
Prestans Documentation
Release 2.0

Anomaly Software

November 02, 2016

Contents

1 Installation 3
1.1 Software Requirements . 3
1.2 Deployment notes . 4

1.2.1 Apache + mod_wsgi . 4
1.2.2 AppEngine . 4

1.3 Unit testing . 4

2 Framework Design 7
2.1 Exceptions . 7
2.2 HTTP Header Reference . 7

2.2.1 Content Negotiation . 8
2.2.2 Custom headers . 8

3 Routing & Handling Requests 11
3.1 Serializers & DeSerializers . 11
3.2 Routing Requests . 12

3.2.1 Regex & URL design primer . 12
3.2.2 Using Request Router . 13

3.3 Handling Requests . 14
3.4 Constructing Response . 17

3.4.1 Minifying Content . 18
3.4.2 Serving Binary Content . 18

3.5 Raising Exceptions . 19
3.5.1 Unsupported Vocabulary or Content Type . 19
3.5.2 Configuration Exceptions . 19
3.5.3 Data Validation Exceptions . 20
3.5.4 Parser Exceptions . 20
3.5.5 Handler Exceptions . 21

4 Validating Requests & Responses 23
4.1 Attribute Filters . 23
4.2 Setting up validation rules . 24
4.3 Working with parsed data . 25

4.3.1 Parameters Sets . 25
4.3.2 Request Body . 26
4.3.3 Response Body . 27

5 Types & Models 29

i

5.1 Writing Models . 30
5.1.1 Defining Attributes . 31
5.1.2 To One Relationship . 31
5.1.3 To Many Relationship (using Arrays) . 32
5.1.4 Self References . 32

5.2 Special Types . 32
5.2.1 DateTime . 33
5.2.2 DataURLFile . 33

5.3 Using Models to write Responses . 33
5.4 Type Configuration Reference . 34

5.4.1 String . 34
5.4.2 Integer . 34
5.4.3 Float . 35
5.4.4 Boolean . 35
5.4.5 DataURLFile . 35
5.4.6 Date . 36
5.4.7 Time . 36
5.4.8 DateTime . 36

5.5 Collections . 37
5.5.1 Array . 37
5.5.2 Model . 37

6 Providers 39
6.1 Authentication . 39

6.1.1 Fitting into your environment . 39
6.1.2 Writing your own provider . 40
6.1.3 Working with Google AppEngine . 41
6.1.4 Attaching AuthContextProvider to Handlers . 41

7 Data Adapters 43
7.1 Pairing REST models to persistent models . 43
7.2 Adapting Models . 45
7.3 Writing your own DataAdapter . 46

8 Google Closure Library Extensions 49
8.1 Installation . 49

8.1.1 Unit testing . 50
8.2 Extending JavaScript namespaces . 50
8.3 Types API . 51

8.3.1 Array . 51
8.3.2 Attribute Change Events . 52
8.3.3 Generating Model Code . 53

8.4 REST Client . 53
8.4.1 Request Manager . 54
8.4.2 Composing a Request . 54
8.4.3 Dispatching a Request . 56
8.4.4 Working with Responses . 56
8.4.5 Xhr Communication Events . 57

9 Thoughts on API design 59
9.1 REST resources are not persistent models . 59
9.2 Collections & Entities . 59
9.3 Response Size . 60

10 Reference Material 61

ii

10.1 WSGI & REST . 61
10.2 HTTP . 61
10.3 Advanced Python . 61
10.4 Serialization format . 62
10.5 Server Software . 62
10.6 Developer Tools . 62

11 Feedback 63

12 Discussions 65

13 License 67

iii

iv

Prestans Documentation, Release 2.0

Prestans is a WSGI (PEP-333) complaint micro-framework that allows you to rapidly build quality REST services by
introducing a pattern of models, parsers and handlers and in turn taking care of boilerplate code. Prestans sits better
with complex Ajax applications written with JavaScript infrastructure like Google Closure, or native mobile apps.

Prestans is currently hosted on Github and distributed under the terms defined by the New BSD license. A list of
current downloads is available here. We highly recommend using PyPI to install Prestans.

This document assumes that you have a working knowledge of REST and WSGI.

Contents 1

http://www.python.org/dev/peps/pep-0333/
https://developers.google.com/closure/
https://github.com/anomaly/prestans.git
https://opensource.org/licenses/bsd-license.php
https://github.com/anomaly/prestans/tags
https://pypi.python.org/pypi/prestans

Prestans Documentation, Release 2.0

2 Contents

CHAPTER 1

Installation

For a typical server production deployment, we recommend installing Prestans via PyPI:

$ sudo pip install prestans

this will build and install Prestans for your default Python interpreter. To keep up-to-date; use the ---upgrade
option:

$ sudo pip install prestans --upgrade

If you need to run multiple versions of Prestans on a server, consider using Virtualenv.

Warning: Prestans 2.0 is backwards incompatible. 1.x is still available for download, upgrading to 2.x will break
your 1.x application.

Alternatively you can download and build Prestans using distutils:

$ tar -zxvf prestans-2.x.x.tgz
$ cd prestans-2.x.x
$ sudo python setup.py install

Environments like Google’s AppEngine require you to include custom packages as part of your source. Things to
consider when distributing Prestans with your application:

• Make sure you target a particular release of prestans, distributing our development branch is not recommended
(unless of course you require a bleeding edge feature).

• If you prefer to include Prestans as a Git submodule, ensure you use reference one of the tags.

• If your server environment has hard limits on number of files, consider using zipimport.

As a Git submodule:

$ git submodule add https://github.com/anomaly/prestans.git ext/prestans

When including Prestans manually ensure that your web server is able to locate the files.

1.1 Software Requirements

The server side requires a WSGI compliant environment:

• Python 2.7

• WSGI compliant server environment (Apache + mod_wsgi, or Google AppEngine, etc).

3

https://pypi.python.org/pypi/prestans
http://www.virtualenv.org/en/latest/
http://docs.python.org/2/library/zipimport.html
http://git-scm.com/book/en/Git-Tools-Submodules
http://httpd.apache.org
http://modwsgi.googlecode.com
https://developers.google.com/appengine/

Prestans Documentation, Release 2.0

• WebOb 1.2.3 (if you’re using PyPI this should be installed as a dependency, AppEngine already provides We-
bOb)

• Your choice of a persistent store might require you to install SQLAlchemy or AppEngine Datastore.

Google Closure Library Extensions covers our client side Javascript library for Google Closure projects.

We mostly test on latest releases of Ubuntu Server, and Google’s AppEngine.

1.2 Deployment notes

The following are environment specific deployment gotchas. Things we’ve learnt the hard way. We’ll ensure to
constantly keep updating this section as we find more, we also encourage you to keep a eye out on our mailing lists.

1.2.1 Apache + mod_wsgi

Consider the following directory stucture, you might wish to checkout a bleeding edge Prestans into a source controlled
directory (in this instance Git):

+-- app
+-- conf
+-- static
+-- ext

+-- prestans
+-- client
+-- conf
project.pth

mod_wsgi’s WSGIPythonPath directive tells mod_wsgi to add any locations delclared in files with the .pth extension
to the runtime Python path. This allows you to put Python modules in a directory e.g ext and distribute it with your
project.

1.2.2 AppEngine

Python projects under AppEngine use a YAML configuration file called app.yaml to specify versions of Python li-
braries you project requires. Ensure that you have one of the following included in your app.yaml file.

During development:

libraries:
- name: webob

version: latest

During deployment:

libraries:
- name: webob

version: "1.2.3"

Leaving this directive out loads version 1.1 of WebOb; Prestans 2.0 onwards specifically uses WebOb 1.2.3+.

1.3 Unit testing

Prestans ships a unit testing suite, due to the nature of the project only the following can be reliably unit tested:

4 Chapter 1. Installation

http://www.sqlalchemy.org/
https://developers.google.com/appengine/docs/python/datastore/
http://www.ubuntu.com/download/server
https://developers.google.com/appengine/
http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIPythonPath
https://developers.google.com/appengine/docs/python/config/appconfig
https://docs.python.org/2/library/unittest.html

Prestans Documentation, Release 2.0

• Prestans Data Type validation

to run the testsuite checkout Prestans via Git and use the Python unitest framework:

python -m unitest prestans.testsuite

1.3. Unit testing 5

Prestans Documentation, Release 2.0

6 Chapter 1. Installation

CHAPTER 2

Framework Design

Prestans is a developer-to-developer product. Before we start talking about how you can start harnessing it’s features,
we thought it might be a good idea to introduce you to some of the design decisions and patterns. This chapter
highlights some of under the hood design decisions, it’s written so you can gain an understanding of why Prestans
behaves the way it does.

It covers the use of HTTP headers to control features of prestans, and when Prestans will decide to bail out processing
a request and when it will choose to fail gracefully (still responding back to the requesting client).

If you trust that we have made all the right decisions and you’d rather start working on your Prestans powered API,
then head straight to Routing & Handling Requests

2.1 Exceptions

Prestans raises two kinds of exceptions. It handles both of them in very different ways:

• The first are inbuilt Python exceptions e.g TypeError, AssertionError, Prestans does not handle these
exceptions, causing your API to fail process that particular request. This is because these are only raised if you
have incorrectly configured your Prestans handler, or more importantly your handler is not respecting it’s own
rules e.g objects returned by an end point don’t match your parser configuration.

• The second are Prestans defined exceptions. These are handled by Prestans and the router will return a proper
error response to the requesting client. These are raised if the client placed an incorrect request e.g An attribute
wasn’t the right length or type. These excpetions are defined in prestans.exceptions, along with a guide
for it’s suggested use.

Prestans defined exceptions can also be used by your handler to notify the client of trivial REST usecases e.g requested
entity does not exists. We talk about these in Routing & Handling Requests.

2.2 HTTP Header Reference

HTTP headers are components of the message header for both HTTP requests and responses. They define the rules
(e.g preferred content, cookies, software version) for each HTTP requests. These assist the server to best respond to
the request and ensures that the client is able to consume it properly.

Prestans uses a combination of standard and custom headers to allow the requesting client to control the behavior of
the API (without you having to write any extra code). Some of these headers can be specific to an HTTP Verb (e.g
GET requests don’t have request bodies and shouldn’t send headers specifying the mime type of the body).

prestans’ client side add-ons for Google Closure wrap these up properly client library calls.

7

https://github.com/prestans/prestans-client/
https://developers.google.com/closure/library/

Prestans Documentation, Release 2.0

2.2.1 Content Negotiation

Prestans APIs can speak as many serialization formats as they please. We support JSON and Plist XML out of the
box. It’s possible to write custom serializers and deserializers if you wish to support any other formats.

Each API request uses the following standard HTTP headers to negotiate the content type of the request and response
payload:

• Accept - which tells the server formats that the client is willing to format, Prestans compares this to what the
current API support, or sends back an error message using the default serializer.

• Content-Type - which tells the server what format the request body is; this is only relevant for certain HTTP
Verbs. If the Prestans API does not support the format it sends back an error message using the default serializer.

Note: Prefixed URLs to separate content types is an ugly solution. If you are new to REST, we highly recommend
watching Michael Mahemoff‘s Web Directions Code 2013 presentation on REST, What every developer should know
about REST.

Both these headers are part of the HTTP standards, the handler section in this chapter discusses how you pair up
serializers and deserializers to these headers.

2.2.2 Custom headers

Prestans allows the requesting the client to control what parts of an entity they, they want returned as part of a response.
The Prestans features we are referring to are (these are talked about in detail in other chapters):

• Attribute Filters, allows the client to toggle the visibility of attributes in a response, thus controlling the size
and in turn the responsiveness of the API call. The typical use case of an attribute filter:

– The client requests only the key and title of all blog posts

– The UI waits for the user to choose a post they want to view

– The client requests only the body of the blog post

– The client displays the blog post in full

– The client chooses to cache the body of that particular post by merging it into the partial entity

• Minification, Prestans REST models are designed to be descriptive to ensure your code reads well. Minification
rewrites the attribute names in a handler response reducing the payload size. This is particularly useful when
you are downloading collections (e.g list of blog posts). The response size can shrink by upto 30%.

Each Prestans may choose to override the requesting client’s wishes. This is a design choice, and you must have a
very ridig usecase for ignoring the client’s request configuration.

Clients use a set of custom HTTP headers to configure these options. These are detailed as headers that a client sends
to an API, and information the API sends back as HTTP headers.

Your Web server environment will limit the size of a request and how large headers can be.

Note: IETF’s RFC6648 deprecates the use the X- prefix for custom headers.

Inbound headers:

• Prestans-Version, expected minimum version of the Prestans framework you’re expecting to find on the
server side. This ensures that your reuqest can reliably processed by the server.

8 Chapter 2. Framework Design

http://mahemoff.com
http://code13.webdirections.org
https://www.youtube.com/watch?v=2yAQ-yLq5eI
https://www.youtube.com/watch?v=2yAQ-yLq5eI
http://www.ietf.org/rfc/rfc6648.txt

Prestans Documentation, Release 2.0

• Prestans-Minification, expects the string On or Off to toggle minification. This is set to Off by
default.

