
PPP Documentation
Release 0.1.13

PPP Development Team

Feb 11, 2022

Contents:

1 Introduction 2
1.1 Creating Pipelines . 4

2 Installation 5
2.1 From PyPi . 5
2.2 From Conda . 5
2.3 From Source . 5
2.4 Dependencies . 6

3 Usage and Examples 8
3.1 Command-line Usage and Examples . 8
3.2 Module Usage and Examples . 8

4 PPP Core Functions 16
4.1 vcf_filter.py: VCF Filter Function . 16
4.2 vcf_calc.py: VCF Statistic Calculator Function 20
4.3 informative_loci_filter.py: Informative Loci Filter 23
4.4 vcf_split.py: VCF Split Function . 26
4.5 vcf_phase.py: VCF Phase Function . 28
4.6 vcf_four_gamete.py: Four Gamete Test Function 31

5 PPP Input File Generators 34
5.1 vcf_format_conversions.py: VCF to Plink/EIGENSTRAT 34
5.2 vcf_to_ima.py: VCF to IMa Conversion Function 35
5.3 vcf_to_treemix.py: VCF to treemix Conversion Function 37
5.4 vcf_to_gphocs.py: VCF to GPhocs Conversion Function 39
5.5 vcf_to_fastsimcoal.py: VCF to fastsimcoal Conversion Function 40
5.6 vcf_to_dadi.py: VCF to dadi Conversion Function 42

6 PPP Analyses 44

i

6.1 eigenstrat_fstats.py: F-statistics Analysis . 44
6.2 admixture.py: Admixture Analysis . 48
6.3 ima3_wrapper.py: IMa3 Analysis . 50
6.4 plink_linkage_disequilibrium.py: Linkage Disequilibrium Analysis 50
6.5 vcf_to_sfs.py: Site Frequency Spectrum generator 53

7 PPP Utilities 57
7.1 vcf_utilities.py: VCF Utilities . 57
7.2 bed_utilities.py: BED Utilites . 59
7.3 vcf_bed_to_seq.py: Generate sequences from VCF/BED Files 65
7.4 stat_sampler.py: STAT File Sampler . 68

8 Model File and Creation 71
8.1 model_creator.py: Model File Creator . 71

9 Development 77
9.1 Development Guidelines . 77
9.2 Using PPP Classes . 78

10 Contact Us 81

11 Citations 82

Python Module Index 83

Index 84

ii

PPP Documentation, Release 0.1.13

The Popgen Pipeline Platform (PPP) is a software platform with the goal of reducing the computa-
tional expertise required for conducting population genomic analyses. The PPP was designed as a
collection of scripts that facilitate common population genomic workflows in a consistent and stan-
dardized environment. Functions were developed to encompass entire workflows, including: input
preparation, file format conversion, various population genomic analyses, and output generation.
By facilitating entire workflows, the PPP offers several benefits to prospective end users - it reduces
the need of redundant in-house software and scripts that would require development time and may
be error-prone, or incorrect, depending on the expertise of the investigator. The platform has also
been developed with reproducibility and extensibility of analyses in mind.

Please Note: This documentation is currently being developed and will be updated freqeuntly in the
coming days

Contents: 1

CHAPTER 1

Introduction

The Popgen Pipeline Platform (PPP) was written using the Python programming language and
designed to operate using Python 3.7. In comparison to a fixed pipeline, the PPP was designed as
a collection of modular functions that may combined to generate a wide variety of analyses and
pipelines.

For simplicity, PPP functions are separated into four categories: # Core functions: Frequently
used methods and procedures in population genomic pipelines (e.g. phasing, filtering, four-gamete
test, etc.). # Input file generators: Input generators for creating the necessary input for population
genomic analysis (e.g. generating input for IMa3, TreeMix, G-PhoCS, etc.) # Analyses: Common
population genomic analyses (e.g. isolation and migration, admixture, linkage disequilibrium, etc.)
Utilities: Simple file-specific procedures often required in population genomic pipelines

For details on specific functions, please see the documentation on each section.

2

PPP Documentation, Release 0.1.13

3

PPP Documentation, Release 0.1.13

Figure 1: Structure of the PPP

1.1 Creating Pipelines

Most PPP-based pipelines are expected to primarily consist of core functions. To simplify devel-
opment, all core functions were designed to operate using VCF-based files. The VCF format was
selected due to the frequent support for the format among publicly available datasets and population
genomics software. At present, pipelines may be generated in one of two methods: i) calling each
function by command-line or ii) calling the function within a script, such as a jupyter notebook.
Example usage of both methods may be found within examples.

1.1. Creating Pipelines 4

CHAPTER 2

Installation

2.1 From PyPi

The PPP can also be easily installed via the PyPi repository via pip:

pip install py-popgen

2.2 From Conda

The PPP has conda packages available for python versions 3.6 and 3.7. To install in a clean
environment, run the following:

conda create -n py-popgen python=3.7.7
conda activate py-popgen
conda install -c jaredgk -c bioconda py-popgen

2.3 From Source

The most current version of the PPP can be installed by obtaining the source code from the PPP
GitHub repository. This can be done with:

5

PPP Documentation, Release 0.1.13

git clone https://github.com/jaredgk/PPP

To install the local repository copy and allow edits to the source code to be included with imports
without any additional steps, run the following commands:

cd PPP
pip install -e .

To install the repository without pip, run the following (note that any modifications to the source
code will not be used at runtime unless the setup command is run again):

cd PPP
python setup.py install

2.4 Dependencies

If installing PPP from source, multiple python and non-python depencencies must also be installed.

2.4.1 Python Dependencies

The PPP requries a number of python libraries, including:

• The SciPy Ecosystem (i.e. numpy, scipy, pandas, matplotlib, etc.)

• Pysam

• Biopython

• Cython

• rpy2

We recommend users install and maintain these libraries using either pip or Anaconda 3.

