

Documentation

	Quick start
	Installation

	Getting started

	Dependence

	Independent copies

	Random matrices

	Function application

	Conditioning

	Random parameters

	Custom models

	Examples
	The central limit theorem

	The semicircle law

	Custom distributions

	API Reference
	Distributions

	Utilities

Repository

Probly is open source and available on GitHub [https://github.com/bencwallace/probly].

Indices and tables

	Index

	Search Page

Quick start

Installation

Probly can be installed using pip [https://pypi.org/project/pip/] from GitHub as follows:

pip install git+https://github.com/bencwallace/probly#egg=probly

Note

Probly makes use of NumPy [http://www.numpy.org/], SciPy [https://www.scipy.org/], and Matplotlib [https://matplotlib.org/].

Getting started

We begin by importing probly.

>>> import probly as pr

Next, we initialize some pre-packaged random variables.

>>> # A Bernoulli random variable with parameter 0.5
>>> X = pr.Ber()
>>> # A Bernoulli random variable independent of X with parameter 0.9
>>> Y = pr.Ber(0.9)
>>> # A uniform random variable on the interval [-10, 10]
>>> Z = pr.Unif(-10, 10)

Calling a random variable produces a random sample from its distribution.
In order to obtain reproducible results, we pass a seed as an argument to
the random variable. Calling the same random variable with the same seed
will produce the same result.

>>> seed = 99 # An arbitrary but fixed seed
>>> Z(seed)
-4.340731821079555
>>> Z(seed)
-4.340731821079555

Note

An entire Probly session can be seeded by using pr.seed. This will determine the sequence of outputs produced
by sampling a sequence of random variables initialized in a given order with a given sequence of seeds; it is
distinct from seeding the random variables themselves.

Random variables can be combined via arithmetical operations.

>>> W = (1 + X) * Z / (5 + Y)
>>> # W is a new random object
>>> type(W)
<class 'probly.core.RandomVariable'>

The result of such operations is itself a random variable whose
distribution may not be know explicitly.
We can nevertheless sample from this unknown distribution!

>>> W(seed)
-1.4469106070265185

We can also compute properties of a random variable, such as its mean.

>>> W.mean()
0.023611159797914952

Dependence

Note that W is dependent on X, Y, and Z.
This essentially means that the following must output True.

>>> x = X(seed)
>>> y = Y(seed)
>>> z = Z(seed)
>>> w = W(seed)
>>> w == (1 + x) * z / (5 + y)
True

Independent copies

Separate instantiations of a random variable will produce independent copies: for instance, samples from two
instantiations of a normal random variable will be independent of one another, even with the same seed.

>>> pr.Normal()(seed)
-0.8113001427396095
>>> pr.Normal()(seed)
0.09346601550504334

Independent copies of a random variable can also be produced as follows.

>>> Wcopy = W.copy()
>>> Wcopy(seed)
2.430468450181704

Random matrices

Random NumPy arrays (in particular, random matrices) can be formed from
other random variables.

>>> M = pr.array([[X, Z], [W, Y]])
>>> type(M)
<class 'probly.core.RandomVariable'>

Random arrays can be manipulated like ordinary NumPy arrays.

>>> M[0, 0](seed) == X(seed)
True
>>> import numpy as np
>>> S = np.sum(M)
>>> S(seed) == X(seed) + Z(seed) + W(seed) + Y(seed)
True

Function application

Any functions can be lifted to a map between random variables
using the @pr.lift decorator.

>>> from numpy.linalg import det
>>> det = pr.lift(det)

An equivalent way of doing this is as follows:

@pr.lift
def det(m):
 return np.linalg.det(m)

The function det can now be applied to M.

>>> D = det(M)
>>> D(seed)
-5.280650914177544

Conditioning

Random variables can be conditioned as in the following example:

>>> C = W.given(Y == 1, Z > 0)
>>> C(seed)
1.97965814796514

Any boolean-valued random variable can be used as a condition.

Random parameters

Random variables can themselves be used to parameterize other random variables, as in the following example:

>>> U = pr.Unif()
>>> B = pr.Ber(U)
>>> B(seed)
0

Custom models

Custom models can be constructed by applying the pr.model decorator, evaluated on a list of parameter names,
to a function of these parameters whose return value is a sampler (a function from a random seed to a random sample).

>>> @pr.model('a', 'b')
>>> def SquareOfUniform(a, b):
>>> def sampler(seed):
>>> np.random.seed()
>>> return np.random.uniform(a, b) ** 2
>>> return sampler

This makes SquareOfUniform into a class whose instances are random variable objects that can be manipulated as
above. To construct classes of random variables with additional functionality (e.g. built-in mean, variance, etc.),
one can directly subclass Distribution as in the example at Custom distributions.

Examples

The central limit theorem

Let X be a Bernoulli random variable.

>>> import probly as pr
>>> X = pr.Ber()

We are interested in the sum of many independent copies of X. For this
example, let’s take “many” to be 1000.

>>> num_copies = 1000
>>> Z = np.sum(pr.iid(X, num_copies))

The sum Z is itself a random variable, but its precise distribution,
unlike that of X, is unknown.