• Prestans-Response-Attribute-List, a serialized and nested structure of booleans to toggle the vis-
ibility of each attribute that you are expecting in the response. By default it’s assumed that you wish to receive
all attributes of the entity. If minification is turned on you must use the minified attribute names. Serialization
format is controlled by the Content-Type and Accept header, this must be the same for the payload and
the content of this header.

Outbound headers:

• Prestans-Version, the version number of the Prestans framework that the server’s running. This allows
the client code to ensure that it’s can process the response.

2.2. HTTP Header Reference 9

Prestans Documentation, Release 2.0

10 Chapter 2. Framework Design

CHAPTER 3

Routing & Handling Requests

Web Server Gateway Interface or WSGI (PEP 333) is the glue between a Web Server and your Python Web application.
The responding application simply has to be a Python callable (a python function or a class that implements the
__call__ method). Each callable is passed the Web server environment and a start_response.

Note: If you are unfamiliar with WSGI we recommend reading Armin Ronarcher‘s introduction to WSGI. We also
have a great collection of Reference Material on Python Web development.

WSGI interfaces will generally handover requests that match a URL pattern to the mapped WSGI callable. From the
callable is responsible for dispatching the request to the appropriate handler based on part of the URL, HTTP verb,
headers or any other property of an HTTP request or a combination properties. This middle ware code is refered to as
a request router and Prestans provides one of it’s own.

Prestans makes use of standard HTTP headers for content negotiation. In addition it uses a handful of custom headers
that the client can use to control the Prestans based API’s behavior (features include Content Minification and Attribute
Subsets for requests and responses). We’ll first introduce you to the relevant HTTP and how it effects your API requests
followed by how you can handle API requests in prestans.

3.1 Serializers & DeSerializers

Serializers and DeSerializers are pluggable Prestans constructs that assist the framework in packing or unpacking data.
Serialzier or deserializer handle content of a particular mime type and are generally wrappers to vocabularies already
available in Python (although it possible to write a custom serializer entirely in Python). Serializers always write out
a parseable version of models.

Prestans application may speak as many vocabularies as they wish; vocabularies can also be local to handlers (as
opposed to applicaiton wide). You must also define a default format.

Each request must send an Accept header for Prestans to decide the response format. If the registered handler cannot
respond in the requeted format Prestans raises an UnsupportedVocabularyError exception inturn producing
a 501 Not Implemented response. All Prestans APIs have a set of default formats all handlers accept, each
end-point might accept additional formats.

If a request has send a body (e.g PUT, POST) you must send a Content-Type header to declare the format in use.
If you do not send a Content-Type header Prestans will attempt to use the default deserializer to deserialize the
body. If the Content-Type is not supported by the API an UnsupportedContentTypeError exception is
raised inturn producing a 501 Not Implemented response.

11

https://www.python.org/dev/peps/pep-0333
http://docs.python.org/2/library/functions.html#callable
http://lucumr.pocoo.org/
http://lucumr.pocoo.org/2007/5/21/getting-started-with-wsgi/

Prestans Documentation, Release 2.0

3.2 Routing Requests

Prestans is built right on top of WSGI and ships with it’s own WSGI Request Router. The router is responsible
for parsing the HTTP request, setting up a HTTP response, setup a logger (if one wasn’t provided as part of the
configuraiton), finally check to see if the API services the requested URL and hand the request over to the handler.

The handler is responsible for constructing the response and one return the router, asks the response to serialize itself.
If an exception is raised (see Framework Design) is raised by the framework (because it couldn’t parse the request or
response) or the handler, the router where appropriate, writes a detailed error trace back to the client.

Prestans verbosely logs events per API request. Your system logger is responsible for verbosity of the logger.

3.2.1 Regex & URL design primer

URL patterns are described using Regular expression, this section provides a quick reference to handy regex patterns
for writing REST services. If you are fluent Regex speaker, feel free to skip this chapter.

Most URL patters either refer to collections or entities, consider the following URL scheme requirements:

• /album/ - refers to a collection of type album

• /album/{id} - refers to a specific album entity

Notice no trailing slashes at the end of the entity URL. Collection URLs may or may not have a URL slash. The above
patterns can would be represented in like Regex as:

• /album/(.*) - For collection of albums

• /album/([0-9]+) - For a specific album

If you have entities that exclusively belong to a parent object, e.g. Albums have Tracks, we suggest prefixing their
URLs with a parent entity id. This will ensure your handler has access to the {id} of the parent object, easing operations
like:

• Does referenced parent object exists?

• When creating a new child object, which parent object would you like to add it to?

• Does the child belong to the intended parent (Works particularly well with ORM layers like SQLAlchemy)

A Regex example of these URL patterns would look like:

• /album/([0-9]+)/track/(.*)

• /album/([0-9]+)/track/([0-9]+)

12 Chapter 3. Routing & Handling Requests

Prestans Documentation, Release 2.0

3.2.2 Using Request Router

Warning: since Prestans 2.1, URL’s are matched according to the WSGI environment variable ’PATH_INFO’,
this allows for the creation of mount-point agnostic paths. Users of Prestans versions < 2.1 who rely on the
WSGIScriptAliasMatch directive should replace them with WSGIScriptAlias and remove pattern matching
from the first argument and adjust their URL route regex definitions to truncate the mount-point path
example upgrade to Prestans>=2.1:

WSGIScriptAliasMatch ^/api/(.*) /scripts/my_app.wsgi # replace with...
WSGIScriptAlias /api /scripts/my_app.wsgi

application = RequestRouter([
(r'/api/things', my.Handler), # replace with...
(r'/things', my.Handler)

])

The router is provided by the prestans.rest package. It’s the keeper of all Prestans API requests, it (with the
help of other members of the prestans.rest package) parases the HTTP request, setups the appropriate handler
and hands over control.

The router also handles error states raised by the API and informs the requesting client to what went wrong. These can
include issues with parsing the request or exceptions raised by the handler (this is covered later in the chapter) while
dealing with the request.

The constructor takes the following parameters:

• routes a list of tuples that maps a URL with a request handler

• serializers takes a list of serializer instances, if you omit this parameter Prestans will assign JSON as
serializer to the API.

• default_serializer takes a serializer instance which it uses if the client does not provide an Accept
header.

• deserializers, a set of deserializers that the clients use via the Content-Type header, this default to
None and will result in Prestans using JSON as the default deserializer.

• default_deserializer, default serializer to be used if a client doesn’t provide a Content-Type
header, defaults to None which results in Prestans using the JSON deserializer.

• charset, to be used to parse strings, defaulted to utf-8

• application_name the name of your API, prestans

• logger, an instance of a Python logger, defaulted to None which results in Prestans creating a default logger
instance.

• debug, runs Prestans under debug mode (results in increased logging, error reporting), it’s defaulted to False

import prestans.rest
import myapp.rest.handlers

api = prestans.rest.RequestRouter(routes=[
(r'/([0-9]+)', myapp.rest.handlers.DefaultHandler)

],
serializers=[prestans.serializer.JSON()],
default_serializer=prestans.serializer.JSON(),
deserializers=[prestans.deserializer.JSON()],
default_deserializer=prestans.deserializer.JSON(),

3.2. Routing Requests 13

Prestans Documentation, Release 2.0

charset="utf-8",
application_name="music-db",
logger=None,
debug=True)

The router is a standalone WSGI application you pass onto server environment.

If your application prefers a diaclet other than JSON as it’s default, ensure you configure this as part of the router. It’s
recommended that the default diaclet for serialization and deserialization is the same.

The default logger uses is a configured Python Logger, it logs in detail the lifecycle of a request along with the
requested URL. Refer to documentation on how to configure your system logger to control verbosity.

Once your router is setup, Prestans is ready to route requests to nominated handlers.

If were deploying under mod_wsgi, your the above would be the contents of your WSGI file. mod_wsgi requires the
endpoint to be called application. The WSGI configuration variable might look something like.

Note: since 2.1

WSGIScriptAlias /api /srv/musicdb/api.wsgi

Under AppEngine, if this above was declared under a script named entry.py, you would reference it in app.yaml
as follows:

- url: /api/.*
script: entry.api
login: required

3.3 Handling Requests

REST requests primarily use the following HTTP verbs to handle requests:

• HEAD to check if the entity the client has is still current

• GET to retrieve entities

• POST to create a new entity

• PUT to update an entity

• PATCH to update part of an entity

• DELETE to delete an entity

Prestans maps each one of these verbs to a python function of the same name in your REST handler class. Each
REST request handler in your application derives from prestans.rest.RequestHandler. Unless your handler
overrides the functions get, post, put, patch, delete the base implementation tells the Prestans router that the
requested end point does not support the particular HTTP verb.

Your handler must accept an equal number of parameters as defined the router regular expression.

Our Regex premier highlights the use of two handlers per entity, one deals with collections the other entities. APIs
generally let clients get a collection of entities, add to a collection and get a particular entity, update an entity or delete
an entity. The later require an identifier for the entity, where as the collection does not.

• /album/([0-9]+)/track/(.*)

• /album/([0-9]+)/track/([0-9]+)

14 Chapter 3. Routing & Handling Requests

http://docs.python.org/howto/logging

Prestans Documentation, Release 2.0

This is no way says that your API can’t provide an endpoint to delete all entities of a type or update a collection of
entities, in which instances your collection handler would implement the appropriate HTTP verb handlers.

A typical collection handlers would typically look like (implementing GET and POST and does not require an identi-
fier):

import prestans.rest
import prestans.parser

import myapp.rest.models

class MyCollectionRESTRequestHandler(prestans.rest.RequestHandler):

__parser_config__ = prestans.parser.Config(
GET=prestans.parser.VerbConfig(

response_template=prestans.types.Array(element_template=myapp.rest.models.Track())
),
POST=prestans.parser.VerbConfig(

body_template=myapp.rest.models.Track(),
response_template=myapp.rest.models.Track()

)
)

def get(self):
... return a collection of entities

def post(sef):
... add a new type

A typical entity handler would look like (implementing GET, PUT and DELETE expecting an identifier):

import prestans.rest
import prestans.parser

import myapp.rest.models

class MyEntityRESTRequestHandler(prestans.rest.RequestHandler):

__parser_config__ = prestans.parser.Config(
GET=prestans.parser.VerbConfig(

response_template=myapp.rest.models.Track()
),
PUT=prestans.parser.VerbConfig(

body_template=myapp.rest.models.Track(),
)

)

def get(self, track_id):
... return an individual entity

def put(self, track_id):
... update an entity

def delete(self, track_id):
... delete an entity

Notice that since deleting an entity only requires an identifier, and does not have to parse the body of a request. The
update request can also choose to use attribute filters to pass in partial objects.

3.3. Handling Requests 15

Prestans Documentation, Release 2.0

Note: At this point if you’d rather learn about how to parse requests and responses, then head to the chapter on
Validating Requests & Responses. This chapter continues to talk about how handlers work assuming you are going to
read the chapter on validation shortly after.

Each handler allows accessing the environment as follows:

• self.request is the parsed request based on the rules defined by your handler, this is an instance of
prestans.rest.Request

• self.response is response Prestans will eventually write out to the client, this is an instance of
prestans.rest.Response

• self.logger is an instance of the logger the API expects you to write any information to, this must be an
instance of a Python logger

• self.debug is a boolean value passed on by the router to indicate if we are running in debug mode

Each request handler instance is run in the following order (all of these methods can be overridden by your handler):

• register_seriailzers is called on the handler, this allows the handler to a list of additional serializers it
would like to use

• register_deserializers is called on the handler, this allows the handler to a list of additional deserial-
izers it would like to use

• handler_will_run is called, perform any handler specific warm up acts here

• The function that corresponds to the requests HTTP verb is called

• handler_did_run is called, perform any handler specific tear downs here

prestans.rest.RequestHandler can be subclassed as your project’s Base Handler class, this generally con-
tains common code e.g getting access to a database sessions, etc. A SQLAlchemy specific example would look like:

import prestans.rest
import prestans.parser

import myapp.rest.models

class Base(prestans.rest.RequestHandler):

def handler_will_run(self):
self.db_session = myapp.db.Session()
self.__provider_config__.authentication = myapp.rest.auth.AuthContextProvider(self.request.environ, self.db_session)

def handler_did_run(self):
myapp.db.Session.remove()

@property
def user_profile(self):

return self.__provider_config__.authentication.get_current_user()

@property
def auth_context(self):

return self.__provider_config__.authentication

Note: You’d typically place this in myapp.rest.handlers.__init__.py and place all your handlers grouped
by entity type in that package.

16 Chapter 3. Routing & Handling Requests

Prestans Documentation, Release 2.0

3.4 Constructing Response

The end result of all handler call is to send a response back to the client. This can be as simple as a status code, or
as elaborate as a group of entities. Prestans is unforgiving (unless requested otherwise) while accepting requests and
writing responses.