2.4.2 Other Dependencies

The PPP also requries a number of executables to be installed, including:

• VCFtools

• BCFtools, Samtools, and HTSlib

• plink 1.9

• plink 2.0

2.4. Dependencies 6

https://www.scipy.org/about.html
https://github.com/pysam-developers/pysam
https://biopython.org/
https://cython.org/
https://rpy2.readthedocs.io/
https://pypi.org/project/pip/
https://www.anaconda.com/distribution/#download-section
https://vcftools.github.io/index.html
http://www.htslib.org/
https://www.cog-genomics.org/plink2/
https://www.cog-genomics.org/plink/2.0/

PPP Documentation, Release 0.1.13

• SHAPEIT

• Beagle 5.0

• Picard

Please note that VCFtools, BCFtools, Samtools, HTSlib, plink 1.9, plink 2.0, and SHAPEIT may be
installed using Anaconda 3.

2.4. Dependencies 7

https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
https://faculty.washington.edu/browning/beagle/beagle.html
https://broadinstitute.github.io/picard/
https://www.anaconda.com/distribution/#download-section

CHAPTER 3

Usage and Examples

3.1 Command-line Usage and Examples

PPP functions may be called at the command-line as shown in this example:

vcf_filter.py --vcf examples/files/merged_chr1_10000.vcf.gz --filter-
→˓only-biallelic --out-format bcf

Details on the usage and arguments of each function may be found within the relevant documentation.
In addition, all files specified within these examples may be found within the examples/files
directory of the PPP repository.

3.2 Module Usage and Examples

PPP functions may also be imported from the pgpipe module for use within a python script or a
Jupyter Notebook as shown in this example:

import pgpipe.vcf_filter as vcf_filter

vcf_filter.run(vcf = 'examples/files/merged_chr1_10000.vcf.gz', filter_
→˓only_biallelic = True, out_format = 'bcf')

In comparison to calling functions at the command-line, imported functions require:

• The pgpipe module must be imported

8

https://jupyter.org/

PPP Documentation, Release 0.1.13

• Each function is called using .run(): vcf_filter.run() or pgpipe.vcf_filter.run()

• The use of underscores within arguments rather than dashes: --out-format vs. out_format

• Setting the value to True when arguments do not require a value: --filter-only-biallelic vs.
filter_only_biallelic = True

3.2.1 Example Jupyter Notebooks

We have included two example notebooks within the examples/jupyter directory of the PPP
repository.

Example Jupyter Pipleine

[1]: import sys
import os
import subprocess

from pgpipe import four_gamete, vcf_split_pysam, vcf_to_ima, vcf_filter,
→˓ vcf_calc, vcf_sampler, vcf_phase, stat_sampler, vcf_split
from pgpipe.logging_module import initLogger
from pgpipe.informative_loci_filter import filter_bed_regions
from pgpipe.subtract_bed import filter_stat
import pysam

print ("Imports complete")

Imports complete

Setting Filepaths

The required input files for a PPP run are: - A genome VCF of the target populations (plus a tabix
index if bgzipped) - A population model file

The population model file is a JSON-formatted file that defines population names and the individuals
from the VCF that belong to each population. This file can be created using the model_creator
function, or by creating it manually by using an example model file as a template.

For region filtering, the following should be provided: - Name for target region file - Name for final
selected region file - File with genic regions/regions to be excluded from analysis (optional) - File
with regions to be selected from for analysis (optional)

There are two methods for obtaining target regions for subsampling and analysis, with some level of
interoperability: using a statistic file to sample regions, or use a file with target regions to randomly
select regions with enough sites to be valid in an IM analysis. To generate a statistic file, use

3.2. Module Usage and Examples 9

PPP Documentation, Release 0.1.13

vcf_calc to read over the input VCF file, then use stat_sampler to select either a random or uniform
distribution of these regions given their statistic value. These stat files can be filtered with a genic
region file, available from UCSC, using the subtract_bed function. This method is implemented in
this notebook, with the genic region filtering offered as an optional cell.

An additional method of region selection, done without statistics, can be done by downloading
region files for genic regions, and optionally for STR regions and regions with missing data. If
one wants to find a set of target regions that are intergenic and outside of STR regions, download
the corresponding files from UCSC for your species and use invert_bed_region to ‘invert’ the files,
optionally selecting only regions outside of a set number of bases from the regions in the file with the
–window option. If files don’t have typical BED column order, use the –bed-column-index option to
provide a comma-separated string with the 0-based index of the start, end, and chromosome column.
(For normal BED files, this would be ‘1,2,0’) The get_nonmissing_chunks function can scan the
input VCF and find regions with no missing data. All of these can be combined with bedtools to
select regions that overlap with all three possible files.

Whichever method used, the target region file should be run through the informative_filter function
to check the VCF file has enough biallelic, informative SNPs (two or more of each of two alleles) to
have a good chance of passing the four-gamete test (which requires regions with at least two SNPs).
An informative count of 5 will usually allow for this, but if you have limited regions this threshhold
can be lowered to 3.

In addition to these files, additional functionality such as CpG filtering and comprehensive logging
can be used by providing: - A reference FASTA (for CpG filtering, can be bgzipped or unzipped but
requires indexing w/faidx) - A log filename

This section also is used to set up the directory structure for data files, a working directory, a
directory for VCF region files, a target number of loci, and names for various stages of loci VCF
files (phasing, four-gamete testing, potentially filtering individuals with missing data).

[2]: #Set up directories and filepaths, run on all restarts
work_dir='/home/jared/workspace/projects_ppp/notebook_sample/'
#data_dir='/media/ccgg/ppp_sample_data/'
data_dir=work_dir
vcf_dir = work_dir+'vcfs/'

main_vcf_name = data_dir+'pan_chr20.vcf.gz'
filtered_vcf_name = data_dir+'pan_chr20_filtered.vcf.gz'
stat_file_name = work_dir+'fst_regions.bed'
model_file = data_dir+'great_ape.model'
int_bed_file = work_dir+'regions_for_sampling.bed'
target_loci_file = work_dir+'target_loci.bed'
ima_input_file = work_dir+'test_run_input.ima.u'
#subsamp_bed_file = work_dir+'great_ape_genome2/5k_sample.bed'
logfile = '/home/jared/testpppj.log'

(continues on next page)

