
PLSA
Release 0.1

Sep 18, 2019

Contents:

1 plsa.preprocessors module 1

2 plsa.pipeline module 5

3 plsa.corpus module 7

4 plsa.algorithms package 11
4.1 Submodules . 11

5 plsa.visualize module 17

6 Indices and tables 19

Python Module Index 21

Index 23

i

ii

CHAPTER 1

plsa.preprocessors module

Preprocessors for documents and words.

These preprocessors come in three flavours (functions, closures that return functions, and classes defining callable
objects). The choice for the respective flavour is motivated by the complexity of the preprocessor. If it doesn’t need
any parameters, a simple function will do. If it is simple, does not need to be manipulated interactively, but needs some
parameter(s), then a closure is fine. If it would be convenient to alter parameters of the preprocessor interactively, then
a class is a good choice.

Preprocessors act either on an entire document string or, after splitting documents into individual words, on an iterable
over the words contained in a single document. Therefore, they cannot be combined in arbitrary order but care must
be taken to ensure that the return value of one matches the call signature of the next.

plsa.preprocessors.remove_non_ascii(doc: str)→ str
Removes non-ASCII characters (i.e., with unicode > 127) from a string.

Parameters doc (str) – A document given as a single string.

Returns The document as a single string with all characters of unicode > 127 removed.

Return type str

plsa.preprocessors.to_lower(doc: str)→ str
Converts a string to all-lowercase.

Parameters doc (str) – A document given as a single string.

Returns The document as a single string with all characters converted to lowercase.

Return type str

plsa.preprocessors.remove_numbers(doc: str)→ str
Removes digit/number characters from a string.

Parameters doc (str) – A document given as a single string.

Returns The document as a single string with all number/digit characters removed.

Return type str

1

PLSA, Release 0.1

plsa.preprocessors.remove_tags(exclude_regex: str)→ Callable[[str], str]
Returns callable that removes matches to the given regular expression.

Parameters exclude_regex (str) – A regular expression specifying specific patterns to remove
from a document.

Returns A callable that removes patterns matching the given regular expression from a string.

Return type function

plsa.preprocessors.remove_punctuation(punctuation: Iterable[str])→ Callable[[str], str]
Returns callable that removes punctuation characters from a string.”

Parameters punctuation (iterable of str) – An iterable over single-character strings
specifying punctuation characters to remove from a document.

Returns A callable that removes the given punctuation characters from a string.

Return type function

plsa.preprocessors.tokenize(doc: str)→ Tuple[str, ...]
Splits a string into individual words.

Parameters doc (str) – A document given as a single string.

Returns The document as tuple of individual words.

Return type tuple of str

class plsa.preprocessors.RemoveStopwords(stopwords: Union[str, Iterable[str]])
Bases: object

Instantiate callable objects that remove stopwords from a document.

Parameters stopwords (str or iterable of str) – Stopword(s) to remove from a doc-
ument given as an iterable over words.

Examples

>>> from plsa.preprocessors import RemoveStopwords
>>> remover = RemoveStopwords('is')
>>> remover.words
('is',)

>>> remover.words = 'the', 'are'
>>> remover.words
('the', 'are')

>>> remover += 'is', 'we'
>>> remover.words
('is', 'we', 'the', 'are')

>>> new_instance = remover + 'do'
>>> new_instance.words
('are', 'we', 'is', 'do', 'the')

words
The current stopwords.

2 Chapter 1. plsa.preprocessors module

PLSA, Release 0.1

class plsa.preprocessors.LemmatizeWords(*incl_pos)
Bases: object

Instantiate callable objects that find the root form of words.

Parameters *inc_pos (str) – One or more positional tag(s) indicating the type(s) of words to
retain and to find the root form of. Must be one of ‘JJ’ (adjectives), ‘NN’ (nouns), ‘VB’ (verbs),
or ‘RB’ (adverbs).

Raises KeyError – If the given positional tags are not among the list of allowed ones.

