

    
      
          
            
  
prelogging 0.4.3

prelogging is a pure Python package that provides a simple, consistent, powerful
API for configuring logging. The package includes several “batteries”:



	consistent methods to add handlers both mundane and exotic


	multiprocessing-safe handlers which output to the console, to files and
rotating files, and to the system log


	formatter presets — a fund of useful shorthands for formatters, which you can extend and modify








Chapters



	Introduction and Setup
	Requirements

	Installation

	Running tests and examples





	Overview of Logging
	Using logging

	logging classes that can be configured

	Loggers are identified by name

	How a message is logged

	logging defaults

	logging documentation links





	Configuration — with logging, and with prelogging
	Logging configuration requirements — example

	Meeting the configuration requirements with logging

	Configuration with prelogging





	LCDictBasic Organization and Basic Usage
	Configuration with LCDictBasic

	Methods and properties

	prelogging warnings and consistency checking





	LCDict Features and Usage
	Using formatter presets

	Handler classes encapsulated by LCDict

	Automatically attaching handlers to the root logger

	Easy multiprocessing-safe logging

	Simplified creation and use of filters





	Formatter Presets
	The update_formatter_presets_from_file function

	The update_formatter_presets function





	Configuring Loggers
	Using non-root loggers without configuring them

	Configuring and using non-root loggers

	Best practices for propagation and handler placement





	Further Topics and Recipes
	Using LCDictBuilderABC

	Multiprocessing — two approaches

	Using prelogging in libraries: using a null handler

	Using prelogging with Django

	Providing extra data to a filter

	Adding custom fields and data to messages

	Adding SMTPHandlers with add_email_handler





	Guide to Examples
	Running the examples

	Programs in the examples/ directory





	Class Reference
	LCDictBasic

	LCDict

	Locking Handlers

	LCDictBuilderABC

	Class diagram





	Index











          

      

      

    

  

    
      
          
            
  
Introduction and Setup

prelogging is a package for setting up, or configuring, the
logging facility of the Python standard library. To configure logging is to
specify the logging entities you wish to create — formatters, handlers, optional
filters, and loggers — as well as which of them use which others.

Once configured, logging messages with the logging facility is simple and
powerful; configuration presents the only challenge. logging provides a couple
of approaches to configuration — static, using a dict or an analogous YAML text
file; and dynamic, using the logging API — both of which have their shortcomings.

prelogging offers a hybrid approach: a streamlined, consistent API for
incrementally constructing a dict used to configure logging statically.
As you build the configuration dict, by default prelogging checks for possible
mistakes and issues warnings on encountering them. prelogging also supplies
missing functionality: it provides multiprocessing-safe logging to the console,
to files and rotating files, and to syslog.


Requirements

The prelogging package requires only Python 3.4+ or 2.7. It has no external
dependencies.

Very little of prelogging’s code is sensitive to Python 3 vs 2.
To achieve backwards compatibility with 2.7 we sacrificed, with some
reluctance, type annotations and keyword-only parameters. To address the
few remaining differences, we’ve used six sparingly (one decorator, one
function, and one constant). The prelogging package includes a copy of the six.py
module (v1.10.0, for what it’s worth), so no separate installation is required.

The prelogging distribution contains an examples/ subdirectory. A few
examples (mproc_deco*.py) use the deco [https://github.com/alex-sherman/deco]
package, which provides a “simplified parallel computing model for Python”.
However, the examples are just for illustration (and code coverage), and aren’t
installed with the prelogging package.

The distribution also contains subdirectories tests/ and docs/, which
similarly are not installed.




Installation

You can install prelogging from PyPI (the Python Package Index) using pip:

$ pip install prelogging





(Here and elsewhere, $ at the beginning of a line indicates your command
prompt, whatever that may be.)

Alternately, you can


	clone the github repo, or


	download a .zip or .tar.gz archive of the repository
from github or PyPI, uncompress it to a fresh directory, change to
that directory, and run the command:

$ python setup.py install









On *nix systems, including macOS, setup.py is executable and has a proper
shebang [https://en.wikipedia.org/wiki/Shebang_(Unix)], so on those
platforms you can just say:

$ ./setup.py install





Downloading and uncompressing the archive lets you review, run and/or copy the
tests and examples, which aren’t installed by pip or setup.py. Whichever
method you choose to install prelogging, ideally you’ll do it in a virtual
environment [https://docs.python.org/3/tutorial/venv.html?highlight=virtual].




Running tests and examples

The top-level directory of the prelogging distribution (where setup.py
resides) has subdirectories tests/ and examples/, which contain just
what their names suggest.

In the top-level directory are three scripts — run_tests.py,
run_examples.py, and run_all.py, all executable on *nix platforms —
which respectively run all tests, all examples, or both.


Running tests

You can run all the tests before installing prelogging by running the script
run_tests.py in the top level directory of the repository:

$ python run_tests.py





Alternately, you can run

$ python setup.py test






Coverage from tests

prelogging contains a small amount of Python-2-only code (workarounds
for Py2 shortcomings), and supports a few Python-3-only logging features.
In addition, several methods in lcdict.py add various exotic handlers,
which are easy to write examples for but difficult to test (coverage for this
module increases to 98%/96% when examples are included — see the following section).








	
Module




	
Py 3




	
Py 2








	
lcdictbasic.py

lcdict.py

locking_handlers.py

lcdict_builder_abc.py




	
99%

88%

89%

100%




	
99%

88%

89%

100%














Running examples

Examples are not installed; they’re in the examples/ subdirectory of the
distribution. You can run all the examples by running the script
run_examples.py in the top-level directory:


$ python run_examples.py




From the same directory, you can run all tests and examples with the script
run_all.py:


$ python run_all.py




Note: the examples that use deco of course require that package to be installed;
the SMTP examples require that you edit examples/_smtp_credentials.py to contain
valid email credentials.

The section Guide to Examples catalogs all the examples and briefly
describes each one.


Coverage from tests + examples

A few short passages, mostly Python-major-version-specific code, keep prelogging
shy of 100% coverage when both tests and examples are run:








	
Module




	
Py 3




	
Py 2








	
lcdictbasic.py

lcdict.py

locking_handlers.py

lcdict_builder_abc.py

formatter_presets.py




	
99%

98%

100%

100%

100%




	
100%

96%

100%

100%

100%



















          

      

      

    

  

    
      
          
            
  
Overview of Logging

Logging is an important part of a program’s internal operations, an essential
tool for development, debugging, troubleshooting, performance-tuning and
general maintenance. A program logs messages in order to record
its successive states, and to report any anomalies, unexpected situations or
errors, together with enough context to aid diagnosis. Messages can be logged
to multiple destinations at once — stderr in a terminal, a local file,
the system log, email, or a Unix log server over TCP, to cite common choices.

At the end of this chapter we provide several logging documentation links,
for reference and general culture. It’s not our purpose to rehash or
repeat the extensive (and generally quite good) documentation for Python’s
logging package; in fact, we presuppose that you’re familiar with basic
concepts and standard use cases. Nevertheless, it will be helpful to review
several topics, and in the process clarify some obscure features of logging.


Using logging

A program logs messages using the log method of objects called loggers,
which are implemented in logging by the Logger class. You can think of
the log method as a pumped-up print statement. It writes a message,
tagged with a level of severity, to zero or more destinations.
In logging, a handler — a Handler object — represents a single
destination, together with a specified output format.
A handler implements abstract methods which format message data into structured
text and write or transmit that text to the output.
A logger contains zero or more handlers.
When a program logs a message by calling a logger’s log method (or a
shorthand method such as debug or warning), the logger dispatches the
message data to its handlers.

All messages have a logging level, or loglevel, indicating their severity
or importance. The predefined levels in logging are DEBUG, INFO,
WARNING, ERROR, CRITICAL, listed in order of increasing severity.
Both loggers and handlers have an associated loglevel, indicating a
severity threshold: a logger or a handler will filter out any message whose
loglevel is less than its own. In order for a message to actually be sent
to a particular destination, its loglevel must equal or exceed the loglevels
of both the logger and the handler representing the destination.

Note: This last statement is basically true, but glosses over details.
We’ll sharpen it below, in the subsection How a message is logged.


Sensible choices for dedicated loggers

The logger named '__name__' is the standard choice for a module’s
dedicated logger; the logger named '__package__' is a great choice for
a package. Without any configuration, these will just write message text to
stderr.



This elegant system allows developers to easily dial in different amounts
of logging verbosity. When developing a module or package, you can use a
dedicated logger to log internal messages at thoughtfully chosen loglevels.
In development, set the logger’s loglevel to DEBUG or INFO as needed;
once the module/package is in good condition, raise that to WARNING; in
production, use ERROR. There’s no need to delete or comment out the lines
of code that log messages, or to precede each such block with a conditional guard.
The logging facility is a very sophisticated version of using the print
statement for debugging.




logging classes that can be configured

logging defines a few types of entities, culminating in the Logger
class. Typically, a program or library will set up, or configure, logging
only once, at startup. This entails specifying message formats, destinations,
loggers, and containment relations between those things. Once a program has
configured logging as desired, use of loggers is very straightforward.
Configuration, then, is the only barrier to entry.

The following diagram displays the types that can be configured statically,
and their dependencies:


[image: _images/logging_classes_v2.png]
The objects of logging configuration








	Symbol

	Meaning





	[image: _images/arrowO.png]

	has zero or more



	m: 0/1

	many-to-(zero-or-one)



	m: n

	many-to-many










In words:



	a Logger can have one or more Handlers, and a Handler
can be used by multiple Loggers;


	a Handler has at most one Formatter, but a Formatter
can be shared by multiple Handlers;


	Handlers and Loggers can each have zero or more Filters;
a Filter can be used by multiple Handlers and/or Loggers.








What these objects do

A Formatter is basically just a format string that uses keywords
defined by the logging module — for example, '%(message)s' and
'%(name)-20s: %(levelname)-8s: %(message)s'.

A Handler formats and writes logged messages to a particular
destination — a stream (e.g. sys.stderr, sys.stdout, or an in-memory
stream such as an io.StringIO), a file, a rotating set of files, a socket,
etc.

A Logger sends logged messages to its associated handlers. Various
criteria filter out which messages are actually written, notably loglevel
thresholding as described above and in greater detail below.

Filters provide still more fine-grained control over which messages are
written. They can also be used to modify messages or supplement them with
additional context.






Loggers are identified by name

A logger is uniquely identified by name (except for the name 'root': see the
Warning below). For example, the expression logging.getLogger('mylogger')
always denotes the same object, no matter where in a program it occurs or when
it’s evaluated. The logging package always creates a special logger, the root
logger, which we, as users of logging, identify by the name '' (the
empty string); it’s accessed by the expression logging.getLogger(''), or
equivalently by logging.getLogger().


Warning


	The root logger’s name is set to, and reported as, 'root':

	>>> logging.getLogger('').name
'root'







	Confusingly, however, you cannot access the root logger by that name:

	>>> logging.getLogger('') is logging.getLogger('root')
False







	It’s most unfortunate that these two distinct loggers share the same name:

	>>> logging.getLogger('root').name
'root'









Do not use the logger name 'root'.



Logger names are dotted names, and behave in a way that’s analogous to package
and module names. The analogy is intentional, to facilitate a style of logging
in which each package, and/or each module, uses its own logger, with names
__package__ and __name__ respectively. The basic idioms are, for example:

logging.getLogger(__name__).debug("About to do that thing")





and:

logging.getLogger(__package__).warning("dict of defaults is empty")





Broadly speaking, a logger corresponds to an “area” of your program; you’re free
to construe that in whatever way suits your needs and situation.


The parent-child and ancestor relationships between loggers

A parent-child relation obtains among loggers: the parent of a logger 'a.b.c'
is the logger 'a.b', whose parent is 'a'; the parent of logger 'a'
is the root logger, identified by ''. The logger 'a' is an ancestor of
both 'a.b' and 'a.b.c'; 'a.b' is an ancestor of 'a.b.c';
the root logger is an ancestor of every other logger. (Note, though, that aa
is not a parent or ancestor of a, nor is a.b a parent or ancestor
of a.bxyz: the relation isn’t just “startswith” between strings.)






How a message is logged

In order to explain what happens when a logger logs a message,

logging.getLogger('L').log(level, message)





we first have to introduce a few more concepts:



	the ‘NOTSET’ loglevel


	the “effective level” of a logger


	the propagate flag of a logger.








The special loglevel NOTSET

There’s actually a sixth predefined loglevel, NOTSET, whose numeric
value is 0, lower than the “real” loglevels (DEBUG = 10, …, CRITICAL = 50),
which are all non-zero. The root logger by default has loglevel WARNING, but
all created loggers and handlers have default loglevel NOTSET.

NOTSET is useless as a loglevel of individual messages. You can’t successfully
log a message at level NOTSET — nothing happens (unless you do something unusual.
If you call logging.disable(neg) with some negative integer neg, you can get
logger.log(0, message) to emit message; but ordinarily, you wouldn’t, and
it won’t.)

A handler with loglevel NOTSET rejects no messages; it’s the most inclusive
level.

When a logger has loglevel NOTSET, the loglevels of its ancestors
are examined to compute its effective level — the level that logging uses
to determine whether a message that the logger logs will be sent to handlers or not.




The “effective level” of a logger

The effective level of a logger is its own level if that is non-zero;
otherwise, it’s the level of its nearest ancestor whose level is non-zero;
otherwise, if there’s no such ancestor, it’s NOTSET (0). The Logger method
getEffectiveLevel() returns this value. Its docstring explains that it “[loops]
through [the] logger and its parents in the logger hierarchy, looking for a non-zero
logging level[, returning] the first one found.” (getEffectiveLevel() is in the
__init__.py module of logging.)

Now we can make good on an earlier promise – the following statement isn’t just
“basically true” but really is the case:



In order for a message to actually be written to a particular destination,

its level must equal or exceed the effective level of the logger that

logged it, as well as the level of the handler representing the destination.






In the next subsection we’ll explain just which handlers a message is sent to
when its level clears the effective level threshold.




Propagation

Loggers have a propagate attribute, a flag, which by default is True.

propagate determines which handlers a message is sent to when a logger
logs it at a particular level via a call such as logger.log(level, message).

If logger has handlers, the message is sent to them. If logger isn’t
the root and logger.propagate is True, the message is also sent to any
handlers of the logger’s parent; if the parent isn’t the root and its propagate
flag is True, the message is sent to the handlers of the parent’s parent; and so
on, until this process reaches either the root or an ancestor whose propagate
flag is False. The loglevels of ancestor loggers are not consulted when they
are ascended through; the message is sent directly to their handlers.