In accordance with the REST standard, each handler must declare what sort of entities (if any) the handler will return
if it successfully processes a request. We will cover error scenarios later in this chapter.

Declaration of response types are defined as part of your parser configuration per HTTP verb. Handlers typically return
a collection of entities, defined as:

import prestans.rest
import prestans.parser
import prestans.types

import myapp.rest.models

class MyEntityRESTRequestHandler(prestans.rest.RequestHandler):

__parser_config__ = prestans.parser.Config(
GET=prestans.parser.VerbConfig(

response_template=prestans.types.Array(element_template=myapp.rest.models.Album())
)

)

def get(self):

albums = prestans.types.Array(element_template=myapp.rest.models.Album())
albums.append(myacc.rest.models.Album(name="Journeyman", artist="Eric Clapton"))
albums.append(myacc.rest.models.Album(name="Dark Side of the Moon", artist="Pink Floyd"))
return albums

or an individual entity, defined as:

import prestans.rest
import prestans.parser

import myapp.rest.models

class MyEntityRESTRequestHandler(prestans.rest.RequestHandler):

__parser_config__ = prestans.parser.Config(
GET=prestans.parser.VerbConfig(

response_template=myapp.rest.models.Album()
)

)

def get(self, album_id):

return myapp.rest.models.Album(name="Journeyman", artist="Eric Clapton")

More often than not, the content your handler sends back, would have been read queried from a persistent data store.
Sending persistent data verbatim nearly never fits the user case. A useful API sends back appropriate amount of
information to the client to make the request useful without bloating the response. This becomes a cases by case
consideration of what a request handler sends back. Sending out persistent objects verbatim could sometimes pose to
be a security threat.

Prestans requires you to transform each persistent object into a REST model. To ease this tedious task Prestans

3.4. Constructing Response 17

Prestans Documentation, Release 2.0

provides a feature called Data Adapters. Data Adapters perform the simple task of converting persistent instances or
collections of persistent instances to paired Prestans REST models, while ensuring that the persistent data matches the
validation rules defined by your API.

Data Adapters are specific to backends, and it’s possible to write your own your backend specific data adapter. All of
this is discussed in the chapter dedicated to Data Adapters.

3.4.1 Minifying Content

Prestans tries to make your API as efficient as possible. Minimizing content size is one of these tricks. Complimentary
to Attribute Filters (which allows clients to dynamically turn attributes on or off in the response) is response key
minification.

This is particularly useful for large amounts of repetitive data, e.g several hundred order lines.

Setting the Prestans-Minification header to On is all that’s required to use this feature. This is a per request
setting and is set to Off by default.

Prestans also sends Prestans-Minification-Map header back containing a one to one map of the original
attribute names it’s minified counterpart.

Note: Our Google Closure extensions provides a JSON REST Client, which can automatically unpack minified
requests to fully formed Prestans client side models.

3.4.2 Serving Binary Content

It’s perfectly legitimate for your REST handler to return binary content. Prestans provides a built in model to assign
to your handler’s VerbConfig.

Your handler must return an instance of prestans.types.BinaryContent, and Prestans will do what’s right
to deliver binary content.

Instances of BinaryContent accept the following parameters:

• mime_type, the mime type of the file that you are sending back

• file_name, the filename that Prestans is to send back in the HTTP header, this is what the browser thinks
the name of the file is. File names can be generated by applications or they might have been stored as meta
information when the file was uploaded by the user

• as_attachment, tells Prestans if the file is to be delivered as an attachment (forces the user to save the file)
or deliver it inline (generally opens in the browser).

• contents, binary contents that you’ve read up from disk or generated.

import prestans.types

class Download(st.cs.rest.handlers.Base):

__parser_config__ = prestans.parser.Config(
GET=prestans.parser.VerbConfig(

response_template=prestans.types.BinaryResponse()
)

)

def get(self, document_id):

18 Chapter 3. Routing & Handling Requests

Prestans Documentation, Release 2.0

file_contents = open(file_path).read()

self.response.status = prestans.http.STATUS.OK
self.response.body = prestans.types.BinaryResponse(

mime_type='application/pdf',
file_name='invoice.pdf',
as_attachment=True,
contents=file_contents)

If you set as_attachment to False the file will be delivered inline into the browser. It’s up to the browser to handle
the content properly.

3.5 Raising Exceptions

As alluded to in our Thoughts on API design chapter, Prestans provides two distinct set of Exceptions. The first raised
if you’ve configured your API incorrectly and the later used to send back meaningful error messages to the requesting
client.

This section deals with Exceptions that Prestans expects you to use to raise meaningful REST error messages. These
are generally caused by the client sending you an inappropriate e.g the logged in user is not allowed to access or update
an entity, or something simply not being found on the persistent data store.

Note: PEP 008 recommends that Exceptions that are errors should end with the Error suffix.

You do not have to raise exceptions for request and response data validation. If the data does not match the rules
defined by your models, parameter sets or attribute filters, it’s prestans’ responsibility to graceful fail and respond
back to the client.

3.5.1 Unsupported Vocabulary or Content Type

Prestans uses the Accept and Content-Type HTTP headers to negotiate the format the client is sending their
request as or the format they expect the response in. Prestans ships with a standard set of vocabularies (serialization
formats) and allow you to add your own. Prestans automatically adjusts the serializer or de-serializer to use based on
the mime types. If Prestans is unable to service the request, the following exceptions are raised:

• UnsupportedVocabularyError raised if Prestans can’t find a suitable serializer for the requested mime
type in the Accept header

• UnsupportedContentTypeError raised if Prestans can’t find a suitable de-serializer for the requested
mime type in the Content-Type header

If these exceptions are raised as part of parsing the request Prestans generates an appropriate message using the default
serializer (internally set to JSON by default).

3.5.2 Configuration Exceptions

Along with Python’s TypeError Prestans raises the following exceptions if you’ve configured portions of your appli-
cation incorrectly.

• InvalidType raised if the Python typed passed in for validate is incorrect.

• ParseFailedError raised if the data type fails to evaluate the value as an appropriate Python data type

3.5. Raising Exceptions 19

https://www.python.org/dev/peps/pep-0008

Prestans Documentation, Release 2.0

• InvalidMetaValueError raised if you’ve passed a unacceptable configuration option for an attribute

• MissingParameterError raised if a required parameter for an attribute is missing

• UnregisteredAdapterError raised if the Data Adapters registry can’t locate a REST to persistent map

3.5.3 Data Validation Exceptions

Prestans raises the following exceptions (See PEP 008 for naming conventions of Exceptions) if data passed through
Prestans types fails to validate. If the validation fails as part of the request Prestans captures the stack trace and
responses to the client with an appropriate error code. If a request fails to parse your handler code will not be executed.
If the exception is raised a result of your code (e.g using Data Adapters or writing responses) Prestans will halt the
execution and write the error message to the logger.

• RequiredAttributeError raised if an attribute is required and an appropriate value wasn’t provided, note
that you can relax these by using attribute filters

• LessThanMinimumError raised if the value provided for an attribute is less than the floor

• MoreThanMaximumError raised if the value provided for an attribute is greater than the ceiling

• InvalidChoiceError raised if the value provided is not defined in the set of choices for the attribute

• UnacceptableLengthError raised if the value provided is longer than the acceptable length

• InvalidFormatError raised if the value provided does not pass the regular expression format

3.5.4 Parser Exceptions

Prestans raises the following exceptions when parsing data. If the exception is raise while parsing a request Prestans
will fail gracefully by responding to the client with an error message and a track trace. If the exception is raised while
your handler returns a response Prestans will stop the execution and expect you fix the issue.

Note: Since all data is strictly validated your application should to maintain consistent data at all times.

• UnimplementedVerbError raised if a client requests an HTTP verb that an end point does not handle

• NoEndpointError raised if a client requests an endpoint that does not exists

• AuthenticationError raised if the client does not have an authenticated session and the handler requires
them to do so

• AuthorizationError raised if the logged is user fails to pass the authorisation rules

• SerializationFailedError raised if serialization of the data fails, would only happen if the handler
passed a data type that cannot be handled by the nominated serializer.

• DeSerializationFailedError raised if deserialization failed, this would only happen if the client
passed data that cannot be parsed by the nominated deserializer

• AttributeFilterDiffers raised if the attribute filter differs from the nominated response template

• InconsistentPersistentDataError

20 Chapter 3. Routing & Handling Requests

https://www.python.org/dev/peps/pep-0008

Prestans Documentation, Release 2.0

3.5.5 Handler Exceptions

Prestans make the following exceptions available for your handler to use. They are associated to error codes defined
in the HTTP specification and when raised Prestans gracefully returns to the client with an appropriate error message
and where applicable a stack trace. Each exception allows you to pass a custom error message which is returned to the
client. Prestans will also set the appropriate HTTP error code in the response header.

• ServiceUnavailable to be raised if the service called cannot satisfy the request at the present time, this
could be caused due to exhausted quotas on cloud services or a database services that may have failed to respond

• BadRequest raised when the client placed an inappropriate request, a typical example is that the data Prestans
parsed is in the right format but your service is unable to process the combination.

• Conflict raised when the data provided to the end point is valid but conflicts with the business logic

• NotFound raised when a requested entity is not found, for example the entity ID provided as part of the request
is valid in format but does not exists on the system

• Unauthorized raised if the particular user is not allowed to access an entity or related children

• MovedPermanently raised if the particular endpoint has moved, this should cause the client to request the
newly appointed URL

• PaymentRequired raised if your service requires the user to subscribe to the service and their subscription
has expired

• Forbidden raised if the the particular entity the client requested should not be accessed by the currently
logged in user

3.5. Raising Exceptions 21

Prestans Documentation, Release 2.0

22 Chapter 3. Routing & Handling Requests

CHAPTER 4

Validating Requests & Responses

A robust and secure API is responsible for validating all incoming and outgoing data to ensure that it matches business
rules. Validation is at the heart of Prestans design and a cornerstone feature.

APIs have three major areas where data validation is paramount:

• Query String parameters supplied to the API as key value pairs in the URL
http://localhost/api/album?offset=10&limit=20

• Serialized data in the body of the request, which is unpacked and made available for use to the handler

• Data that’s serialized down to the client as the response to each request. This is typically but not necessarily
read back from persistent data stores.

Prestans allows each request handler to elegantly define the rules it wants to adhere to by declaring what we refer to
as a VerbConfig (the Verb refers to the HTTP verb).

4.1 Attribute Filters

Attribute Filters are Prestans way of making temporary exceptions to validation rules otherwise defined by Prestans
Models. Quality of code written using Prestans thrives on strong validation. Certainly uses cases in every application
demands relaxing rules temporarily. Attribute filters are used both incoming and outgoing data.

At it’s heart Attribute Filters are a configuration template for exceptions Prestans is to make while parsing data.
Attribute Filters contain a boolean flag for each attribute defined in instances that will be parsed by prestans. They can
be created by subclassing prestans.parser.AttributeFilter and it containing an identical structure to the
corresponding model with boolean flags to denote visibility during a parse operation.

However we recommend using our convenience method that dynamically creates a filter based on a model (unless of
course you have non trivial use case):

attribute_fitler = prestans.parser.AttributeFilter.from_model(model_instance=mysicdb.rest.models.Album(), default_value=False)

the above will generate an attribute filter with all attributes turned off for parsing. We can then selectively turn attributes
on by setting the keys to True:

attribute_filter.id = True
attribute_filter.name = True

The attribute filter will have a corresponding definition for every attribute visible in the Modelwith the default boolean
value assigned to it. This goes for children objects.

23

Prestans Documentation, Release 2.0

If a child attribute is a collection then the child Attribute Filter is based on an instance that would appear in the
collection, this allows fine grained control of toggling parse rules. Assigning a boolean value to a collection applies
the state to all attributes of it’s instances.

4.2 Setting up validation rules

Validation rules are set up per HTTP verb your handler intends to service. By default there are no validation rules
defined for any HTTP verb, this does not mean that your handler can’t respond to a particular verb, it simply means
that Prestans takes no responsibility of validating incoming or outgoing data. By design if you wish to send data back
to the client Prestans insist on validating what a handler sends down, however it’s perfectly valid for a handler to return
no content (which is what Prestans expects if you aren’t specific).

Each handler has a meta attribute called __parser_config__ this must be an instance of
prestans.parser.Config which accepts six named parameters one for each supported HTTP verb (HEAD,
GET, POST, PUT, DELETE, PATCH) each one of which must be an instance of prestans.parser.VerbConfig.
A VerbConfig accepts the following named parameters (not all of them are supported across all HTTP verbs):

• response_template an instance of a prestans.types.DataCollection subclass i.e a Model or
an Array of Prestans DataType. This is what Prestans will use to validate the response your handler sends
back to the client.

• response_attribute_filter_default_value Prestans automatically creates an attribute filter
based on the response_template. By default the visibility of all attributes is off.

