
Probabilistic 20/20 Documentation
Release 1.2.3

Collin Tokheim

Jul 17, 2019





Contents

1 Download 3

2 Installation 5

3 Quick Start 7

4 Tutorial 9

5 FAQ 15

6 Citation 17

i



ii



Probabilistic 20/20 Documentation, Release 1.2.3

Author Collin Tokheim

Contact ctokhei1 AT alumni.jh.edu

Source code GitHub

Q&A Biostars (tag: prob2020)

The Probabibilistic 20/20 statistical test identifies genes with signficant oncogene-like and tumor suppressor gene-like
mutational patterns for small somatic variants in coding regions. Putative signficant oncogenes are found through
evaluating missense mutation clustering and in silico pathogenicity scores. Often highly clustered missense mutations
are indicative of activating mutations. While statistically signficant tumor suppressor genes (TSGs) are found by
abnormally high proportion of inactivating mutations.

Probabilistic 20/20 evaluates statistical significance by employing monte carlo simulations, which incorporates ob-
served mutation base context. Monte carlo simulations are performed within the same gene and thus avoid building
a background distribution based on other genes. This means that the statistical test can be applied to either all genes
in the exome from exome sequencing or to a certain target set of genes from targeted sequencing. Additionally, the
direct results of somatic mutation simulations can be accessed in a Mutation Annotation Format (MAF) file.

The Probabilistic 20/20 test has nice properties since it accounts for several factors that could effect the significance
of driver genes.

• gene length

• mutation context

• gene sequence (e.g. codon bias)

Contents:

Contents 1

https://github.com/KarchinLab/probabilistic2020
https://www.biostars.org/t/prob2020/


Probabilistic 20/20 Documentation, Release 1.2.3

2 Contents



CHAPTER 1

Download

1.1 Probabilistic 20/20 releases

You can download the package below, or install directly from github (see Installation).

• probabilistic2020-v1.2.3 7/17/2019 Minor fixes

• probabilistic2020-v1.2.2 2/18/2019 Fixed installation bug caused by cython on python3.7

• probabilistic2020-v1.2.1 2/14/2019 Fixed installation bug

• probabilistic2020-v1.2.0 10/8/2017 Improved hotmaps 1d efficiency and added capability to drop silent muta-
tions in simulations

• probabilistic2020-v1.1.1 5/21/2017 Fixed bug for newer releases of numpy

• probabilistic2020-v1.1.0 12/7/2016 Added HotMAPS 1D algorithm to find codons with significant clustering of
missense mutations

• probabilistic2020-v1.0.7 11/29/2016 Fixed simulated indel bug

• probabilistic2020-v1.0.6 11/7/2016 Major bug fix in simulations (users should upgrade version)

• probabilistic2020-v1.0.5 10/3/2016 Fixed python3 conversion error in pickle module

• probabilistic2020-v1.0.4 8/16/2016 Fixed mutation uniquing

• probabilistic2020-v1.0.3 8/5/2016 Fixed p-value calculation bug in 1.0.1

• probabilistic2020-v1.0.2 6/26/2016 Fixed installation on python 3

• probabilistic2020-v1.0.1 6/14/2016 Improved memory handling

• probabilistic2020-v1.0.0 5/1/2016 Initial release

1.2 Example data

• Example pancreatic adenocarcinoma data set

3

https://github.com/KarchinLab/probabilistic2020/archive/v1.2.3.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.2.2.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.2.1.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.2.0.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.1.1.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.1.0.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.0.7.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.0.6.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.0.5.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.0.4.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.0.3.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.0.2.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.0.1.tar.gz
https://github.com/KarchinLab/probabilistic2020/archive/v1.0.0.tar.gz
http://karchinlab.org/data/2020+/pancreatic_example.tar.gz


Probabilistic 20/20 Documentation, Release 1.2.3

1.3 Other

• Pre-computed scores data set

• Reference SNVBox transcripts in BED format

4 Chapter 1. Download

http://karchinlab.org/data/2020+/scores.tar.gz
http://karchinlab.org/data/2020+/snvboxGenes.bed


CHAPTER 2

Installation

2.1 Python Package Installation

Using the python package installation, all the required python packages for the probabibilistic 20/20 test will automat-
ically be installed for you. We recommend use of python version 3.6, if possible.