If no handlers are encountered in this procedure, in Python 3.2+ the message is sent
to the “handler of last resort”, logging.LastResort, whose loglevel is ‘WARNING’,
and which simply writes the message to stderr.  (In earlier versions of Python,
or if you set logging.LastResort = None in 3.2+, an error message is written
to stderr that no handlers could be found for the logger.)

In many cases, to configure logging it’s sufficient just to add a handler or
few and attach them to the root.


Note

The logging documentation contains a pair of flowcharts [https://docs.python.org/3/howto/logging.html#logging-flow],
“Logging flow” and “Handler flow”, which summarize what this section,
How a message is logged, has described; however,
they seem to predate Python 3.2, so “Handler flow” doesn’t mention the “last resort”
handler.








logging defaults

logging supplies reasonable out-of-the-box defaults and shorthands so that you
can easily start to use its capabilities.

When accessed for the first time, the Logger named 'mylogger' is created
“just in time” if it hasn’t been explicitly configured. You don’t have to
attach handlers to 'mylogger'; logging a message with that logger will “just
work”. Suppose this is a complete program:

import logging
logging.getLogger('mylogger').warning("Uh oh.")





When run, it writes Uh oh. to stderr. In light of the last section,
we can now understand why. The effective level of 'mylogger' is the level of
its parent, the root logger, which is WARNING, and the level of the message clears
that threshold. Thus, the message is sent to 'mylogger'’s handlers (none). Because
'mylogger' has propagate set to True, the message is also sent to
the handlers of the root. The root has no handlers, so the message is sent to the
last resort handler, whose loglevel is WARNING, which lets the message through,
writing it to stderr.

The warning(...) logger method shown above is a shorthand for
log(logging.WARNING, ...). Similarly, there are convenience methods debug,
info, error and critical.


The logging convenience functions log(), debug(), … critical() have a side-effect

logging provides six functions, logging.log(), logging.debug(), …
logging.critical(),  which let you instantly use logging out of the box,
with no configuration or even any calls to getLogger. You can just call:

logging.error("Something went wrong")





and something plausible will happen. This works because logging.error(...)
is (almost always) a shorthand for logging.getLogger().error(...).

However, in one circumstance these six functions all have a side effect which can
make them not mere shorthands for expressions that explicitly access the root
logger with getLogger.

Specifically, if the root logger has no handlers when any of them is called, these
functions call logging.basicConfig() (with no arguments), which creates a stderr
stream handler that has a formatter with format string

BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s"





and attaches it to the root. One might expect that these functions under such
circumstances would use the LastResort handler, as described above; but they don’t.

Consider this complete program:

import logging
from importlib import reload
import sys

# logging.error installs a root handler because none exist,
# so order of these three calls matters.
logging.getLogger('').error('Trouble!')
logging.getLogger('newlogger').critical('Big trouble!')
logging.error('Trouble!')

print('-----------------', file=sys.stderr)
reload(logging)

# Clear everything, and do the three calls again, with logging.error first.
logging.error('Trouble!')
logging.getLogger('newlogger').critical('Big trouble!')
logging.getLogger('').error('Trouble!')





When run, it prints these messages to stderr:

Trouble!
Big trouble!
ERROR:root:Trouble!
-----------------
ERROR:root:Trouble!
CRITICAL:newlogger:Big trouble!
ERROR:root:Trouble!





The call to logging.error attaches a new handler to the root. Subsequently,
all loggers that propagate to the root have the format of their messages changed
(albeit for the better).


logging.basicConfig()

The logging.basicConfig() [https://docs.python.org/3/library/logging.html#logging.basicConfig]
function lets you configure the root logger (up to a point), using
a monolithic function that’s somewhat complex yet of limited capabilities.
When used to quickly configure logging with a single call, the function
can create a stream handler, or a file handler (but not both!), and attaches
it to the root.





In the next chapter, we’ll examine the approaches to configuration offered by
logging, and then see how prelogging simplifies the process.






logging documentation links

See the logging docs [https://docs.python.org/3/library/logging.html?highlight=logging]
for the official explanation of how Python logging works.

For the definitive account of static configuration, see the documentation of
logging.config [https://docs.python.org/3/library/logging.config.html?highlight=logging],
in particular the documentation for
the format of a logging configuration dictionary [https://docs.python.org/3/library/logging.config.html#logging-config-dictschema].

Here’s a useful reference:
the complete list of keywords that can appear in formatters [https://docs.python.org/3/library/logging.html#logrecord-attributes].

The logging HOWTO [https://docs.python.org/3/howto/logging.html]
contains tutorials that show typical setups and uses of logging, configured in
code at runtime.
The logging Cookbook [https://docs.python.org/3/howto/logging-cookbook.html#logging-cookbook]
contains a wealth of techniques, several of which exceed the scope of prelogging because
they involve logging capabilities that can’t be configured statically (e.g. the use of
LoggerAdapters [https://docs.python.org/3/library/logging.html#loggeradapter-objects],
or
QueueListeners [https://docs.python.org/3/library/logging.handlers.html#queuelistener]
). A few of the examples contained in the prelogging distribution are examples from
the Cookbook and HOWTO, reworked to use prelogging.

The logging package supports multithreaded operation, but does not directly support
logging to a single file from multiple processes [https://docs.python.org/3/howto/logging-cookbook.html#logging-to-a-single-file-from-multiple-processes].
Happily, prelogging does, in a couple of ways, both illustrated by examples.

One additional resource merits mention: the documentation for
logging in Django [https://docs.djangoproject.com/en/1.9/topics/logging/]
provides another, excellent overview of logging and configuration, with
examples. Its first few sections aren’t at all Django-specific.







          

      

      

    

  

    
      
          
            
  
Configuration — with logging, and with prelogging

We’ll use a simple example to discuss and compare various approaches to logging
configuration — using the facilities provided by the logging package, and then
using prelogging.


Logging configuration requirements — example

Suppose we want the following configuration:


Configuration requirements

Messages should be logged to both stderr and a file. Only messages with
loglevel INFO or higher should appear on-screen, but all messages should
be logged to the file. Messages to stderr should consist of just the
message, but messages written to the file should also contain the logger
name and the message’s loglevel.

The logfile contents should persist: the file handler should append
to the logfile, rather than overwriting it each time the program using these
loggers is run.




This suggests two handlers, each with an appropriate formatter — a stderr
stream handler with level INFO, and a file handler with level DEBUG
or NOTSET. (NOTSET is the default loglevel for handlers.
Numerically less than DEBUG, all loglevels are greater than or equal to it.)
Both handlers should be attached to the root logger, which should have level
DEBUG to allow all messages through. The file handler should be created with
mode='a' (for append, not 'w' for overwrite) so that existing logfile
contents persist.


Using the example configuration

Once this configuration is established, these logging calls:

import logging
root_logger = logging.getLogger()
# ...
root_logger.debug("1. 0 = 0")
root_logger.info("2. Couldn't create new Foo object")
root_logger.debug("3. 0 != 1")
root_logger.warning("4. Foo factory raised IndexError")





should produce the following stderr output:

2. Couldn't create new Foo object
4. Foo factory raised IndexError





and the logfile should contain (something much like) these lines:

root                : DEBUG   : 1. 0 = 0
root                : INFO    : 2. Couldn't create new Foo object
root                : DEBUG   : 3. 0 != 1
root                : WARNING : 4. Foo factory raised IndexError










Meeting the configuration requirements with logging

The logging package offers two approaches to configuration:


	dynamic, using code;


	static (and then, there are two variations).




These can be thought of as imperative and declarative, respectively.
The following subsections show how each of these approaches can be used to meet
the requirements stated above.


Using dynamic configuration

Here’s how to dynamically configure logging to satisfy the given requirements:

import logging
import sys

root = logging.getLogger()
root.setLevel(logging.DEBUG)

# Create stderr handler,
#   level = INFO, formatter = default i.e. '%(message)s';
# attach it to root
h_stderr = logging.StreamHandler(stream=sys.stderr)
h_stderr.setLevel(logging.INFO)
root.addHandler(h_stderr)

# Create file handler, level = NOTSET (default),
#   filename='blather_dyn_cfg.log', formatter = logger:level:msg, mode = 'a'
# attach it to root
logger_level_msg_fmtr = logging.Formatter('%(name)-20s: %(levelname)-8s: %(message)s')
h_file = logging.FileHandler(filename='blather_dyn_cfg.log')
h_file.setFormatter(logger_level_msg_fmtr)
root.addHandler(h_file)





We’ve used a number of defaults. It was unnecessary to add:

msg_fmtr = logging.Formatter('%(message)s')
h_stderr.setFormatter(msg_fmtr)





because the same effect is achieved without them. The default mode of a
FileHandler is a, which opens the logfile for appending, as per our
requirements; thus it wasn’t necessary to pass mode='a' to the
FileHandler constructor. (We omitted other arguments to this constructor,
e.g. delay, whose default values are suitable.) Similarly, it wasn’t
necessary to set the level of the file handler, as the default level NOTSET
is just what we want.


Advantages of dynamic configuration


	Hierarchy of logging entities respected

Formatters must be created before the handlers that use them;
handlers must be created before the loggers to which they’re attached.

You can configure the entities of logging (formatters, optional filters,
handlers, loggers) one by one, in order, starting with those that don’t
depend on other entities, and proceeding to those that use entities
already defined.

    




    






	Methods of the `logging` API provide reasonable defaults

With static configuration, certain fussy defaults must be specified explicitly.

    




    






	Error prevention

For instance, there’s no way to attach things that simply don’t exist.

    




    






	Fine-grained error detection

If you use a nonexistent keyword argument, for example, the line in which it
occurs gives an error; you don’t have to wait until issuing a final
dictConfig call to learn that something was amiss.

Thus it’s easier to debug: each step taken is rather small, and you can fail
faster than when configuring from an entire dictionary.








Disadvantages of dynamic configuration



	Low-level methods, inconsistent API

The Handler base class takes a keyword argument level; however,
its subclass StreamHandler takes a keyword argument stream,
but doesn’t recognize level. Thus we couldn’t concisely say:

h_stderr = logging.StreamHandler(level=logging.INFO, stream=sys.stderr)





but had to call h_stderr.setLevel after constructing the handler.

    




    






	In `logging`, only loggers have names; formatters, handlers and filters
don’t

Thus we have to use Python variables to reference the various
logging entities which we create and connect. If another part of the
program later wanted to access, say, the file handler attached to the
root logger, the only way it could do so would be by iterating through
the handlers collection of the root and examining the type of each:

root = logging.getLogger()
fh = next(h for h in root.handlers if isinstance(h, logging.FileHandler))







	Somehow it winds up more even verbose than static dictionaries

The methods are low-level, and many boilerplate passages recur
in dynamic configuration code.













Using static configuration

The logging.config submodule offers two equivalent ways to specify
configuration statically:


	with a dictionary meeting various requirements (mandatory and optional keys,
and their values), which is passed to logging.config.dictConfig();

    





	with a text file written in YAML, meeting analogous requirements,
and passed to logging.config.fileConfig().




We’ll call a dictionary that can be passed to dictConfig a logging config
dict. The schema for configuration dictionaries [https://docs.python.org/3/library/logging.config.html#configuration-dictionary-schema]
documents the format of such dictionaries. (Amusingly, it uses YAML to do so!,
to cut down on the clutter of quotation marks. colons and curly braces.)

We’ll deal only with logging config dicts, ignoring the YAML-based approach.
The Web frameworks Django and Flask configure logging with dictionaries.
(Django can accomodate YAML-based configuration, but its path of least resistance
is certainly the dict-based approach.) Dictionaries are native Python; YAML isn’t.
YAML may be more readable than dictionary specifications, but prelogging offers
another, pure-Python solution to that problem.


Configuring our requirements statically

Here’s how to do so:

import logging
from logging import config

config_dict = {
     'formatters': {'logger_level_msg': {'format': '%(name)-20s: %(levelname)-8s: '
                                                   '%(message)s'}},
     'handlers': {'h_stderr': {'class': 'logging.StreamHandler',
                               'level': 'INFO',
                               'stream': 'ext://sys.stderr'},
                  'h_file': {'class': 'logging.FileHandler',
                             'filename': 'blather_stat_cfg.log',
                             'formatter': 'logger_level_msg'}},
     'root': {'handlers': ['h_stderr', 'h_file'], 'level': 'DEBUG'},
     'version': 1
}
logging.config.dictConfig(config_dict)





As with dynamic configuration, most keys have default values, and
in the interest of brevity we’ve omitted those that already suit our needs. We
didn’t specify a formatter for the stream handler, nor the file
handler’s mode or loglevel, and so on.




Advantages of static configuration


	Logging entities are referenced by name

You give a name to every logging entity you specify, and then refer
to it by that name when attaching it to higher-level entities.
(It’s true that after the call to dictConfig, only the names of loggers
endure [as per the documentation! but see :ref:`Note <HANDLER_NAMES_TOO>` below];
however, that’s a separate issue — a deficiency of logging, not of static
configuration.)

    




    






	It’s arguably more natural to specify configuration in a declarative way,
especially for the typical application which will “set it and forget it”.







Disadvantages of static configuration


	Not very good error detection (none until the dictConfig call)

    




    





	Some boilerplate key/value pairs

    




    





	Lots of noise — a thicket of nested curly braces, quotes, colons, etc.

Triply-nested dicts are hard to read.

    




    






	Logging config dicts seem complex

At least on first exposure to static configuration, it’s not easy to
comprehend a medium- to large-sized dict of dicts of dicts, in which many
values are lists of keys occurring elsewhere in the structure.










Assessment

As we’ve seen, both approaches to configuration offered by the logging
package have virtues, but both have shortcomings:


	Its API, mostly dedicated to dynamic configuration, is at once complex and
limited.


	With static configuration, no warnings are issued and no error checking occurs
until dictConfig (or fileConfig) is called.


	Of the various kinds of entities that logging constructs, only loggers have
(documented) names, which, as seen above, can lead to various conundrums and
contortions.

Said another way, once logging is configured, only the names of Loggers
endure. logging retains no associations between the names you used to
specify Formatters, Handlers and Filters, and the objects
constructed to your specifications; you can’t access those objects by any
name.





To this list, we might add the general observation that the entire library is
written in thoroughgoing camelCase (except for inconsistencies, such as
levelname in format strings).








