

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Code generation for Unity3D

Pravda project is able to generate auxiliary code for Unity [https://unity3d.com/] that provides convenient way to call program’s methods.It uses meta information from the given bytecode to detect and analyse methods of the program.

How to generate code

pravda gen unity --input input.pravda --dir output-dir/

DApp API Specification

Pravda specifies unified API for DApps (Distributed Applications).

This API allows client to execute different action on the Pravda blockchain,
such as run arbitrary code, call methods from existing programs,
get balance by address, sign binary data and transfer money from one address to another.

API Methods

Get current user address

You can get the current user addres. The current user is the user who signs a Pravda transaction by its private key,
that is an executor of the transaction.

If there is no current user an API implemenation should return NoKeys error.

To run the API, use bin/expload-desktop from http://download.expload.com/expload-desktop/. API will be located at http://localhost:8087.

Login

Before using API, you need to login at /ui endpoint: http://localhost:8087/ui. You can sign up using public/private keys pair.

Request

GET api/address

Response

Hex formatted address of the current user as JSON string.

Example

curl <api url>/api/address

might return e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0 if the user with such address is the current user

Get balance by Pravda address

You can get balance of the Pravda user by his address. Absent address parameter means the current user.

Request

GET api/balance?[address=<hex formatted address>]

Response

Requsted user balance as integer value

Examples

curl <api url>/api/address

will return balance of the current user

curl <api url>/api/balance?address=e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0

will return balance of the user with address e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0

Call program method

DApps API Specification introduces method entity. This entity is similar to Solidity [http://solidity.readthedocs.io/en/v0.4.24/] methods from Ethereum ecosystem.

DApp API specification establishes REST API for calling methods of the program with a given address.

An implementaion of the Standard should ask the current user if he confirms this transaction or not.
An implementaion of the Standard should show the user the programm addres, program method and arguments to be executed.
If this transaction is not confirmed, NotConfirmed error should be sent.
On the other hand, if the transaction is confirmed, it should be signed with the current user private key and boradcasted to the Pravda blockchain.

If there is no current user, an implemenation of the Standard should return NoKeys error.

Request

POST api/program/method

{
 "address": "<hex formatted string of program's address>",
 "method": "<name of the method>",
 "args": [
 {
 "value": <value of argument>,
 "tpe": "<type of argument>"
 }
]
}

Response

{
 "value": <return value>,
 "tpe": "<type of return value>"
}

Additional information

Argument type is the regular string, format of the argument value depends on that type
and each such type string corresponds to one data type. Details are given in the following table:

Type string ("tpe" field)	Example of "value" field	Data
—	—	—
"int8"	-123	int8
"int16"	23123	int16
"int32"	123123123	int32
"uint8"	123	uint8
"uint16"	23123	uint16
"uint32"	123123123	uint32
"number"	5.6	number
"boolean"	true of false	boolean
"utf8"	"string"	utf8
"bytes"	"6789ABCD"	bytes
"array <primitive type>"	[1, 2, 3]	array <primitive type>

Examples

For example if we are calling balanceOf method for user with 0xABCDEF address
of some program with 0xe1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0 address we should pass:

curl -X POST -H "Content-Type: application/json" --data '{"address": "e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0", "method": "balanceOf", "args": [{"tpe": "bytes", "value": "ABCDEF"}] }' <api url>/api/program/method

And receive:

{
 "value": 1234,
 "tpe": "uint32"
}

Transfer money

This method allows you to transfer money from current user to any Pravda address

An implementaion of the Standard should ask the current user if he confirms this transfer or not.
It should show the amount and the address of the transferring.
If this transaction is not confirmed, NotConfirmed error should be sent.
On the other hand, if the transaction is confirmed, it should be signed with the current user private key and boradcasted to the Pravda blockchain.

If there is no current user, an implemenation of the Standard should return NoKeys error.

Request

POST api/transfer

{
 "to": "<hex formatted string of the receiver address>",
 "amount": <amount of coins you are going to transer>
}

Examples

The following command will transfer 100 coins from the current account to the account
with address e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0

curl -X POST -H "Content-Type: application/json" --data '{ "to": "e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0", "amount": 100 }' <api url>/api/transfer

Execute VM bytecode

This method allows you to execute any Pravda bytecode

An implementaion of the Standard should ask the current user if he confirms this execution or not.
It should show the bytecode translated to the Pravda assembler.
If this transaction is not confirmed, NotConfirmed error should be sent.
On the other hand, if the transaction is confirmed, it should be signed with the current user private key and boradcasted to the Pravda blockchain.

If there is no current user, an implemenation of the Standard should return NoKeys error.