3.2. Module Usage and Examples 10

PPP Documentation, Release 0.1.13

(continued from previous page)

loci=200

region_files = [vcf_dir+'Sampled_nonmissing/Sample_'+str(i)+'.vcf' for
→˓i in range(loci)]
phased_files = [vcf_dir+'Phased/phased_'+str(i)+'.vcf' for i in
→˓range(loci)]
fourg_files = [vcf_dir+'four_gamete/Sample_'+str(i)+'.vcf' for i in
→˓range(loci)]
passed_files = []

[12]: #Set up directory structure, only needs to be run once
if not os.path.exists(vcf_dir):

os.makedirs(vcf_dir)
os.makedirs(vcf_dir+'four_gamete/')
os.makedirs(vcf_dir+'Sampled_nonmissing/')
os.makedirs(vcf_dir+'Phased/')

The vcf_filter step will filter the original VCF according to many conditions, including: - Non-
biallelic sites (–filter-min-alleles and –filter-max-alleles) - Sites with missing data (–filter-max-
missing) - Indels - Sites on non-autosomal chromosomes (–filter-exclude-chr) - Individuals not
named in model file (use –model-file to input model file, with –model if multiple models included
in file)

[4]: #Creates VCF filtered for no missing data and biallelic sites
vcf_filter.run(['--vcf', main_vcf_name, '--filter-max-missing', '1.0',
→˓'--model-file',model_file,

'--model','2Pop', '--filter-min-alleles', '2', '--
→˓filter-max-alleles', '2', '--out-format',

'vcf.gz', '--out', filtered_vcf_name, '--filter-exclude-
→˓chr', 'chrX', 'chrY', '--overwrite'])

pysam.tabix_index(filtered_vcf_name,preset='vcf')
print("Filtering complete")

Filtering complete

The vcf_calc step will, for every 10kb window in the genome, calculate Fst given populations from
the model file. Statistics that can be filtered over currently include: - Windowed pi - Tajima’s D - Fst

[3]: #Calculates f_st statistics across genome
vcf_calc.run(['--vcf', filtered_vcf_name, '--out', stat_file_name,

'--calc-statistic', 'windowed-weir-fst', '--model', '2Pop
→˓', '--statistic-window-size',

'10000', '--statistic-window-step', '10000', '--model-
→˓file', model_file, '--overwrite'])

(continues on next page)

3.2. Module Usage and Examples 11

PPP Documentation, Release 0.1.13

(continued from previous page)

print("Stat calculation complete")

Stat calculation complete

Using the informative site filter, the regions produced by the statistics generation can be checked for
whether they contain enough informative sites to pass the four-gamete test. Additional filtering can
be done here if it hasn’t been done before.

[6]: #Selects subset of regions for fast sampling
filter_bed_regions(['--vcf',filtered_vcf_name,'--bed',stat_file_name,

'--remove-indels','--minsites','3','--keep-full-
→˓line','--out',int_bed_file,

'--randcount','5000','--remove-multi'])
print("BED regions selected")

BED regions selected

Only 2848 of 5000 regions found

(Optional) If a file with genic regions is provided, statistic windows that overlap those regions can
be removed from potential loci. The window option can be used to extend exclusion regions by a
set number of base pairs up AND downstream of regions in the filter file. Zero-ho indicates that
files use a zero-based, half open interval representation, as opposed to the general 1-based, closed
region format.

[3]: int_bed_file2 = work_dir+'regions_for_sampling_nogenes.bed'
gene_file = work_dir+'hg18_chr22_genes.bed'
filter_stat(['--stat-file',int_bed_file,'--filter-file',gene_file,'--
→˓window','10000','--zero-ho',

'--out',int_bed_file2])
int_bed_file = int_bed_file2

WARNING:root:1773 of 2848 regions selected as non-overlapping

The statistic file can be filtered in one of two ways: randomly or uniformly. A random sample
(which conceptually doesn’t require a statistic) will select sample-size numer of loci for analysis,
while a uniform sample will attempt to create a uniform distribution of the chosen statistic. The
samples will be placed into a set number of bins, which must be divisible by the number of target
loci.

[4]: stat_sampler.run(['--statistic-file',int_bed_file,'--out',target_loci_
→˓file,'--sampling-scheme','uniform',

'--uniform-bins','5','--sample-size',str(loci),'--calc-
→˓statistic','windowed-weir-fst','--overwrite'])

This function creates loci VCF files from the full-genome VCF, while optionally doing additional
filtering

3.2. Module Usage and Examples 12

PPP Documentation, Release 0.1.13

[4]: #Uniformly sample regions for subset of 200 loci
#vcf_sampler.run(['--vcf', filtered_vcf_name, '--statistic-file',
target_loci_file, '--out-format', 'vcf', '--calc-
→˓statistic', 'windowed-weir-fst',
'--sampling-scheme', 'uniform', '--uniform-bins', '5',
→˓ '--out-dir',
work_dir + 'great_ape_genome2/Sample_Files', '--
→˓overwrite'])
#vcf_split.run(['--vcf',filtered_vcf_name,'--split-method','statistic-
→˓file','--out-format','vcf','--out-prefix',
vcf_dir+'Sampled_nonmissing/Sample','--split-file',
→˓target_loci_file])
vcf_split_pysam.vcf_region_write([filtered_vcf_name,'--bed',target_
→˓loci_file,'--out-prefix',vcf_dir+'Sampled_nonmissing/Sample_',

'--remove-indels','--remove-multi','--
→˓bed-column-index','2,3,1',

'--informative-count','2'])

print("Sampling complete")

Sampling complete

Each locus must be prepared for IM analysis, which involves finding a subregion of each locus that
passes the four-gamete test. The four-gamete test is passed if all pairs of alleles in a region have
less than four gametes among them. For example, if two SNPs are A/C and G/T, there are four
possible gamete haplotypes among them: AG, AT, CG, and CT. If haplotypes with all four of these
are present, this indicates that there must have been a recombination event between them at some
point in the sampled populations. This violates the IM model, so these regions would fail the test.
The four-gamete code as implemented will compute all regions that pass the four-gamete test in a
locus VCF file, then select a region either at random or with the largest number of informative sites.
A minimum number of informative sites can be set, which defaults to two.

Before the four-gamete test, the locus VCF files need to be phased. This pipeline provides two
phasing programs, beagle and shapeit.