Configuration with prelogging

prelogging provides a hybrid approach to configuration that offers the
best of both the static and dynamic worlds. The package provides a simple but
powerful API for building a logging config dict incrementally, and makes it
easy to use advanced features such as rotating log files and email handlers.
As you add and attach items, by default prelogging issues warnings when it
encounters possible mistakes such as referencing nonexistent entities or
redefining entities.

prelogging defines two classes which represent logging config dicts:
a dict subclass LCDictBasic, and its subclass LCDict. (The
diagram of classes
shows all the classes in the prelogging package and their interrelations.)
LCDictBasic provides the basic model of building a logging config
dict; LCDict supplies additional conveniences — for example, formatter
presets (predefined formatters), and easy access to advanced features
such as filter creation and multiprocessing-safe rotating file handlers.
The centerpiece of prelogging is the LCDict class.

You use the methods of these classes to add specifications of named
Formatters, Handlers, Loggers, and optional Filters,
together with containment relations between them. Once you’ve done so, calling
the config() method of an LCDictBasic configures logging by passing
itself, as a dict, to logging.config.dictConfig(). This call creates
all the objects and linkages specified by the underlying dictionary.

Let’s see this in action, applied to our use case, and then further discuss
how the prelogging classes operate.


Configuring our requirements using LCDict

Here’s how we might use LCDict to configure logging to satisfy our
Configuration requirements:

from prelogging import LCDict

lcd = LCDict(root_level='DEBUG',
             attach_handlers_to_root=True)
lcd.add_stderr_handler(
                'h_stderr',
                formatter='msg',    # actually not needed
                level='INFO'
).add_file_handler('h_file',
                   formatter='logger_level_msg',
                   filename='blather.log',
)
lcd.config()





First we create an LCDict, which we call lcd — a logging config dict
with root loglevel 'DEBUG'. An LCDict has a few attributes that aren’t
part of the underlying dict, including the attach_handlers_to_root flag,
which we set to True. The add_*_handler methods do just what you’d
expect: each adds a subdictionary to lcd['handlers'] with the respective
keys 'h_stderr' and 'h_file', and with key/value pairs given by the
keyword parameters.

We’ve used a couple of prelogging’s formatter presets —
'msg' and 'logger_level_msg'. Because we pass the flag
attach_handlers_to_root=True when creating lcd, every
handler we add to lcd is (by default) automatically
attached to the root logger. (You can override this default by passing
add_to_root=False to any add_*_handler call.)

Notes


	To allow chaining, as in the above example, the methods of
LCDictBasic and LCDict generally return self.


	Here’s the complete table of prelogging’s formatter presets.







Configuring our requirements using LCDictBasic

It’s instructive to see how to achieve the example configuration
using only LCDictBasic, foregoing the conveniences of LCDict. The code
becomes just a little less terse. Now we have to add two formatters,
and we must explicitly attach the two handlers to the root logger. We’ve
commented those passages with # NEW:

from prelogging import LCDictBasic

lcd = LCDictBasic(root_level='DEBUG')

# NEW
lcd.add_formatter('msg',
                  format='%(message)s'
).add_formatter('logger_level_msg',
                format='%(name)-20s: %(levelname)-8s: %(message)s'
)

lcd.add_handler('h_stderr',
                formatter='msg',
                level='INFO',
                class_='logging.StreamHandler',
).add_file_handler('h_file',
                   formatter='logger_level_msg',
                   level='DEBUG',
                   filename='blather.log',
)

# NEW
lcd.attach_root_handlers('h_stderr', 'h_file')

lcd.config()








Summary

As the preceding example hopefully shows, prelogging offers an attractive
way to configure logging, one that’s more straightforward, concise and easier
on the eyes than the facilities provided by the logging package itself.
The following chapters discuss basic organization and usage of LCDictBasic
and LCDict. Later chapters present techniques and recipes showing how to
use these classes to get more out of logging.









          

      

      

    

  

    
      
          
            
  
LCDictBasic Organization and Basic Usage

LCDictBasic provides an API for building dictionaries that specify
Python logging configurations — logging config dicts.
The class is fully documented in LCDictBasic; this chapter discusses its
organization and use. Everything said here about LCDictBasic will also be
true of its subclass LCDict, whose unique features we’ll discuss in the next
chapter.


Configuration with LCDictBasic

Logging configuration involves a small hierarchy
of only four kinds of entities, which can be specified in a layered way.
LCDictBasic lets you build a logging config dict modularly and incrementally.
You add each logging entity and its attached entities one by one, instead of
entering a single large thicket of triply-nested dicts.

An LCDictBasic instance is a logging config dict. It inherits from
dict, and its methods —add_formatter, add_handler, add_logger,
attach_logger_handlers and so on — operate on the underlying dictionary,
breaking down the process of creating a logging config dict into basic steps.

While configuring logging, you give a name to each of the entities that you add.
(Strictly speaking, you’re adding specifications of logging objects.)
When adding a higher-level entity, you identify its constituent lower-level
entities by name.

Once you’ve built an LCDictBasic meeting your requirements, you configure
logging by calling that object’s config method, which passes it (self,
a dict) to logging.config.dictConfig() [https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig].


Specification order


	Formatters and Filters (if any) don’t depend on any other
logging entities, so they should be specified first.


	Next, specify Handlers, referencing any Formatters and Filters that the handlers use.


	Finally, specify Loggers, referencing any Handlers (and possibly Filters) that they use.




Note:
LCDictBasic has dedicated methods for configuring the root logger (setting
its level, attaching handlers and filters to it), but you can also use the
class’s general-purpose handler methods for this, identifying the root logger by
its name, ''.

Typically, Filters aren’t required, and then, setting up logging
involves just these steps:


	specify Formatters


	specify Handlers that use the Formatters


	specify Loggers that use the Handlers.




Note: In common cases, such as the configuration requirements
example in the previous chapter and its solution,
LCDict eliminates the first step, and makes the last step trivial when only
the root logger will have handlers.






Methods and properties

The add_* methods of LCDictBasic let you specify new, named logging
entities. Each call to one of the add_* methods adds an item
to one of the subdictionaries 'formatters', 'filters', 'handlers'
or 'loggers'. In each such call, you can specify all of the data for
the entity that the item describes — its loglevel, the other entities it will
use, and any type-specific information, such as the stream that a StreamHandler
will write to.

You can specify all of an item’s dependencies in an add_* call,
using names of previously added items, or you can add dependencies
subsequently with the attach_* methods. In either case, you assign a list
of values to a key of the item: for example, the value of the handlers key
for a logger is a list of zero or more names of handler items.

The set_* methods let you set single-valued fields (loglevels; the
formatter, if any, of a handler).

In addition to the config method, which we’ve already seen, LCDictBasic
has methods check and dump. The properties of LCDictBasic correspond
to the top-level subdictionaries of the underlying dict. See LCDictBasic
for details.


Keyword parameters

Keyword parameters of the add_* methods are consistently snake_case versions
of the corresponding keys that occur in statically declared logging config
dicts; their default values are the same as those of logging.
(There are just a few — rare, documented — exceptions to these sweeping
statements. One noteworthy exception: class_ is used instead of class,
as the latter is a Python reserved word and can’t be a parameter.)

For example, the keyword parameters of add_file_handler are keys that can
appear in a (sub-sub-)dictionary of configuration settings for a file handler;
the keyword parameters of add_logger are keys that can appear in the
(sub-sub-)dicts that configure loggers. In any case, all receive sensible
default values consistent with logging.




Items of a logging config dict

Here’s what a minimal, “blank” logging config dict looks like:

>>> from prelogging import LCDictBasic
>>> d = LCDictBasic()
>>> d.dump()        # prettyprint the underlying dict
{'filters': {},
 'formatters': {},
 'handlers': {},
 'incremental': False,
 'loggers': {},
 'root': {'handlers': [], 'level': 'WARNING'},
 'version': 1}





Every logging config dict built by prelogging has the five subdictionaries
and two non-dict items shown; no prelogging methods remove any of these items
or add further items. The LCDictBasic class exposes the subdictionaries
as properties:
formatters, filters, handlers, loggers, root.
The last, root, is a dict containing settings for that special logger.
Every other subdict contains keys that are names of entities of the appropriate
kind; the value of each such key is a dict containing configuration settings for
the entity. In an alternate universe, 'root' and its value (the root
subdict) could be just a special item in the loggers subdict; but
logging config dicts aren’t defined that way.


Properties

An LCDictBasic makes its top-level subdictionaries available as properties
with the same names as the keys: d.formatters is d['formatters'] is true,
so is d.handlers is d['handlers'], and likewise for d.filters,
d.loggers, d.root. For example, adding a formatter 'simple'
to d:

>>> d.add_formatter('simple')





changes the formatters collection to:

>>> d.formatters                # ignoring whitespace
{'simple': {'class': 'logging.Formatter',
            'format': None}
}










Methods, terminology


The add_* methods

The basic add_* methods are these four:

add_formatter(self, name, format='', ... )
add_filter(self, name, ... )
add_handler(self, name, level='NOTSET', formatter=None, filters=None, ... )
add_logger(self, name, level='NOTSET', handlers=None, filters=None, ...  )





LCDictBasic also defines three special cases of add_handler:

add_stream_handler
add_file_handler
add_null_handler





which correspond to all the handler classes defined in the core module of logging.
(LCDict defines methods for many of the handler classes defined in
logging.handlers – see the later section, Handler classes encapsulated by LCDict.)

Each add_* method adds an item to (or replaces an item in) the corresponding
subdictionary. For example, when you add a formatter:

>>> _ = d.add_formatter('fmtr', format="%(name)s %(message)s")





you add an item to d.formatters whose key is 'fmtr' and whose value is
a dict with the given settings:

>>> d.dump()
{'filters': {},
 'formatters': {'fmtr': {'format': '%(name)s %(message)s'}},
 'handlers': {},
 'incremental': False,
 'loggers': {},
 'root': {'handlers': [], 'level': 'WARNING'},
 'version': 1}





The result is as if you had executed:

d.formatters['fmtr'] = {'class': 'logging.Formatter',
                        'format': '%(name)s %(message)s'}





Now, when you add a handler, you can assign this formatter to it by name:

>>> _ = d.add_file_handler('fh', filename='logfile.log', formatter='fmtr')





This add_*_handler method added an item to d.handlers — a specification
for a new handler 'fh':

>>> d.dump()
{'filters': {},
 'formatters': {'fmtr': {'format': '%(name)s %(message)s'}},
 'handlers': {'fh': {'class': 'logging.FileHandler',
                     'delay': False,
                     'filename': 'logfile.log',
                     'formatter': 'fmtr',
                     'level': 'NOTSET',
                     'mode': 'a'}},
 'incremental': False,
 'loggers': {},
 'root': {'handlers': [], 'level': 'WARNING'},
 'version': 1}





Similarly, add_filter and add_logger add items to the filters and
loggers dictionaries respectively.




The attach_*_* methods

The configuring dict of a handler has an optional 'filters' list;
the configuring dict of a logger can have a 'filters' list and/or
a 'handlers' list. The attach_entity_entities methods
extend these lists of filters and handlers:

attach_handler_filters(self, handler_name, * filter_names)

attach_logger_handlers(self, logger_name, * handler_names)
attach_logger_filters(self, logger_name, * filter_names)

attach_root_handlers(self, * handler_names)
attach_root_filters(self, * filter_names)





Note:
All these methods attach entities to an entity. Each takes a variable number
of entities as their final parameters, and attach them to entity, which
precedes them in the parameter list. The method names reflect the parameter order.

To illustrate, Let’s add another handler, attach both handlers to the root,
and examine the underlying dict:

>>> _ = d.add_handler('console',
...                   formatter='fmtr',
...                   level='INFO',
...                   class_='logging.StreamHandler'
... ).attach_root_handlers('fh', 'console')
>>> d.dump()
{'filters': {},
 'formatters': {'fmtr': {'format': '%(name)s %(message)s'}},
 'handlers': {'console': {'class': 'logging.StreamHandler',
                          'formatter': 'fmtr',
                          'level': 'INFO'},
              'fh': {'class': 'logging.FileHandler',
                     'delay': False,
                     'filename': 'logfile.log',
                     'formatter': 'fmtr',
                     'level': 'NOTSET',
                     'mode': 'a'}},
 'incremental': False,
 'loggers': {},
 'root': {'handlers': ['fh', 'console'], 'level': 'WARNING'},
 'version': 1}








The set_*_* methods

These methods modify a single value — a loglevel, or a formatter:

set_handler_level(self, handler_name, level)
set_root_level(self, root_level)
set_logger_level(self, logger_name, level)
set_handler_formatter(self, handler_name, formatter_name)





Note: We might have named the last method “attach_handler_formatter”, as the
handler-uses-formatter relation is another example of an association between two
different kinds of logging entities. However, further reflection reveals that
a formatter is not “attached” in the sense of all the other attach_*_*
methods. A handler has at most one formatter, and “setting” a handler’s
formatter replaces any formatter previously set; in contrast, the attach_*_*
methods only append to and extend collections of filters and handlers, and never
delete or replace items. Hence “set_handler_formatter”.










prelogging warnings and consistency checking

Here’s another benefit provided by prelogging that you don’t enjoy by handing
a (possibly large) dict to logging.config.dictConfig()`:
prelogging detects certain dubious practices and probable mistakes,
and optionally prints warnings about them. In any case it automatically
prevents some of those detected problems, such as attempting to attach
a handler to a logger multiple times, or referencing an entity that doesn’t exist
(because you haven’t added it yet, or mistyped its name).


The inner class LCDictBasic.Warnings

LCDictBasic has an inner class Warnings that defines bit-field “constants”,
or flags, which indicate the different kinds of anomalies that prelogging checks for, corrects
when that’s sensible, and optionally reports on with warning messages.







	
Warnings “constant”







	
Issue a warning when…











	
REATTACH




REDEFINE

ATTACH_UNDEFINED

REPLACE_FORMATTER




	
attaching an entity {formatter/filter/handler}

to another entity that it’s already attached to

overwriting an existing definition of an entity

attaching an entity that hasn’t yet been added (“defined”)

changing a handler’s formatter









The class also defines a couple of shorthand “constants”:

DEFAULT = REATTACH + REDEFINE + ATTACH_UNDEFINED
ALL     = REATTACH + REDEFINE + ATTACH_UNDEFINED + REPLACE_FORMATTER






warnings — property, parameter of __init__

The value of the warnings parameter of the LCDictBasic constructor can
be any combination of the “constants” in the above table. Its default value is,
naturally, Warnings.DEFAULT. The value of this parameter is saved
as an LCDictBasic instance attribute, which is exposed by the read-write
warnings property.

When one of these flags is “on” in the warnings property and the corresponding
kind of offense occurs, prelogging prints a warning message
to stderr, indicating the source file and line number of the offending method
call.




REATTACH (default: reported)

prelogging detects and eliminates duplicates in lists of handlers or filters
that are to be attached to higher-level entities. If REATTACH is “on”
in warnings, prelogging will report duplicates.