Request

POST api/execute

{
 "transaction": "<hex formatted transaction>",
 "wattLimit": <watt limit> // Optional
}

Response

{
 "executionResult" : {
 "result" : {
 "spentWatts" : <spent-watts>,
 "refundWatts" : <refunded-watts>,
 "totalWatts" : <total-watts>,
 "stack" : [<stack-data>],
 "heap" : [<heap-data>]
 }
 },
 "effects" : [{
 "eventType" : "<effect-type>",
 ...
 <event-dependent-fields>
 ...
 }, ...]
}

or with error

{
 "executionResult" : {
 "error" : {
 "error" : <error-code-or-string>,
 "finalState" : {
 "spentWatts" : <spent-watts>,
 "refundWatts" : <refunded-watts>,
 "totalWatts" : <total-watts>,
 "stack" : [<stack-data>],
 "heap" : [<heap-data>]
 },
 "callStack" : [<call-stack-data>],
 "lastPosition" : <last-position>
 }
 },
 "effects" : [{
 "eventType" : "<effect-type>",
 ...
 <event-dependent-fields>
 ...
 }, ...]
}

Sign binary data

This method allows you to execute any Pravda bytecode

An implementaion of the Standard should ask the current user if he confirms this signing or not.
It should be possible to see the data. If the currenit user doesn’t allow to sign the data,
NotConfirmed error should be sent.
On the other hand, if the current user allows to sign the data,
the data should be signed with the current user private key and returned back.

If there is no current user, an implemenation of the Standard should return NoKeys error.

Request

POST api/sign

{
 "app": "<application name>",
 "bytes": "<hex formatted binary data>"
}

Response

{
 "signedBytes": "<hex formatted signed binary data>"
}

Additional information

You can also sign binary data with application/octet-stream or application/base64
http content types by using api/binary/sign?app=<application name> url with corresponding type.

Errors

Every API method may return error.

{
 "error": "<error type>"
}

Basic error types are:

	NotConfirmed - means current user did not confirm the transaction

	NoKeys - means there is no current user, so there is no keys for signing transactions

Frequently Asked Questions

That connection between Pravda and Ethereum?

There is no connection. Pravda is independent project with its own virtual machine and consensus.

How can I mine your coins?

You can’t for now. Currently Pravda is blockchain with explicit authority. In future we are planning to move to truly decentralized way of consensus. It will happen after feature list stabilization.

Getting started

Installation

Ensure that JRE 1.8 or higher is installed in your system. Also ensure that 8080 TCP port is free.

Windows

Download MSI installer from releases page [https://github.com/expload/pravda/releases]. Double click on it. Currently installer is unsigned. It leads to red alert during installation. Do not afraid: it’s OK.

Linux and macOS

We’ve prepared universal installation script. Just run this command in your terminal.

curl -sL https://git.io/pravda-for-unix | bash

Run node

Then we need to run local node. First of all lets build initial coin distribution config.

pravda gen address -o my-wallet.json

This command will generate ED25519 key pair. It’s a valid Pravda wallet. Now you can add an address to coin distribution config.

[
 {
 "address": "address from my-wallet.json",
 "amount": 1000000000
 }
]

Save this to my-coin-distribution.json. Now lets initialize node configuration.

pravda node init --local --coin-distribution my-coin-distribution.json

Congratulations! The configuration is written to pravda-data/node.conf directory (also you can chose data directory using --data-dir key). Now let’s run the node.

pravda node run

Now you have our own Pravda network with one validator, and one billion coins on your account. Check out http://localhost:8080/ui.

Transfer coins

You are very rich! Now you want to donate a part of your wealth to some poor guy. Let’s generate wallet for him.

pravda gen address -o another-wallet.json

Wallet for poor guy is created. Now let’s copy his address and transfer some coins.

pravda broadcast transfer \
 --wallet my-wallet.json \
 --to <address-of-poor-guy> \
 --amount 1000000

Now the poor guy is not so poor. We have done a good deed.

Glossary

Term|Description
—|—
Network|Set of Pravda nodes connected via internet.
Node|A software that manage Pravda blockchain and executes programs.
Mainnet|A stable network.
Testnet|Clone of mainnet which resets every week.
Stored program | The program represented in Pravda bytecode, which has an unique address and can be called by it.
Sealed program | The stored program which is not modifiable. The owner of a program can modify it if the program is not sealed (i.e. immutable). The owner of a program can make it sealed, but he can’t make a sealed program modifiable again.

Node API

Node provides REST API to access the current blockchain status.

Get the events generated by program

You can get the generated events by name and the address of the program where they were generated.