Examples

>>> from plsa.preprocessors import LemmatizeWords
>>> lemmatizer = LemmatizeWords('VB')
>>> lemmatizer.types
('VB',)

>>> lemmatizer.types = 'jj', 'nn'
>>> lemmatizer.types
('JJ', 'NN')

>>> lemmatizer += 'VB', 'NN'
>>> lemmatizer.types
('JJ', 'NN', 'VB')

>>> new_instance = lemmatizer + 'RB'
>>> new_instance.types
('JJ', 'RB', 'NN', 'VB')

types
The current type(s) of words to retain.

plsa.preprocessors.remove_short_words(min_word_len: int) → Callable[[Iterable[str]], Tu-
ple[str, ...]]

Returns a callable that removes short words from an iterable of strings.

Parameters min_word_len (int) – Minimum number of characters in a word for it to be re-
tained.

Returns A callable that removes words shorter than the given threshold from an iterable over strings.

Return type function

3

PLSA, Release 0.1

4 Chapter 1. plsa.preprocessors module

CHAPTER 2

plsa.pipeline module

class plsa.pipeline.Pipeline(*preprocessors)
Bases: object

Encapsulates and applies multiple document preprocessors.

Each preprocessor is assumed to be a callable that takes a single document as input and produces a single
document as output. Importantly, each document fed to the first preprocessor in the chain is delivered as a
single string, while the last preprocessor is required to return it as an iterable over strings with each element
representing one word of that document.

Other than that, preprocessors can be combined in any which way, provided that the return value of one matches
the call signature of the next. The order in which they are applied is the order in which they are specified, i.e.,
from left to right.

Parameters *preprocessors (callable) – Function(s) or other callable object(s) that each
take a single document as input and produce a (processed) document as output.

See also:

plsa.preprocessors

process(doc: str)→ Tuple[str, ...]
Applies a chain of one or more preprocessors to a document.

Parameters doc (str) – A text document given as a single string.

Returns Each element represents one word of the document.

Return type tuple of str

5

PLSA, Release 0.1

6 Chapter 2. plsa.pipeline module

CHAPTER 3

plsa.corpus module

class plsa.corpus.Corpus(corpus: Iterable[str], pipeline: plsa.pipeline.Pipeline)
Bases: object

Processes raw document collections and provides numeric representations.

Parameters

• corpus (iterable of str) – An iterable over documents given as a single string
each.

• pipeline (Pipeline) – The preprocessing pipeline.

See also:

plsa.pipeline

classmethod from_csv(path: str, pipeline: plsa.pipeline.Pipeline, col: int = -1, encoding: str =
’latin_1’, max_docs: int = 1000, **kwargs)→ plsa.corpus.Corpus

Instantiate a corpus from documents in a column of a CSV file.

Parameters

• path (str) – Full path (incl. file name) to a CSV file with one column containing
documents.

• pipeline – The preprocessing pipeline.

• col (int) – Which column contains the documents. Numbering starts with 0 for the first
column. Negative numbers count back from the last column (e.g., -1 for last, -2 just before
the last, etc.).

• encoding (str) – A valid python encoding used to read the documents.

• max_docs (int) – The maximum number of documents to read from file.

• **kwargs – Keyword arguments are passed on to Python’s own csv.reader function.

Raises StopIteration – If you do not have at least two lines in your CSV file.

7

PLSA, Release 0.1

Notes

If you set a col to a value outside the range present in the CSV file, it will be silently reset to the first or
last column, depending on which side you exceed the permitted range.

A list of available encodings can be found at https://docs.python.org/3/library/codecs.html

Formatting parameters for the Python’s csv.reader can be found at https://docs.python.org/3/library/
csv.html#csv-fmt-params

classmethod from_xml(directory: str, pipeline: plsa.pipeline.Pipeline, tag: str = ’post’, encoding:
str = ’latin_1’, max_files: int = 100)→ plsa.corpus.Corpus

Instantiate a corpus from elements of XML files in a directory.

Parameters

• directory (str) – Path to the directory with the XML files.

• pipeline (Pipeline) – The preprocessing pipeline.

• tag – The XML tag that opens (<. . . >) and closes (</. . . >) the elements containing doc-
uments.

• encoding – A valid python encoding used to read the documents.

• max_files – The maximum number of XML files to read.

Notes

A list of available encodings can be found at https://docs.python.org/3/library/codecs.html

get_doc(tf_idf: bool)→ numpy.ndarray
The marginal probability that any word comes from a given document.