To install the package into python you can use pip. If you are installing to a system wide python then you may need to
use sudo before the pip command.

$ pip install probabilistic2020

The scripts for Probabilstic 20/20 can then be found in Your_Python_Root_Dir/bin. You can check the installation
with the following:

$ which probabilistic2020
$ probabilistic2020 --help

2.2 Local installation

Local installation is a good option if you do not have privilege to install a python package and already have the
required packages. The source files can also be manually downloaded from github at https://github.com/KarchinLab/
probabilistic2020/releases.

Required packages:

• numpy

• scipy

• pandas>=0.17.0

5

https://travis-ci.org/KarchinLab/probabilistic2020
https://github.com/KarchinLab/probabilistic2020/releases
https://github.com/KarchinLab/probabilistic2020/releases


Probabilistic 20/20 Documentation, Release 1.2.3

• pysam

If you don’t have the above required packages, you will need to install them. For the following commands to work
you will need pip. If you are using a system wide python, you will need to use sudo before the pip command.

$ cd probabilstic2020
$ pip install -r requirements.txt

Next you will need to build the Probabilistic 20/20 source files. This is can be accomplished in one command.

$ make build

Once finished building you can then use the scripts in the probabilstic2020/prob2020/console directory. You can check
the build worked by the following:

$ python prob2020/cosole/probabilistic2020.py --help

6 Chapter 2. Installation

http://pip.readthedocs.org/en/latest/installing.html


CHAPTER 3

Quick Start

The quick start is meant to test that everything is working with the installation of the probabilistic2020 package.
This provides running probabilistic2020 with the minimum number of steps to execute the statistical test. For more
expansive user instructions see Tutorial.

3.1 Installation

Please see the Installation.

3.2 Downloading Example

Download the quick start example data, and extract the resulting tarball.

$ wget http://karchinlab.org/data/2020+/pancreatic_example.tar.gz
$ tar xvzf pancreatic_example.tar.gz
$ cd pancreatic_example

3.3 Input files

3.3.1 Gene BED annotation

BED gene annotation files should contain a single reference transcript per gene. The name field in the BED file should
contain the gene name (not the transcript). An example BED file containg the annotations for the largest transcripts in
SNVBox is named snvboxGenes.bed.

7



Probabilistic 20/20 Documentation, Release 1.2.3

3.3.2 Gene FASTA

Gene sequences are extracted from a genome FASTA file, and is a step that only needs to be done once. This has
already been done for the example BED file provided, but if you were to use a different transcript annotation then you
would need to follow the Gene FASTA.

3.3.3 Mutation Annotation Format (MAF) file

Mutations are saved in a MAF-like format. Not All fields in MAF spec are required, and columns may be in any order.
Mutations for pancreatic adenocarcinoma are in the file pancreatic_adenocarcinoma.txt.

3.4 Running the Example

To execute the statistical test for TSG-like genes by examining elevated proportion of inactivating mutations, the tsg
sub-command for probabilistic2020 is used. To limit the run time for this example, you can limit the number of
iterations to 10,000 with the -n parameter. You can further speed up the example by using multiple computer cores
with the -p parameter.

$ probabilistic2020 tsg \
-n 10000 \
-i snvboxGenes.fa \
-b snvboxGenes.bed \
-m pancreatic_adenocarcinoma.txt \
-o pancreatic_output_comparison.txt

Your results should match those found in the file pancreatic_output.txt. Particularly, TP53, SMAD4, ARID1A, and
SMARCA4 should have a significant inactivating Benjamini-Hochberg (BH) q-value of less than .1.