Request

GET api/events?address=<hex formatted address>&name=<name of event>[&offset=<integer>&count=<integer>]

Response

The list of data from events with given name at the given address:

[
 {
 "data": "<some data from the first event>",
 "offset": 0
 },
 {
 "data": "<some data from the second event>",
 "offset": 1
 }
 ...
]

Examples

curl <api url>/api/events?address=e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0&name=myevent

will return all events for give address and name

curl <api url>/api/events?address=e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0&name=myevent&offset=10

will return all events starting from offset 10

curl <api url>/api/events?address=e1941077e00b3cf81a8275788334292d9b2e2f0002bd622444cb37fa5e4d08a0&name=myevent&offset=10&count=20

will return only first 20 events from offset 10

How to add new functionality to VM

While Pravda is under heavy development we can feel ourselves free to add new opcodes and functions to VM. However it doesn’t mean that individual developer can do this by their own decision. Addition of every new opcode should be rationale and should be discussed with colleagues in the chat or in the Github issue. When team agree on addition of the new opcode you can use this guide to implement it in the code.

Do not forget to generate docs!

Opcodes

	Add opcode to pravda.vm.Opcodes in vm-api module. Select a section carefully. Use hex number next to last opcode in the section.

	Add implementation of the opcode to the module from pravda.vm.operations package that corresponds to the selected section. Do not forget to add documentation for the method.

	Add appropriate pattern-match branch to pravda.vm.impl.VmImpl.

	Add mnemonic declaration to pravda.vm.asm.Operation orphans. If opcode is complex (takes arguments, for example) take a look to pravda.vm.asm.PravdaAssembler.

	Write few test cases in /vm/src/test/resources

Standard Library

	Add implementation to pravda.vm.std in vm module. For id use hex number next to last added standard library function.

	Add reference to pravda.vm.StandardLibrary object.

	Write few test cases in /vm/src/test/resources

Building from sources

Ensure that JDK 1.8 or higher is installer in your system. We use SBT native packager to produce runnable distros for each tool packed in
compressed archives.

$./sbt cli/universal:stage
$./cli/target/universal/stage/bin/pravda

To build archive just run sbt cli/universal:packageZipTarball in
the root of project. This will create necessary tgz-archive of
the Pravda CLI in the cli/target.

How generate reference docs

sbt "gen-doc/run"

Participation

We are glad to see any Pull Requests, especially if they solve issues labeled
good first issue or help wanted. Also we will accept PRs which fix typos,
mistakes, broken links, etc. Regardless of the nature of your PR, we have to
ask you, to digitally sign the Expload CLA. Please, send us email with GPG signed
text of CLA to dev@expload.com.

If you want to send PR, make sure that this requirements are satisfied:

	You have already sent GPG-signed Mytime CLA to contributing@mytc.io

	Commits are signed with same GPG-key as CLA

	Content of Pull Request satisfy Code Of Conduct

	Any PR should resolve an issue

	PR name matches “Close/Fix #issue: Summary”

	PR doesn’t contain merge commits

	Commit message matches “verb in present simple subject (#issue)”

 pravda [gen|run|compile|broadcast|node]

Description

Pravda 0.8.0 Command Line Interface

To get info about options for particular command you can use flag –help or -h after command. For example, to get help about “gen address” command, type “pravda gen address -h”

No options available

Commands

Command	Description
—-	—-
gen address	Generate ed25519 key pair. It can be used as regular wallet or validator node identifier.
gen unity	Generate auxiliary code to call program’s methods from Unity
run	Run byte-code on Pravda VM
compile asm	Assemble Pravda VM bytecode from text representation. Input file is a Pravda assembly language text file. Output is binary Pravda program. By default read from stdin and print to stdout.
compile disasm	Disassemble Pravda VM bytecode to text presentation. Input file is a Pravda executable binary. Output is a text file with Pravda assembly code. By default read from stdin and print to stdout.
compile dotnet	Compile .exe produced by .NET compiler to Pravda VM bytecode. Input file is a .NET PE (portable executable). Output is binary Pravdaprogram. By default read from stdin and print to stdout
broadcast run	Send a transaction with Pravda Program address to the blockchain to run it
broadcast transfer	Transfer native coins to a given wallet.
broadcast deploy	Deploy Pravda program to the blockchain.
broadcast seal	Seal existing Pravda program in the blockchain.
broadcast update	Update existing Pravda program in the blockchain.
node init	Create data directory and configuration for a new node.
node run	Run initialized node.

 pravda broadcast deploy --dry-run --wallet <file> --watt-payer-wallet <file> --limit <long> --price <long> --endpoint <string> --input <file>

Description

Deploy Pravda program to the blockchain.