[5]: #Phase locus
for i in range(loci):

vcf_phase.run(['--vcf',region_files[i],'--phase-algorithm','shapeit
→˓','--out',

phased_files[i],'--out-format','vcf','--overwrite'])
print ("Phasing done")

Phasing done

Once phasing is done, each file must be filtered through the four-gamete test. The four-gamete test
is a method for determining whether or not there has been recombination between a pair of variants.
To do this, all individuals have haplotypes defined as the variants at the two sites. Given two snps

3.2. Module Usage and Examples 13

PPP Documentation, Release 0.1.13

with ref/alt alleles A/G and C/T, if individuals in this sample have haplotypes AC, AT, and GT, it is
possible that there has been no recombination between these alleles. If an additional individual has
the GC haplotype, this means that a recombination event must have taken place between the sites.
This function will return a subregion of the region in the contained VCF that passes the four-gamete
test with at least two informative (ac>1) SNPs. If no valid region is found, no VCF is created and
the region is skipped for downstream analysis.

[6]: #Subsample locus for four-gamete compatible interval, if no subregion
→˓returned, do not use VCF
passed_files = []
for i in range(loci):

ret = four_gamete.sample_fourgametetest_intervals(['--vcfs',
→˓phased_files[i], '--out',

fourg_files[i],
→˓'--4gcompat', '--reti', '--right',

'--numinf', '2
→˓'])

if ret[0] is not None:
passed_files.append(fourg_files[i])

print ("Four gamete regions selected for %d loci"%(len(passed_files)))

Four gamete regions selected for 199 loci

This converts the files that pass the four-gamete test into a single IMa input file. Required arguments
are a list of VCF files, and a model file. Filtering options are also available if unwanted sites haven’t
been filtered out at a previous step.

[7]: #Create IMa input file
ima_args = ['--vcfs']
ima_args.extend(passed_files)
ima_args.extend(['--model-file', model_file, '--model','2Pop','--out',
→˓work_dir + 'ima_all_loci.ima.u'])

vcf_to_ima.vcf_to_ima(ima_args)
print ("IMa input created")

IMa input created

If desired, this block will run admixture to determine the population assignments of the various
populations in the input VCF files. The plot will indicate, for each individual, an estimate of how
much of their ancestry comes from the populations determined by clustering in admixture.

[]: #Admixture analysis, optional
from pgpipe import convert, admixture, graph_plotter
phased_string = ' '.join(phased_files)
loci_vcf = vcf_dir+'Phased/phased_merged.vcf.gz'
concatcall = subprocess.Popen('vcf-concat '+phased_string+ ' | bgzip -
→˓c > '+loci_vcf, shell=True,stdout=subprocess.PIPE)

(continues on next page)

3.2. Module Usage and Examples 14

PPP Documentation, Release 0.1.13

(continued from previous page)

temp_out, temp_err = concatcall.communicate()
convert.run(['--vcf',loci_vcf,'--out-format','binary-ped','--out-prefix
→˓',vcf_dir+'great_ape','--overwrite'])
admixture.run(['--file',vcf_dir+'great_ape.bed','--pop','2'])
graph_plotter.bar_plot(vcf_dir+'great_ape.2.Q')
print ("Plots created")

[]:

3.2. Module Usage and Examples 15

CHAPTER 4

PPP Core Functions

The functions below were developed to perform many of the core operations typically used in
population genetic analyses. Each of these functions were designed to perform a single operation
(i.e. filtering, phasing, etc.).

4.1 vcf_filter.py: VCF Filter Function

Depending on the analysis being conducted, a number of variant sites and/or samples may be
unsuitable and must be removed. Given an unfiltered VCF and the desired filters, vcf_filter will
apply the filters and produce a filtered VCF. Filters may be used independently or combined as
needed. In addition, a number of the filters are seperated into two types: include (include/keep all
relevant variant sites or samples) and exclude (exclude/remove all relevant variant sites or samples).

In this illustration of the filtering process (within a locus of interest), variant sites were kept only if

16

PPP Documentation, Release 0.1.13

they: i) were biallelic and ii) passed all filters. These requirements resulted in the removal of two
variant sites (i.e. 197557 and 198510) within the given locus.

4.1.1 Command-line Usage

The VCF file filter may be called using the following command:

vcf_filter.py

Example usage

Command-line to create a BCF with only biallelic sites:

vcf_filter.py --vcf examples/files/merged_chr1_10000.vcf.gz --filter-
→˓only-biallelic --out-format bcf

Command-line to only include variants on chr1 from 1 to 1509546:

vcf_filter.py --vcf examples/files/merged_chr1_10000.bcf --filter-
→˓include-pos chr1:1-1509546

Command-line to remove indels and ouput a BCF file:

vcf_filter.py --vcf examples/files/merged_chr1_10000.indels.vcf.gz --
→˓filter-exclude-indels --out-format bcf

4.1.2 Dependencies

• BCFtools

4.1.3 Input Command-line Arguments

--vcf <input_filename> Argument used to define the filename of the VCF file to be filtered.

--model-file <model_filename> Argument used to define the model file. Please note that this
argument cannot be used with the individual-based filters.

--model <model_str> Argument used to define the model (i.e. the individual(s) to include). Please
note that this argument cannot be used with the individual-based filters.

4.1. vcf_filter.py: VCF Filter Function 17

https://samtools.github.io/bcftools/bcftools.html

PPP Documentation, Release 0.1.13

4.1.4 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename, overrides --out-
prefix

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension)

--out-format <vcf, vcf.gz, bcf, bed, sites> Argument used to define the desired output format. For-
mats include: uncompressed VCF (vcf); compressed VCF (vcf.gz) [default]; BCF (bcf);
variants in bed format; or variants in sites format.

--overwrite Argument used to define if previous output should be overwritten.

4.1.5 Filter Command-line Arguments

The filtering arguments below are roughly seperated into catagoires. Please not that mulitple filters
are seperated into two opposing function types include and exclude.

Individual-Based Arguments

Please note that all individual-based arguments are not compatible with either the --model or
--model-file command-line arguments.

--filter-include-indv <indv_str> <indv1_str, indv2_str, etc.> Argument used to define the individ-
ual(s) to include. This argument may be used multiple times if desired.