8 Chapter 3. Quick Start



CHAPTER 4

Tutorial

Probabilistic 20/20 consists of two broad statistical tests (oncogene-like and tsg-like) and somatic mutation simulation
framework. Internally, the simulation framework is used to establish statistical significance in the hypothesis test
through the probabilistic2020 command. However, the simulation framework through the mut_annotate command
can also be used to create a simulated MAF file where aferwords all mutations are distributed like passengers based
on uniform null distribution. Moreover, a set of mutational features for each gene representative of driver genes (used
in 20/20+) can also be created.

4.1 Input formats

4.1.1 Mutations

Mutations are provided in a Mutation Annotation Format (MAF) file. Columns can be in any order, and only a few
columns in the MAF file are needed. The following is a list of the required columns.

• Hugo_Symbol (or named “Gene”)

• Chromosome

• Start_Position

• End_Position

• Reference_Allele

• Tumor_Seq_Allele2 (or named “Tumor_Allele”)

• Tumor_Sample_Barcode (or named “Tumor_Sample”)

• Variant_Classification

The remaining columns in the MAF specification can be left empty or not included. Since a MAF file has many
additional annotation columns, removing additional columns will reduce the memory usage of probabilistic2020.

Only coding variants found in the Variant_Classification column will be used, which includes the following:
‘Missense_Mutation’, ‘Silent’, ‘Nonsense_Mutation’, ‘Splice_Site’, ‘Nonstop_Mutation’, ‘Translation_Start_Site’,

9



Probabilistic 20/20 Documentation, Release 1.2.3

‘Frame_Shift_Ins’, ‘Frame_Shift_Del’, ‘In_Frame_Ins’, ‘In_Frame_Del’, ‘Frame_Shift_Indel’, or ‘In_Frame_Indel’.
Note, although ‘In_Frame_Indel’ and ‘Frame_Shift_Indel’ are not official MAF specification values, for the purpose
of this program represent either and insertion or deletion. Other values for the Variant_Classification column are
assumed to be non-coding, and dropped from the analysis.

4.1.2 Gene BED file

A single reference transcript for each gene is stored in BED12 format. Instead of using the transcript name for the
name field in the BED file, the gene symbol which matches the MAF file should be used. In the example data, the
longest CDS transcript from SNVBox was used.

4.1.3 Gene FASTA

Gene sequences are extracted from a genome FASTA file, and is a step that only needs to be done once. To do this,
you need a BED file with names corresponding to genes, and a genome FASTA (e.g. hg19). You can download hg19
from here. Creating the gene sequence FASTA is then done by the extract_gene_seq script:

$ extract_gene_seq -i hg19.fa -b snvboxGenes.bed -o snvboxGenes.fa

In this case the BED file is created using SNVBox, a genome FASTA file for hg19 (hg19.fa), and the resulting coding
sequences for the gene are stored in snvboxGenes.fa.

4.1.4 Pre-computed scores (optional)

Two pre-computed scores are used to evaluate missense pathogenicity scores and evolutionary conservation. Both
are provided in the example data, matching the reference transcript annotation from SNVBox. Including the score
information is useful, but optional. The pre-computed missense pathogenicity scores are from the VEST algorithm.
The evolutionary conservation scores are calculated as the entropy of a specific column in the protein-translated version
of UCSC’s 46-way vertebrate alignment.

4.2 Running the statistical test

The statistical tests account for gene sequence and mutational base context. Each gene is represented by a single
reference transcript (above is longest CDS SNVBox transcript). By default the relevant sequence context for mutations
are utilized from CHASM paper (denoted by -c 1.5 parameter). This includes some common dinucletoide contexts
like CpG, and otherwise just a single base. Ultimately a multiple testing corrected q-value is reported using the
Benjamini-Hochberg (BH) method.