Options

|Option|Description|
|—-|—-|
|--dry-run|Broadcast action without applying effects.
|-w, --wallet|File with user wallet. You can obtain it using ‘pravda gen address’ command. Format: {“address”:

 Description

 pravda broadcast run --dry-run --wallet <file> --watt-payer-wallet <file> --limit <long> --price <long> --endpoint <string> --input <file>

Description

Send a transaction with Pravda Program address to the blockchain to run it

Options

|Option|Description|
|—-|—-|
|--dry-run|Broadcast action without applying effects.
|-w, --wallet|File with user wallet. You can obtain it using ‘pravda gen address’ command. Format: {“address”:

 Description

 pravda broadcast seal --dry-run --wallet <file> --watt-payer-wallet <file> --limit <long> --price <long> --endpoint <string> --input <file> --address <string>

Description

Seal existing Pravda program in the blockchain.

Options

|Option|Description|
|—-|—-|
|--dry-run|Broadcast action without applying effects.
|-w, --wallet|File with user wallet. You can obtain it using ‘pravda gen address’ command. Format: {“address”:

 Description

 pravda broadcast transfer --dry-run --wallet <file> --watt-payer-wallet <file> --limit <long> --price <long> --endpoint <string> --to <string> --amount <long>

Description

Transfer native coins to a given wallet.

Options

|Option|Description|
|—-|—-|
|--dry-run|Broadcast action without applying effects.
|-w, --wallet|File with user wallet. You can obtain it using ‘pravda gen address’ command. Format: {“address”:

 Description

 pravda broadcast update --dry-run --wallet <file> --watt-payer-wallet <file> --limit <long> --price <long> --endpoint <string> --input <file> --address <string>

Description

Update existing Pravda program in the blockchain.

Options

|Option|Description|
|—-|—-|
|--dry-run|Broadcast action without applying effects.
|-w, --wallet|File with user wallet. You can obtain it using ‘pravda gen address’ command. Format: {“address”:

 Description

 pravda compile asm --input <sequence> --output <file>

Description

Assemble Pravda VM bytecode from text representation. Input file is a Pravda assembly language text file. Output is binary Pravda program. By default read from stdin and print to stdout.

Options

|Option|Description|
|—-|—-|
|-i, --input|Input file
|-o, --output|Output file

 Description

 pravda compile disasm --input <sequence> --output <file>

Description

Disassemble Pravda VM bytecode to text presentation. Input file is a Pravda executable binary. Output is a text file with Pravda assembly code. By default read from stdin and print to stdout.

Options

|Option|Description|
|—-|—-|
|-i, --input|Input file
|-o, --output|Output file

 Description

 pravda compile dotnet --input <sequence> --output <file> --main-class <string>

Description

Compile .exe produced by .NET compiler to Pravda VM bytecode. Input file is a .NET PE (portable executable). Output is binary Pravdaprogram. By default read from stdin and print to stdout

Options

|Option|Description|
|—-|—-|
|-i, --input|Input file
|-o, --output|Output file
|--main-class|Full name of class that should be compile to Pravda program

 Description

 pravda gen address --output <file>

Description

Generate ed25519 key pair. It can be used as regular wallet or validator node identifier.

Options

|Option|Description|
|—-|—-|
|-o, --output|Output file

 Description

 pravda gen unity --dir <file> --input <file> --exclude-big-integer

Description

Generate auxiliary code to call program’s methods from Unity

Options

|Option|Description|
|—-|—-|
|-d, --dir|Output directory for generated sources.
|-i, --input|Input file with assembly.
|--exclude-big-integer|Exclude custom BigInteger class.

 Description

 pravda node init --data-dir <file> --local --testnet --coin-distribution <string>

Description

Create data directory and configuration for a new node.

Options

|Option|Description|
|—-|—-|
|-d, --data-dir|
|--local|Initialize local node with self-validation.
|--testnet|Initialize node connected to official testnet.
|--coin-distribution|Initialize local node with addresses which have some amount of coins at initial state. JSON file. Format: [{“address”:

 Description

 pravda node run --data-dir <file>

Description

Run initialized node.

Options

|Option|Description|
|—-|—-|
|-d, --data-dir|

 Description

 pravda run --executor <string> --input <file> --storage <file>

Description

Run byte-code on Pravda VM

Options

|Option|Description|
|—-|—-|
|-e, --executor|Executor address HEX representation
|-i, --input|Input file
|--storage|Storage name

 Dotnet classes translation

Dotnet classes translation

Program class

Each C# file that is going to be translated should follow the listed rules:

	Class with Program methods must be marked with [Program] attribute

	Each compiled .exe file must contain exactly one class with [Program] attribute.