Nevertheless, the central limit theorem states, roughly, that Z is
approximately normally distributed. We can check this empirically by plotting
a histogram of the distribution of Z.

The more samples of Z we use to
produce the histogram, the better an approximation it will be to the variable’s
true distribution. But each time we sample Z, we must sample 1000 Bernoulli
random variables and sum the results, so computing a histogram from very many
samples can take a long time. Below we use 1000 samples, but you may want to
reduce this number if running the code takes too long.

>>> pr.hist(Z, num_samples=1000)

The result resembles the famous bell-shaped curve of the normal distribution.

[image: _images/clt_ber_1000_1000.png]

The semicircle law

A Wigner random matrix is a random symmetric matrix whose upper-diagonal entries
are independent and identically distributed. We can construct a Wigner matrix
using Wigner. For instance, let’s create a 1000-dimensional
Wigner matrix with normally distributed entries.

>>> import probly as pr
>>> dim = 1000
>>> M = pr.Wigner(dim)

The semicircle law states that if we normalize this matrix by dividing by the
square root of 1000, then the eigenvalues of the resulting (random) matrix should
follow the
semicircle distribution [https://en.wikipedia.org/wiki/Wigner_semicircle_distribution].
Let’s check this empirically. First, we normalize M and then we construct its
(random) eigenvalues by applying NumPy’s
numpy.linalg.eigvals [https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eigvals.html] using lift().

>>> from numpy.linalg import eigvals
>>> M = M / np.sqrt(dim)
>>> eigvals = pr.lift(eigvals)
>>> E = eigvals(M)

The distribution of the eigenvalues can be visualized using the hist()
function. Note that we need only take 1 sample.

>>> pr.hist(E, num_samples=1) # doctest: +SKIP

[image: _images/semicircle_normal_1000.png]

Custom distributions

The following example shows how to create a custom distribution. We’ll start by constructing a simple non-random
class.

>>> class Human:
>>> def __init__(self, height, weight):
>>> self.height = height
>>> self.weight = weight

We’d like to create a kind of normal distribution over possible humans. We can do this as follows.

>>> import numpy as np
>>> from probly.distr.distributions import Distribution
>>> class NormalHuman(Distribution):
>>> def __init__(self, female_stats, male_stats):
>>> self.female_stats = female_stats
>>> self.male_stats = male_stats
>>> super().__init__()
>>> def _sampler(self, seed):
>>> np.random.seed(seed)
>>> gender = np.random.choice(2, p=[0.5, 0.5])
>>> if gender == 0:
>>> height_mean, weight_mean, cov = self.female_stats
>>> else:
>>> height_mean, weight_mean, cov = self.male_stats
>>> means = [height_mean, weight_mean]
>>> np.random.seed(seed)
>>> height, weight = np.random.multivariate_normal(means, cov)
>>> return Human(gender, height, weight)

All the capabilities of random variables, including all those discussed above, will be available to our new random
variable objects.

Note

Of course, certain operations may result in errors on sampling. For instance, sampling from the “sum” of two random
humans will raise an error unless we overload addition for humans by defining __add__(self, other) in the
Human class.

Let’s initialize an instance of this random variable.

>>> f_cov = np.array([[80, 5], [5, 99]])
>>> f_stats = [160, 65, f_cov]
>>> m_cov = np.array([[70, 4], [4, 11]])
>>> m_stats = [180, 75, m_cov]
>>> H = NormalHuman(f_stats, m_stats)

We can sample from and manipulate such a random variable as usual.

>>> @pr.lift
>>> def bmi(human):
>>> return human.weight / (human.height / 100) ** 2
>>> BMI = bmi(H)
>>> BMI(seed)
23.57076738620301

API Reference

Reference

	Distributions
	Discrete random variables

	Continuous random variables

	Random arrays

	Utilities

Distributions

	Distribution

	

Discrete random variables

	RandInt

	

	Multinomial

	

	Bin

	

	Ber

	

	NegBin

	

	Geom

	

	HyperGeom

	

	Pois

	

Continuous random variables

	Gamma

	

	ChiSquared

	

	Exp

	

	Unif

	

	Normal

	

	Beta

	

	PowerLaw

	

	F

	

	StudentT

	

	Laplace

	

	Logistic

	

	VonMises

	

Random arrays

	Wigner

	

	Wishart

	

Utilities

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/quick_hist.png

_static/clt_ber_1000_1000.png

_images/semicircle_normal_1000.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/semicircle_normal_1000.png

nav.xhtml

 Table of Contents

 		
 Repository

 		
 Quick start

 		
 Installation

 		
 Getting started

 		
 Dependence

 		
 Independent copies

 		
 Random matrices

 		
 Function application

 		
 Conditioning

 		
 Random parameters

 		
 Custom models

 		
 Examples

 		
 The central limit theorem

 		
 The semicircle law

 		
 Custom distributions

 		
 API Reference

 		
 Distributions

 		
 Discrete random variables

 		
 Continuous random variables

 		
 Random arrays

 		
 Utilities

_images/clt_ber_1000_1000.png

_static/up-pressed.png

_static/up.png