This probability p(d) is obtained by summing the joint document- word probability p(d, w) over all words.

Parameters tf_idf (bool) – Whether to marginalize the term-frequency inverse-document-
frequency or just the term-frequency matrix.

Returns The document probability p(d).

Return type ndarray

get_doc_given_word(tf_idf: bool)→ numpy.ndarray
The conditional probability of a particular word in a given document.

This probability p(d|w) is obtained by dividing the joint document- word probability p(d, w) by the
marginal word probability p(w).

Parameters tf_idf (bool) – Whether to base the conditional probability on the term-
frequency inverse-document-frequency or just the term-frequency matrix.

Returns The conditional word probability p(d|w).

Return type ndarray

get_doc_word(tf_idf: bool)→ numpy.ndarray
The normalized document-word counts matrix.

Also referred to as the term-frequency matrix. Because words (or terms) that occur in the majority of
documents are the least helpful in discriminating types of documents, each column of this matrix can
be multiplied by the logarithm of the total number of documents divided by the number of documents
containing the given word. The result is then referred to as the term-frequency inverse-document-frequency
or TF-IDF matrix.

8 Chapter 3. plsa.corpus module

https://docs.python.org/3/library/codecs.html
https://docs.python.org/3/library/csv.html#csv-fmt-params
https://docs.python.org/3/library/csv.html#csv-fmt-params
https://docs.python.org/3/library/codecs.html

PLSA, Release 0.1

Either way, the returned matrix is always normalized such that it can be interpreted as the joint document-
word probability p(d, w).

Parameters tf_idf (bool) – Whether to return the term-frequency inverse-document-
frequency or just the term-frequency matrix.

Returns The normalized document (rows) - word (columns) matrix, either as pure counts (if
tf_idf = False) or weighted by the inverse document frequency (if tf_idf is False).

Return type ndarray

get_word(tf_idf: bool)→ numpy.ndarray
The marginal probability of a particular word.

This probability p(w) is obtained by summing the joint document- word probability p(d, w) over all docu-
ments.

Parameters tf_idf (bool) – Whether to marginalize the term-frequency inverse-document-
frequency or just the term-frequency matrix.

Returns The word probability p(w).

Return type ndarray

idf
Logarithm of inverse fraction of documents each word occurs in.

index
Mapping from actual word to numeric word index.

n_docs
The number of non-empty documents.

n_occurrences
Total number of times any word occurred in any document.

n_words
The number of unique words retained after preprocessing.

pipeline
The pipeline of preprocessors for each document.

raw
The raw documents as they were read from the source.

vocabulary
Mapping from numeric word index to actual word.

9

PLSA, Release 0.1

10 Chapter 3. plsa.corpus module

CHAPTER 4

plsa.algorithms package

4.1 Submodules

4.1.1 plsa.algorithms.plsa module

class plsa.algorithms.plsa.PLSA(corpus: plsa.corpus.Corpus, n_topics: int, tf_idf: bool = True)
Implements probabilistic latent semantic analysis (PLSA).

At its core lies the assumption that the normalized document-word (or term-frequency) matrix p(d, w), weighted
with the inverse document frequency or not, can be factorized as:

𝑝(𝑑,𝑤) ≈
∑︁
𝑡

𝑝(𝑑|𝑡)𝑝(𝑤|𝑡)𝑝(𝑡)

Parameters

• corpus (Corpus) – The corpus of preprocessed and numerically represented documents.

• n_topics (int) – The number of latent topics to identify.

• tf_idf (bool) – Whether to use the term-frequency inverse-document-frequency or just
the term-frequency matrix as joint probability p(d, w) of documents and words.

Raises ValueError – If the number of topics is < 2 or the number of both, words and documents,
in the corpus isn’t greater than the number of topics.

Notes

The implementation follows algorithm 15.2 in Barber’s book1 to the letter. What is not said there is that, in order
to update the conditional probability p(t|d, w) of a certain topic given a certain word in a certain document, one
first needs to find the joint probability of all random variables as

𝑝(𝑡, 𝑑, 𝑤) = 𝑝(𝑑|𝑡)𝑝(𝑤|𝑡)𝑝(𝑡)

and then divide by the marginal 𝑝(𝑑,𝑤).
1 “Bayesian Reasoning and Machine Learning”, David Barber (Cambridge Press, 2012).