	Program class can inherit interfaces [future plans]

	Program class contains only public fields and public or private methods.

	Static fields and methods are not allowed.

	Public methods are translated to Program methods.

	Private methods are translated to inner functions, only difference between them and Program methods is that inner functions are not accessible from outside world and can only be called from Program method.

	Fields (that can be only public) are translated to storage items with utf8("p_<field_name>") keys.

	Only one constructor of Program class is allowed. This constructor mustn’t have any arguments.

User defined classes

User can freely define classes without [Program] attribute.
Objects of these classes are translated to data structs and behave very similar to objects in C#.

Formally this translation follow the listed rules:

	Class doesn’t have [Program] attribute, [Program] attribute is used for only one class, which is translated to Program methods.

	Interfaces are not translated, they serve only as compile-time entities.

	All (private, protected, internal and public) fields are translated to utf8("<field_name>") -> <field_value> pairs in struct.

	All methods are translated to utf8("<method_name>_<args_types>") -> ref(#<inner_function_offset>).
The <args_types> prefix is needed to support overloading and
<inner_function_offset> means offset of function that should be called for the <method_name> method of that class.
Overridden methods will point to different <inner_function_offset>.
This technique is similar to Virtual method table [https://en.wikipedia.org/wiki/Virtual_method_table].

	static fields are translated to storage items with utf8("s_<class_name>_<field_name>") keys.

	static methods are translated to inner functions with <class_name>_<method_name>_<args_types> names.

	Constructors are translated to inner functions with <class_name>_ctor_<args_types> names.

Example:

Suppose we have the following classes definitions in C#:

interface Vehicle
{
 void ComeIn(String someone);
}

class Bicycle : Vehicle
{
 public String Owner = "no one";

 void ComeIn(String someone) {
 Owner = someone;
 }
}

class Car : Vehicle
{
 static private bool isBearBurnedDown = false;
 static public bool IsBearBurnedDown()
 {
 return Car.isBearBurnedDown;
 }

 public int NumberOfTires;

 public Car(int tires)
 {
 NumberOfTires = tires.
 }

 void ComeIn(String someone)
 {
 if (someone == "bear") {
 Car.isBearBurnedDown = true;
 }
 }
}

	interface Vehicle won’t be translated to anything

	Bicycle() constructor will be translated to Bicycle_ctor function that creates struct(utf8("Owner") -> utf8("no one"), utf8("ComeIn_string") -> ref(#<function1>)

	Bicycle.ComeIn will be translated to some function (let’s call it function1) that changes utf8("Owner") field in the given struct.

	Car(int) constructor will be translated to Car_ctor_int32 function that creates struct(utf8("NumberOfTires") -> int32(<given_int>), utf8("ComeIn_string") -> ref(#<function2>))

	isBearBurnedDown static field will be translated to utf8("s_Car_isBearBurnedDown") -> bool storage item

	IsBearBurnedDown static method will be translated to Car_IsBearBurnedDown function that reads utf8("s_Car_isBearBurnedDown") storage key.

	Car.ComeIn will be translated to some function (let’s call it function2) that changes utf8("s_Car_isBearBurnedDown") -> bool storage item according to the given String from the stack.

 Dotnet Translation

Dotnet Translation

Pravda project allows you to write programs in subset of C# language.
Pravda Translator translates CIL [https://en.wikipedia.org/wiki/Common_Intermediate_Language] to Pravda bytecode.

How to compile program

Pravda provides special Pravda.dll file with auxiliary methods for translation from CIL to Pravda bytecode.

This dll file serves only as meta info for translator,
it doesn’t provide any meaningful implementation for these methods.
Translator just looks at calls of these methods and generates necessary Pravda bytecode.

You can download Pravda.dll here.
Source of this dll can be found here.

For full support of all translation features you need also to compile your program with /debug:portable option.
This options will trigger the creation of your_program.pdb file that contains various auxiliary information about C# source.

Portable pdb files are quite new, so you need up-to-date csc compiler to generate them. See more here [https://github.com/dotnet/core/blob/master/Documentation/diagnostics/portable_pdb.md].

To compile your C# program with Pravda.dll:

csc your_program.cs /reference:Pravda.dll /debug:portable

How to run translation

Pravda CLI has special command to run translation of .exe file produced by C# compiler.

pravda compile dotnet --input input.exe --output output.pravda --pdb input.pdb

pdb file is optional, but it’s strongly recommended to provide it (see Compile section for instructions).

Supported subset of C

Pravda Translator supports only part of all C# features.