--filter-exclude-indv <indv_str> <indv1_str, indv2_str, etc.> Argument used to define the individ-
ual(s) to exclude. This argument may be used multiple times if desired.

--filter-include-indv-file <indv_filename> Argument used to define a file of individuals to include.

--filter-exclude-indv-file <indv_filename> Argument used to define a file of individuals to ex-
clude.

Allele/Genotype-Based Arguments

--filter-only-biallelic Argument used to only include variants that are biallelic.

--filter-min-alleles min_int Argument used to include variants with a number of allele >= to the
given number.

--filter-max-alleles max_int Argument used to include variants with a number of allele <= to the
given number.

--filter-maf-min maf_proportion Argument used to include variants with equal or greater MAF
values.

4.1. vcf_filter.py: VCF Filter Function 18

PPP Documentation, Release 0.1.13

--filter-maf-max maf_proportion Argument used to include variants with equal or lesser MAF
values.

--filter-mac-min mac_int Argument used to include variants with equal or greater MAC values.

--filter-mac-max mac_int Argument used to include variants with equal or lesser MAC values.

--filter-include-indels Argument used to include variants if they contain an insertion or a deletion.

--filter-exclude-indels Argument used to exclude variants if they contain an insertion or a deletion.

--filter-include-snps Argument used to include variants if they contain a SNP.

--filter-exclude-snps Argument used to exclude variants if they contain a SNP.

--filter-include-snp <rs#> <rs#1, rs#2, etc.> Argument used to include SNP(s) with the matching
ID. This argument may be used multiple times if desired.

--filter-exclude-snp <rs#> <rs#1, rs#2, etc.> Argument used to exclude SNP(s) with the matching
ID. This argument may be used multiple times if desired.

--filter-include-snp-file <snp_filename> Argument used to define a file of SNP IDs to include.

--filter-exclude-snp-file <snp_filename> Argument used to define a file of SNP IDs to exclude.

--filter-max-missing proportion_float Argument used to filter positions by their proportion of
missing data, a value of 0.0 allows for no missing whereas a value of 1.0 ignores missing data.

--filter-max-missing-count count_int Argument used to filter positions by the number of samples
with missing data, a value of 0 allows for no samples to have missing data.

Position-Based Arguments

--filter-include-pos <chr, chr:pos, chr:start-end, chr:start-> Argument used to include matching
positions. May be used to include: an entire chromosome (i.e. chr); a single position (i.e.
chr:pos); a chromosomal locus (i.e. chr:start-end); or a chromosomal span (i.e. chr:start-
/chr:0-end). This argument may be used multiple times if desired.

--filter-exclude-pos <chr, chr:pos, chr:start-end, chr:start-> Argument used to exclude matching
positions. May be used to exclude: an entire chromosome (i.e. chr); a single position (i.e.
chr:pos); a chromosomal locus (i.e. chr:start-end); or a chromosomal span (i.e. chr:start-
/chr:0-end). This argument may be used multiple times if desired.

--filter-include-pos-file <position_filename> Argument used to define a file of positions to include
within a tsv file (chromosome and position).

--filter-exclude-pos-file <position_filename> Argument used to define a file of positions to ex-
clude within a tsv file (chromosome and position).

--filter-include-bed <position_bed_filename> Argument used to define a BED file of positions to
include. Please note that filename must end in .bed.

4.1. vcf_filter.py: VCF Filter Function 19

PPP Documentation, Release 0.1.13

--filter-exclude-bed <position_bed_filename> Argument used to define a BED file of positions to
exclude. Please note that filename must end in .bed.

Flag-Based Arguments

--filter-include-passed Argument used to include positions with the ’PASS’ filter flag.

--filter-exclude-passed Argument used to exclude positions with the ’PASS’ filter flag.

--filter-include-filtered <filter_flag> Argument used to include positions with the specified filter
flag.

--filter-exclude-filtered <filter_flag> Argument used to exclude positions with the specified filter
flag.

4.1.6 Other Command-line Arguments

--force-samples Argument used to ignore the error rasied when a sample that does not exist within
the input VCF.

4.2 vcf_calc.py: VCF Statistic Calculator Function

Automates the calculation of site/windowed fixation index (Fst), Tajima’s D, nucleotide diversity
(Pi), allele frequency, and heterozygosity using VCFTools. If no statistic is specified, windowed Fst
is used by default.

4.2.1 Command-line Usage

The VCF statistic calculator may be called using the following command:

vcf_calc.py

Example usage

Command-line to calculate Tajima’s D:

vcf_calc.py --vcf examples/files/merged_chr1_10000.vcf.gz --calc-
→˓statistic TajimaD --statistic-window-size 10000

Command-line to calculate windowed Fst on the two populations within the model 2Pop:

4.2. vcf_calc.py: VCF Statistic Calculator Function 20

PPP Documentation, Release 0.1.13

vcf_calc.py --vcf examples/files/merged_chr1_10000.vcf.gz --model-file
→˓examples/files/input.model --model 2Pop --calc-statistic windowed-
→˓weir-fst --statistic-window-size 10000 --statistic-window-step 10000

4.2.2 Dependencies

• VCFtools

4.2.3 Input Command-line Arguments

--vcf <input_filename> Argument used to define the filename of the VCF file for calculations.

--model-file <model_filename> Argument used to define the model file. Please note that this
argument cannot be used with the --pop-file argument or individual-based filters.

--model <model_str> Argument used to define the model (i.e. the individual(s) to include and/or
the populations for relevant statistics). May be used with any statistic. Please note that this
argument cannot be used with --pop-file argument or the individual-based filters.

4.2.4 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename, overrides --out-
prefix. Cannot be used if multiple output files are created.

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension)

--out-dir <output_dir_name> Argument used to define the output directory. Only used if 3+
populations are specified.

--overwrite Argument used to define if previous output should be overwritten.

4.2.5 Statistic Command-line Specification

--calc-statistic <weir-fst, windowed-weir-fst, TajimaD, site-pi, window-pi, freq, het-fit, het-fis, hardy-weinberg>
Argument used to define the statistic to be calculated. Site Fst (weir-fst), windowed Fst
(windowed-weir-fst), Tajima’s D (TajimaD), site nucleotide diversity (site-pi), windowed
nucleotide diversity (window-pi), allele frequency (freq), Fit (het-fit), Fis (het-fis), and the
hardy-weinberg equilibrium (hardy-weinberg).

