Manual

 		
 Atomic Data

 		
 Database Support

 		
 Dynamics Analysis

 		
 Ensemble Analysis

 		
 KDTree

 		
 Measurement Tools

 		
 Protein Structure

 		
 Sequence Analysis

 		
 Trajectory I/O

 		
 ProDy Utilities

 		
 Applications API

 		
 Configuration & Logging

 		
 Developer’s Guide

 		
 Contributing to ProDy

 		
 Install Git and a GUI

 		
 Fork and Clone ProDy

 		
 Setup Working Environment

 		
 Modify, Test, and Commit

 		
 Push and Pull Request

 		
 Update Local Copy

 		
 Documenting ProDy

 		
 Building Manual

 		
 Building Website

 		
 How to Make a Release

 		
 Style Guide for ProDy

 		
 Introduction

 		
 Code Layout

 		
 Whitespaces

 		
 Naming Conventions

 		
 Variable Names

 		
 Testing ProDy

 		
 Running Unittests

 		
 Unittest Development

 		
 Writing Tutorials

 		
 Tutorial Setup

 		
 Style and Organization

 		
 Input/Output Files

 		
 Including Code

 		
 Including Figures

 		
 Testing Code

 		
 Publishing Tutorial

 		
 Making Windows Installers

 		
 Cross-platform Issues

 		
 Numpy integer type

 		
 Relative paths

 		
 Release Notes

 		
 ProDy 1.9 Series

 		
 1.9.4 (Feb 02, 2018)

 		
 1.9.3 (Oct 09, 2017)

 		
 1.9.2 (Aug 29, 2017)

 		
 1.9.1 (Aug 18, 2017)

 		
 1.9 (May 23, 2017)

 		
 ProDy 1.8 Series

 		
 1.8.2 (Jun 5, 2016)

 		
 1.8.1 (May 28, 2016)

 		
 1.8 (May 13, 2016)

 		
 ProDy 1.7 Series

 		
 1.7.1 (May 31, 2015)

 		
 1.7 (Dec 23, 2013)

 		
 ProDy 1.6 Series

 		
 1.6.1 (May 31, 2015)

 		
 1.5 (Dec 23, 2013)

 		
 ProDy 1.5 Series

 		
 1.5.1 (Dec 24, 2013)

 		
 1.5 (Dec 23, 2013)

 		
 ProDy 1.4 Series

 		
 1.4.9 (Nov 14, 2013)

 		
 1.4.8 (Nov 4, 2013)

 		
 1.4.7 (Oct 29, 2013)

 		
 1.4.6 (Oct 16, 2013)

 		
 1.4.5 (Sep 6, 2013)

 		
 1.4.4 (July 22, 2013)

 		
 1.4.3 (June 14, 2013)

 		
 1.4.2 (April 19, 2013)

 		
 1.4.1 (Dec 16, 2012)

 		
 1.4 (Dec 2, 2012)

 		
 ProDy 1.3 Series

 		
 1.3.1 (Nov 6, 2012)

 		
 1.3 (Sep 30, 2012)

 		
 ProDy 1.2 Series

 		
 1.2.1 (Sep 6, 2012)

 		
 1.2 (Aug 30, 2012)

 		
 ProDy 1.1 Series

 		
 1.1 (June 1, 2012)

 		
 ProDy 1.0 Series

 		
 1.0.4 (May 2, 2012)

 		
 1.0.3 (May 1, 2012)

 		
 1.0.2 (May 1, 2012)

 		
 1.0.1 (Apr 6, 2012)

 		
 1.0 (Mar 7, 2012)

 		
 ProDy 0.9 Series

 		
 0.9.4 (Feb 4, 2012)

 		
 0.9.3 (Feb 1, 2012)

 		
 0.9.2 (Jan 11, 2012)

 		
 0.9.1 (Nov 9, 2011)

 		
 0.9 (Nov 8, 2011)

 		
 ProDy 0.8 Series

 		
 0.8.3 (Oct 16, 2011)

 		
 0.8.2 (Oct 14, 2011)

 		
 0.8.1 (Sep 16, 2011)

 		
 0.8 (Aug 24, 2011)

 		
 ProDy 0.7 Series

 		
 0.7.2 (Jun 21, 2011)

 		
 0.7.1 (Apr 28, 2011)

 		
 0.7 (Apr 4, 2011)

 		
 ProDy 0.6 Series

 		
 0.6.2 (Mar 16, 2011)

 		
 0.6.1 (Mar 2, 2011)

 		
 0.6 (Feb 22, 2011)

 		
 ProDy 0.5 Series

 		
 0.5.3 (Feb 11, 2011)

 		
 0.5.2 (Jan 12, 2011)

 		
 0.5.1 (Dec 31, 2010)

 		
 0.5 (Dec 21, 2010)

 		
 ProDy 0.2 Series

 		
 0.2 (Nov 16, 2010)

 		
 ProDy 0.1 Series

 		
 0.1.2 (Nov 9, 2010)

 		
 0.1.1 (Nov 8, 2010)

 		
 0.1 (Nov 7, 2010)

 		
 About ProDy

 		
 People

 		
 Development Team

 		
 Contributors

 		
 Citing

 		
 Credits

 		
 Funding

 		
 License

 		
 ProDy

 		
 Biopython

 		
 Pyparsing

 		
 Argparse

 		
 CEalign

_static/up.png

_static/ubiquitin.png

_static/up-pressed.png

_static/gallery/Evol_MBE_Fig1.png

_static/gallery/Evol_MBE_Fig2.png

_static/gallery/Evol_PLoS_Fig6.png
ittt L, Faner W

_static/gallery/NMWiz.png

_static/gallery/NMWiz_network.png

_static/gallery/NMWiz_threemodes.png

_static/gallery/NMWiz_compare.png

_static/gallery/NMWiz_net3m.png

_static/gallery/ProDy_ProtSci_Fig3.png

_static/gallery/ProDy_ProtSci_Fig4.png

_static/gallery/ProDy_Bioinf_Fig1.png
p3Bensemble p38 networkmosel
el [

Overlap table Sampling along ANM modes

B

_static/gallery/ProDy_PNAS_Fig2.png

_static/gallery/cross-projection.png

_static/gallery/gyradius.png
1000

800

600

400

200

——

133

13.2

5]]
= o
= [a]

() uoneIAB Jo snipey

131
12.8

12.7

12.60

Frame index

_static/gallery/ProDy_protein.png
— A
-+ 1038 water
— 128

- e

° © 122 a 811362

_static/gallery/overlap-table_white.png

_static/gallery/p38_anm_pca.png

_static/gallery/nm.png

_static/gallery/overlap-table.png

_static/gallery/p38_mode_1.png

_static/gallery/p38_anm_pca_sm.png

_static/gallery/p38_ensemble.png