11

PLSA, Release 0.1

References

best_of(n_runs: int = 3, **kwargs)→ plsa.algorithms.result.PlsaResult
Finds the best PLSA model among the specified number of runs.

As with any iterative algorithm, also the probabilities in PSLA need to be (randomly) initialized prior to
the first iteration step. Therefore, calling the fit method of two different instances operating on the same
corpus with the same number of topics potentially leads to (slightly) different results, corresponding to
different local minima of the Kullback-Leibler divergence between the true document-word probability
and its approximate factorization. To mitigate this effect, perform multiple runs and pick the best model.

Parameters

• n_runs (int, optional) – Number of runs to pick the best model of. Defaults to 3.

• **kwargs – Keyword-only arguments are passed on to the fit method.

Returns Container class for the best result.

Return type PlsaResult

fit(eps: float = 1e-05, max_iter: int = 200, warmup: int = 5)→ plsa.algorithms.result.PlsaResult
Run EM-style training to find latent topics in documents.

Expectation-maximization (EM) iterates until either the maximum number of iterations is reached or if
relative changes of the Kullback- Leibler divergence between the actual document-word probability and
its approximate fall below a certain threshold, whichever occurs first.

Since all quantities are update in-place, calling the fit method again after a successful run (possibly with
changed convergence criteria) will continue to add more iterations on top of the status quo rather than
starting all over again from scratch.

Because a few EM iterations are needed to get things going, you can specify an initial warm-up period,
during which progress in the Kullback-Leibler divergence is not tracked, and which does not count towards
the maximum number of iterations.

Parameters

• eps (float, optional) – The convergence cutoff for relative changes in the
Kullback- Leibler divergence between the actual document-word probability and its ap-
proximate. Defaults to 1e-5.

• max_iter (int, optional) – The maximum number of iterations to perform. De-
faults to 200.

• warmup (int, optional) – The number of iterations to perform before changes in
the Kullback-Leibler divergence are tracked for convergence.

Returns Container class for the results of the latent semantic analysis.

Return type PlsaResult

n_topics
The number of topics to find.

tf_idf
Use inverse document frequency to weigh the document-word counts?

12 Chapter 4. plsa.algorithms package

PLSA, Release 0.1

4.1.2 plsa.algorithms.conditional_plsa module

class plsa.algorithms.conditional_plsa.ConditionalPLSA(corpus: plsa.corpus.Corpus,
n_topics: int, tf_idf: bool =
True)

Implements conditional probabilistic latent semantic analysis (PLSA).

Given that the normalized document-word (or term-frequency) matrix p(d, w), weighted with the inverse docu-
ment frequency or not, can always be written as,

𝑝(𝑑,𝑤) = 𝑝(𝑑|𝑤)𝑝(𝑤)

the core of conditional PLSA is the assumption that the conditional p(d|w) can be factorized as:

𝑝(𝑑|𝑤) ≈
∑︁
𝑡

𝑝(𝑑|𝑡)𝑝(𝑡|𝑤)

Parameters

• corpus (Corpus) – The corpus of preprocessed and numerically represented documents.

• n_topics (int) – The number of latent topics to identify.

• tf_idf (bool) – Whether to use the term-frequency inverse-document-frequency or just
the term-frequency matrix as joint probability p(d, w) of documents and words.

Raises ValueError – If the number of topics is < 2 or the number of both, words and documents,
in the corpus isn’t greater than the number of topics.