• parameter_sets an array of prestans.parser.ParameterSet instances (see Parameters Sets)

• body_template an instance of a prestans.types.DataCollection subclass i.e a Model or an Array
of Prestans DataType, this is what Prestans will use to validate the request sent to your handler. If validation
of the incoming data fails, Prestans will not execute the associated verb in your handler.

• request_attribute_filter is an attribute filter used to relax or tighten rules for the incoming data. This
is particularly useful if you want to use portions of a model. Particularly useful for UPDATE requests.

Warning: By default Prestans exposes none of the attributes in the response, setting the
response_attribute_filter_default_value parameter to True will show all attributes in the re-
sponse. Your handler code is responsible for toggling visibility in either instance.

import prestans.rest
import prestans.parser

import musicdb.rest.models

class CollectionRequestHandler(prestans.rest.RequestHandler):

__parser_config__ = prestans.parser.Config(
GET = prestans.parser.VerbConfig(

body_template=prestans.types.Array(element_template=musicdb.rest.models.Album())
),
POST = prestans.parser.VerbConfig(

body_template=musicdb.rest.models.Album()
)

)

def get(self):
... do stuff here

24 Chapter 4. Validating Requests & Responses

Prestans Documentation, Release 2.0

def post(self):
... do stuff here

Prestans is aggressive when it comes to validating requests and responses. However in the cases where you wish to
relax the rules we recommend that you use Attribute Filters. You can define an AttributeFilter in context and
assign it to the appropriate VerbConfig.

update_filter = prestans.parser.AttributeFitler(model_instance=musicdb.prest.models.Album(), default_value=False)
update_filter.name = True

class EntityRequestHandler(prestans.rest.RequestHandler):

__parser_config__ = prestans.parser.Config(
GET = prestans.parser.VerbConfig(

response_template=musicdb.rest.models.Album(),
response_attribute_filter_default_value=False,
parameters_sets=[]

),
PUT = prestans.parser.VerbConfig(

body_template=musicdb.rest.models.Album(),
request_attribute_fitler=update_filter

)
)

def get(self, album_id):
... do stuff here

def put(self, album_id):
... do stuff here

def delete(self, album_id):
... do stuff here

Lastly a reminder parameters that were part of your URL scheme will be passed in as positional arguments to your
handler verb (see Routing & Handling Requests). Prestans runs your handler code if the the request succeeds to parse
and will only respond back to the client if the response you intend to return passes the validation test.

4.3 Working with parsed data

The following sections detail how you access the parsed data and how you provide Prestans with a valid response to
send back to the client. Remember that your handler’s objective is to send back information the client can reliably use.

4.3.1 Parameters Sets

ParmeterSets refer to sets of data sent as key value pairs in the query string. Typically if you handler is expecting
data as part of the query string you would expect it to be follow similar patterns as Models. Prestans extends the use
of it’s types (see Types & Models) to validate data passed in a query string.

Each ParameterSet is made of a group of keys that you’re expecting along with rules to be used to parse the value.
ParameterSets are defined by subclassing prestans.parser.ParameterSet.

class SearchByKeywordParameterSet(prestans.parser.ParameterSet):

keyword = prestans.types.String(min_length=5)
offset = prestans.types.Integer(defauflt=0)

4.3. Working with parsed data 25

Prestans Documentation, Release 2.0

limit = prestans.types.Integer(default=10)

class SearchByCategoryParameterSet(prestans.parser.ParameterSet):

category_id = prestans.types.Integer(min_length=5)
offset = prestans.types.Integer(defauflt=0)
limit = prestans.types.Integer(default=10)

these would then be assigned to your handler’s VerbConfig as follows:

__parser_config__ = prestans.parser.Config(
GET = prestans.parser.VerbConfig(

response_template=musicdb.rest.models.Album(),
response_attribute_filter_default_value=False,
parameters_sets=[SearchByKeywordParameterSet(), SearchByCategoryParameterSet()]

),
PUT = prestans.parser.VerbConfig(

body_template=musicdb.rest.models.Album(),
request_attribute_fitler=update_filter

)
)

Note: Parameter Set can only use basic data types i.e Strings, Integer, Float, Date, Time, DateTime.

Using serialized data as values for query string keys is not a good idea.

All web servers have limitations on how large query strings can be, if you experience issues with sending information
via the query string you should check your web server configuration before attempting to debug your code.

For each request:

• If the data provided as part of a query string matches, Prestans will make an instance of that ParameterSet
available at self.request.parameter_set.

• If a query string would result in matching more than one ParameterSet Prestans will stop parsing at the first
match and make it available to your handler

• Failure in matching a ParameterSet still results in your handler code being called. Prestans would simply
set self.request.parameter_set to None.

You can access the attributes defined in your ParameterSet as you would any ordinary Python object.

If your handler assigned multiple ParameterSets to a handler VerbConfig you can always check for the type
of self.request.paramter_set for conditional code execution.

4.3.2 Request Body

By assigning a DataCollection object to the body_template configuration of a VerbConfig asks Prestans
to strictly parse the data received as part of every request. If the data sent as part of the body successfully parses your
handler code is executed and the parsed object is available as self.request.parsed_body.

Should you wish to relax the rules of a model for particular use cases you should consider using Attribute Fil-
ters as opposed to relaxing the validation rules. The attribute filter used while parsing the request is available as
self.request.attribute_filter.

Note: GET requests cannot have a request body and Prestans will not attempt to parse the body for GET requests.

26 Chapter 4. Validating Requests & Responses

Prestans Documentation, Release 2.0

Your handler code can access the parsed_body as a regular Python object. If your handler accepts collections of
elements then Prestans makes available a Prestans Array in the parsed_body which is a Python iterable.

4.3.3 Response Body

Once your handler has completed what it needed to do, it can optionally return a response body. If you aren’t returning
a body then your handler is simply required to set self.response.status to a valid HTTP status, Prestans has
wrapper constants available in prestans.http.STATUS.

Prestans will respect the response_template configuration set by your handler’s VerbConfig. You must return
an object that matches the rules. There are generally two scenarios:

• Your handler will return an entity that is an instance of a prestans.rest.Model subclass. This is typically
the case for Entity handlers.

• Your handler returns a collection (i.e a Prestans Array) which contains instances of a Prestans DataType
usually a Model. This is typically the case for Collection handlers.

REST end-points must always return the same type of response. This is discussed in detail in :doc:api_design.

Note: Prestans does not allow sending down instances of python types because they do not conform to a serialization
format making it difficult for the client to determine the reliability of the response.

def get(self, album_id):

... assuming you have an object that you can return

self.response.status = prestans.http.STATUS.OK
self.response.body = new musicdb.rest.models.Album(name="Journeyman", artist="Eric Clapton")

If you read your response from a persistent store you would be required to convert that object (typically by copying the
values) to a similarly formatted Prestans REST model. Prestans features Data Adapters which automate this process.

Prestans allows clients to dynamically configure the response payload by sending a serialized version of an Attribute
Filter as the HTTP header Prestans-Response-Attribute-List. This allows the client to adjust the re-
sponse from your API without you having to do extra work. Of course the server has the final say, if your handler
outright sets a rule there’s nothing a client can do to override it.

The response object that your handler has access to has a reference to an Attribute Filters which is made up
of the rules defined by your response_template with the client’s request preferences applied, accessible at
self.response.attribute_filter. If your handler changes the state of the attribute filter before the verb
method returns, Prestans used the modified state of the attribute filter, giving you the final say.

4.3. Working with parsed data 27

Prestans Documentation, Release 2.0

28 Chapter 4. Validating Requests & Responses

CHAPTER 5

Types & Models

Models allow you to define rules for your API’s data. Prestans uses these rules to ensure the integrity of the data
exchanged between the client and the server. If you’ve’ used the Django or Google AppEngine Prestans models will
look very familiar. Prestans models are not persistent.

Prestans types are one of the following:

• prestans.types.DataType all Prestans types are a subclass of DataType, this is the most basic
DataType in the Prestans world.

• prestans.types.DateStructure are a subclass of DataType but represent complex types like Date
Time.

• prestans.types.DateCollection are a subclass of DataType and represent collections like Arrays
or Dictionaries (refered to as Models in the Prestans world).

Each type has configurable properties that Prestans uses to validate data. It’s important to design your models with
the strictest case in mind. Use request and response filters to relax the rules for specific cases, refer to our chapter on
Validating Requests & Responses.

29

http://djangoproject.com
https://developers.google.com/appengine/

Prestans Documentation, Release 2.0

This chapter introduces you to writing Models and using it in various parts of your Prestans application. It is possible
to write custom DataType.

All Prestans types are wrappers on Pythonic data types, that you get a chance to define strict rules for each attribute.
These rules ensure that the data you exchange with a client is sane, ensures the integrity of your business logic and
minimizes issues when persisting data. All of this happens even before your handler is even called.

Most importantly it cuts out the need for writing trivial boilerplate code to validate incoming and outgoing data. If
your handler is called you can trust the data is sane and safe to use.

Prestans types are divided into, Basic Types, and Collections, currently supported types are:

• String, wraps a Python str

• Integer, wraps a Python number

• Float, wraps a Python number

• Boolean, wraps a Python bool

• DataURLFile, supports uploading files via HTML5 FileReader API

• Date, wraps Python date

• Time, wraps Python time

• DateTime, wraps Python datetime

• Array, wraps Python lists

• Model, wraps Python dict

The second half of this chapter has a detailed reference of configuration parameters for each Prestans DataType.

5.1 Writing Models

Models are defined by extending prestans.types.Model. Models contain attributes which either be a basic
Prestans type (a direct subclass of prestans.types.DataType) or a reference to an instance of another Model,
or an Array of objects.

The REST standard talks about URLs refering to entities, this is often interpreted literally as REST API URLs refer
to persistent models. Your REST API is the business logic layer of your Web client / server application. Providing
direct access to persistently stored data through your REST API is simply replicating XML-RPC and not only is it bad
design in the RESTful world but also extremely insecure.

RESTful APIs should serve back REST models. REST models are views of your data, that make sense as a response
to the REST request. It’s important to understand this so you can define your REST models to be as strict as possible.
Like all good business logic layers, a RESTful API should never accept a request it can’t comply with, this includes
authority to perform the requested tasks on the data.

Consider a scenario where we are trying to model discographies, where a Band has Albums, has Tracks.

Depending on the implementation of this applicaiton it might be easier to send down Tracks when a client requests
Albums, but might only want to send down Albums (without Tracks) when a list of Bands is requested.

Note: Read our section of Design Notes, to learn more about designing better REST APIs.

General convention for Prestans apps is to keep all your REST models in a single package. To start creating models,
simply define a class that extends from prestans.types.Model

30 Chapter 5. Types & Models

http://www.html5rocks.com/en/tutorials/file/dndfiles/

Prestans Documentation, Release 2.0

... amogst other things
import prestans.types

class Track(prestans.types.Model):

... next read about attributes here

5.1.1 Defining Attributes

All atributes of a Model must be an instance of a prestans.type, Attributes can also be relationships to instances
or collections of Models.

Attributes are defined at a class level, these are the rules used by Prestans for each instance attributes of your Model.
By default Prestans is absolutely unforgiving and will ensure that each attribute satifies all it’s conditions. Failure
results in aborting the creation of an instance.

At the class level define attributes by instantiating Prestans types with your rules, ensure they are as strict as possible,
the more your define here the less you have to do in your handler. The objective is not to pass through data that your
handler can’t work with.

class Track(prestans.types.Model):

id = prestans.types.Integer(required=False)
name = prestans.types.String(required=True, min_length=1)
duration = prestans.types.Float(required=True)

Our Type Configuration Reference guide documents in detail configuration validation options provided by each
Prestans DataType.

Note: Prestans Models do not provide back references when defining relationships between Models (like many ORM
layers), defining cross references in Models can cause an infinite recursion. REST models are views on your persistent
data, in most cases cross references might mean re-thinking your API design. You can also use DataAdapters to
prevent an infinite recursion.

5.1.2 To One Relationship

One to One relationships are defined assigning an instance of an existing Model to an attribute of another.

Validation rules accepted as instantiation values are for the attribute of the container Model, they are evaluated the
same way as basic Prestans DataTypes.

class Band(prestans.types.Model):

... other attributes ...

created_by = UserProfile(required=True)

On success the attribute will refer to an instance of the child Model. Failure to validate attributes of the children result
in the failure of the parent Model.

5.1. Writing Models 31

Prestans Documentation, Release 2.0

5.1.3 To Many Relationship (using Arrays)

Prestans provides prestans.types.Array to provide lists of objects. Because REST end points refer to Entities,
Collections in REST responses or requests must have elements of the same data type.