4.2. vcf_calc.py: VCF Statistic Calculator Function 21

https://vcftools.github.io/index.html

PPP Documentation, Release 0.1.13

Models with 3+ populations

If a model is specified with 3 or more populations, the following statistics will result in the creation
of an output directory - see --out-dir - of pairwise comparisons: weir-fst, windowed-weir-fst, site-pi,
window-pi.

Statistic Command-line Requirements and Options

It should be noted that some of the statistics in the VCF calculator require additional arguments
(i.e. --pop-file, --statistic-window-size, --statistic-window-step). These statistics may be found
below with their additional requirements and optional arguments. If a statistic is not given, only the
statistic specification (i.e. --calc-statistic) is required.

--calc-statistic weir-fst Requires: --pop-file/--model.

--calc-statistic windowed-weir-fst Requires: --pop-file/--model and --statistic-window-size. If
--statistic-window-step is not given, it will default to the value of --statistic-window-size.

--calc-statistic TajimaD

Requires: --statistic-window-size

--calc-statistic site-pi Optional: --pop-file/--model.

--calc-statistic windowed-pi Requires: --statistic-window-size. . If --statistic-window-step is
not given, it will default to the value of --statistic-window-size. Optional: --pop-file/--
model.

--calc-statistic het-fis Requires: --pop-file/--model.

Additional Statistic Command-line Arguments

--statistic-window-size <size_int> Defines the statistic window size. Not usable with all statistics.

--statistic-window-step <step_int> Defines the statistic window step size. Not usable with all
statistics.

--pop-file <pop_filename> Population file. This argument may be used multiple times if desired.
Please note the this argument is not compatible with either the --model or --model-file
command-line arguments.

4.2.6 Filter Command-line Arguments

If using an unfiltered VCF file (e.g. reduce the creation of unnecessary large files) the VCF calculator
is able to use either a kept or removed sites/BED file and the individual-based paramemeters.

4.2. vcf_calc.py: VCF Statistic Calculator Function 22

PPP Documentation, Release 0.1.13

Individual-Based Arguments

Please note that all individual-based arguments are not compatible with either the --model or
--model-file command-line arguments.

--filter-include-indv <indv_str> <indv1_str, indv2_str, etc.> Argument used to define the individ-
ual(s) to include. This argument may be used multiple times if desired.

--filter-exclude-indv <indv_str> <indv1_str, indv2_str, etc.> Argument used to define the individ-
ual(s) to exclude. This argument may be used multiple times if desired.

--filter-include-indv-file <indv_filename> Argument used to define a file of individuals to include.

--filter-exclude-indv-file <indv_filename> Argument used to define a file of individuals to ex-
clude.

Position-Based Arguments

--filter-include-positions <position_filename> Argument used to define a file of positions to in-
clude within a tsv file (chromosome and position).

--filter-exclude-positions <position_filename> Argument used to define a file of positions to ex-
clude within a tsv file (chromosome and position).

--filter-include-bed <position_bed_filename> Argument used to define a BED file of positions to
include.

--filter-exclude-bed <position_bed_filename> Argument used to define a BED file of positions to
exclude.

4.3 informative_loci_filter.py: Informative Loci Filter

This function checks to make sure that a locus has enough sites to be considered informative in
either the four-gamete test or an IM run. Given a BED file and a VCF file, informative_loci_filter
will find regions in the VCF that have a specified number of variant sites.

4.3. informative_loci_filter.py: Informative Loci Filter 23

PPP Documentation, Release 0.1.13

In this illustration of the locus filtering process, locus_0004 is removed due to only having three
variant sites (highlighted in green) when the threshold is set to four.

Because many variants are not considered useful in these situations, filters are provided for removing
sites with missing data, non-biallelic sites, indels, CpGs, and singletons from determining if there
are a sufficient number of sites in the region. Output is either a BED file of a set number of random
regions that pass the criteria, or a file with all regions that pass. It can also remove regions that are
below a minimum specified length. If a model file is specified, only the individuals in the selected
population will be considered for singleton and missing data filters.

4.3.1 Input Arguments

--vcf <vcf_name> Name of input VCF file

--bed <bed_file> Name of input BED file

4.3.2 Output Arguments

--out <out_name> Name of output BED file

--randcount <number_of_regions> If set, will output set number of regions randomly selected
from those that pass the criteria. Default behavior is to output all regions that match criteria.

4.3.3 Filtering Arguments

--remove-multi Do not count tri-allelic+ sites toward number of valid variants in a region

--remove-missing <max_misscount> Do not count sites with more than max_misscount missing
individuals. Default of -1 indicates all sites are included, 0 indicates sites with any missing
data are not counted..

--remove-indels

4.3. informative_loci_filter.py: Informative Loci Filter 24

PPP Documentation, Release 0.1.13

Do not count indels toward number of valid variants in a region

--parsecpg <fasta_reference_filename> Optional argument that if set, will detect whether
or not variants are CpGs. A check is made to make sure the positions in the FASTA line
up with the correct variant reference allele.

--informative-count <minimum_allele_count> Minimum number of haplotypes with both alleles
at a site. Default is 2, meaning there must be two of each of reference and alternate allele in
the target individuals. Can be set to 1 to filter out invariant sites.

--minsites <min_sites> Minimum number of variants required for a region to pass the filtering
criteria. Variants that match specified arguments will not be counted towards this total.

--min-length <min_length> Minimum base length of region for region to be considered.

4.3.4 Region Arguments

--bed-column-index <start_idx>,*<end_idx>*,*<chrom_idx>* Comma-separated string of the
zero-based indices of the start, end, and chromosome columns in the input file, so the file
doesn’t need to be reformatted. Default for a regular BED file is 1,2,0.

--oneidx-start If set, indicates input BED regions are formatted as one-indexed, closed intervals, as
opposed to the BED default of zero-based, half-open intervals. For example, the first million
bases on a chromosome would be:

Zero-based, half-open: 0,1000000 One-based, closed: 1,1000000

--pad <pad_length> If set, regions in input file will be extended by pad_length bases on both sides.