Notes

Importantly, the present implementation does not follow algorithm 15.3 in Barber’s book1. The update equations
there appear non-sensical. Following through the derivation that gives (non-conditional) PLSA, one arrives at
the following updates:

𝑝(𝑑|𝑡) =
∑︁
𝑤

𝑝(𝑑,𝑤)𝑞(𝑡|𝑑,𝑤)

𝑝(𝑡|𝑤) =
∑︁
𝑑

𝑝(𝑑,𝑤)𝑞(𝑡|𝑑,𝑤)

𝑝(𝑡, 𝑑, 𝑤) = 𝑝(𝑤)
∑︁
𝑡

𝑝(𝑑|𝑡)𝑝(𝑡|𝑤)

𝑞(𝑡|𝑑,𝑤) = 𝑝(𝑡, 𝑑, 𝑤)/𝑝(𝑑,𝑤)

References

best_of(n_runs: int = 3, **kwargs)→ plsa.algorithms.result.PlsaResult
Finds the best PLSA model among the specified number of runs.

As with any iterative algorithm, also the probabilities in PSLA need to be (randomly) initialized prior to
the first iteration step. Therefore, calling the fit method of two different instances operating on the same
corpus with the same number of topics potentially leads to (slightly) different results, corresponding to
different local minima of the Kullback-Leibler divergence between the true document-word probability
and its approximate factorization. To mitigate this effect, perform multiple runs and pick the best model.

Parameters
1 “Bayesian Reasoning and Machine Learning”, David Barber (Cambridge Press, 2012).

4.1. Submodules 13

PLSA, Release 0.1

• n_runs (int, optional) – Number of runs to pick the best model of. Defaults to 3.

• **kwargs – Keyword-only arguments are passed on to the fit method.

Returns Container class for the best result.

Return type PlsaResult

fit(eps: float = 1e-05, max_iter: int = 200, warmup: int = 5)→ plsa.algorithms.result.PlsaResult
Run EM-style training to find latent topics in documents.

Expectation-maximization (EM) iterates until either the maximum number of iterations is reached or if
relative changes of the Kullback- Leibler divergence between the actual document-word probability and
its approximate fall below a certain threshold, whichever occurs first.

Since all quantities are update in-place, calling the fit method again after a successful run (possibly with
changed convergence criteria) will continue to add more iterations on top of the status quo rather than
starting all over again from scratch.

Because a few EM iterations are needed to get things going, you can specify an initial warm-up period,
during which progress in the Kullback-Leibler divergence is not tracked, and which does not count towards
the maximum number of iterations.

Parameters

• eps (float, optional) – The convergence cutoff for relative changes in the
Kullback- Leibler divergence between the actual document-word probability and its ap-
proximate. Defaults to 1e-5.

• max_iter (int, optional) – The maximum number of iterations to perform. De-
faults to 200.

• warmup (int, optional) – The number of iterations to perform before changes in
the Kullback-Leibler divergence are tracked for convergence.

Returns Container class for the results of the latent semantic analysis.

Return type PlsaResult

n_topics
The number of topics to find.

tf_idf
Use inverse document frequency to weigh the document-word counts?

4.1.3 plsa.algorithms.result module

class plsa.algorithms.result.PlsaResult(topic_given_doc: numpy.ndarray,
word_given_topic: numpy.ndarray,
topic_given_word: numpy.ndarray, topic:
numpy.ndarray, kl_divergences: List[float],
corpus: plsa.corpus.Corpus, tf_idf: bool)

Bases: object

Container for the results generated by a (conditional) PLSA run.

Parameters

• topic_given_doc (ndarray) – The conditional probability p(t|d) as 𝑛𝑡𝑜𝑝𝑖𝑐𝑠 × 𝑛𝑑𝑜𝑐𝑠

array.

• word_given_topic (ndarray) – The conditional probability p(w|t) as 𝑛𝑤𝑜𝑟𝑑𝑠 ×
𝑛𝑡𝑜𝑝𝑖𝑐𝑠 array.

14 Chapter 4. plsa.algorithms package

PLSA, Release 0.1

• topic_given_word (ndarray) – The conditional probability p(t|w) as 𝑛𝑡𝑜𝑝𝑖𝑐𝑠 ×
𝑛𝑤𝑜𝑟𝑑𝑠 array.

• topic (ndarray) – The marginal probability p(w).

• kl_divergences (list of float) – The Kullback-Leibler divergences between the
original document-word probability p(d, w) and its approximate for each iteration.

• corpus (Corpus) – The original corpus the PLSA model was trained on.