REDEFINE (default: reported)

If this flag is “on” in warnings, prelogging warns when
an existing definition of an entity is replaced, for example by calling
add_handler('h', ...) twice.




ATTACH_UNDEFINED (default: reported)

If this flag is “on” in warnings, prelogging detects when an as-yet
undefined entity is associated with another entity that uses it:


	undefined formatter assigned to a handler


	undefined filter attached to a handler


	undefined filter attached to a logger


	undefined handler attached to a logger







REPLACE_FORMATTER (default: not reported)

If this flag is “on” in warnings, prelogging warns when
a handler that already has a formatter is given a new formatter.






Consistency checking — the check method

This method checks for references to “undefined” entities, as described above
for ATTACH_UNDEFINED. If any exist, check reports
that, and raises KeyError; otherwise, it returns self.

If the Warnings.REATTACH flag of the warnings property is “off”,
config() calls check() automatically before calling logging.config.config().









          

      

      

    

  

    
      
          
            
  
LCDict Features and Usage

LCDict subclasses LCDictBasic to contribute additional
conveniences. The class is fully documented in LCDict.
In this chapter we describe the features it adds:


	using formatter presets


	add_*_handler methods for several classes in logging.handlers


	optional automatic attaching of handlers to the root logger as they’re added


	easy multiprocessing-safe logging


	simplified creation and use of filters.





Using formatter presets

We’ve already seen simple examples of adding new formatters using
add_formatter. The documentation of that method in LCDictBasic
details its parameters and their possible values.

As our first example indicated,
often it’s not necessary to specify formatters from scratch,
because prelogging provides an extensible, modifiable collection of formatter
presets — predefined formatter specifications which cover many needs.
You can use the name of any of these presets as the formatter argument
to add_*_handler methods and to set_handler_formatter. prelogging ships
with about a dozen of them, shown in this table.

Formatter presets are added to an LCDict “just in time”, when they’re used:

>>> lcd = LCDict()
>>> # The underlying dict of a "blank" LCDict
>>> #   is the same as that of a blank LCDictBasic --
>>> #   lcd.formatters is empty:
>>> lcd.dump()
{'disable_existing_loggers': False,
 'filters': {},
 'formatters': {},
 'handlers': {},
 'incremental': False,
 'loggers': {},
 'root': {'handlers': [], 'level': 'WARNING'},
 'version': 1}

>>> # Using the 'level_msg' preset adds it to lcd.formatters:
>>> _ = lcd.add_stderr_handler('console', formatter='level_msg')
>>> lcd.dump()
{'disable_existing_loggers': False,
 'filters': {},
 'formatters': {'level_msg': {'format': '%(levelname)-8s: %(message)s'}},
 'handlers': {'console': {'class': 'logging.StreamHandler',
                          'formatter': 'level_msg',
                          'level': 'NOTSET',
                          'stream': 'ext://sys.stderr'}},
 'incremental': False,
 'loggers': {},
 'root': {'handlers': [], 'level': 'WARNING'},
 'version': 1}





Only 'level_msg' has been added to lcd.formatters.

Of course, the dozen or so formatter presets that prelogging contains,
aren’t a comprehensive collection, and probably won’t meet everyone’s needs
or suit everyone’s tastes. Therefore prelogging provides two functions that
let you add your own presets, and/or modify existing ones:



	update_formatter_presets_from_file(filename), and


	update_formatter_presets(multiline_str).







These functions, and the formats of their arguments, are described in the chapter
Formatter Presets following this one.






Handler classes encapsulated by LCDict

logging defines more than a dozen handler classes — subclasses of
logging.Handler — in the modules logging and logging.handlers.
The package defines the basic stream, file and null handler classes,
for which LCDictBasic supplies  add_*_handler methods. Its handlers
module defines more specialized handler classes, for about half of which (presently)
LCDict provides corresponding add_*_handler methods.


Handler classes that LCDict configures

LCDict provides methods for configuring these logging handler classes, with
optional “locking” support in most cases:









	
method







	
creates







	
optional

locking?








	
add_stream_handler

add_stderr_handler

add_stdout_handler

add_file_handler

add_rotating_file_handler

add_syslog_handler

add_email_handler

add_queue_handler

add_null_handler




	
StreamHandler

stderr StreamHandler

stdout StreamHandler

FileHandler

RotatingFileHandler

SyslogHandler

SMTPHandler

QueueHandler

NullHandler




	
yes

yes

yes

yes

yes

yes
























Adding other kinds of handlers

The following logging handler classes presently have no corresponding
add_*_handler methods:


	logging.handlers.WatchedFileHandler


	logging.handlers.TimedRotatingFileHandler


	logging.handlers.SocketHandler


	logging.handlers.DatagramHandler


	logging.handlers.MemoryHandler


	logging.handlers.NTEventLogHandler


	logging.handlers.HTTPHandler




Future versions of prelogging may supply methods for at least some of these.
In any case, all can be configured using prelogging. It’s straightforward to
write add_*_handler methods for any or all of these classes, on the model of
the existing methods: call add_handler with the appropriate handler class as
value of the class_ keyword, and pass any other class-specific key/value
pairs as keyword arguments.








Automatically attaching handlers to the root logger

Because handlers are so commonly attached to the root logger,
LCDict makes it easy to do that. Two parameters and their defaults
govern this:


	The initializer method LCDict.__init__ has a boolean parameter
attach_handlers_to_root [default: False].

Each instance saves the value passed to its constructor, and exposes it as the
read-only property attach_handlers_to_root.
When attach_handlers_to_root is true, by default the
handler-adding methods of this class automatically attach handlers to
the root logger after adding them to the handlers subdictionary.

    




    






	All add_*_handler methods called on an LCDict, as well as
the clone_handler method, have an attach_to_root parameter
[type: bool or None; default: None].
The attach_to_root parameter
allows overriding of the value attach_handlers_to_root passed to
the constructor.

The default value of attach_to_root
is None, which is interpreted to mean: use the value of
attach_handlers_to_root passed to the constructor. If attach_to_root
has any value other than None,
the handler will be attached iff attach_to_root is true/truthy.





Thus, if lcd is an LCDict created with attach_handlers_to_root=True,


lcd = LCDict(attach_handlers_to_root=True, ...)




you can still add a handler to lcd without attaching it to the root:

lcd.add_stdout_handler('stdout', attach_to_root=False, ...)





Similarly, if lcd`` is created with attach_handlers_to_root=False (the default),


lcd = LCDict(...)




you can attach a handler to the root as soon as you add it to lcd:

lcd.add_file_handler('fh', filename='myfile.log', attach_to_root=True, ...)





without having to subsequently call lcd.attach_root_handlers('fh', ...).






Easy multiprocessing-safe logging

As we’ve mentioned, most recently in the this chapter’s earlier section
Handler classes that LCDict configures,
prelogging provides multiprocessing-safe (“locking”) versions of the essential
handler classes that write to the console, streams, files, rotating files, and
syslog. These subclasses of handler classes defined by
logging are documented in Locking Handlers. The following LCDict
methods:



add_stream_handler

add_stderr_handler

add_stdout_handler

add_file_handler

add_rotating_file_handler

add_syslog_handler






can create either a standard, logging handler or a locking version thereof.
Two keyword parameters and their defaults govern which type of handler
will be created:


	The initializer method LCDict.__init__ has a boolean parameter
locking [default: False].

Each LCDict instance saves the value passed to its constructor,
and exposes it as the read-only property locking.
When locking is true, by default the add_*_handler methods listed above
will create locking handlers.

    




    






	The add_*_handler methods listed above have a locking parameter
[type: bool or None; default: None], which
allows overriding of the value locking passed to the constructor.

The default value of the add_*_handler parameter locking
is None, which is interpreted to mean: use the value of
locking passed to the constructor. If the add_*_handler parameter
locking has any value other than None,
a locking handler will be created iff the parameter’s value is true/truthy.










Simplified creation and use of filters

Filters allow finer control than mere loglevel comparison over which messages
actually get logged.

There are two kinds of filters: class filters and callable filters.
LCDict provides a pair of convenience methods, add_class_filter and
add_callable_filter, which are easier to use than the lower-level
LCDictBasic method add_filter.

In Python 2, the logging module imposes a fussy requirement on callables
that can be used as filters, which the Python 3 implementation of logging
removes. The add_callable_filter method provides a single interface for
adding callable filters that works in both Python versions.


Defining filters

Here are a couple of examples of filters, both of which suppress
certain kinds of messages. Each has the side effect of incrementing
a distinct global variable.


Class filters

Classic filters are instances of any class that implement a filter method
with the following signature:

filter(self, record: logging.LogRecord) -> int





where int is treated like bool — nonzero means true (log the record),
zero means false (don’t). These include subclasses of logging.Filter, but
a filter class doesn’t have to inherit from that logging class.


Class filter example

_info_count = 0     # incremented by the following class filter

class CountInfoSquelchOdd():
    def filter(self, record):
        """Suppress odd-numbered messages (records) whose level == INFO,
        where the "first" message is the 0-th hence is even-numbered.

        :param self: unused
        :param record: logging.LogRecord
        :return: int -- true (nonzero) ==> let record through,
                        false (0) ==> squelch
        """
        global _info_count
        if record.levelno == logging.INFO:
            _info_count += 1
            return _info_count % 2
        else:
            return True










Callable filters

A filter can also be a callable, of signature logging.LogRecord -> int.
(In fact, prelogging lets you use callables of signature
(logging.LogRecord, **kwargs) -> int; see the section below on
providing extra, static data to callable filters
for discussion and an example.)


Callable filter example

_debug_count = 0        # incremented by the following callable filter

def count_debug_allow_2(record):
    """
    Allow at most 2 messages with loglevel ``DEBUG``.

    :param record: ``logging.LogRecord``
    :return: ``bool`` -- True ==> let record through, False ==> squelch
    """
    global _debug_count
    if record.levelno == logging.DEBUG:
        _debug_count += 1
        return _debug_count <= 2
    else:
        return True












Filters on the root logger

Let’s configure the root logger to use both filters shown above:

lcd = LCDict(
    attach_handlers_to_root=True,
    root_level='DEBUG')

lcd.add_stdout_handler(
    'console',
    level='DEBUG',
    formatter='level_msg')

lcd.add_callable_filter('count_d', count_debug_allow_2)
lcd.add_class_filter('count_i', CountInfoSquelchOdd)

lcd.attach_root_filters('count_d', 'count_i')

lcd.config()





Now use the root logger:

import logging
root = logging.getLogger()

for i in range(5):
    root.debug(str(i))
    root.info(str(i))

print("_debug_count:", _debug_count)
print("_info_count:", _info_count)





This passage writes the following to stdout:

DEBUG   : 0
INFO    : 0
DEBUG   : 1
INFO    : 2
INFO    : 4
_debug_count: 5
_info_count: 5






Note

This example is the test test_add_xxx_filter.py, with little
modification.






Filters on a non-root logger

Attaching the example filters to a non-root logger 'mylogger' requires just
one change: instead of using attach_root_filters to
attach the filters to the root logger, now we have to attach them to an
arbitrary logger. This can be accomplished in either of two ways:


	Attach the filters when calling add_logger for 'mylogger', using the
filters keyword parameter:

lcd.add_logger('mylogger',
                  filters=['count_d', 'count_i'],
                  ...
                 )





The value of the filters parameter can be either the name of a single
filter (a str) or a sequence (list, tuple, etc.) of names of filters.

    




    






	Add the logger with add_logger, without using the filters parameter:

lcd.add_logger('mylogger', ... )





and then attach filters to it with attach_logger_filters:

lcd.attach_logger_filters('mylogger',
                          'count_d', 'count_i')












Filters on a handler

There are two ways to attach filters to a handler:


	Attach the filters in the same method call that adds the handler.
Every add_*_handler method takes a filters keyword parameter —
all those methods funnel through LCDictBasic.add_handler. As with the
add_logger method, the value of the filters parameter can be either
the name of a single filter (a str) or a sequence (list, tuple, etc.) of
names of filters.

For example, each of the following method calls adds a handler with
only the 'count_d' filter attached:

lcd.add_stderr_handler('con-err',
                       filters='count_d'
).add_file_handler('fh',
                   filename='some-logfile.log',
                   filters=['count_d'])





For another example, the following statement adds a rotating file handler with
both the 'count_i' and 'count_d' filters attached:

lcd.add_rotating_file_handler('rfh',
                              filename='some-rotating-logfile.log',
                              max_bytes=1024,
                              backup_count=5,
                              filters=['count_i', 'count_d'])







	Add the handler using any add_*_handler method, then use
add_handler_filters to attach filters to the handler. For example:

lcd.add_file_handler('myhandler',
                     filename='mylogfile.log'
).attach_handler_filters('myhandler',
                         'count_d', 'count_i')









In a later chapter we’ll
discuss providing extra data to filters, in addition to the LogRecords
they’re called with.









          

      

      

    

  

    
      
          
            
  
Formatter Presets

prelogging provides an extensible, modifiable collection of formatter
presets — predefined formatter specifications which you can reference by
name as the formatter argument to add_*_handler and
set_handler_formatter methods of LCDict, without having to first
call add_formatter. We’ve already seen them in use, in the
first example of using prelogging
and in the previous chapter’s section on
using formatter presets.

When first loaded, prelogging provides these presets:







	
Formatter name




	
Format string








	
'msg'




	
'%(message)s'






	
'level_msg'




	
'%(levelname)-8s: %(message)s'






	
'process_msg'




	
'%(processName)-10s: %(message)s'






	
'logger_process_msg'




	
'%(name)-20s: %(processName)-10s: %(message)s'






	
'logger_level_msg'




	
'%(name)-20s: %(levelname)-8s: %(message)s'






	
'logger_msg'




	
'%(name)-20s: %(message)s'






	
'process_level_msg'




	
'%(processName)-10s: %(levelname)-8s: %(message)s'






	
'process_time_level_msg'




	
'%(processName)-10s: %(asctime)s: %(levelname)-8s: %(message)s'






	
'process_logger_level_msg'




	
'%(processName)-10s: %(name)-20s: %(levelname)-8s: %(message)s'






	
'process_time_logger_level_msg'




	
'%(processName)-10s: %(asctime)s: %(name)-20s: %(levelname)-8s: %(message)s'






	
'time_logger_level_msg'




	
'%(asctime)s: %(name)-20s: %(levelname)-8s: %(message)s'









This collection is by no means comprehensive, nor could it be. (logging recognizes
about 20 keywords in format strings [https://docs.python.org/3/library/logging.html#logrecord-attributes];
you can even use your own keywords, as shown in
Adding custom fields and data to messages;
these can all be combined in infinitely many format strings.)
The names of these presets probably won’t be to everyone’s liking either (level not levelname;
msg and process, which are themselves recognized keywords, rather than message
and processName).
Nevertheless, formatter presets are a useful facility, especially across multiple projects.
Therefore, prelogging lets you add your own formatter presets, and/or modify existing ones.
Two functions make that possible:



	update_formatter_presets(multiline_str) reads descriptions of formatters in
a multiline string;


	update_formatter_presets_from_file(filename) reads descriptions of formatters
from a text file;







Both functions update the collection of formatter presets.