For the moment it supports the following:

	Access to the storage via class fields;

	Access to the storage via Mapping<K, V> (get, getDefault, put, exists methods);

	Access to sender address via Info.Sender() method;

	Class methods that are translated to program methods;

	Integer primitive types (int, short, byte, uint) and bool;

	Basic arithmetics and logical operations;

	Local variables and method arguments;

	If conditions and loops;

	Strings and auxiliary methods (+, access to particular chars, Slice);

	Bytes (immutable byte arrays), auxiliary methods (access to particular bytes, Slice, Concat), creation from byte[]: new Bytes(bytes_array);

	Arrays of primitive types (int, byte, String), reading and writing of particular elements;

	Explicit conversion of primitive types via
System.Convert.ToByte, System.Convert.ToChar,System.Convert.ToInt16,System.Convert.ToInt32,System.Convert.ToDouble,System.Convert.ToBoolean,System.Convert.ToString

	Cryptographic functions: Ripemd160 hashing, validation of Ed25519 Signature. See more in Standard library docs.

	User defined classes (although you can’t store them in the storage yet).

	Calling other programs via ProgramHelper.Program<...> interface.
See some examples (pcall.cs, pcall_program.cs).
Important note: For being able to use ProgramHelper.Program<...> interface you should put called program to Expload.Pravda.Programs namespace.

	Create events in your program via Log.Event("name of event", <some_data>), see event.cs

Things that are not supported:

	Standard C# library (except of some specific functions from the list above);

	Standard C# collections.

Examples

You can look at several examples of test programs to learn current abilities of translation:

	String examples that show how to operate with Strings.

	Array examples that show how to operate with arrays.

	Simple program with balanceOf and transfer methods similar to corresponding methods from ERC20 [https://theethereum.wiki/w/index.php/ERC20_Token_Standard]

	Buffer – Dynamic resizable array implemented in C#.

	Zoo program that allows you to create zoos, pets and breed them.

	Poker program that implements simple poker game on the blockchain. (poker.cs was provided by Ducatur team [https://github.com/DucaturFw/ExploadHackathonContract])

 Pravda Assembler

Pravda Assembler

Pravda assembler (pasm) is a text representation of Pravda VM bytecode.

Let’s consider one simple program written in pasm:

/* My program */
jump @main
@ok:
push "good"
jump @end
@main:
push 2
mul
push 8
gt
jumpi @ok
push "bad"
@end:

It pops item from the stack and multiplies it by 2. If it is less than 8 it pushes “good” to the stack, else it pushes “bad”.

pasm operations are easy to understand. There’re several things that differ from low-level bytecode:

	You can define labels: @my_label:.

	Jump to defined labels jump @my_label. Jump with condition jumi @my_label and jump to functions with preserved call-stack call @my_label.

	Push primitive to the stack:push [primitive]. Or put item to the heap: new [data] (in this case reference to data will be pushed to the stack).

	Write comments: /* a comment */.

	Work with structs: struct_mut [primitive], struct_get [primitive]. This will produce STRUCT_MUT_STATIC and STRUCT_GET_STATIC opcodes which take key for struct field from bytecode. You can write struct_mut or struct_get without [primitive] literal. In this case STRUCT_MUT and STRUCT_GET opcodes are used and key is taken from stack.

	Use regular orphan opcodes.

	Add meta information via meta <meta>, see <meta> definition for details.

See also string data encoding.

 Pravda internal data format

Pravda internal data format

String representation

Human-readable representation of vm.Data. Supported by assembler for PravdaVM.

Primitive types

int8, int16, int32,
uint8, uint16, uint32
bitint, number
ref,
boolean,
utf8, bytes

	All numbers encodes as type(number). For example: int16(500) or number(12.0). You can use decimal and hexadecimal way of writing for integers. Also you can write only a number and nearest type will be inferred automatically. For example: 4 will be uint8, -500 will be int16.

	Booleans encodes as true and false.

	Refs encodes as #0x0000.

	UTF8 string encodes classically "hello world".

	Byte strings encodes as xAABBCCEE.

Arrays

Pravda arrays is homogeneous. It means you can’t store int8 and int32 in same array (or course you can store references). Array encodes as type[one, two, three]. For example: utf8["one", "two", three], or uint8[1, 2, 3]. Also you can move type to item declaration if it’s convenient: [int8(1), int8(2)].