• tf_idf (bool) – Whether to weigh the document.word matrix with the inverse document
frequencies or not.

convergence
The convergence of the Kullback-Leibler divergence.

kl_divergence
KL-divergence of approximate and true document-word probability.

n_topics
The number of latent topics identified.

predict(doc: str)→ Tuple[numpy.ndarray, int, Tuple[str, ...]]
Predict the relative importance of latent topics in a new document.

Parameters doc (str) – A new document given as a single string.

Returns

• ndarray – A 1-D array with the relative importance of latent topics.

• int – The number of words in the new document that were not present in the corpus the
PLSA model was trained on.

• tuple of str – Those words in the new document that were not present in the corpus the
PLSA model was trained on.

Raises ValueError – If the document to predict on is an empty string, if there are no words
left after preprocessing the document, or if there are no known words in the document.

tf_idf
Used inverse document frequency to weigh the document-word counts?

topic
The relative importance of latent topics.

topic_given_doc
The relative importance of latent topics in each document.

Dimensions are 𝑛𝑑𝑜𝑐𝑠 × 𝑛𝑡𝑜𝑝𝑖𝑐𝑠.

word_given_topic
The words in each latent topic and their relative importance.

Results are presented as a tuple of 2-tuples (word, word importance).

4.1. Submodules 15

PLSA, Release 0.1

16 Chapter 4. plsa.algorithms package

CHAPTER 5

plsa.visualize module

class plsa.visualize.Visualize(result: plsa.algorithms.result.PlsaResult)
Bases: object

Visualize the results of probabilistic latent semantic analysis.

Parameters result (PlsaResult) – The results object returned by the fit method of a PLSA
model object.

convergence(axis: matplotlib.axes._subplots.AxesSubplot)→ List[matplotlib.lines.Line2D]
Plot the convergence of the PLSA run.

The quantity to be minimized is the Kullback-Leibler divergence between the original document-word
matrix and its approximation given by the (conditional) PLSA factorization.

Parameters axis (Subplot) – The matplotlib axis to plot into.

Returns The line object plotted into the given axis.

Return type list of Line2D

prediction(doc: str, axis: matplotlib.axes._subplots.AxesSubplot) → mat-
plotlib.container.BarContainer

Plot the predicted relative weights of topics in a new document.

Parameters

• doc (str) – A new document given as a single string.

• axis (Subplot) – The matplotlib axis to plot into.

Returns The container for the bars plotted into the given axis.

Return type BarContainer

topics(axis: matplotlib.axes._subplots.AxesSubplot)→ matplotlib.container.BarContainer
Plot the relative importance of the individual topics.

Parameters axis (Subplot) – The matplotlib axis to plot into.

Returns The container for the bars plotted into the given axis.

17

PLSA, Release 0.1

Return type BarContainer

topics_in_doc(i_doc: int, axis: matplotlib.axes._subplots.AxesSubplot) → mat-
plotlib.container.BarContainer

Plot the relative weights of topics in a given document.

Parameters

• i_doc (int) – Index of the document to plot. Numbering starts at 0.

• axis (Subplot) – The matplotlib axis to plot into.

Returns The container for the bars plotted into the given axis.

Return type BarContainer

wordclouds(figure: matplotlib.figure.Figure)→ List[matplotlib.image.AxesImage]
Plot the relative importance of words in all topics.

Parameters figure (Figure) – An empty matplotlib figure to plot into.

Returns List of images with the created word clouds.

Return type list of AxisImage

words_in_topic(i_topic: int, axis: matplotlib.axes._subplots.AxesSubplot) → mat-
plotlib.image.AxesImage

Plot the relative importance of words in a given topic.

Parameters

• i_topic (int) – Index of the topic to plot. Numbering starts at 0.

• axis (Subplot) – The matplotlib axis to plot into.

Returns The image with the produced word cloud.