You must provide an instance Prestans DataType (e.g Array of Strings for tagging) or defined Model as the
element_template property of an Array. Each instance in the Array must comply with the rules defined
by the template. Failure to validate any instance in the Array, results as a failure to validate the entire Array.

class Album(prestans.types.Model):

... other attributes ...

tracks = prestans.types.Array(element_template=Track(), min_length=1)

Arrays of Models are validated using the rules defined by each attribute. If you are creating an Array of a basic Prestans
type, the validation rules are defined in the instance provided as the element_template:

class Album(prestans.types.Model):

... other attributes ...

tags = prestans.types.Array(element_template=prestans.types.String(min_length=1, max_length=20))

5.1.4 Self References

Self references in Prestans Model definition are the same as self referencing Python objects.

... amogst other things
import prestans.types

Define the Model first
class Genre(prestans.types.Model):

id = prestans.types.Integer(required=False)
name = prestans.types.String(required=True, min_length=1)
year_started = prestans.types.Float(required=True)

... and other attributes

Once defined above you can self refer
Genre.parent = Genre(required=False)

Use arrays to make a list:

Genre.sub_genres = prestans.types.Array(element_template=Genre())

5.2 Special Types

Apart the usual suspects (String, Integer, Float, Boolean) Prestans also provides a few complex
DataTypes. These are wrappers on data types that have extensive libraries both on browsers and the Python runtime,
but are serialized as strings or numbers.

32 Chapter 5. Types & Models

Prestans Documentation, Release 2.0

5.2.1 DateTime

DateTime wraps around python datetime, serialization formats like JSON serialize dates as strings, there are var-
ious standard formats for serializing dates as Strings, by default Prestans DateTime uses RFC 822 expressed as
%Y-%m-%d %H:%M:%S format string in Python. This is because Google Closure’s Date API conveniently provides
goog.date.fromIsoString to parse these Strings.

To use another format string, override the format parameter when defining DateTime attributes.

class Album(prestans.types.Model):

last_updated = prestans.types.DateTime(default=prestans.types.DATETIME.CONSTANT.NOW)

Assigning python datetime instances as the default value for Prestans DateTime attributes works
on the server, our problem lies in auto-generating client side stub code. The use of the constant
prestans.types.CONSTANT.DATETIME_NOW instruct Prestans to handle this properly.

5.2.2 DataURLFile

HTML5’s FileReader API is well supported by all modern browsers. Traditionally Web applications used multi part
mime messages to upload files in a POST request. The FileReader API allows JavaScript to get access to local
files and makes for a much nicer solution for file uploads via a REST API.

The FileReader API provides FileReader.readAsDataURL which reads the file using as Data URL Scheme,
which essentially is a Base64 encoded file with meta information.

<!-- Use of data URL to embed an image -->
<img src="
AAAFCAYAAACNbyblAAAAHElEQVQI12P4//8/w38GIAXDIBKE0DHxgljNBAAO
9TXL0Y4OHwAAAABJRU5ErkJggg==" alt="Red dot"/>
<!-- Courtesy Wikipedia -->

prestans.types.DataURLFile decodes the file Data URL Scheme encoded file and give access to the content
and meta information. If you are using a traditional Web server like Apache, DataURLFile provides a save
method to write the uploaded contents out, if you are on a Cloud infrastructure e.g Google AppEngine, you can use
the file_contents property to get the decoded file.

DataURLFile can restrict uploads based on mime types.

class Album(prestans.types.Model):

... other attributes
album_art = prestans.types.DataURLFile(allowed_mime_types=['image/jpeg', 'image/png', 'image/gif'])

5.3 Using Models to write Responses

REST APIs should validate any data being sent back down to clients. Your application’s persistent layer can’t always
guarantee that stored data meets your business logic rules.

Models are a great way of constructing sound responses. They are also serializable by prestans. Your handlers can
simply pass a collection (using Arrays) or instance of a Model and Prestans will serialize the results.

class AlbumEntityHandler(prestans.handlers.RESTRequestHandler):

def get(self, band_id, album_id):

5.3. Using Models to write Responses 33

https://tools.ietf.org/html/rfc822.html
http://closure-library.googlecode.com/svn/docs/class_goog_date_DateTime.html
http://www.html5rocks.com/en/tutorials/file/dndfiles/
http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Base64

Prestans Documentation, Release 2.0

... environment specific code to get an Album for the Band

album = pdemo.rest.models.Album()
album.name = persistent_album_object.name

... and so on until you copy all the values across

self.response.http_status = prestans.http.STATUS.OK
self.response.body = album

From the above example it’s clear that code to convert persistent objects into REST models becomes repetitive, and as
a result error prone. Prestans provides DataAdapters, that automate the conversion of persistent models to REST
models. Read about it in the Data Adapters chapter.

If you use Google’s Closure Library for client side development, we provide a complete client side implementation
of our types library to create and parse, requests and responses. Details available in the Google Closure Library
Extensions section.

5.4 Type Configuration Reference

Basic Prestans types extend from prestans.types.DataType, these are the building blocks of all data repre-
sented in systems, e.g Strings, Numbers, Booleans, Date and Times.

Collections contain a series of attributes of both Basic and Collection types.

5.4.1 String

Strings are wrappers on Pythonic strings, the rules allow pattern matching and validation.

Note: Extends prestans.types.DataType

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default specifies the value to be assigned to the attribute if one isn’t provided on instantiation, this must be a
String.

• min_length the minimum acceptable length of the String, if using the default parameter ensure it respects
the length.

• max_length the maximum acceptable length of the String, if using the default parameter ensure it respects
the length.

• format a regular expression for custom validation of the String.

• choices a list of Strings that are acceptable values for the attribute.

• utf_encoding set to utf-8 by default is the confiurable UTF encoding setting for the String.

5.4.2 Integer

Integers are wrappers on Python numbers, limited to Integers. We distinguish between Integers and Floats because of
formatting requirements.

34 Chapter 5. Types & Models

Prestans Documentation, Release 2.0

Note: Extends prestans.types.DataType

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default specifies the value to be assigned to the attribute if one isn’t provided on instantiation, this must be a
Integer.

• minimum the minimum acceptable value for the Integer, if using default ensure it’s greater or equal to than the
minimum.

• maximum the maximum acceptable value for the Integer, if using default ensure it’s less or equal to than the
maximum.

• choices a list of choices that the Integer value can be set to, if using default ensure the value is set to of the
choices.

5.4.3 Float

Floats are wrappers on Python numbers, expanded to Floats.

Note: Extends prestans.types.DataType

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default specifies the value to be assigned to the attribute if one isn’t provided on instantiation, this must be a
Float.

• minimum the minimum acceptable value for the Float, if using default ensure it’s greater or equal to than the
minimum.

• maximum the maximum acceptable value for the Float, if using default ensure it’s less or equal to than the
maximum.

• choices a list of choices that the Float value can be set to, if using default ensure the value is set to of the
choices.

5.4.4 Boolean

Booleans are wrappers on Python bools.

Note: Extends prestans.types.DataType

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default specifies the value to be assigned to the attribute if one isn’t provided on instantiation, this must be a
Boolean.

5.4.5 DataURLFile

Supports uploading files using the HTML5 FileReader API.

5.4. Type Configuration Reference 35

http://www.html5rocks.com/en/tutorials/file/dndfiles/

Prestans Documentation, Release 2.0

Note: Extends prestans.types.DataType

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• allowed_mime_types

5.4.6 Date

Date Time is a complex structure that parses strings to Python datetime and vice versa. Default string format is
%Y-%m-%d to assist with parsing on the client side using Google Closure Library provided DateTime.

Note: Extends prestans.types.DataStructure

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default specifies the value to be assigned to the attribute if one isn’t provided on instantiation, this must be
a date. Prestans provides a constans prestans.types.Date.CONSTANT.TODAY if you want to use the
date / time of execusion.

• format default format %Y-%m-%d

5.4.7 Time

Date Time is a complex structure that parses strings to Python datetime and vice versa. Default string format is
%H:%M:%S to assist with parsing on the client side using Google Closure Library provided DateTime.

Note: Extends prestans.types.DataStructure

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default specifies the value to be assigned to the attribute if one isn’t provided on instantiation, this must be a
date. Prestans provides a constans prestans.types.Time.CONSTANT.NOW if you want to use the date /
time of execusion.

• format default format %H:%M:%S

5.4.8 DateTime

Date Time is a complex structure that parses strings to Python datetime and vice versa. Default string format is
%Y-%m-%d %H:%M:%S to assist with parsing on the client side using Google Closure Library provided DateTime.

Note: Extends prestans.types.DataStructure

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default specifies the value to be assigned to the attribute if one isn’t provided on instantiation, this must be a
date. Prestans provides a constans prestans.types.DateTime.CONSTANT.NOW if you want to use the
date / time of execusion.

• format default format %Y-%m-%d %H:%M:%S

36 Chapter 5. Types & Models

http://closure-library.googlecode.com/svn/docs/class_goog_date_DateTime.html
http://closure-library.googlecode.com/svn/docs/class_goog_date_DateTime.html
http://closure-library.googlecode.com/svn/docs/class_goog_date_DateTime.html

Prestans Documentation, Release 2.0

5.5 Collections

Collections are formalised representations to complex itterable data structures. Prestans provides two Collections,
Arrays and Models (dictionaries).

5.5.1 Array

Arrays are collections of any Prestans type. To ensure the integrity of RESTful responses, Array elements must
always be of the same kind, this is defined by specifying an element_template. Prestans Arrays are itterable.

Note: Extends prestans.types.DataCollection

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default a default object of type prestans.types.Array to be used if a value is not provided

• element_template a instance of a prestans.types subclass that’s use to validate each element.
Prestans does not allow arrays of mixed types because it does not form valid URL responses.

• min_length minimum length of an array, if using default it must conform to this constraint

• max_length maximum length of an array,

5.5.2 Model

Models are wrapper on dictionaries, it provides a list of key, value pairs formalised as a Python class made up of any
number of Prestans DataType attributes. Models can have instances of other models or Arrays of Basic or Complex
Prestans types.

Note: Extends prestans.types.DataCollection

• required flags if this is a mandatory field, accepts True or False and is set to True by default

• default a default model instance, this is useful when defining relationships

The following is a parallel argument:

• **kwargs a set of key value arguments, each one of these must be an acceptable value for instance variables,
all defined validation rules apply.

5.5. Collections 37

Prestans Documentation, Release 2.0

38 Chapter 5. Types & Models

CHAPTER 6

Providers

Prestans is a micro-framework designed to streamline building REST APIs. Providers are Prestans’ bridge to other
infrastructure level services that are specific to each application but are required for REST APIs to function.

6.1 Authentication

Provided by the prestans.provider.auth package and is designed to plug into an existing authentication sys-
tem. Prestans does not provide an authentication layer because it’s understood that every applicaiton and environment
has it’s own requirements, and this outside the realm of Prestans.

Security typically has two parts to the problem, Authentication to check if a user is allowed in the system at all, and
Authorization to see if the user is allowed to access a particular resource. If you are checking for Authority, Prestans
assumes that the user is required to be authenticated.

Security is defined per HTTP method of a handler (i.e a User can read a list of resources, but is not allowed to
update them), Prestans provides a set of decorators that your REST handler methods use to express their authentica-
tion/authorization requirements.

Once you’ve defined and assigned an authentication provider for your handler you can use the following decorators
(see :pep::318) provided by prestans.providers.auth:

• prestans.provider.auth.login_required checks with the the registered authentication provider if
a user is logged in

• ‘‘prestans.provider.auth.role_required‘‘checks with the registered authentication provider if the user has the
appropriate role

Note: Providers are inherited, consider assigning the provider to a base handler class of your application.

6.1.1 Fitting into your environment

An API end point should respond if the user is unauthenticated, obviously with a message to tell them they are
unauthenticated. API’s are client agnostic, so It’s nearly “never“” the API end point’s responsibility to send the user to
a login page. If a uesr is accessing a resource they are not meant to be, Prestans will send a properly formed message
as the response.

prestans.provider.auth provides a stub for the AuthContextProvider, this class is never meant to be
used directly, your application is expected to provide a class that extends from AuthContextProvider. It
defines the following method stubs:

39

Prestans Documentation, Release 2.0

• is_authenticated_user must return True or False to indicate if a user is current logged in, the func-
tion is additionally provided a reference to the hander. Your application has the opportunity to use any supporting
libraries to determine if the user is logged in and return a response.

• get_current_user should return a reference to the user object for your application. This can be a persis-
tent object, or user identifier, whatever your application would find most useful when persistenting data.

• current_user_has_role is provided a set of rolenames that the handle is allowed to use, role_name can
be a refernce to a list of strings, constants whatever your app deems relevant. This method will only run after
Prestans has checked that the user is authenticated. Obviously you can use self.get_current_user to
get a reference tot he currently logged in user.

class AuthContextProvider:

def is_authenticated_user(self, handler_reference):
raise Exception("Direct use of AuthContextProvider not allowed")

def get_current_user(self):
raise Exception("Direct use of AuthContextProvider not allowed")

def current_user_has_role(self, role_name):
raise Exception("Direct use of AuthContextProvider not allowed")

6.1.2 Writing your own provider

Writing your own AuthContextProvider comprises of overriding the three methods discussed in the previous
section. The following example demonstates the use of Beaker Sessions to validate if the user is logged in. Notice that
that most of the code is referencee from another package that provides authentication information to pages rendered
by handlers.