Note: The changes and additions made by these functions do not persist
after your program exits.

Generally, you call one of these functions, once, after importing prelogging
or things from it, and before creating an LCDict and populating it using your new
or improved formatter presets.

The following subsections describe these functions and the expected formats of
their arguments. It’s convenient to present the file-based function first.




The update_formatter_presets_from_file function

This function basically passes the contents of the file to update_formatter_presets,
described below.


File format

This functions expects a text file consisting of:



	zero or more blank lines, followed by


	zero or formatter descriptions, all separated by one or more blank lines.







A blank line consists only of whitespace. A formatter description is a group of
lines consisting of a name, beginning in column 1 on a line by itself, followed
by one or more indented lines each containing a key : value pair, and all
subject to the following conditions:



	Each key must be one of format, dateformat, style.
format is required; the others are optional.


	If a value contains spaces then it should be enclosed in quotes (single or double);
otherwise, enclosing quotes are optional (any outermost matching quotes are removed).


	A name can contain spaces, and does not have to be quoted unless you want it to have
initial or trailing whitespace.


	In a key : value pair, zero or more spaces may precede and follow the colon.


	The value given for style should be one of % { $; if style is omitted
then it defaults to %. (Under Python 2, only % is allowed, so if you’re still using
that then you should omit style.)







These keys and values are as in the LCDictBasic.add_formatter
method.


Example 1 – basic and corner cases

Here’s an example of a valid/well-formed file (assume the names begin in column 1):

name_level_message
    format: '%(name)s - %(levelname)s - %(message)s'

name level message
    format: '%(name)s - %(levelname)s - %(message)s'

datetime_name_level_message
    format    : '{asctime}: {name:15s} - {levelname:8s} - {message}'
    dateformat: '%Y.%m.%d %I:%M:%S %p'
    style: {

'    his formatter    '
    format:%(message)s





If the file passed to update_formatter_presets_from_file has ill-formed contents,
the function writes an appropriate error message to stderr, citing the file name
and offending line number, and the collection of formatter presets remains unchanged.




Example 2 – formatter_presets.txt declares prelogging’s formatter presets

Another example of a valid file containing formatter presets is the text file
formatter_presets.txt in the prelogging directory. prelogging creates
its stock of formatter presets by calling


update_formatter_presets_from_file(path/to/ 'formatter_presets.txt')




when the lcdict module is loaded.










The update_formatter_presets function

For example, all of these are equivalent well-formed possible arguments:

# <-- assume that's column 1

    s1 = '''\
myformatter
    format: '%(message)s'
    style: '%'
'''
    s2 = '''\
    myformatter
        format: '%(message)s'
            style: '%'
    '''
    s2 = '''\
        myformatter
          format: '%(message)s'
          style: '%'
    '''





Note that each triple-quote beginning a multiline string is followed by \,
so that the logical line n is not actually line n+1.

If the string passed to update_formatter_presets is ill-formed, the function
writes an appropriate error message to stderr, citing the offending line
number, and the collection of formatter presets remains unchanged.







          

      

      

    

  

    
      
          
            
  
Configuring Loggers

We have already seen examples of how easy it can be to configure the root logger
— for example, with both a console handler and a file handler, as in the
overview.

This chapter is mainly concerned with configuring non-root loggers. We’ll
begin by considering the special case of “configuring” non-root loggers by not
configuring them at all, so that the root does all the work via propagation.

For simplicity the examples in this chapter use the root logger and non-root loggers,
but they can be adapted to the more general situation of a non-propagating
logger with handlers, and its descendants.


	
	Configuring non-root loggers by propagation to the root

		
	Using non-root loggers without configuring them




	


	











	
	Configuring non-root loggers; using root and non-root loggers together

		
	Example: A “discrete” non-root logger




	
	Best practices for propagation and handler placement




	
















Using non-root loggers without configuring them

A common, useful approach is to attach handlers only to the root logger,
and then have each module log messages using logging.getLogger(__name__).
These “child” loggers require no configuration; they use the handlers
of the root because, by default, loggers are created with propagate=True
(and with level='NOTSET').

If the formatters of the handlers include the logger name — as the formatter
preset logger_level_msg does, for example — each logged message will state
which logger wrote it.

The following example illustrates the general technique:

>>> from prelogging import LCDict
>>> import logging
>>> lcd = LCDict(attach_handlers_to_root=True)
>>> lcd.add_stdout_handler('con', formatter='logger_level_msg')
>>> lcd.config()





>>> logging.getLogger().warning("Look out!")
root                : WARNING : Look out!
>>> logging.getLogger('my_submodule').warning("Something wasn't right.")
my_submodule        : WARNING : Something's wasn't right.
>>> logging.getLogger('your_submodule').error("Uh oh, there was an error.")
your_submodule      : ERROR   : Uh oh, there was an error.










Configuring and using non-root loggers

In the previous section we saw one common configuration of non-root loggers.
Other configurations are possible and sometimes desirable:



	you want the logger for a module or package to have a different loglevel
from that of the root, but to use the same handlers as the root (thus,
it will write to the same destination(s));


	you want to write to destinations other than those of the root,
either instead of or in addition to those.







The first case is easily achieved simply by setting the loglevel of the non-root
logger as desired, giving it no handlers; propagation takes care of the rest
(a logger’s propagate property is, by default, true).

The second case has many variations, depending upon whether the non-root logger
propagates or not.  We consider a non-propagating example, where the
non-root logger is totally “walled off” from the root logger. Variations will
be easy to devise and configure.


Example: A “discrete” non-root logger

In this example we use two loggers: the root, and another logger that’s
“discrete” from the root, and indeed from any ancestor logger, in the sense
that:



	it doesn’t share any handlers with any ancestor, and


	it doesn’t propagate to any ancestor.







As the root is an ancestor of every logger, in particular we’ll require that
the added logger should not attach its handlers to the root, and that it
should not “propagate” to its parent (the root, in this example).


Requirements


	root logger with a stderr console handler at loglevel WARNING,
and a file handler at default loglevel NOTSET;


	a discrete logger, named let’s say 'extra', with loglevel DEBUG,
which will write to a different file using a handler at default loglevel
NOTSET;


	logfiles should be in the _log/ subdirectory of the current directory.







How-to

Start with an LCDict that uses standard (non-locking) stream
and file handlers; use root loglevel 'DEBUG'; set log_path as required:

import logging
from prelogging import LCDict


lcd = LCDict(log_path='_log/',
             root_level='DEBUG',
             attach_handlers_to_root=True)





Set up the root logger with a stderr console handler at loglevel ‘WARNING’,
and a file handler at its default loglevel ‘NOTSET’:

lcd.add_stderr_handler('console',
                       level='WARNING',
                       formatter='msg'
).add_file_handler('root_fh',
                   filename='root.log',
                   formatter='logger_level_msg')





Add an 'extra' logger, with loglevel DEBUG, which will write to a
different file using a handler at default loglevel NOTSET.
Note the use of parameters attach_to_root and propagate:



	in the add_file_handler call, passing attach_to_root=False ensures
that this handler won’t be attached to the root logger, overriding the
lcd default value established by attach_handlers_to_root=True
above;


	in the add_logger call, propagate=False ensures that messages
logged by 'extra' don’t also bubble up to the root and its handlers:







lcd.add_file_handler('extra_fh',
                     filename='extra.log',
                     formatter='logger_level_msg',
                     attach_to_root=False
).add_logger('extra',
             handlers=['extra_fh'],
             level='DEBUG',
             propagate=False)





Finally, call config() to create actual objects of logging types —
logging.Formatter, logging.Logger, etc.

lcd.config()





Now lcd is actually no longer needed (we don’t do ‘incremental’
configuration, but then, arguably, neither does logging).

To use the loggers, access them by name:

# 'extra' writes "Hi there" to file `_log/extra.log`:
logging.getLogger('extra').warning("Hi there.")

# Root writes "UH OH" to `stderr` and to `_log/root.log`:
logging.getLogger().error("UH OH")

# Root writes "ho hum" to `_log/root.log` only:
logging.getLogger().debug("ho hum")





Exercise: Verify the claimed effects of the attach_to_root and
propagate parameters in the two calls that configure the 'extra_fh'
handler and the 'extra' logger.



	Comment out attach_to_root=False from the add_file_handler call
for 'extra_fh'.

Now, 'extra_fh' is a handler of the root logger too, so
it logs its messages "UH OH" and "ho hum" to _log/extra.log,
as well as to root.log and stderr as before.

_log/root.log contains:

root                : ERROR   : UH OH
root                : DEBUG   : ho hum





_LOG/extra.log contains:

extra               : WARNING : Hi there.
root                : ERROR   : UH OH
root                : DEBUG   : ho hum





stderr output:

UH OH







	Uncomment attach_to_root=False in the add_file_handler call,
and comment out propagate=False from the add_logger call.

Now, 'extra' writes to the root’s handlers as well as its own,
so it logs a warning "Hi there." to both stderr and
_log/root.log.

_log/root.log contains:

extra               : WARNING : Hi there.
root                : ERROR   : UH OH
root                : DEBUG   : ho hum





_log/extra.log contains:

extra               : WARNING : Hi there.





stderr output:

Hi there.
UH OH





















Best practices for propagation and handler placement

The examples in this chapter, and the preceding Exercise, have hopefully
conveyed the significance of propagation and the importance of “right”
handler placement. Now is a good time to reflect further on these matters.

According to the documentation for Logger.propagate [https://docs.python.org/3/library/logging.html#logging.Logger.propagate],



if [a logger’s propagate property] evaluates to true [the default],

events logged to this logger will be passed to the handlers of higher level

(ancestor) loggers, in addition to any handlers attached to this logger.

Messages are passed directly to the ancestor loggers’ handlers - neither

the level nor filters of the ancestor loggers in question are considered.






This suggests that truly intricate, and no doubt surprising, configurations
can be achieved using propagation and fussy placements of handlers on
loggers. The Note at the end of the above link clearly states best
practice:



If you attach a handler to a logger and one or more of its ancestors,

it may emit the same record multiple times. In general, you should not

need to attach a handler to more than one logger - if you just attach it

to the appropriate logger which is highest in the logger hierarchy, then

it will see all events logged by all descendant loggers, provided that

their propagate setting is left set to True. A common scenario is to

attach handlers only to the root logger, and to let propagation take care

of the rest.












          

      

      

    

  

    
      
          
            
  
Further Topics and Recipes


	
	Configuration distributed across multiple modules or packages

	
	Using LCDictBuilderABC


	Migrating a project that uses dynamic configuration to prelogging


	Migrating a project that uses static dict-based configuration to prelogging










	
	Multiprocessing — two approaches

		
	Using locking handlers




	
	Using QueueHandlers (Python 3 only)




	











	
	Using prelogging in libraries

	
	Using add_null_handler










	
	Using prelogging with Django

		
	Setting the LOGGING variable in settings.py




	


	











	
	Providing extra data to a filter

		
	Providing extra, static data to a filter




	
	Providing extra, dynamic data to a filter




	











	Adding custom fields and data to messages


	Adding SMTPHandlers with add_email_handler







Using LCDictBuilderABC

One way for a larger program to configure logging is to pass around an
LCDict to the different “areas” of the program, each area contributing
specifications of the logging entities it will use.
The LCDictBuilderABC class provides a mini-microframework that automates
this approach: each area of a program need only define an LCDictBuilderABC
subclass and override its method add_to_lcdict(lcd), where it contributes
its specifications by calling methods on lcd.

The LCDictBuilderABC documentation describes how that class and its two
methods operate. The test tests/test_lcdict_builder.py illustrates using the
class to configure logging across multiple modules.


Migrating a project that uses dynamic configuration to prelogging

First a caveat: If your program uses the logging API throughout the course of
its execution to create or (re)configure logging entities, then
migration to prelogging may offer little gain: many of the runtime calls to
logging methods probably can’t be replaced. In particular, obviously prelogging
provides no means to delete or detach logging entities.

However, if your program uses the logging API to configure logging
only at startup, in a “set it and forget it” way, then it’s probably easy
to migrate it to prelogging. Benefits of doing so include clearer, more
concise code, and access to the various amenities of prelogging.




Migrating a project that uses static dict-based configuration to prelogging

A common pattern for a large program that uses static dict-based configuration
is to pass around a single (logging config) dict to each “area” of the program;
each “area” adds its own required entities and possibly modifies those already
added; finally a top-level routine passes the dict to logging.config.dictConfig.

Let’s suppose that each program “area” modifies the logging config dict in
a function called add_to_config_dict(d: dict). These add_to_config_dict
functions performs dict operations on the parameter d such as


d['handlers']['another_formatter'] = { ... }




and


d.update( ... ).




Assuming your add_to_config_dict functions use “duck typing” and work
on any parameter d such that isinstance(d, dict) is true, they
should continue to work properly if you pass them an LCDict.

Thus, the add_to_config_dict function specific to each
program area can easily be converted to an add_to_lcdict(cls, lcd: LCDict)
classmethod of an LCDictBuilderABC subclass specific to that program area.








Multiprocessing — two approaches

The section of the logging Cookbook entitled
Logging to a single file from multiple processes [https://docs.python.org/3/howto/logging-cookbook.html#logging-to-a-single-file-from-multiple-processes]
begins by admitting that “logging to a single file from multiple processes is
not supported”. It goes on to discuss three approaches to providing this
capability:



	using SocketHandler


	developing locking versions of handlers, the approach taken by
prelogging with its “locking handlers”


	(Python 3 only) using a QueueHandler in each process, all writing
to a common Queue, and then using either a QueueListener
or a dedicated thread in another process (e.g. the main one)
to extract LogRecords from the queue and log them.







Note: the third approach is unavailable in Python 2 because the class
QueueHandler is Python 3 only.

The examples/ top-level directory of the prelogging distribution contains
several multiprocessing examples. See the Filter examples section of the
Guide to Examples for a list of them with descriptions of what
each one does.

In this section we’ll discuss the second and third approaches.