Technical detail: Running on the obtained pan-cancer data may take several hours to run on a single core. Specifying
the -p parameter to use multiple processors will speed up run time if available. Lowering the number of iterations
(default: 100,000) will decrease run time, but also decrease the resolution of p-values.

4.2.1 Running oncogene sub-command

The oncogene sub-command examines missense position clustering (by codon) and elevated in silico pathogenicity
scores (VEST). The score directory contains pre-computed values for VEST scores. The p-values will be combined
using fisher’s method to report a single p-value with a BH FDR. In the below example, the command is parallelized
onto 10 processors with the -p parameter. Lower this if the compute is not available.

10 Chapter 4. Tutorial

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit
http://www.ncbi.nlm.nih.gov/pubmed/23819870
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763410/


Probabilistic 20/20 Documentation, Release 1.2.3

$ probabilistic2020 oncogene \
-i genes.fa \
-b genes.bed \
-s score_dir \
-m mutations.txt \
-c 1.5
-p 10 \
-o oncogene_output.txt

Where genes.fa is your gene FASTA file for your reference transcripts in genes.bed, mutations.txt is your MAF file
containing mutations, score_dir is the directory containing the pre-computed VEST scores, and oncogene_output.txt
is the file name to save the results.

Output format

The oncogene statistical test will output a tab-delimited file having columns for the p-values and Benjamini-Hochberg
q-values:

• “entropy”

• “vest” (only included if score_dir provided)

• “combined” (only included if score_dir provided)

The entropy columns evaluate missense clustering at the same codon by using a normalized missense position entropy
statistic. Low values for entropy correspond to increased clustering of missense mutations. The vest columns examine
whether missense mutations tend to have higher in silico pathogenicity scores for missense mutations than expected.
The “combined” columns, combine the p-values from VEST scores and missense clustering using Fisher’s method.

4.2.2 Running tsg sub-command

The tsg sub-command evaluates for elevated proportion of inactivating point mutations to find TSG-like genes.

$ probabilistic2020 tsg \
-i genes.fa \
-b genes.bed \
-m mutations.txt \
-p 10 \
-c 1.5 \
-o tsg_output.txt

Where genes.fa is your gene FASTA file for your reference transcripts in genes.bed, mutations.txt is your MAF file
containing mutations, and tsg_output.txt is the file name to save the results.

Output format

The tsg statistical test examines inactivating single nucleotide variants (nonsense, splice site, lost start, and lost stop).
Both the p-value (“inactivating p-value”) and the Benjamini-hochberg q-value (“inactivating BH q-value”) are reported
for a higher than expected fraction of inactivating mutations. Mutations which could not be placed onto the reference
transcript will be indicated in the “SNVs Unmapped to Ref Tx” column.

4.2. Running the statistical test 11



Probabilistic 20/20 Documentation, Release 1.2.3

4.2.3 Running hotmaps1d sub-command

The hotmaps1d sub-command evaluates particular amino acid residues for elevated cluster of missense mutations in
the protein sequence.

$ probabilistic2020 hotmaps1d \
-i genes.fa \
-b genes.bed \
-m mutations.txt \
-w 3 \
-p 10 \
-c 1.5 \
-o hotmaps1d_output.txt

Where genes.fa is your gene FASTA file for your reference transcripts in genes.bed, mutations.txt is your MAF file
containing mutations, and hotmaps1d_output.txt is the file name to save the results. HotMAPS 1D also takes a window
size for examining missense mutation clustering. In the above example, the parameter -w 3 considers 3 residues on
either side of each mutated residue. A large number of mutations in this small window may indicate the mutations form
a “hotspot”, and likely contain driver mutations at the mutated residue. The window size can be changed depending
on the preferred granularity of the analysis.