Structs

Structs in pravda is tables where key and value are primitive. It’s encodes as comma separated tuples or primitives. For example:

{
 0: "nothing",
 x11EE: "teh bytes",
 "nothing": 0
}

Binary representation

length := 0b00<6 bits of data>
 | 0b01<6 bits length>
 | 0b10<14 bits length>
 | 0b11<22 bits length>

bytes := length byte[&length]

null := 0x00
int8 := 0x01
int16 := 0x02
int32 := 0x03
bigint := 0x04
uint8 := 0x05
uint16 := 0x06
uint32 := 0x07
decimal := 0x08
boolean := 0x09
ref := 0x0A
utf8 := 0x0B
array := 0x0C
struct := 0x0D
bytestr := 0x0E

primitive_type := int8
 | int16
 | int32
 | bigint
 | uint8
 | uint16
 | uint256
 | double
 | boolean
 | ref
 | null

type := primitive_type
 | struct
 | array
 | utf8
 | bytestr

primitive := int8 bytes~1
 | int16 bytes~2
 | int32 bytes~4
 | bitint length bytes[&length]
 | uint8 bytes~1
 | uint16 bytes~2
 | uint32 bytes~4
 | double bytes~8 # strict IEEE-754 floating point number
 | ref byte[4] # ref is constant sized
 | boolean
 | utf8 bytes
 | bytestr bytes

data := primitive
 | array primitive_type length data(primitive_type)[&length]
 | struct length (primitive, primitive)[&length]

How to read this?

	smth[num] means that we duplicate smth structure num times. byte[8] means 8 bytes,

	bytes~num means that we expect num of bytes (which length is dynamic).

	&length refers to given length field and means an integer representation of that field.

	(a, b) means pair type, e.g. two values of a and b are written consecutively.

	data(primitive_type) means corresponding structure for primitive except type byte.

Json representation

Primitives

All primitives encodes as JSON strings with prefix. It’s easy to parse. Most of popular languages have indexOf and substring functions. Type always before first dot, value after.

"int8.-100"
"int16.-100"
"int32.-100"
"uint8.100"
"uint16.100"
"uint32.1000"
"bitint.9999999999999"
"number.2.0"
"ref.1"
"bool.true"
"utf8.i am cow"
"bytes.01fca4e91"
"null"

Arrays

Arrays corresponds to JSON arrays. First item contains type of primitive.

["int32", "100", "200", "300"]

Structs

Structs corresponds to JSON objects.

{
 "utf8.user": "ref.9153",
 "int32.1432": "bytes.41f8cff6"
}

 Meta information in Pravda bytecode

Meta information in Pravda bytecode

Pravda bytecode may contain additional information for disassembler, code generator and other tools that read and interpreter Pravda bytecode.This information is called meta.

Meta

There’re 5 kinds of meta for the moment:

	label_def "<string>" that marks definition of a label;

	label_use "<string>" that marks usage of a label;

	program_name "<string>" that contains a name of a program;

	method <struct> (see struct definition in data spec). More about this in the next chapter.

	custom "<string>" that contains arbitrary information.

Method meta

<struct> in method must contain two pairs int8(-1): <method_name> and
int8(-2): int8(<type_of_return_value>) (See definition of type in data spec).

All other pairs in <struct> describe arguments of the method.
They packed in the following way: int8(2 * i): int8(<type_of_ith_argument>), int8(2 * i + 1): utf8(<name_of_ith_argument>).
Name of the argument is optional, pair with int(2 * i + 1) key may not exist even if there’s int(2 * i) key.