--keep-full-line If set, regions output will be the same line as was present in the input file. Default
behavior is to output start/end/chrom columns in that order, without any other data.

4.3.5 Model Arguments

--model-file <model_filename> Name of model file that contains individuals to be considered for
filtering.

--model <model_name> If model file contains more than one model, name of model to be used.

4.3.6 Other Arguments

--no-sorting Will output regions in order they were in input file. Default behavior is to sort regions
before filtering.

--tbi <tabix_index> If input VCF is compressed and tabix file is not default, provide the tabix
filename here.

4.3. informative_loci_filter.py: Informative Loci Filter 25

PPP Documentation, Release 0.1.13

--no-xy Removes regions on X/Y chromosomes from consideration.

4.4 vcf_split.py: VCF Split Function

As a single VCF may include the variant sites of multiple loci, it is often necessary to seperate
the loci from the VCF. Given a VCF file and a file of loci (i.e. BED or PPP-created statistic file),
vcf_split will generate a VCF for each locus.

In this illustration of the splitting process, Data.VCF includes variant sites associated with a discrete
set of loci (i.e. Locus_0001 - Locus_0013). Once split, a single file (e.g. Locus_0001.VCF) will
only contain the variant sites associated with that locus.

4.4.1 Command-line Usage

The VCF splitter may be called using the following command:

vcf_split.py

Example usage

Command-line to split using a statistic file:

vcf_split.py --vcf examples/files/merged_chr1_10000.vcf.gz --split-
→˓file examples/files/sampled.windowed.weir.fst.tsv --split-method
→˓statistic-file --model-file examples/files/input.model --model 2Pop

4.4. vcf_split.py: VCF Split Function 26

PPP Documentation, Release 0.1.13

4.4.2 Dependencies

• BCFtools

4.4.3 Input Command-line Arguments

--vcf <input_filename> Argument used to define the filename of the VCF file to be split.

--split-file <split_filename> Argument used to define the file to be split

--model-file <model_filename> Argument used to define the model file. Please note that this
argument cannot be used with the --pop-file argument or individual-based filters.

--model <model_str> Argument used to define the model (i.e. the individual(s) to include and/or
the populations for relevant statistics). May be used with any statistic. Please note that this
argument cannot be used with --pop-file argument or the individual-based filters.

4.4.4 Output Command-line Arguments

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension)

--out-format <vcf, vcf.gz, bcf> Argument used to define the desired output format. Formats in-
clude: uncompressed VCF (vcf); compressed VCF (vcf.gz) [default]; and BCF (bcf).

--out-dir <output_dir_name> Argument used to define the output directory.

--overwrite Argument used to define if previous output should be overwritten.

4.4.5 Split Command-line Arguments

--split-method <statistic-file, bed> Argument used to define the splitting method. Users may spilit
using either a statistic-file (statistic-file) from VCF Calc (or other methods) or a BED file
(bed).

--statistic-window-size <statistic_window_int> Argument used to define the size of window cal-
culations. This argument is only required if the BIN_END column is absent within the
file.

--no-window-correction Argument used to define if a window should not be corrected to avoid an
overlap of a single position (i.e. 100-200/200-300 vs. 100-199/200-299).

4.4. vcf_split.py: VCF Split Function 27

https://samtools.github.io/bcftools/bcftools.html

PPP Documentation, Release 0.1.13

4.4.6 Filter Command-line Arguments

If using an unfiltered VCF file (e.g. reduce the creation of unnecessary large files) the VCF calculator
is able to use either a kept or removed sites/BED file and the individual-based paramemeters.

Individual-Based Arguments

Please note that all individual-based arguments are not compatible with either the --model or
--model-file command-line arguments.

--filter-include-indv <indv_str> <indv1_str, indv2_str, etc.> Argument used to define the individ-
ual(s) to include. This argument may be used multiple times if desired.

--filter-exclude-indv <indv_str> <indv1_str, indv2_str, etc.> Argument used to define the individ-
ual(s) to exclude. This argument may be used multiple times if desired.

--filter-include-indv-file <indv_filename> Argument used to define a file of individuals to include.

--filter-exclude-indv-file <indv_filename> Argument used to define a file of individuals to ex-
clude.

Position-Based Arguments

--filter-include-positions <position_filename> Argument used to define a file of positions to in-
clude within a tsv file (chromosome and position).

--filter-exclude-positions <position_filename> Argument used to define a file of positions to ex-
clude within a tsv file (chromosome and position).

--filter-include-bed <position_bed_filename> Argument used to define a BED file of positions to
include.

--filter-exclude-bed <position_bed_filename> Argument used to define a BED file of positions to
exclude.

4.5 vcf_phase.py: VCF Phase Function

Phasing is an essental and frequently used process in population genetic analyses. Given an
unphased VCF file and a selected phasing algorithm, vcf_phase will produce a phased VCF. Phasing
may be configured using various general options (e.g. specifying Ne, including a genetic map) or
algorithm-specific options (e.g. including a compatible reference panel) as needed.

4.5. vcf_phase.py: VCF Phase Function 28

PPP Documentation, Release 0.1.13

In this illustration of the phasing process, unphased variants (alleles divided diagonally) are con-
verted into an estimated haplotypes (alleles divided horizontally and on seperate strands).

4.5.1 Command-line Usage

The VCF file phaser may be called using the following command:

vcf_phase.py

Example usage

Command-line to phase a VCF using Beagle:

vcf_phase.py --vcf examples/files/merged_chr1_10000.unphased.vcf.gz --
→˓phase-algorithm beagle

Command-line to phase a VCF using SHAPEIT:

vcf_phase.py --vcf examples/files/merged_chr1_10000.unphased.vcf.gz --
→˓phase-algorithm shapeit

4.5.2 Dependencies

• SHAPEIT

• Beagle 5.0

• BCFtools

4.5. vcf_phase.py: VCF Phase Function 29

https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
https://faculty.washington.edu/browning/beagle/beagle.html
https://samtools.github.io/bcftools/bcftools.html

PPP Documentation, Release 0.1.13

• plink 2.0

4.5.3 Input Command-line Arguments

--vcf <input_filename> Argument used to define the filename of the VCF file to be phased.