Output format

The hotmaps1d statistical test examines the position of missense mutations in sequence. Both the p-value (“p-value”)
and the Benjamini-hochberg q-value (“q-value”) are reported for a higher than expected ammount of missense muta-
tions within a given window around a mutation. The “mutation count” column reports how many missense mutations
were observed at the particular codon, and the “windowed sum” column reports how many missense mutations were
observed in a sequence window encompassing the particular codon.

4.3 Simulating somatic mutations

The probabilistic2020 package also allows saving the results of underlying simulation of somatic mutations. The
simulations need a set of observed mutations to create simulated mutations. Briefly, for each gene, SNVs (single
nucleotide variants) are moved with uniform probability to any matching position in the gene sequence, holding the
total number of SNVs fixed. A matching position was required to have the same base context (e.g. -c 1.5 = C*pG,
CpG*, TpC*, G*pA, A, C, G, T) as the observed position. This method of generating a null distribution controls for
the particular gene sequence, gene length and mutation base context. To simulate small insertions/deletions (indels),
indels are moved to different genes according to a multinomial model where the probability is proprotional to the gene
length. This can be done for both creating a simulated MAF file or simulated features calculated from the mutations.

Simulations are performed with the mut_annotate command. The –seed parameter will pass a seed to the pseudo
random number generator. If you are performing several simulations for MAF files and features, then it is critical that
every time the seed for each simulation match.

4.3.1 Simulated MAF

MAF output is designated with the –maf flag, but is a substantially reduced version then a typical MAF file because
it only contains the relevant columns noted in the mutations input format section. To indicate mutations for each
gene should be simulated once, the -n 1 parameter is used. If zero is supplied for this parameter, then simulations
are not performed and rather the observed mutations are just annotated as a MAF file on the corresponding reference
transcripts in genes.bed. The pseudo random number generator seed can be passed with the –seed argument.

12 Chapter 4. Tutorial



Probabilistic 20/20 Documentation, Release 1.2.3

$ mut_annotate \
--maf \
-n 1 \
-i genes.fa \
-b genes.bed \
-m mutations.txt \
-p 10 \
-c 1.5 \
-o maf_output.txt

4.3.2 Simulated Features

Simulated features which serve as input to 20/20+ can also be generated.

$ mut_annotate \
--summary \
-n 1 \
-i genes.fa \
-b genes.bed \
-m mutations.txt \
-p 10 \
-c 1.5 \
-o summary_output.txt

4.3. Simulating somatic mutations 13

http://2020plus.readthedocs.io/


Probabilistic 20/20 Documentation, Release 1.2.3

14 Chapter 4. Tutorial



CHAPTER 5

FAQ

Who should I contact if I encounter a problem?

If you believe your problem may be encountered by other users, please post the question on biostars. Check to make
sure your question has not been already answered by looking at posts with the tag prob2020. Otherwise, create a new
post with the prob2020 tag. We will be checking biostars for questions. You may also contact me directly at ctokheim
AT jhu dot edu.

What python version should I use?

We recommend using python 3.6, as the package has been extensively tested on this version of python.

15

https://www.biostars.org/
https://www.biostars.org/t/prob2020/


Probabilistic 20/20 Documentation, Release 1.2.3

16 Chapter 5. FAQ



CHAPTER 6

Citation

Collin J. Tokheim, Nickolas Papadopoulos, Kenneth W. Kinzler, Bert Vogelstein, and Rachel Karchin. Eval-
uating the evaluation of cancer driver genes. PNAS 2016 ; published ahead of print November 22, 2016,
doi:10.1073/pnas.1616440113

If you use the hotmaps1d command to find codons were missense mutations are significantly clustered, please cite the
HotMAPS paper:

Tokheim C, Bhattacharya R, Niknafs N, Gygax DM, Kim R, Ryan M, Masica DL, Karchin R (2016) Exome-scale
discovery of hotspot mutation regions in human cancer using 3D protein structure Cancer Research. Apr. 28.pii:
canres.3190.2015.

17


	Download
	Installation
	Quick Start
	Tutorial
	FAQ
	Citation