 <no title>

Pravda VM opcodes
Code	Mnemonic	Description
0x00|stop |Stops program execution.
0x01|jump |Alters program execution counter to value of first item of the stack.
0x02|jumpi |If boolean value in head of stack is true then alters program execution counter to value of second item in the stack.
0x04|call |Firstly, it pushes current program counter to the separate stack (so called 'call stack'). Then it alters program execution counter to the value of the first item of the stack.
0x05|ret |Alters program execution counter to the value of the first item of the call stack (see CALL opcode).
0x06|pcall |Takes two words by which it is followed. They are address `a` and the number of parameters `n`, respectively. Then it executes the program with the address `a` and passes there only n top elements of the stack.
0x07|lcall |Takes three words by which it is followed.They are address `a`, function `f` and the number of parameters `n`, respectively. Then it executes the function `f` of the library (which is a special form of program) with the address `a` and passes there only n top elements of the stack.
0x08|scall |Takes id of function from standard library and execute it.
0x10|pop |Removes first item from the stack.
0x11|push |Pushes the word following the opcode to the stack.
0x12|dup |Duplicates first item of the stack.
0x13|dupn |Duplicates `(n+1)`-th item of the stack where `n` is the first item in stack.
0x14|swap |Swaps first two items in the stack.
0x15|swapn |Swaps the second item of the stack with the `(n+1)`-th item of the stack where `n` is first item in the stack.
0x20|new |Puts the data following the opcode to the heap. Pushes reference to the stack.
0x21|array_get |Takes reference to array and index from the stack.Pushes to the stack a primitive at index in array corresponding by the given reference.
0x22|struct_get |Takes reference to struct and key from the stack.Pushes to the stack a primitive at key in struct corresponding by the given reference.
0x24|array_mut |Takes reference to array, primitive and index from the stack.Puts a primitive at index in array corresponding by the given reference.
0x25|struct_mut |Takes key, primitive and reference to struct from the stack.Puts a primitive at key in struct corresponding by the given reference.
0x27|primitive_put|Puts top item from the stack to the memory.Pushes reference to the stack.
0x28|primitive_get|Uses top item from the stack as referenceto data in the memory of program. Pushesretrieved data to the stack.
0x29|new_array |Takes type of desired array from the stack. Takes length of the desired array from the stack. Pushes reference of new array to the stack.
0x30|length |Takes reference to array or Bytes or Utf8 from stack. Pushes length of given array, Bytes or Utf8 to the stack.
0x50|sput |Pops first item from stack, interprets it as key. Pops second item from stack, interprets it as value. Puts (key -> value) record to program's storage.
0x51|sget |Pops first item from stack, interprets it as key, retrieves corresponding record from a storage of the program and pushes the record to the stack. Otherwise throws an exception.
0x52|sdrop |Pops first item from stack, interprets it as key and removes corresponding record from a storage of the program.
0x53|sexist |Pops first item from stack, interprets it as key and checks existence of record correspond to the key in a storage of the program.
0x60|add |Makes '+' operation on two top items from stack. Pushes result to stack.
0x61|mul |Makes '*' operation on two top items from stack. Pushes result to stack.
0x62|div |Makes '/' operation on two top items from stack. Pushes result to stack.
0x63|mod |Makes '%' operation on two top items from stack. Pushes result to stack.
0x67|lt |Checks top stack item is less than subsequent stack item. Pushes Bool result to stack.
0x68|gt |Checks top stack item is greater than subsequent stack item.Pushes Bool result to stack.
0x80|not |Logical NOT (negation).Pops items from stack.If it's 'true' pushes 'false' to stack.Its it's 'false' pushes 'true' to stack.
0x81|and |Makes 'and' operation on two items from stack. Pushes result to stack.
0x82|or |Makes 'or' operation on two items from stack. Pushes result to stack.
0x83|xor |Makes 'xor' operation on two items from stack.Pushes result to stack.
0x84|eq |Checks top stack item is equal to subsequent stack item. Pushes Bool result to stack.
0x90|cast |Casts primitive to another type.
0x91|concat |Takes two items from stack. Concatenates them and put result to stack.
0x92|slice |Takes start index, end index and item from the stack. Makes slice of item and puts result to the stack.
0xA0|from |Gives current executor address.
0xA1|meta |
0xA2|paddr |Gives current program address.
0xA5|pcreate |Takes bytecode of a new program, put's it to state and returns program address.
0xA6|pupdate |Takes address of a program and new bytecode. Replaces bytecode in storage. This opcode can be performed only from owner of the program
0xA7|owner |Gives program owner's address. If there's no owner of the given address then the void address (32 zero bytes) is returned.
0xA8|seal |Takes the address of an existing program, makes the program sealed
0xA9|throw |Takes string from stack and throws an error with description as given string that stops the program.
0xAA|event |Takes string and arbitrary data from stack, create new event with name as given string and with given data.
0xC0|transfer |Gets two parameters `a` and `n` from the stack and transfers `n` native coins from the executor account to the account `a`.
0xC1|ptransfer |Gets two parameters `a` and `n` from the stack and transfers `n` native coins from the current program account to the account `a`
0xC2|balance |Takes address from stack, pushes native coin balance to the stack

 <no title>

Name	Description
[Ripemd160](stdlib/ripemd160.md) |Calculate RIPEMD-160 hash for message. See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
[ValidateEd25519Signature](stdlib/validate-ed25519-signature.md)|Validates message signed with Ed25519 algorithm. See https://ed25519.cr.yp.to
[ExponentialFunction](stdlib/exponential-function.md) |Takes two items from the stack, raises the second number to a power of first number and pushes the result to the stack.

 Id

ExponentialFunction
Id

0x03

Signature

(x: int32, y: int32): number

Description

Takes two items from the stack, raises the second number to a power of first number and pushes the result to the stack.

 Id

Ripemd160
Id

0x02

Signature

(message: bytes | utf8): bytes

Description

Calculate RIPEMD-160 hash for message. See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html

 Id

ValidateEd25519Signature
Id

0x01

Sign