The __init__ method is not used by the parent class, so if you need to pass extra references to objects that you need
to use to perform the authentication here’s the place to do it.

class MyAuthContextProvider(prestans.provider.auth.Bae):

@brief custom constructor that takes in a reference to the beaker environment var
#
def __init__(self, environ):

self._environ = environ

@brief checks to see if a Beaker session is set or not
#
Beaker session reference is passed into the constructor and made available as
an instance variable to the auth context provider
#
def is_authenticated_user(self):

return self._environ and self._environ.get(myapp.auth.SESSION_KEY)

@brief returns a user object from myapp.models
def get_current_user(self):

remote_user = self._environ.get(myapp.auth.SESSION_KEY)
return myapp.auth.get_userprofile_by_username(remote_user)

40 Chapter 6. Providers

http://beaker.groovie.org

Prestans Documentation, Release 2.0

6.1.3 Working with Google AppEngine

Prestans ships with an inbuilt provider for Google AppEngine. AppEngine is a WSGI environment and has a very fixed
authentication lifecycle encapsulated by prestans.ext.appengine.AppEngineAuthContextProvider.
The AppEngine AuthContextProvider implements support for OAuth and Google account authentication.

Obviously this does not implement the current_user_has_role. If you wish to support role based authorization
you must extend this class and implement this function.

6.1.4 Attaching AuthContextProvider to Handlers

Like all things prestans, attaching a auth context provider to a handler is as simple as assigning an instance of your
AuthContextProvider to your RESTRequestHandler‘s auth_context property:

class MyHandler(prestans.rest.RequestHandler):

__provider_config__ = prestans.provider.Config(
authentication=musicdb.rest.auth.AuthContextProvider()

)

This tells your handler which AuthContextProvider to use. Remember that authentication configuration is per
HTTP method supported by your request handler:

• If your handler method just wants to ensure that a user is logged in, all you need to do is decorate your HTTP
method with @prestans.provider.auth.login_required.

• If your handler method wants to test final grained roles use the
@prestans.provider.auth.role_required decorator. This implies that a user is already
logged in.

The following example allows any logged in user to get resources, users with role authors to create and update re-
sources, but only users with role admin to delete resources.

Note: If your AuthenticationContextProvider needs access to the request or server envrionment you can
choose to set it in the setup method called handler_will_run which is executed before handler specific code but
after the environment and request have been parsed.

class MyRESTHandler(prestans.rest.RequestHandler):

def handler_will_run(self):
self.__provider_config__ = prestans.provider.Config(

authentication=musicdb.rest.auth.AuthContextProvider(self.request.environ)
)

@prestans.provider.auth.login_required
def get(self):

.... do what you need to here

@prestans.provider.auth.role_required(role_name=['authors'])
def post(self):

.... do what you need to here

@prestans.provider.auth.role_required(role_name=['authors'])
def put(self):

.... do what you need to here

6.1. Authentication 41

Prestans Documentation, Release 2.0

@prestans.provider.auth.role_required(role_name=['admin'])
def delete(self):

.... do what you need to here

42 Chapter 6. Providers

CHAPTER 7

Data Adapters

The Validating Requests & Responses chapter demonstrates the use of Prestans Models to validate requests, build
rules complaint responses and the use of AttributeFilters to make temporary exceptions to the validation rules.

DataAdapters automate morphing persistent objects to Prestans models, it provides the following features:

• A static registry prestans.ext.data.adapters.registry, that maps persistent models to REST
models

• An instance convertor, used to convert an instance. Convertors are specific to backends and uses the registry to
determine relationships between persistent and REST models.

• A collection iterator, that iterates through collections of persistent results and turns them into REST models. It
follows all the same rules as the instance convertor.

Out of the box Prestans supports:

• SQLAlchemy which in turn should allow you to support most popular RDBMS backends.

• AppEngine’s Python NDB which is built on top of DataStore.

Note: REST services provide views of persistent data, DataAdapters allow you to map multiple REST models to the
same persistent model.

For the purposes of this example lets assume our rest models live in the namespace musicdb.rest.models and
the persistent models live in musicdb.models, and is written for AppEngine.

Writing custom DataAdapters is quite straight forward. The Prestans project welcomes third party contributions.

7.1 Pairing REST models to persistent models

Before you can ask Prestans to convert persistent objects to REST model instances, you must use the registry you
to pair persistent definitions to REST definitions. Prestans uses the REST model as the template for the data that will
be transformed. While adapting data Prestans will:

• Inspect the REST model for a list of attributes

• Inspect the persistent model for the data

• Ensure that the data provided by the persistent model matches the rules definied by the REST model

• If the persistent model does not define an attribute, Prestans reverts to using the default value or None

43

http://www.sqlalchemy.org/
https://developers.google.com/appengine/docs/python/ndb/

Prestans Documentation, Release 2.0

• If the value provided by the persistent model fails to validate, Prestans raises an
prestans.exception.DataValidationException which will graceful respond to the requesting
client.

If a persistent definition maps to more than one REST model defintion, DataAdapters will try and make the sensible
choice unless you explicitly provide the REST model you wish to adapt the data to.

Registering the persistent model is done by calling the register_adapter method on
prestans.ext.data.adapters.registry, and an appropriate ModelAdapter instance.

Consider the following REST models defined in musicdb.rest.models:

import prestans.types

class Album(prestans.types.Model):

id = prestans.types.Integer(required=False)
name = prestans.types.String(required=True, max_length=30)

class Band(prestans.types.Model):

id = prestans.types.Integer(required=False)
name = prestans.types.String(required=True, max_length=30)

albums = prestans.types.Array(element_template=Album(), required=False)

along with it’s corresponding NDB persistent model defined in musicdb.models:

from google.appengine.ext import ndb
from google.appengine.api import users

import prestans.ext.data.adapters
import prestans.ext.data.adapters.ndb

class Album(ndb.Model):

name = ndb.StringProperty()

@property
def id(self):

return self.key.id()

class Band(ndb.Model):

name = ndb.StringProperty()

created = ndb.DateTimeProperty(auto_now_add=True)
last_updated = ndb.DateTimeProperty(auto_now=True)

@property
def albums(self):

return Album.query(ancestor=self.key).order(Album.year)

@property
def id(self):

return self.key.id()

44 Chapter 7. Data Adapters

Prestans Documentation, Release 2.0

Note: By convention we recommend the use of the namespace yourproject.rest.adapters to hold all your
adapter registrations.

import musicdb.models
import musicdb.rest.models

Register the persistent model to adapt to the Band rest model, also
ensure that Album is registered for the children models to adapt
prestans.ext.data.adapters.registry.register_adapter(

prestans.ext.data.adapters.ndb.ModelAdapter(
rest_model_class=musicdb.rest.models.Band,
persistent_model_class=musicdb.models.Band

)
)

7.2 Adapting Models

Once your models have been declared in the adapter registry, your REST handler:

• Query the data that your handler is expected to return

• Set the appropriate HTTP status code

• Use the adapt_persistent_instance or adapt_persistent_collection from the appropriate
package to transform your persitent objects to REST objects.

• Prestans will query the registry for any children objects that appear in the object it’s attempt to adapt.

• Assign the returned collection to self.response.body to send a response to the client

Each DataAdapter provides two convenience methods:

• adapt_persistent_collection which iterates over a collection of persistent objects to a collection of
REST models

• adapt_persistent_instance which iterates over an instance of a persistent object to a REST model

from google.appengine.ext import ndb

import musicdb.models
import musicdb.rest.handlers
import musicdb.rest.models
import musicdb.rest.adapters

import prestans.ext.data.adapters.ndb
import prestans.handlers
import prestans.parsers
import prestans.rest

class BandCollection(musicdb.rest.handlers.Base):

request_parser = CollectionRequestParser()

def get(self):

7.2. Adapting Models 45

Prestans Documentation, Release 2.0

bands = musicdb.models.Band().query()

self.response.http_status = prestans.http.STATUS.OK
self.response.body = prestans.ext.data.adapters.ndb.adapt_persistent_collection(

collection=bands,
target_rest_instance=musicdb.rest.models.Band

)

If you are using AttributeFilters, you should pass the filter along to the adapter method enabling it to skip
accessing that property all together. This can significantly reduce read stress on backends that support lazy loading
properties:

Collection of objects
class BandCollection(musicdb.rest.handlers.Base):

def get(self):

bands = musicdb.models.Band().query()

self.response.http_status = prestans.http.STATUS.OK
self.response.body = prestans.ext.data.adapters.ndb.adapt_persistent_collection(

collection=bands,
target_rest_instance=musicdb.rest.models.Band,
attribute_filter = self.response.attribute_filter

)

Adapting a single instance
class BandEntity(musicdb.rest.handlers.Base):

def get(self, band_id):

.. use the appropriate query to get the appropriate instance

self.response.http_status = prestans.http.STATUS.OK
self.response.body = prestans.ext.data.adapters.ndb.adapt_persistent_instance(

collection=band,
target_rest_instance=musicdb.rest.models.Band,
attribute_filter = self.response.attribute_filter

)

Note: Each handler has access to the approprite attribute filter at self.response.attribute_filter (see
Validating Requests & Responses)

7.3 Writing your own DataAdapter

DataAdapter can be easily extended to support custom backends. Writing an adapter for a custom backend involves
providing:

• an adapt_persistent_collection method that iterates over a collection of persistent objects and trans-
forms them into a collection of REST objects

• an adapt_persistent_instance method that converts a single instance of a persistent object to a REST
object

46 Chapter 7. Data Adapters

Prestans Documentation, Release 2.0

• an implementation of a ModelAdapter class that implements adapt_persistent_to_rest method
which converts a persistent object to a REST object. An instance of this is returned by the registry and is
used by the convenience methods. This method detail how each property is transformed.

It’s very likely that you will be able to reuse the code for the convenience methods from one of the DataAdapters
shipped with Prestans. They are responsible for wrapping backend specific operations like accessing collection lengths.

A scaffold of the a custom DataAdapter looks as follows:

def adapt_persistent_instance(persistent_object, target_rest_class=None, attribute_filter=None):
... your custom implementation

def adapt_persistent_collection(persistent_collection, target_rest_class=None, attribute_filter=None):
... your custom implementation

class ModelAdapter(adapters.ModelAdapter):

def adapt_persistent_to_rest(self, persistent_object, attribute_filter=None):
... your custom implementation here

7.3. Writing your own DataAdapter 47

Prestans Documentation, Release 2.0

48 Chapter 7. Data Adapters

CHAPTER 8

Google Closure Library Extensions

Google Closure is a set of JavaScript tools, that Google uses to build many of their core products. It provides:

• A JavaScript Optimizer to build a distributable version of your application

• A comprehensive JavaScript library

• A templating system for JavaScript

• A JavaScript style checker and style fixer

• An enhanced stylesheet language that works with the optimizer to minifiy CSS.

Each one of these components is agnostic of the other. Closure is at the heart of building products with prestans.

Google Closure is unlike other JavaScript frameworks (e.g jQuery). An extremely central part of Closure tools is it’s
compiler (which is not just a minifier), the Closure development philosophy is to use the abstractions and components
made available by Closure library and allow the compiler to optimise it for production.

Note: It’s assumed that you are familiar with developing applications with Google Closure tools.

Prestans provides a number of extensions to Closure Library, that ease and automate building rich JavaScript clients
that consume your Prestans API. Our current line up includes:

• REST Client, provides a pattern to create Xhr requests, manages the life cycle and parsers responses, also
supports Attribute Fitlers.

• Types API, a client side replica of the Prestans server types package assisting with parsing responses.

• Code generation tools to quickly produce client side stubs from your REST application models.

It’s expected that you will use the Google Closure dependency manager to load the Prestans namespaces.

8.1 Installation

Our client library follows the same development philosophy as Google Closure library, although we make available
downloadable versions of the client library it’s highly recommended that you reference our repository as an external
source.

This allows you to keep up to date with our code base and benefit from the latest patches when you next compile.

Closure library does the same, and we ensure that we are leveraging off their latest developments.

49

https://developers.google.com/closure/library/
https://developers.google.com/closure/compiler
https://developers.google.com/closure/library
https://developers.google.com/closure/templates
https://developers.google.com/closure/utilities
http://code.google.com/p/closure-stylesheets/
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/library/docs/introduction

Prestans Documentation, Release 2.0

Note: Code referenced in this section is available on Github.