Basic situation and challenge

Suppose we have some significant amount of computational work to do, and
the code that performs it uses logging. Let’s say there are \(L\) many
loggers used:


\[logger_1, \cdots, logger_i, \cdots, logger_L,\]

Each logger \(logger_i\) is denoted by some name \(name_i\),
and has some intended handlers:


\[handler_{i, j} \quad (j < n_i).\]

Later, we notice that the work can be parallelized: we can partition it into
chunks which can be worked on simultaneously and the results recombined.
We put the code that performs the work into a function, and spawn \(N\)
worker processes


\[P_1, ..., P_k, ... P_N,\]

each of which runs that function on a discrete chunk of the data. The worker
processes are basically homogeneous, except for their distinct PIDs, names,
and the ranges of data they operate on. Now, each worker process \(P_k\)
uses all the loggers \(logger_i, i < L\). The loggers and handlers
all have different instances in different processes; however, all the handler
destinations remain unique. Somehow, we have to serialize writing to single
destinations from multiple concurrent processes.




Two solutions

In the approach provided natively by prelogging, serialization occurs
at the ultimate outputting handlers, using the package’s simple “locking
handler” classes. Before an instance of a locking handler writes to its
destination, it acquires a lock (shared by all instances of the handler),
which it releases when done; attempts by other instances to write
concurrently will block until the lock is released by the handler that “got
there first”.

The queue-based approach is an important and sometimes more performant
alternative. Using an explicit shared queue and a layer of indirection,
this approach serializes messages early in their lifecycle.
Each process merely enqueues logged messages to the shared queue,
in the form of LogRecords. The actual writing of messages to their
intended destinations occurs later, in a dedicated logging thread of a
non-worker process. That thread pulls logging records off the queue and
handles them, so that messages are finally dispatched to their intended
handlers and destinations. The logging package’s QueueHandler class
makes all this possible.




Note

The prelogging examples contain a pair of programs that are “the same”
except that each takes a different approach to multiprocessing:


	mproc_approach__locking_handlers.py uses locking handlers,


	mproc_approach__queue_handler_logging_thread.py uses a queue and
logging thread (the only example that does so).




In these examples, the handlers only write to local files, and performance
of the two approaches is about the same, with the queue-based approach
slightly faster.




Using locking handlers

prelogging provides multiprocessing-safe logging natively by using locking
handlers — subclasses of certain logging handler classes which use locks
to serialize their output. As only Python 3 implements QueueHandlers,
this is the only option easily available under Python 2 for multiprocessing-safe
logging with prelogging.

All but one of the multiprocessing examples use locking handlers — see
Filter examples in the Guide to Examples for an overview. Those
examples illustrate the use of every locking handler. The section
Easy multiprocessing-safe logging in the chapter LCDict Features and Usage explains how
to use the Boolean locking parameter to enable locking. These resources
more than suffice to explain how to take advantage of the simple interface
that prelogging provides to its locking handlers.




Using QueueHandlers (Python 3 only)

The queue-based approach serializes logged messages as soon as possible,
moving the actual writing of messages out of the worker processes.
Worker processes merely enqueue messages, with context, onto a common queue.
The real handlers don’t run in the worker processes: they run in
a dedicated thread of the main process, where records are dequeued from that
common queue and handled in the ways you intend.

When a worker process \(P_k\) logs a message using one of the loggers
\(logger_i\), none of the “real”, intended handlers of that logger
executes in \(P_k\). Instead, the message, in the form
of a logging.LogRecord, is put on a Queue object which all
the processes share. The enqueued record contains all information required to
write it later, even in another process. This is all achieved by a simple
logging configuration that uses logging’s QueueHandler class.

In a dedicated thread in another process — the main process, let’s assume —
a tight loop polls the shared queue and pulls records from it. Each record
contains context information from the originating process \(P_k\),
including the logger’s name, the message’s loglevel, the process name of
\(P_k\) — values for the keys that can occur in format strings. The thread
uses this information to dispatch the record via the originating logger,
and finally the intended handlers execute. This setup too is easily achieved
with an appropriate logging configuration.


[image: _images/mproc_queue_paradigm.png]
Multiprocess logging with a queue and a logging thread



This design gives better performance, especially for blocking, slow handlers
(SMTP, for example). Generally, the worker processes have better things to do
than wait for emails to be successfully sent, so we relieve them of such
extraneous burdens.

Handling all logged messages in a dedicated thread (of a non-worker process)
confers additional benefits:


	the UI won’t stutter or temporarily freeze
whenever a slow (and blocking) handler runs;


	the main thread can do other useful things.




The queue-based approach confers these same benefits even in single-processing
situations. The example queue_handler_listener.py illustrates this, using
the logging package’s QueueListener instead of a logging-thread.
QueueListeners encapsulate setup and teardown of a logging thread,
and the proper handling of queued messages. It’s unfortunate that they’re
an awkward fit for static configuration.


Aside: QueueListeners and static configuration

It’s awkward to use a QueueListener with static configuration.
Once it has been created, a QueueListener has to be stopped and started,
using its stop and start methods. If we could statically specify a
QueueListener, somehow we have to obtain a reference it after
configuring logging, in order to call these methods.

Furthermore, a QueueListener must be initialized/constructed with one
or more QueueHandlers – actual handler objects. Of course, these don’t
exist before configuration, and then the names we gave them in configuration
have disappeared. As we’ve noted elsewhere,
handler objects are anonymous, so the only way to obtain references to the
QueueHandlers is a bit disappointing (filter the handlers of some
logger with isinstance(handler, QueueHandler)). The example
queue_handler_listener.py demonstrates this in action.




Worker process configuration

The main process creates a common queue, then spawns the worker processes
\(P_k\), passing the queue to each one. The worker processes use, but
do not configure the intended loggers \(logger_i\). In the logging
configuration of the worker processes, these loggers have no handlers.
Thus, because of inheritance, all messages are actually logged by their
common ancestor, the root logger. The root is equipped with a single handler:
a QueueHandler (qh in the diagram above), which puts messages on
the queue it’s initialized with.

At startup, every worker process configures logging in this simple way:

def worker_config_logging(q: Queue):
    d = LCDict(root_level='DEBUG')
    d.add_queue_handler('qhandler', attach_to_root=True, queue=q)
    d.config()








logging thread/main process configuration

The logging thread does one thing: dispatch logged messages to their ultimate
destinations as they arrive. Before the main process creates the logging thread,
it configures logging as you really intend.
The configuration used here is essentially what you would use in
the locking handlers approach (but with locking=False).
The logging configuration specifies all the intended loggers \(logger_i\),
after specifying, for each logger, all of its intended handlers
\(handler_{i, j}, j < n_i\) and any formatters they use.
As a result, the “real” handlers finally execute.

Here’s what the logging thread does:

def logging_thread(q):
    while True:
        record = q.get()
        if record is None:
            break
        logger = logging.getLogger(record.name)
        logger.handle(record)














Using prelogging in libraries: using a null handler

The add_null_handler method configures a handler of class
logging.NullHandler, a do-nothing, placeholder handler that’s useful in
writing libraries (packages).

If you want your library to write logging messages only if its user has
configured logging, the logging docs section
Configuring Logging for a Library [https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library]
recommends adding a NullHandler, only, to the library’s top-level logger.

The example use_library.py and the library package it uses
illustrate how to use prelogging to follow that recommendation and achieve
such a setup. It’s essential that both
the library and its user set the logging configuration flag
disable_existing_loggers to False. This is actually prelogging’s default —
one of the few instances where prelogging changes the default used by logging
(the logging package defaults disable_existing_loggers to True).

In this section we’ll further discuss the configurations and interaction of
the example library and library user.


library use of prelogging and logging

The package contains just two modules: __init__.py and module.py.

__init__.py configures logging with prelogging, adding a null handler and
attaching it to the library’s “top-level logger”, 'library':

lcd = LCDict()                  # default: disable_existing_loggers=False
lcd.add_null_handler('library-nullhandler')    # default: level='NOTSET'
lcd.add_logger('library', handlers='library-nullhandler', level='INFO')
lcd.config()





module.py contains two functions, which use logging:

def do_something():
    logger = logging.getLogger(__name__)
    logger.debug("DEBUG msg")
    logger.info("INFO msg")
    print("Did something.")

def do_something_else():
    logging.getLogger(__name__ + '.other').warning("WARNING msg")
    print("Did something else.")





If a user of library configures logging, the messages logged by these
functions will actually be written; if it doesn’t, those messages won’t
appear.




use_library.py use of prelogging and logging

The example use_library.py makes it easy to explore the various possibilities.
It contains a simple main() function, which the program calls when run as
__main__:

def main():
    # Exercise:
    #   Comment out and uncomment the following two lines, independently;
    #   observe the console output in each case.
    logging_config()
    logging.getLogger().warning("I must caution you about that.")

    library.do_something()
    library.do_something_else()





and a simple logging_config function:

def logging_config():
    d = LCDict(attach_handlers_to_root=True)
    # defaults: disable_existing_loggers=False, root_level='WARNING'
    d.add_stdout_handler('stdout', formatter='logger_level_msg', level='DEBUG')
    d.config()








Results (4 cases)


	With both lines uncommented, the program writes the following to stdout:

root                : WARNING : I must caution you about that.
library.module      : INFO    : INFO msg
Did something.
library.module.other: WARNING : WARNING msg
Did something else.





Note: The loglevel of the root logger, configured in the library’s user,
is 'WARNING', whereas the loglevel of the 'library.module' logger is
'INFO'. Although 'WARNING' is more restrictive than 'INFO',
propagated messages



are passed directly to the ancestor loggers’ handlers –

neither the level nor filters of the ancestor loggers in question

are considered.




(from the ‘propagate’ [https://docs.python.org/3/library/logging.html#logging.Logger.propagate] documentation)







In our example, messages of library propagate to the root, and those of
level `INFO` and up (not just `WARNING` and up) are logged.






	With just logging_config() commented out, the library prints these
to stdout:

Did something.
Did something else.





and use_library.py logs this line to stderr (possibly between or after
those printed to stdout):

I must caution you about that.





Observe that the library’s logged messages are not written, even though
the library’s user uses logging (with the default configuration).






	With logging_config() uncommented but the line following it commented
out, the program writes the following to stdout:

library.module      : INFO    : INFO msg
Did something.
library.module.other: WARNING : WARNING msg
Did something else.







	With both lines commented out, the program writes the following to stdout:

Did something.
Did something else.
















Using prelogging with Django

Django uses Python logging for its logging needs, and supplies several classes
that build on the facilities of the logging package. However, none of its additions
address configuration. Fortunately, it’s quite easy to use prelogging in
conjunction with Django.


Setting the LOGGING variable in settings.py

Django uses logging config dicts: the easiest way to configure logging
in Django is to provide a logging config dict as the value of the
LOGGING variable in settings.py. Of course, you can use prelogging
to build an LCDict; just refrain from calling its config method, as
Django will pass the LOGGING dict to dictConfig.

The general approach:



	Write a function that builds and returns an LCDict, perhaps
by using the LCDictBuilderABC class. For the sake of
example, say the function is build_settings_lcdict, in module
mystuff.


	Add the following two lines to your Django project’s settings.py,
either contiguous or not:

from mystuff import build_settings_lcdict
LOGGING = dict(build_settings_lcdict())












build_settings_lcdict builds a logging config dict but doesn’t call its
config method. Django will add its logging specifications to the LOGGING
dict and then pass that to logging.config.dictConfig.








Providing extra data to a filter

Often you’ll want the behavior of a filter to depend on more than just
the LogRecord that’s passed to it. In the first subsection of this topic,
we’ll see how to provide a filter with extra data that doesn’t change.
In the second subsection,
we’ll discuss how to provide a filter with dynamic data,
whose value may be different each time the filter is called.


Providing extra, static data to a filter

It’s simple to provide a filter with
extra, unchanging data, and in this section we’ll see how to do so.


Class filter

The add_class_filter method has the following signature:

def add_class_filter(self, filter_name, filter_class, **filter_init_kwargs):
    """
    filter_init_kwargs: any other parameters to be passed to `add_filter`.
                        These will be passed to the `filter_class` constructor.
                        See the documentation for `LCDictBasic.add_filter`.
    Return: self
    """





When logging is configured, the class filter_class is instantiated,
and its __init__ method is called. If the signature of __init__ includes
**kwargs, that dict will contain all the keyword parameters in filter_init_kwargs.
Thus, the filter class’s __init__ can save values in kwargs as
instance attributes, for later use by the filter method.

The following example (basically examples/filter-class-extra-static-data.py)
illustrates this scenario:

import logging
from prelogging import LCDict

class CountAndSquelchOdd():
    def __init__(self, *args, **kwargs):
        self.level_count = 0

        print(kwargs)
        self.filtername = kwargs.get('filtername', '')
        self.loglevel_to_count = kwargs.get('loglevel_to_count', 0)

    def filter(self, record):
        """Suppress odd-numbered messages (records)
        whose level == self.loglevel_to_count,
        where the "first" message is 0-th hence even-numbered.

        Returns int or bool -- not great practice, but just to distinguish
        which branch of if-then-else was taken.
        """
        if record.levelno == self.loglevel_to_count:
            self.level_count += 1
            ret = self.level_count % 2          # int
        else:
            ret = True                          # bool

        print("{:11s}: record levelname = {}, self.level_count = {}; returning {}".
              format(self.filtername, record.levelname,
                     self.level_count, ret))
        return ret





Now configure logging:

lcd = LCDict(attach_handlers_to_root=True,
             root_level='DEBUG')
lcd.add_stdout_handler('console-out',
                       level='DEBUG',
                       formatter='level_msg')
lcd.add_class_filter('count_debug', CountAndSquelchOdd,
                     # extra, static data
                     filtername='count_debug',
                     loglevel_to_count=logging.DEBUG)
lcd.add_class_filter('count_info', CountAndSquelchOdd,
                     # extra, static data
                     filtername='count_info',
                     loglevel_to_count=logging.INFO)
lcd.attach_root_filters('count_debug', 'count_info')

lcd.config()





The call to lcd.config() creates two instances of CountAndSquelchOdd,
which print their kwargs to stdout in __init__. Here’s what they print:

{'filtername': 'count_info', 'loglevel_to_count': 20}
{'filtername': 'count_debug', 'loglevel_to_count': 10}





Finally, let’s use the root logger:

for i in range(2):
    print("\ni ==", i)
    logging.debug(str(i))   # root has a handler, so no format surprises
    print("---")
    logging.info(str(i))    # no format surprises





This loop prints the following to stdout:

i == 0
count_debug: record levelname = DEBUG, self.level_count = 1; returning 1
count_info : record levelname = DEBUG, self.level_count = 0; returning True
DEBUG   : 0
---
count_debug: record levelname = INFO, self.level_count = 1; returning True
count_info : record levelname = INFO, self.level_count = 1; returning 1
INFO    : 0

i == 1
count_debug: record levelname = DEBUG, self.level_count = 2; returning 0
---
count_debug: record levelname = INFO, self.level_count = 2; returning True
count_info : record levelname = INFO, self.level_count = 2; returning 0





When logging.debug(str(1)) is called, only one line is printed.
The 'count_debug' filter returns 0, which suppresses not only
the logger’s message, but also any calls to the logger’s other filters –
count_info, in this case.