Return type AxesImage

18 Chapter 5. plsa.visualize module

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

PLSA, Release 0.1

20 Chapter 6. Indices and tables

Python Module Index

p
plsa.algorithms.conditional_plsa, 13
plsa.algorithms.plsa, 11
plsa.algorithms.result, 14
plsa.corpus, 7
plsa.pipeline, 5
plsa.preprocessors, 1
plsa.visualize, 17

21

PLSA, Release 0.1

22 Python Module Index

Index

B
best_of() (plsa.algorithms.conditional_plsa.ConditionalPLSA

method), 13
best_of() (plsa.algorithms.plsa.PLSA method), 12

C
ConditionalPLSA (class in

plsa.algorithms.conditional_plsa), 13
convergence (plsa.algorithms.result.PlsaResult at-

tribute), 15
convergence() (plsa.visualize.Visualize method), 17
Corpus (class in plsa.corpus), 7

F
fit() (plsa.algorithms.conditional_plsa.ConditionalPLSA

method), 14
fit() (plsa.algorithms.plsa.PLSA method), 12
from_csv() (plsa.corpus.Corpus class method), 7
from_xml() (plsa.corpus.Corpus class method), 8

G
get_doc() (plsa.corpus.Corpus method), 8
get_doc_given_word() (plsa.corpus.Corpus

method), 8
get_doc_word() (plsa.corpus.Corpus method), 8
get_word() (plsa.corpus.Corpus method), 9

I
idf (plsa.corpus.Corpus attribute), 9
index (plsa.corpus.Corpus attribute), 9

K
kl_divergence (plsa.algorithms.result.PlsaResult at-

tribute), 15

L
LemmatizeWords (class in plsa.preprocessors), 2

N
n_docs (plsa.corpus.Corpus attribute), 9
n_occurrences (plsa.corpus.Corpus attribute), 9
n_topics (plsa.algorithms.conditional_plsa.ConditionalPLSA

attribute), 14
n_topics (plsa.algorithms.plsa.PLSA attribute), 12
n_topics (plsa.algorithms.result.PlsaResult attribute),

15
n_words (plsa.corpus.Corpus attribute), 9

P
Pipeline (class in plsa.pipeline), 5
pipeline (plsa.corpus.Corpus attribute), 9
PLSA (class in plsa.algorithms.plsa), 11
plsa.algorithms.conditional_plsa (mod-

ule), 13
plsa.algorithms.plsa (module), 11
plsa.algorithms.result (module), 14
plsa.corpus (module), 7
plsa.pipeline (module), 5
plsa.preprocessors (module), 1
plsa.visualize (module), 17
PlsaResult (class in plsa.algorithms.result), 14
predict() (plsa.algorithms.result.PlsaResult method),

15
prediction() (plsa.visualize.Visualize method), 17
process() (plsa.pipeline.Pipeline method), 5

R
raw (plsa.corpus.Corpus attribute), 9
remove_non_ascii() (in module

plsa.preprocessors), 1
remove_numbers() (in module plsa.preprocessors),

1
remove_punctuation() (in module

plsa.preprocessors), 2
remove_short_words() (in module

plsa.preprocessors), 3
remove_tags() (in module plsa.preprocessors), 1

23

PLSA, Release 0.1

RemoveStopwords (class in plsa.preprocessors), 2

T
tf_idf (plsa.algorithms.conditional_plsa.ConditionalPLSA

attribute), 14
tf_idf (plsa.algorithms.plsa.PLSA attribute), 12
tf_idf (plsa.algorithms.result.PlsaResult attribute), 15
to_lower() (in module plsa.preprocessors), 1
tokenize() (in module plsa.preprocessors), 2
topic (plsa.algorithms.result.PlsaResult attribute), 15
topic_given_doc (plsa.algorithms.result.PlsaResult

attribute), 15
topics() (plsa.visualize.Visualize method), 17
topics_in_doc() (plsa.visualize.Visualize method),

18
types (plsa.preprocessors.LemmatizeWords attribute), 3

V
Visualize (class in plsa.visualize), 17
vocabulary (plsa.corpus.Corpus attribute), 9

W
word_given_topic (plsa.algorithms.result.PlsaResult

attribute), 15
wordclouds() (plsa.visualize.Visualize method), 18
words (plsa.preprocessors.RemoveStopwords attribute),

2
words_in_topic() (plsa.visualize.Visualize

method), 18

24 Index

	plsa.preprocessors module
	plsa.pipeline module
	plsa.corpus module
	plsa.algorithms package
	Submodules

	plsa.visualize module
	Indices and tables
	Python Module Index
	Index