8.1.1 Unit testing

Adjust the DEPSWRITER variable in the calcdeps.sh script and run it in the prestans-client directory.

cd prestans-client
./calcdeps.sh

To run these unit tests you will need to start Google Chrome with --allow-file-access-from-files pa-
rameter. Example on Mac OS X:

/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome --allow-file-access-from-files

8.2 Extending JavaScript namespaces

Types & Models ensure the validity of data sent to and from the server. The application client should be as responsible
validate data on the client side, ensuring that you never send an invalid request or you never accept an invalid response.
Discussed later in this chapter are tools provided by Prestans that auto generate Closure library compatible versions
of your server side Models and Attribute Filters, needless to say our JSON client works seamlessly with these auto
generated Models and Filters.

Auto generated code is accompanied with the curse of losing local modifications (e.g adding a helper method or
computed property) when you next run the auto generate process.

Consider the following scenario, Prestans auto generates a Model class called User, this uses the JavaScript names-
pace pdemo.data.model.User, you now wish to write a function to say concatenate a user’s first and last name.
The obvious approach is to use goog.inherits to create a subclass of pdemo.data.model.User. However
for dynamic operations like parsing server responses maintaining the namespace is crucial.

Thanks to JavaScript’s dynamic nature and Closure’s excellent dependency management it’s quite easy to implement a
pattern that closely resembles Objective-C Categories. The idea is to be able to maintain the custom code in a separate
file and be able to dynamically merge it with the auto generated code during runtime.

To achieve this for our hypothetical User class, create a file called User.js in directory
pdemo/data/extension, this will provide the namespace pdemo.data.extension.User and depend on
pdemo.data.model.User.

goog.provide('pdemo.data.extension.User');
goog.require('pdemo.data.model.User');

Closure will ensure that the namespace pdemo.data.extension.User
is available here, feel free to extend it

pdemo.data.model.User.prototype.getFullName = function() {
return this.getFirstName() + " " + this.getLastName();

};

Now where you want to create an instance of pdemo.data.model.User, use the extension as the dependency
pdemo.data.model.UserExtension. This ensures that both the auto generated namespace and your exten-
sions are available.

50 Chapter 8. Google Closure Library Extensions

http://github.com/prestans/prestans-client/
http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/ProgrammingWithObjectiveC/CustomizingExistingClasses/CustomizingExistingClasses.html

Prestans Documentation, Release 2.0

goog.provide('pdemo.ui.web.Renderer');

This will make available the pdemo.data.model.User namespace with your extensions
goog.require('pdemo.data.extension.User');

8.3 Types API

The Types API is a client side implementation of the Prestans types API found on the server side. It assists in directly
translating validation rules for Web based clients consuming REST services defined using prestans. Later in this
chapter we demonstrate a set of tools that cut out the laborious job of creating client side stubs of your Prestans
models.

• String, wraps a string

• Integer, wraps a number

• Float, wraps a number

• Boolean, wraps a boolean

• DateTime, wraps a goog.date.DateTime and includes format configuration from the server side definition.

• Array, extends goog.iter.Iterator enables you to use goog.iter.forEach, we wrap most of the useful
methods provided by Closure iterables.

• Model, wraps JavaScript object

• Filter is an configurable filter that you can pass with API calls, this translates back into attribute strings,
discussed in Validating Requests & Responses.

Note: prestans.types.Integer only support integers in signed 32 bit range as anything outside this range does not work
correctly with JavaScript bitwise operators.

8.3.1 Array

prestans.types.Array extends goog.iter.Iterator, allowing you to use the methods from goog.iter
including:

• goog.iter.filter

• goog.iter.forEach

• goog.iter.limit

An array takes the following object as its constructor.

{
elementTemplate: Subclass of prestans.types.Model or instance of prestans.types.Integer, prestans.types.Float, prestans.types.String, prestans.types.Boolean,
opt_elements: Array of elements to append to the array,
opt_json: Array of json elements to append to the array,
opt_minified: Whether or not the json has been minified,
opt_maxLength: An integer value representing the maximum length of the array,
opt_minLength: An integer value representing the minimum length of the array

}

Prestans provides wrappers for the following Google closure goog.array methods:

8.3. Types API 51

http://closure-library.googlecode.com/svn/docs/class_goog_date_DateTime.html
http://closure-library.googlecode.com/svn/docs/class_goog_iter_Iterator.html
http://docs.closure-library.googlecode.com/git/namespace_goog_iter.html
http://docs.closure-library.googlecode.com/git/namespace_goog_array.html

Prestans Documentation, Release 2.0

• isEmpty checks to see if an Array is empty returns a Boolean

• binarySearch(target, opt_compareFn) performs a binary search for an object returns an index
Number

• binaryInsert(value, opt_compareFn) performs a binary insert and returns a Boolean

• binaryRemove(value, opt_compareFn) performs a binary remove and returns a Boolean

• insertAt(obj, opt_i) inserts and object at the given index

• indexOf(obj, opt_fromIndex) returns the index as a Number for a particular object

• removeAt(i) removes an object at a particular index and returns a Boolean

• removeIf(f, opt_obj) removes an object if the supplied function returns true and returns a Boolean

• remove(obj) removes the provided object from the collection and returns a Boolean

• sort(opt_compareFn) performs a sort based on a comparison function

• clear clears the contents of an array

• find(f, opt_obj) performs a fund using a user provided function, returns the Element or null

• slice(start, opt_end) returns an prestans.types.Array which is a portion of the original
Array

• contains(obj) returns a Boolean to see if the collection contains a particular object

Prestans then provides the following additional methods:

• getMinLength returns a Number

• getMaxLength returns a Number

• append (element) returns a Boolean

• insertAfter(newValue, existingValue) returns a Boolean

• length returns a Number

• containsIf(condition, opt_context) returns an Element|null

• objectAtIndex(index) returns an Element

• asArray returns an Array

• clone returns an prestans.types.Array

• getJSONObject returns an Object

• getJSONString returns a String

8.3.2 Attribute Change Events

Models generated by Prestans raise the prestans.types.Model.EventType.ATTRIBUTE_CHANGED event
whenever a mutator is fired. You can listen for this event on any instance of a Prestans Model subclass.

event.getIdentifier() provides you a camel cased representation of the attribute that changed:

var album_ = new pdemo.data.model.Album();

// Use the Event Handler provided by a Google Closure Component
this.getHandler().listen(album_, prestans.types.Model.EventType.ATTRIBUTE_CHANGED, function(event){

if(event.getIdentifier() == "name") {

52 Chapter 8. Google Closure Library Extensions

Prestans Documentation, Release 2.0

// name changed, I might update the user interface
}

});

8.3.3 Generating Model Code

Based on the server model definition Prestans can generate JavaScript versions of your models. You can use this in
tandem with the Xhr client to ensure the data you receive from is intact and matches the business rules (hence ensuring
nothing went wrong on the way), and that the data you send to the server will pass the validation test.

The generated model code centralizes references to JSON keys allowing you to access the data via accessors and
mutators (which also validate the data) allowing Closure Compiler to optimise your code.

Prestans provides a utility called pride (Prestans Integrated Development Environment) which resides in /usr/local/bin
and is responsible for generating the Model stubs. You provide it a reference to the Python file that contains your Model
definitions along with target name spaces and paths and for each server Model definition it produces a JavaScript Model
or Attribute Filter.

To generate models using pride use the following command:

pride gen --template closure.model --model pdemo/rest/models.py --namespace pdemo.data.model --output client/pdemo/data/model

Prestans assumes that your filters files live in the same level as models i.e pdemo.data.model corresponds to
pdemo.data.filter, you can optionally provide a --filter-namespace to override the default filter names-
pace

To generate filters using pride use the following command:

pride gen --template closure.filter --model pdemo/rest/models.py --namespace pdemo.data.filter --output client/pdemo/data/filter

8.4 REST Client

Prestans contains a ready made REST Client to allow you to easily make requests and unpack responses from a
Prestans enabled server API. Our client implementation is specific to be used with Google Closure and only speaks
JSON.

The client has three important parts:

• Request Manager provided by prestans.rest.json.Client, this queues, manages, cancels requests
and is responsible for firing callbacks on success and failure. Your application lodges all API call requests with
an instance of prestans.rest.json.Client. It’s designed to be shared by your entire application.

• Request provided by prestans.rest.json.Request is a formalised request that can be passed to a
Request Manager. The Request constructor accepts a JSON payload with configuration information, this includs
partial URL schemes, parameters, optional body and a format for the response. The Request Manager uses the
responses format to parse the server response.

• Response provided by prestans.rest.json.Response encapsulates a server response. It also contains
a parsed copy of the server response expressed using Prestans types.

The general idea is:

• To maintain a globally accessible Request Manager

• Formally define each Xhr operation as a Request object

8.4. REST Client 53

http://github.com/google/closure-compiler

Prestans Documentation, Release 2.0

• The Request Manager handles the life cycle of a Xhr call and call an endpoint in your application on success or
failure

• Both these callbacks are provided an instance of Response containing the appropriate available information

8.4.1 Request Manager

First step is to create a request manager by instantiating prestans.rest.json.Client, it takes the following
parameters:

• baseUrl, to be consistent with the single point of origin constraint, we assume that all your API calls are
prefixed with something like /api. If you provide a base URL all your requests should provide URLs relative
to the base. This also makes for eased maintenance in case you rearrange your application URLs.

• opt_numRetries set to 0 by default, causing requests never to be retried. Xhr implementations are capable
of retrying to reach the server in case of failure.

There’s a fair chance that your application might launch simultaneous Xhr requests, it’s also likely that you would
want to cancel some requests on events e.g as the user clicks around names of artists to get a list of their albums, you
want to cancel any previously unfinished calls if the user has clicked on another artist name.

Our request manager can work this, this is done by using a shared instance of the request manager across your appli-
cation. The following code sample demonstrates how you might maintain a global Request Manager instance:

goog.provide('pdemo');
goog.require('prestans.rest.json.Client');

pdemo.GLOBALS = {
API_CLIENT: new prestans.rest.json.Client({

baseUrl: "/api",
opt_numRetries: 0,
opt_minified: true

})
};

Note: Minification support is built into our Xhr client. All you have to do is set the optional parameter to true and
the client negotiates with the server.

8.4.2 Composing a Request

To place an Xhr request you compose a request by instantiating a prestans.rest.Request object, it accepts the
following parameters as a JSON configuration:

• identifier unique string identifier for this request type, these are used to cancel requests

• cancelable boolean value to determine if this request can be canceled

• httpMethod a prestans.net.HttpMethod constant

• parameters an array of key value pairs send as part of the URL

• requestFilter optional instance of prestans.types.Filter

• requestModel optional instance of prestans.types.Model, this will be used to parse the response
message body

• responseFilter optional instance of prestans.types.Filter, used to ignore fields in the response

54 Chapter 8. Google Closure Library Extensions

Prestans Documentation, Release 2.0

• responseModel Used to unpack the returned response

• arrayElementTemplate Used if response model is an array

• responseModelElementTemplates

• urlFormat sprintf like string used internally with goog.string.format

• urlArgs a JavaScript array of parameters used with urlFormat

prestans.net.HttpMethod encapsulate HTTP verbs as constants, currently supported verbs are:

• prestans.net.HttpMethod.GET

• prestans.net.HttpMethod.PUT

• prestans.net.HttpMethod.POST

• prestans.net.HttpMethod.DELETE

• prestans.net.HttpMethod.PATCH

Example of a GET request which optionally passes two parameters and expects the server to return a set of Album
entities:

var config_ = {
identifier: "AlbumSearchFetch",
httpMethod: prestans.net.HttpMethod.GET,
responseFilter: opt_filter,
responseModel: pdemo.data.model.Album,
isArray: true,
urlFormat: "/album",
parameters: [

{
key: "search_text",
value: searchText

},
{

key: "limit",
value: limit

}
]

};

var request = prestans.rest.json.Request(config_);

Example of a GET request which fetches a particular entity:

// Optional filter to turn off all attributes bar Album Id and Name
var opt_filter = new pdemo.data.filter.Album(false);
opt_filter.enableName();
opt_filter.enableAlbumId();

var config_ = {
identifier: "AlbumFetch",
httpMethod: prestans.net.HttpMethod.GET,
responseFilter: opt_filter,
responseModel: pdemo.data.model.Album,
isArray: false,
urlFormat: "/album/%i",
urlArgs: [albumId]

};

8.4. REST Client 55

http://closure-library.googlecode.com/svn/docs/namespace_goog_string.html

Prestans Documentation, Release 2.0

var request = prestans.rest.json.Request(config_);

8.4.3 Dispatching a Request

Once you have a request object use the dispatchRequest method on the Request Manager instance to dispatch
API calls, it requires the following parameters:

• request is a prestans.rest.json.Request object.

• callbackSuccessMethod which is a reference to a function the Request Manager calls if the API call
succeeds, the method will be passed a response object. Ensure you use goog.bind to bind your function to
your namespace.

• callbackFailureMethod optional reference to a function the Request Manager calls if the API call fails,
this method will be passed a response object with failure information.

• opt_abortPreviousRequests, optionally asks the Request Manager to cancel all pending requests.