When logging.info(str(1)) is called, two lines are printed.
'count_debug' returns True, so count_info is called; it returns 0,
suppressing the logger’s message.




Callable filter

You can also pass extra, static data to a callable filter by passing additional
keyword arguments and their values to add_callable_filter. Here’s the signature
of that method, and part of its docstring:

def add_callable_filter(self, filter_name, filter_fn, **filter_init_kwargs):
    """
    filter_fn: a callable, of signature
            (logging.LogRecord, **kwargs) -> bool.
        A record is logged iff this callable returns true.
    filter_init_kwargs: Keyword arguments that will be passed,
        with these same values, to the filter_fn **each time it is called**.
        (So, this method is something like "partial" -- it provides
         a kind of Currying.)
    return: self
    """





The example filter-callable-extra-static-data.py) illustrates using a callable
filter. As it’s quite similar to the class filter example above, there’s no need
to walk through the code here.






Providing extra, dynamic data to a filter

Sometimes you may want a filter to access dynamic data, whose
value may be different from one filter call to the next. Python doesn’t provide
references or pointers to immutable types, so the usual workaround
would be to pass a list or dict containing the value. The value of the item in
the wrapping collection can be changed dynamically, and any object that retained
a reference to the containing collection would see those changes reflected.
The following code illustrates this idiom, using a list to wrap an integer:

>>> class A():
...     def __init__(self, list1=None):
...         self.list1 = list1
...
...     def method(self):
...         print(self.list1[0])





>>> data_wrapper = [17]
>>> a = A(list1=data_wrapper)
>>> a.method()
17
>>> data_wrapper[0] = 101
>>> a.method()
101





This approach won’t work with logging configuration.


Configuring logging “freezes” lists and dicts in the logging config dict

While you’re still building a logging config dict, the subdict for an added
filter will reflect changes to any data that’s accessible through dict or list
references you’ve passed as keyword arguments. For example,

>>> def my_filter_fn(record, list1=None):
...     assert list1
...     print(list1[0])
...     return list1[0] > 100





>>> data_wrapper = [17]
>>> lcd = LCDict(attach_handlers_to_root=True, root_level='DEBUG')
>>> lcd.add_stdout_handler('con', formatter='msg', level='DEBUG')
>>> lcd.add_callable_filter('callable-filter',
...                         my_filter_fn,
...                         list1=data_wrapper)
>>> lcd.attach_root_filters('callable-filter')
>>> lcd.filters['callable-filter']['list1']
[17]
>>> data_wrapper[0] = 21
>>> lcd.filters['callable-filter']['list1']
[21]





However, once you configure logging, any such live references are broken,
because the values in the dict are copied. Let’s confirm this.
First, configure logging with the dict we’ve built:

>>> lcd.config()





Now log something. The filter prints the value of list1[0], which is 21;
thus it returns False, so no message is logged:

>>> logging.debug("data_wrapper = %r" % data_wrapper)
21





Now change the value of data_wrapper[0]:

>>> data_wrapper[0] = 101





Prior to configuration, the filter’s list1 referred to data_wrapper;
but that’s no longer true: list1[0] is still 21, not 101, so the
filter still returns False:

>>> logging.debug("data_wrapper = %r" % data_wrapper)
21








Successfully passing dynamic data

The moral of the story: if you want to pass dynamic data to a filter, you
can’t use a list or dict as a container (nor, of course, a tuple). The
following example shows a successful strategy, using a simple ad-hoc class
as a container:

>>> class DataWrapper():
...     def __init__(self, data=None):  self.data = data
...     def __str__(self):              return "%r" % self.data





>>> def my_filter_fn(record, data_wrapper=None):
...     assert data_wrapper
...     print(data_wrapper)
...     return isinstance(data_wrapper.data, int) and data_wrapper.data > 100





>>> dw = DataWrapper(17)





>>> lcd = LCDict(attach_handlers_to_root=True, root_level='DEBUG')
>>> lcd.add_stdout_handler('con', formatter='msg', level='DEBUG')
>>> lcd.add_callable_filter('callable-filter',
...                         my_filter_fn,
...                         data_wrapper=dw)
>>> lcd.attach_root_filters('callable-filter')
>>> lcd.filters['callable-filter']['data_wrapper'])
17
>>> dw.data = 21
>>> lcd.filters['callable-filter']['data_wrapper'])
21





>>> lcd.config()





>>> # filter prints 21 and returns False:
>>> # in the filter, data_wrapper.data == 21
>>> logging.debug("dw = %s" % dw)
21





>>> dw.data = 101
>>> # In the filter, data_wrapper.data == 101,
>>> #  so message is logged:
>>> logging.debug("dw =", dw)
101
dw = 101





Of course, this has become complicated, even kludgy. Instead, you can pass a
data-returning callable rather than a container. That’s the approach taken in
the next topic.










Adding custom fields and data to messages

This example demonstrates adding custom fields and data to logged messages.
It uses a custom formatter with two new keywords, user and ip,
and a class filter created with a callable data source – static initializing data
for the filter, but a source of dynamic data.
The filter’s filter method adds attributes of the same names as the keywords
to each LogRecord passed to it, calling the data source to obtain current
values for these attributes.

Here’s the class filter and the data source:

import logging
from prelogging import LCDict
from random import choice

USER = 0
IP = 1

class FilterThatAddsFields():
    def __init__(self, *args, **kwargs):
        self.datasource = kwargs.get('datasource', None)    # callable

    def filter(self, record):
        """
        Add attributes to `record`.
        Their names must be the same as the keywords in format string (below).
        """
        record.user = self.datasource(USER)
        record.ip = self.datasource(IP)
        return True

def get_data(keyword):
    """ Source of dynamic data, passed to filter via `add_class_filter`. """
    IPS = ['192.0.0.1', '254.15.16.17']
    USERS = ['John', 'Mary', 'Arachnid']

    if keyword == IP:
        return choice(IPS)
    elif keyword == USER:
        return choice(USERS)
    return None





Configure logging:

lcd = LCDict(attach_handlers_to_root=True,
             root_level='DEBUG')
lcd.add_formatter('user_ip_level_msg',
                  format='User: %(user)-10s  IP: %(ip)-15s  %(levelname)-8s  %(message)s')
lcd.add_stdout_handler('console-out',
                       level='DEBUG',
                       formatter='user_ip_level_msg')
lcd.add_class_filter('field-adding_filter', FilterThatAddsFields,
                     # extra, static data
                     datasource=get_data)
lcd.attach_root_filters('field-adding_filter')

lcd.config()





Finally, log some messages, using the root logger:

LEVELS = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
for i in range(10):
    logging.log(choice(LEVELS), "Msg %d", i)





The loop prints something like this:

User: Arachnid    IP: 254.15.16.17     CRITICAL  Msg 0
User: John        IP: 192.0.0.1        INFO      Msg 1
User: Mary        IP: 192.0.0.1        DEBUG     Msg 2
User: John        IP: 192.0.0.1        CRITICAL  Msg 3
User: Mary        IP: 254.15.16.17     WARNING   Msg 4
User: John        IP: 254.15.16.17     CRITICAL  Msg 5
User: John        IP: 254.15.16.17     DEBUG     Msg 6
User: John        IP: 254.15.16.17     CRITICAL  Msg 7
User: Arachnid    IP: 192.0.0.1        DEBUG     Msg 8
User: Mary        IP: 254.15.16.17     ERROR     Msg 9





This example loosely adapts the code of the section
Using Filters to impart contextual information [https://docs.python.org/3/howto/logging-cookbook.html#using-filters-to-impart-contextual-information]
in The Logging Cookbook.






Adding SMTPHandlers with add_email_handler

Sending an email can take a comparatively long time, so you’ll want to do that
“in the background”, so that other processes, or the UI, aren’t impeded by
sending emails. Use the queue handler/queue listener approach (see the example
queue_handler_listener.py) to send emails from a thread other than
the main one (and other than the UI thread).

Two of the examples illustrate relevant techniques.

examples/SMTP_handler_just_one.py uses add_email_handler to add an
SMTPHandler with loglevel ERROR. The emails sent will have the same
Subject and recipients for both ERROR and CRITICAL logged messages.

examples/SMTP_handler_two.py uses add_email_handler to add two SMTPHandlers –
one with loglevel ERROR, the other with loglevel CRITICAL.
The handler with loglevel ERROR has a filter to screen out logged messages
of loglevel CRITICAL. In this way, emails sent for ERROR and CRITICAL
logged messages can have different Subjects and recipients, specific to the
triggering loglevel.







          

      

      

    

  

    
      
          
            
  
Guide to Examples

The prelogging distribution contains a number of examples, in the top-level
examples/ directory. You must download the repository in order to run them:
they are not installed.


Running the examples

Run the programs in the examples/ directory from that directory.
On *nix, all the top-level modules of the examples are marked executable
and contain shebangs, so, for example, the following works:

$ cd path/to/examples
$ ./mproc.py





Of course, python ./mproc.py works too. On Windows, use:

$ cd path\to\examples
$ python ./mproc.py








Programs in the examples/ directory

This section catalogs the example programs by category and briefly
describes each one, sometimes in the imperative a la docstrings.


Simple examples


root_logger.py


Create a root logger with a stdout console handler at loglevel INFO,
and a file handler at default loglevel NOTSET. Root loglevel is INFO.


	Logfile

	examples/_log/root_logger/logfile.log











child_logger_main.py


Uses modules child_logger_sub_prop.py and child_logger_sub_noprop.py.

Create a non-root logger with two child loggers, one propagating and one not.
The parent logger has a stderr handler and a file handler, shared by the
propagating logger. The non-propagating logger creates its own stderr handler
by cloning its parent’s stderr handler; however, it uses the same file handler
as its parent (and its sibling).

Observe how the loglevels of the handlers and loggers determine what gets
written to the two destinations.


	Logfile

	examples/_log/child_loggers/child_loggers.log











child_logger2_main.py


Uses child_logger2_sub_prop.py, child_logger2_sub_noprop.py.

Give the root logger a stderr handler and a file handler. Create two loggers,
one propagating and the other not. The non-propagating logger creates its own
stderr handler by cloning the root’s stderr handler; however, it uses the same
file handler used by the root (and its sibling).

Observe how the loglevels of the handlers and loggers determine what gets written
to the two destinations.


	Logfile

	examples/_log/child_loggers2/child_loggers2.log











dateformat.py


A small example showing two uses of the dateformat parameter of
add_formatter.









dictConfig-can-kill-existing-root-configuration.py


This example helps make the case for LCDictBuilderABC.

A call to logging.config.dictConfig(d) kills existing handlers on any logger
that’s configured in d – even with 'disable_existing_loggers': False.
The root logger always get configured if d['root'] is nonempty. Thus,
multiple calls to logging.config.dictConfig(d) can leave the root with only
the handlers specified for it in the last logging config dict passed, or with
no handlers at all.

The same is of course true of LCDict.config().

This program demonstrates the phenomenon, using either prelogging or pure
logging APIs depending on the value of the constant USE_PRELOGGING.
When the PRESERVE_ROOT constant is True, the 'root' subdict is set
to {}, preserving the root’s configuration, including its handlers.

Thus, it’s chancy to do “collaborative configuration” by having separate “areas”
of a program build their own LCDicts and each call config() on them.
Not only does that approach sacrifice prelogging’s consistency checking, but it
also opens the door to hard-to-diagnose logging bugs.







Handler examples


use_library.py (use of a null handler)


A main program which configures logging, and uses a package (library)
which also configures logging in its __init__ module.
The package sets up logging with a non-root logger at loglevel INFO
which uses a null handler; package methods log messages with that logger.
The program adds a stdout handler to the root, with loglevel DEBUG;
the root loglevel is the default, WARNING.

The package’s logger propagates, therefore messages logged by the package
with loglevel at least INFO are written.







SMTP_handler_just_one.py and SMTP_handler_two.py


These programs use add_email_handler to add SMTP handlers.
SMTP_handler_just_one.py adds a single SMTP handler;
SMTP_handler_two.py adds two, one with a filter, in order
to send different email messages for different loglevels.


Attention

For these examples to work properly, you must edit
examples/_smtp_credentials.py to contain a valid username,
password and SMTP server.









syslog.py


(OS X aka macOS only)
Set the root logger level to DEBUG, and add handlers:



	add a stdout handler with loglevel WARNING, and


	use add_syslog_handler to add a syslog handler with default
loglevel NOTSET.







Also see the example mproc_deco_syslog.py, described below.







queue_handler_listener.py


An example that illustrates how to use a QueueListener with prelogging so
that messages can be logged on a separate thread. In this way, handlers that
block and take long to complete (e.g. SMTP handlers, which send emails)
won’t make other threads (e.g. the UI thread) stall and stutter.

For motivation, see Dealing with handlers that block [https://docs.python.org/3/howto/logging-cookbook.html#dealing-with-handlers-that-block]
in the logging Cookbook. We’ve adapted the code in that section to prelogging.

Another approach can be found in the example mproc_approach__queue_handler_logging_thread.py,
described below.









Filter examples


filter-class-extra-static-data.py


Passing extra static data to a class filter via keyword arguments to add_class_filter
to specify how different instances will filter messages.

Described and walked through in the section on
providing extra, static data to a class filter
of the “Further Topics and Recipes” chapter.







filter-callable-extra-static-data.py


The analogous construction – passing extra static data to a callable filter
via keyword arguments to add_class_filter to specify how it will filter messages.

Namedropped but not described in the section on
providing extra, static data to a callable filter
of “Further Topics and Recipes”.







filter-adding-fields--custom-formatter-keywords-for-fields.py


This example illustrates adding custom fields and data to logged messages.
It uses a custom formatter with two new keywords, user and ip,
and a class filter created with a callable data source – static initializing data
for the filter, but a source of dynamic data.
The filter’s filter method adds attributes of the same names as the keywords
to each LogRecord passed to it, calling the data source to obtain current
values for these attributes.

Loosely adapts the section
Using Filters to impart contextual information [https://docs.python.org/3/howto/logging-cookbook.html#using-filters-to-impart-contextual-information]
of The Logging Cookbook.









Custom formatter examples


custom_class_formatter.py


How to configure and use a subclass of logging.Formatter as a formatter.







custom_callable_formatter.py


How to configure and use a callable as a formatter.









Multiprocessing examples


Except for the mproc_approach_*.py examples, the programs described in
this section all take command line arguments which tell them whether or not
to use locking handlers.

Usage for the programs that take command line parameters:

./program_name [--LOCKING | --NOLOCKING]
./program_name -h | --help

 Options (case-insensitive, initial letter suffices,
          e.g. "--L" or "--n" or even -L):

 -L, --LOCKING      Use locking handlers       [default: True]
 -N, --NOLOCKING    Use non-locking handlers   [default: False]
 -h, --help         Write this help message and exit.





When run without locking, the multiprocessing examples will eventually
misbehave – NUL (0) bytes will appear in the logged output, and messages
logged by different processes will barge in on each other. The directory
examples/_log saved contains subdirectories
_log--2.7-runs, _log--3.x-runs (I) and _log--3.x-runs (II) which
capture several instances of this misbehavior. Though your mileage
may vary, experience has shown that this expected misbehavior is more likely
when these examples are run individually than when they’re run via
run_examples.py or run_all.py.

After running any of these examples, you can use check_for_NUL.py
to check whether or not its logfile output is garbled:


$ ./check_for_NUL.py filename




reports which if any lines of a text file filename contain NUL bytes.
Here, filename would be the name of the logfile that the program wrote to.





mproc.py


A basic multiprocessing example that uses a non-propagating logger with
a stdout handler and a file handler. The handlers are locking by default,
non-locking if the -N command line flag is given.


	Logfiles

	examples/_log/mproc/mproc_LOCKING.log
examples/_log/mproc/mproc_NONLOCKING.log











mproc2.py


Another basic multiprocessing example that adds
a stdout handler and a file handler to the root logger. The handlers are
locking by default, optionally non-locking as explained above.


	Logfiles

	examples/_log/mproc2/mproc2_LOCKING.log
examples/_log/mproc2/mproc2_NONLOCKING.log











mproc_deco.py


Just like mproc2.py but using the deco package to set up multiprocessing.


	Logfiles

	examples/_log/mproc_deco/logfile (LOCKING).log
examples/_log/mproc_deco/logfile (NONLOCKING).log











mproc_deco_rot_fh.py


Adds a stdout handler and a rotating file handler to the root logger.
The handlers are locking by default, optionally non-locking as explained above.
This example uses deco to set up multiprocessing,


	Logfiles

	examples/_log/mproc_deco_rot_fh/LOCKING/rot_fh.log
examples/_log/mproc_deco_rot_fh/LOCKING/rot_fh.log.1
...
examples/_log/mproc_deco_rot_fh/LOCKING/rot_fh.log.10
examples/_log/mproc_deco_rot_fh/NONLOCKING/rot_fh.log
examples/_log/mproc_deco_rot_fh/NONLOCKING/rot_fh.log.1
...
examples/_log/mproc_deco_rot_fh/NONLOCKING/rot_fh.log.10











mproc_deco_syslog.py


Adds a stdout handler and a syslog handler to the root logger.
The handlers are locking by default, optionally non-locking as explained above.
This example uses deco to set up multiprocessing,







mproc_approach__locking_handlers.py and mproc_approach__queue_handler_logging_thread.py


These two programs illustrate two approaches to logging in the presence of
multiprocessing: one uses prelogging’s native locking handlers; the
other uses a queue handler and a logging thread.

See Using QueueHandlers (Python 3 only) in the chapter Further Topics and Recipes
for (much) more about the latter.


	locking handler logfiles

	examples/_log/mproc_LH/mplog.log,
examples/_log/mproc_LH/mplog-errors.log,
examples/_log/mproc_LH/mplog-foo.log



	queue handler logfiles

	examples/_log/mproc_QHLT/mplog.log,
examples/_log/mproc_QHLT/mplog-errors.log,
examples/_log/mproc_QHLT/mplog-foo.log


















          

      

      

    

  

    
      
          
            
  
Class Reference

prelogging isn’t a large package: it’s a few, mostly small classes in four
modules.



	LCDictBasic

	LCDict

	Locking Handlers

	LCDictBuilderABC






Class diagram


[image: _images/prelogging_classes-v4d.png]

 prelogging classes — inheritance, and who uses whom








	Symbol

	Meaning





	[image: _images/arrsup.png]

	is a superclass of



	[image: _images/arruse.png]

	uses (instantiates)
















          

      

      

    

  

    
      
          
            
  
LCDictBasic

This class resides in lcdictbasic.py.





          

      

      

    

  

    
      
          
            
  
LCDict

This class resides in lcdict.py.





          

      

      

    

  

    
      
          
            
  
Locking Handlers

The multiprocessing-safe handler classes LockingStreamHandler,
LockingFileHandler, LockingRotatingFileHandler and
LockingSyslogHandler  all use the mixin class MPLock_Mixin to
wrap a lock around calls to emit. All these classes reside in
locking_handlers.py.

The LCDict class provides an interface to the locking handlers;
in the ordinary course of things it’s probably unnecessary to use them directly.





          

      

      

    

  

    
      
          
            
  
LCDictBuilderABC

This class resides in lcdict_builder_abc.py.





          

      

      

    

  

    
      
          
            

Index



 A
 | D
 | E
 | F
 | H
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | U
 


A


  	
      	adding custom fields and data to messages (with a formatter and a class filter)


  

  	
      	ancestors of a logger


  





D


  	
      	diagram: `prelogging` classes — inheritance & and who uses whom


      	diagram: Multiprocess logging with a queue and a logging thread


  

  	
      	diagram: The objects of `logging` configuration


      	Django (using `prelogging` with)


  





E


  	
      	effective level of a logger


  

  	
      	Exercise on ``propagate`` and ``attach_to_root``


  





F


  	
      	filter (adding custom fields and data to messages)


      	Filters — providing extra dynamic data


      	Filters — providing extra static data


      	formatter (adding custom fields and data to messages)


  

  	
      	formatter presets

      
        	(added to an LCDict only when used)


        	(formatter_presets.txt – declares default collection)


        	(shipped with prelogging — table)


      


  





H


  	
      	How a message is logged


  





L


  	
      	LCDictBuilderABC


      	libraries (using `prelogging` in)


      	logger ancestors


      	logger children


      	logger names


      	logger parent


      	Logger.propagate property


      	logging handler classes encapsulated


  

  	
      	logging.basicConfig

      
        	(used by `logging` to create side effect)


      


      	logging.critical() side effect


      	logging.debug() side effect


      	logging.error() side effect


      	logging.info() side effect


      	logging.log() side effect


      	logging.warning() side effect


  





M


  	
      	Multiprocessing-aware logging — two approaches


  





N


  	
      	NOTSET (special loglevel)


  

  	
      	NullHandlers


  





P


  	
      	Placement of handlers when using multiple loggers — best practices


  

  	
      	propagate flag of a logger


      	Propagation — best practices


  





Q


  	
      	QueueHandlers


  





R


  	
      	root logger names (warning re pitfalls)


  





S


  	
      	SMTPHandlers (email handlers)


  





U


  	
      	update_formatter_presets function


  

  	
      	update_formatter_presets_from_file function


  







          

      

      

    

  

    
      
          
            

Index



 A
 | D
 | E
 | F
 | H
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | U
 


A


  	
      	adding custom fields and data to messages (with a formatter and a class filter)


  

  	
      	ancestors of a logger


  





D


  	
      	diagram: `prelogging` classes — inheritance & and who uses whom


      	diagram: Multiprocess logging with a queue and a logging thread


  

  	
      	diagram: The objects of `logging` configuration


      	Django (using `prelogging` with)


  





E


  	
      	effective level of a logger


  

  	
      	Exercise on ``propagate`` and ``attach_to_root``


  





F


  	
      	filter (adding custom fields and data to messages)


      	Filters — providing extra dynamic data


      	Filters — providing extra static data


      	formatter (adding custom fields and data to messages)


  

  	
      	formatter presets

      
        	(added to an LCDict only when used)


        	(formatter_presets.txt – declares default collection)


        	(shipped with prelogging — table)


      


  





H


  	
      	How a message is logged


  





L


  	
      	LCDictBuilderABC


      	libraries (using `prelogging` in)


      	logger ancestors


      	logger children


      	logger names


      	logger parent


      	Logger.propagate property


      	logging handler classes encapsulated


  

  	
      	logging.basicConfig

      
        	(used by `logging` to create side effect)


      


      	logging.critical() side effect


      	logging.debug() side effect


      	logging.error() side effect


      	logging.info() side effect


      	logging.log() side effect


      	logging.warning() side effect


  





M


  	
      	Multiprocessing-aware logging — two approaches


  





N


  	
      	NOTSET (special loglevel)


  

  	
      	NullHandlers


  





P


  	
      	Placement of handlers when using multiple loggers — best practices


  

  	
      	propagate flag of a logger


      	Propagation — best practices


  





Q


  	
      	QueueHandlers


  





R


  	
      	root logger names (warning re pitfalls)


  





S


  	
      	SMTPHandlers (email handlers)


  





U


  	
      	update_formatter_presets function


  

  	
      	update_formatter_presets_from_file function


  







          

      

      

    

  _static/file.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_images/arrowO.png





_images/arrsup.png





_static/up.png





_images/arruse.png
vees e O





_images/logging_classes_v2.png
Logger

m:n
Handler
m: 0/1

Formatter

Filter






_images/mproc_queue_paradigm.png
Pl

root
handler gh

# Uses all the logger i's
# but does NOT config them

root
handler gh

# Uses all the logger i's

# but does NOT config them

main process, logging_thread

record
Pk
root
i record record
# Uses all the logger i's
# but does NOT config them
M record

root
handler_root,1
handler_root,2

# Configure any loggers used
# that DON'T just defer to the root.
# For example:

logger_1
handler_1,1
handler 1,2

logger_17

handler_17,1
handler_17,2
handler_17,3






nav.xhtml

    
      Table of Contents


      
        		
          prelogging 0.4.3
        


        		
          Introduction and Setup
          
            		
              Requirements
            


            		
              Installation
            


            		
              Running tests and examples
              
                		
                  Running tests
                


                		
                  Running examples
                


              


            


          


        


        		
          Overview of Logging
          
            		
              Using logging
            


            		
              logging classes that can be configured
              
                		
                  What these objects do
                


              


            


            		
              Loggers are identified by name
              
                		
                  The parent-child and ancestor relationships between loggers
                


              


            


            		
              How a message is logged
              
                		
                  The special loglevel NOTSET
                


                		
                  The “effective level” of a logger
                


                		
                  Propagation
                


              


            


            		
              logging defaults
              
                		
                  The logging convenience functions log(), debug(), … critical() have a side-effect
                


              


            


            		
              logging documentation links
            


          


        


        		
          Configuration — with logging, and with prelogging
          
            		
              Logging configuration requirements — example
              
                		
                  Using the example configuration
                


              


            


            		
              Meeting the configuration requirements with logging
              
                		
                  Using dynamic configuration
                


                		
                  Using static configuration
                


                		
                  Assessment
                


              


            


            		
              Configuration with prelogging
              
                		
                  Configuring our requirements using LCDict
                


                		
                  Configuring our requirements using LCDictBasic
                


                		
                  Summary
                


              


            


          


        


        		
          LCDictBasic Organization and Basic Usage
          
            		
              Configuration with LCDictBasic
              
                		
                  Specification order
                


              


            


            		
              Methods and properties
              
                		
                  Keyword parameters
                


                		
                  Items of a logging config dict
                


                		
                  Methods, terminology
                


              


            


            		
              prelogging warnings and consistency checking
              
                		
                  The inner class LCDictBasic.Warnings
                


                		
                  Consistency checking — the check method
                


              


            


          


        


        		
          LCDict Features and Usage
          
            		
              Using formatter presets
            


            		
              Handler classes encapsulated by LCDict
              
                		
                  Handler classes that LCDict configures
                


                		
                  Adding other kinds of handlers
                


              


            


            		
              Automatically attaching handlers to the root logger
            


            		
              Easy multiprocessing-safe logging
            


            		
              Simplified creation and use of filters
              
                		
                  Defining filters
                


                		
                  Filters on the root logger
                


                		
                  Filters on a non-root logger
                


                		
                  Filters on a handler
                


              


            


          


        


        		
          Formatter Presets
          
            		
              The update_formatter_presets_from_file function
              
                		
                  File format
                


              


            


            		
              The update_formatter_presets function
            


          


        


        		
          Configuring Loggers
          
            		
              Using non-root loggers without configuring them
            


            		
              Configuring and using non-root loggers
              
                		
                  Example: A “discrete” non-root logger
                


              


            


            		
              Best practices for propagation and handler placement
            


          


        


        		
          Further Topics and Recipes
          
            		
              Using LCDictBuilderABC
              
                		
                  Migrating a project that uses dynamic configuration to prelogging
                


                		
                  Migrating a project that uses static dict-based configuration to prelogging
                


              


            


            		
              Multiprocessing — two approaches
              
                		
                  Using locking handlers
                


                		
                  Using QueueHandlers (Python 3 only)
                


              


            


            		
              Using prelogging in libraries: using a null handler
              
                		
                  library use of prelogging and logging
                


                		
                  use_library.py use of prelogging and logging
                


                		
                  Results (4 cases)
                


              


            


            		
              Using prelogging with Django
              
                		
                  Setting the LOGGING variable in settings.py
                


              


            


            		
              Providing extra data to a filter
              
                		
                  Providing extra, static data to a filter
                


                		
                  Providing extra, dynamic data to a filter
                


              


            


            		
              Adding custom fields and data to messages
            


            		
              Adding SMTPHandlers with add_email_handler
            


          


        


        		
          Guide to Examples
          
            		
              Running the examples
            


            		
              Programs in the examples/ directory
              
                		
                  Simple examples
                


                		
                  dictConfig-can-kill-existing-root-configuration.py
                


                		
                  Handler examples
                


                		
                  Filter examples
                


                		
                  Custom formatter examples
                


                		
                  Multiprocessing examples
                


              


            


          


        


        		
          Class Reference
          
            		
              LCDictBasic
            


            		
              LCDict
            


            		
              Locking Handlers
            


            		
              LCDictBuilderABC
            


            		
              Class diagram
            


          


        


        		
          Index
        


      


    
  

_static/comment-bright.png





_images/prelogging_classes-v4d.png
dict

Core claskes:
logging cbnfig dicts

logging.Nul tHandler

logging. Streankandler

Togging handters. | Togging. hand Lers.

SiTPHandler

RotatingFileHandler

Togging. handlers.
Sysloghandler

Togging. handlers.
QueueHandler

logging. FileHandler

I i

i

!





_static/ajax-loader.gif





_static/down-pressed.png





_static/comment-close.png





_static/comment.png





_static/down.png