Assume you have a request object
pdemo.GLOBALS.API_CLIENT.dispatchRequest(

request,
goog.bind(this.successCallback_, this),
goog.bind(this.failureCallback_, this),
false

);

Note: Request objects tell the manager if they are willing to be aborted, this is configurable per request lodged with
the manager.

The second method the Request Manager provides is abortAllPendingRequests, this accepts no parameters
and is responsible for aborting any currently queued connections. The failure callback is not fired when requests are
aborted.

8.4.4 Working with Responses

The Xhr calls back the nominated functions on success and failure. Prestans passes an instance of
prestans.rest.json.Response which has access to th following:

• requestIdentifier The string identifier for the request type,

• statusCode HTTP status code,

• responseModel Class used to unpack response body,

• arrayElementTemplate prestans.types.Model subclass

• responseModelElementTemplates

• responseBody JSON Object (Optional), this won’t be available for failures

In case of a successful request you will be able to retrieve the parsed Prestans JavaScript model using the
getUnpackedBody() method.

/**
* @private

*/
pdemo.ui.album.Renderer.prototype.successCallback_ = function(response) {

56 Chapter 8. Google Closure Library Extensions

Prestans Documentation, Release 2.0

// response.getUnpackedBody() will return a parsed Prestans model
// based on the rules you defined in the request
console.log(response.getUnpackedBody());

};

In case of failures you get access to the response which has the status code and the original body (if any) of the
response. For failures you are expected to do what your application deems appropriate.

8.4.5 Xhr Communication Events

The Request Manager raises the following events. These come in handy if your application requires global UI inter-
actions e.g a Modal popup if network communication fails, or notification messages on success.

• prestans.rest.json.Client.EventType.RESPONSE, raised when a round trip succeeds, this
would be raised even if your API raised an error code, e.g Bad Request or Service Unavailable.

• prestans.rest.json.Client.EventType.FAILURE raised if a round trip fails.

Example of using goog.events.EventHandler to listen to the Failure event:

goog.require('goog.events.EventHandler');

and somewhere in one of your functions
this.eventHandler = new goog.events.EventHandler(this);
this.eventHandler_.listen(pdemo.GLOBALS.API_CLIENT, prestans.rest.json.Client.EventType.FAILURE, this.handleFailure_);

The event object passed to the end points is of type prestans.rest.json.Client.Event a subclass of
goog.events.Event. Call getResponse method on the event to get the Response object, this will give you
access all the information about the request and it’s outcome.

8.4. REST Client 57

Prestans Documentation, Release 2.0

58 Chapter 8. Google Closure Library Extensions

CHAPTER 9

Thoughts on API design

Prestans was a result of our careful study into the REST standards, popular frameworks and appraoches. Following
are useful lessons we’ve learnt along the way. We’ve also compiled an extensive list of extremely useful Reference
Material we found during our research.

9.1 REST resources are not persistent models

The word entity traditionally referred to persistent objects. That concept applied on the Web results in a HTTP
implementation of approaches like XML-RPC. Many frameworks implement REST as a gateway to directly access
persistent object on the server.

Entity in the REST world refers to entities returned by REST service; not what’s stored in the persistence layer. In
most instances it refers to an application specific view of the persistent data; that the requesting client will find most
useful.

REST endpoints form the business logic layer of your Ajax/Mobile application. REST services should do the heavy
lifting and return the most useful view of the data for the use-case; this may include related data i.e Order may include
Order line.

Server round trips (or latency) is one of biggest performance overheads for REST services.

9.2 Collections & Entities

URLs should refer to resource or a kind of data that your client can work with. Resources are not persistent entities
rather a view of them. There generally are two patterns for each resource that you need to address. Consider the
following URL patterns

• /api/product

• /api/product/{id}

Both deal with a resource called product. The first URL deals with collections, so get all products (GET), or create a
new product (POST) are the requests it should respond to.

The second would deal with a specific entity of that kind of resource. So get a product (GET), Update a product (PUT,
PATCH), or delete a product (DELETE) are the requests it should respond to.

As a design principle we recommend you handle collections and entities in separate handlers.

59

Prestans Documentation, Release 2.0

9.3 Response Size

Running local development HTTP servers is common practice. Due to negligible latency; local server are notorious for
masking server round trip issues, specially ones related to response size. Only when you’ve deployed your application
to a remote server can you judge how long noticing how long round trips take.

Database, Web Servers, Prestans your handlers, servers are generally pretty quick (if you have written most things
well). Network latency caused by the sheer size of the response can make your REST services appear to be slow.

It’s important not to loose sight of the response size written out by your REST services.

60 Chapter 9. Thoughts on API design

CHAPTER 10

Reference Material

We found the following references useful while writing prestans, they cover a variety of advanced Python programming
and Web development topics.

It’s important that you understand the basic concepts of Python Web Programming. All our documentation and support
is based around the assumption that you are familiar with Python Web development using WSGI and are writing Ajax
Web apps.

10.1 WSGI & REST

• WSGI - the way Web servers talk to Python apps.

• ReUsable Web Components with Python and Future Python Web - presented by Ben Bangert (YouTube).

• Hosting Python Web Applications - presented by Graham P Dumpleton (YouTube).

• What every developer should know about REST - Michael Mahemoff‘s Web Directions Code 2013 presentation
on REST (YouTube).

• Thoughts on RESTfulAPI Design - by Geert Jansen

10.2 HTTP

• Unacceptable Browser HTTP Accept Headers - Kris Jordan‘s comprehensive article on how different browser
interpret the Accept header.

• The Accept Header - Chris Shifflett describes the Accept Header.

• A Beginner’s Guide to HTTP Cache Headers - Kyle Young’s excellent description of HTTP cache headers.

• Know your HTTP headers well - Andrei Neculau‘s guide to the HTTP protocol

10.3 Advanced Python

• Python WSGI reference implementation - available in Python 2.5

• Effbot - (A Semi-Official) Python FAQ Zone

• Python Decorators - various Prestans utilities are provided as decorators

• Python Types and Objects - an excellent article by Shalabh Chaturvedi on how Python sees Objects and Types.

61

http://www.wsgi.org/en/latest/index.html
http://www.youtube.com/watch?v=Ui-mSFuUZmQ
http://www.youtube.com/watch?v=PWIvm-uloMg
https://www.youtube.com/watch?v=2yAQ-yLq5eI
http://mahemoff.com/
http://code13.webdirections.org/
https://restful-api-design.readthedocs.org/en/latest/
http://www.gethifi.com/blog/browser-rest-http-accept-headers
http://www.gethifi.com/authors/kris-jordan
http://shiflett.org/blog/2011/may/the-accept-header
http://shiflett.org/about
http://www.mobify.com/blog/beginners-guide-to-http-cache-headers/
https://github.com/andreineculau/know-your-http-well/blob/master/headers.md
http://andreineculau.com
http://docs.python.org/2/library/wsgiref.html
http://effbot.org/pyfaq/
http://www.python.org/dev/peps/pep-0318/
http://www.cafepy.com/article/python_types_and_objects/python_types_and_objects.html

Prestans Documentation, Release 2.0

• Python Attributes and Methods - another excellent article by Shalabh Chaturvedi providing an indepth under-
standing of how attributes and methods work.

• Python Regular Expressions - Google Developer article on regular expressions.

• Regular Expressions by Example - specific regular expression examples.

• Inspecting live objects in Python - the inspect module provides functions for introspecting on live objects and
their source code. This article by Doug Hellmann shows off many really nice features like discovering method
signatures, extracting docstrings, etc.

• An Intro to logging - learn about how to use and extend the Python logging feature.

• Python Style Guide - PEP 0008 standards on naming stuff in Python

• Getting Stated with WSGI - Armin Ronarcher’s introduction to WSGI.

Implementation specific posts:

• Faux function type signatures in Python - using a Python decorator to ensure that your functions get values in
the right type from WSGI calls. Originally posted as a response on Stackoverflow.

Frameworks:

• Another Do-It-Yourself Framework

10.4 Serialization format

• YAML ain’t a markup language - Jess Noller talks about YAML.

10.5 Server Software

• Google App Engine - an extemely easy to work with Cloud platform run by Google.

• mod_wsgi - a connector module allowing your to run WSGI apps with Apache Web server.

• wsgid - Wsgid is a generic WSGI handler for mongrel2 web server. Mongrel2 is a non-blocking web server
backed by a high performance queue (0mq). Wsgid plays a gateway role between mongrel2 and your WSGI
application, offering a full daemon environment with start/stop/reload functionality.

• Werkzeug - The Python WSGI Utility Library (including a development HTTP server)

• MongoDB - MongoDB (from “humongous”) is a scalable, high-performance, open source NoSQL database.
Written in C++.

10.6 Developer Tools

• JSON Lint - a hosted JSON validation service

• JSON View - a in browser JSON prettifier for Chrome and Firefox.

• Postman - a Chrome plugin to ease API testing.

62 Chapter 10. Reference Material

http://www.cafepy.com/article/python_attributes_and_methods/
https://developers.google.com/edu/python/regular-expressions
http://flockhart.virtualave.net/RBIF0100/regexp.html
http://www.doughellmann.com/PyMOTW/inspect/
http://www.blog.pythonlibrary.org/2012/08/02/python-101-an-intro-to-logging/
http://www.python.org/dev/peps/pep-0008/#package-and-module-names
http://lucumr.pocoo.org/2007/5/21/getting-started-with-wsgi/
http://www.regularexpressionless.com/?p=8
http://stackoverflow.com/questions/7019283/automatically-type-cast-parameters-in-python
http://docs.webob.org/en/latest/do-it-yourself.html
http://jessenoller.com/blog/2009/04/13/yaml-aint-markup-language-completely-different
https://twitter.com/jessenoller
https://developers.google.com/appengine/
http://code.google.com/p/modwsgi/
http://wsgid.com/
http://werkzeug.pocoo.org
http://www.mongodb.org/
http://jsonlint.org
http://jsonview.com
http://www.getpostman.com

CHAPTER 11

Feedback

If you find any inconsistencies in our documentation please feel free to lodge an issue via our Issue Tracker on Github.
Or Tweet at us @anomalymade.

63

https://github.com/anomaly/prestans-docs/issues
https://twitter.com/anomalymade

Prestans Documentation, Release 2.0

64 Chapter 11. Feedback

CHAPTER 12

Discussions

We encourge the use of our mailing lists (run on Google Groups) as the primary method of getting help. You can also
write the developers through contact information our website.

• Discuss general discussion, help, suggest a new feature.

• Announcements security / release announcements.

65

https://anomaly.net.au
http://groups.google.com/group/prestans-discuss
http://groups.google.com/group/prestans-announce

Prestans Documentation, Release 2.0

66 Chapter 12. Discussions

CHAPTER 13

License

Prestans’s documentation is distributed under terms outlined by Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License.

Sphinx Source available on GitHub.

67

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
https://github.com/anomaly/prestans-docs.git

Prestans Documentation, Release 2.0

68 Chapter 13. License

Index

P
Python Enhancement Proposals

PEP 008, 19, 20
PEP 333, 11

R
RFC

RFC 822, 33

69

	Installation
	Software Requirements
	Deployment notes
	Apache + mod_wsgi
	AppEngine

	Unit testing

	Framework Design
	Exceptions
	HTTP Header Reference
	Content Negotiation
	Custom headers

	Routing & Handling Requests
	Serializers & DeSerializers
	Routing Requests
	Regex & URL design primer
	Using Request Router

	Handling Requests
	Constructing Response
	Minifying Content
	Serving Binary Content

	Raising Exceptions
	Unsupported Vocabulary or Content Type
	Configuration Exceptions
	Data Validation Exceptions
	Parser Exceptions
	Handler Exceptions

	Validating Requests & Responses
	Attribute Filters
	Setting up validation rules
	Working with parsed data
	Parameters Sets
	Request Body
	Response Body

	Types & Models
	Writing Models
	Defining Attributes
	To One Relationship
	To Many Relationship (using Arrays)
	Self References

	Special Types
	DateTime
	DataURLFile

	Using Models to write Responses
	Type Configuration Reference
	String
	Integer
	Float
	Boolean
	DataURLFile
	Date
	Time
	DateTime

	Collections
	Array
	Model

	Providers
	Authentication
	Fitting into your environment
	Writing your own provider
	Working with Google AppEngine
	Attaching AuthContextProvider to Handlers

	Data Adapters
	Pairing REST models to persistent models
	Adapting Models
	Writing your own DataAdapter

	Google Closure Library Extensions
	Installation
	Unit testing

	Extending JavaScript namespaces
	Types API
	Array
	Attribute Change Events
	Generating Model Code

	REST Client
	Request Manager
	Composing a Request
	Dispatching a Request
	Working with Responses
	Xhr Communication Events

	Thoughts on API design
	REST resources are not persistent models
	Collections & Entities
	Response Size

	Reference Material
	WSGI & REST
	HTTP
	Advanced Python
	Serialization format
	Server Software
	Developer Tools

	Feedback
	Discussions
	License