--model-file <model_filename> Argument used to define the model file. Please note that this
argument cannot be used with the --pop-file argument or individual-based filters.

--model <model_str> Argument used to define the model (i.e. the individual(s) to include and/or
the populations for relevant statistics). May be used with any statistic. Please note that this
argument cannot be used with --pop-file argument or the individual-based filters.

4.5.4 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename, overrides --out-
prefix.

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension)

--out-format <vcf, vcf.gz, bcf> Argument used to define the desired output format. Formats in-
clude: uncompressed VCF (vcf); compressed VCF (vcf.gz) [default]; and BCF (bcf).

--overwrite Argument used to define if previous output should be overwritten.

4.5.5 Phasing Command-line Arguments

--phase-algorithm <beagle, shapeit> Argument used to define the phasing algorithm. BEAGLE
5.0 (beagle) [default] and SHAPEIT (shapeit). Please note: Both algorithms possess algorithm-
specific arguments that may be found in their respective sections.

--Ne <Ne_int> Argument used to define the effective population size.

--genetic-map <genetic_map_filename> Argument used to define a genetic map file.

--phase-chr <chr> Argument used to define a single chromosome to phase.

--phase-from-bp Argument used to define the lower bound of positions to include. May only be
used with a single chromosome.

--phase-to-bp Argument used to define the upper bound of positions to include. May only be used
with a single chromosome.

--random-seed <seed_int> Argument used to define the seed value for the random number gener-
ator.

4.5. vcf_phase.py: VCF Phase Function 30

https://www.cog-genomics.org/plink/2.0/

PPP Documentation, Release 0.1.13

SHAPEIT Phasing Command-line Arguments

--shapeit-ref <ref_haps> <ref_legend> <ref_sample> Argument used to define a reference panel.
Three files are required: the reference haplotypes (.haps), the snp map (.legend), and the
individual information (.sample)

--shapeit-burn-iter <iteration_int> Argument used to define the number of burn-in iterations.

--shapeit-prune-iter <iteration_int> Argument used to define the number of pruning iterations.

--shapeit-main-iter <iteration_int> Argument used to define the number of main iterations.

--shapeit-states <state_int> Argument used to define the number of conditioning states for haplo-
type estimation.

--shapeit-window <Mb_float> Argument used to define the model window size in Mb.

--shapeit-force Argument used to diable the missing data error (i.e. --force). Use at your own risk.

BEAGLE Phasing Command-line Arguments

--beagle-ref <ref_vcf, ref_bref3> Argument used to define a reference panel VCF or bref3.

--beagle-burn-iter <iteration_int> Argument used to define the number of burn-in iterations.

--beagle-iter <iteration_int> Argument used to define the number of main iterations

--beagle-states <state_int> Argument used to define the number of model states for genotype
estimation.

--beagle-error <probability> Argument used to define the HMM allele mismatch probability.

--beagle-window <cM_float> Argument used to define the sliding window size in cM.

--beagle-overlap <cM_float> Argument used to define the overlap between neighboring windows
in cM.

--beagle-step <cM_float> Argument used to define the step length in cM used for identifying short
IBS segments.

--beagle-nsteps <windows_int> Argument used to define the number of consecutive --beagle-
steps used for identifying long IBS segments.

--beagle-path <path> Argument used to define the path to locate beagle.jar.

4.6 vcf_four_gamete.py: Four Gamete Test Function

The four-gamete test is a method for determining whether or not there has been recombination
between a pair of variants. To do this, all individuals must have haplotypes defined as the variants at
the two sites.

4.6. vcf_four_gamete.py: Four Gamete Test Function 31

PPP Documentation, Release 0.1.13

In this illustration of four-gamete test, the haplotypes of the samples from 197337 to 199256
(highlighted in green) pass the four-gamete test. In comparison, the haplotypes from 196944 to
197337 and from 199256 to 199492 (highlighted in red) both fail the four-gamete test as all possible
haplotypes are observed.

Given phased input with individual variants over a region of the genome, four_gamete generates an
interval within those variants that passes the four-gamete filtering criteria, then return either that
interval or an output file with variants in that interval.

Common usage for this function is to input a VCF file that contains variants for individuals at a
single locus, with output returned being a VCF that contains a subsample of these variants. A full
VCF can be used with --vcfreg, where the second argument is a BED file with one or more regions,
output will be either a VCF for four-gamete passing regions or a new BED file with the truncated
regions.

4.6.1 Input Arguments

--vcfs <input_vcf_1>...*<input_vcf_n>* Input name of one or more VCF files, where each VCF
represents a locus.

--vcfreg <input_vcf> <BED file> Input name of VCF file containing genome data and name of
BED file with regions to be analyzed.

4.6.2 Output Aguments

--out <output_filename> Name for output file.

--out-prefix <ouput_prefix> If multiple files are output, this option is required to set a prefix for
the output files.

4.6.3 Interval Arguments

--numinf <minimum informative site count> Region returned must have at least n informative
sites, defaults to 1

4.6. vcf_four_gamete.py: Four Gamete Test Function 32

PPP Documentation, Release 0.1.13

--hk If set, returns intervals with at least one recombination event instead of regions with no
recombination.

--reti This script will generate a list of valid regions with no recombination. Selecting this option
will return a single interval as specified by other arguments

--retl Returns all valid intervals, either as a list of intervals or multiple output files

4.6.4 Single Returned Region Arguments

Select one of: --rani

Returns random interval (default)

--ranb Returns random interval, with probability of interval proportional to interval length

--left Return first interval with enough informative sites

--right Return last interval with enough informative sites

--maxlen Return interval with most informative sites

4.6.5 Other Arguments

--remove-multiallele Removes multi-alleleic sites from analysis

--include-missing Include sites with missing data in analysis

--ovlps Extend region to include non-informative variants between an edge variant and a variant
that breaks the four-gamete criteria

--ovlpi Include informative variants from overlapping regions

4.6. vcf_four_gamete.py: Four Gamete Test Function 33

CHAPTER 5

PPP Input File Generators

For several programs that implement analyses of population genomic variation, PPP provides scripts
to generate input files from VCF files.

5.1 vcf_format_conversions.py: VCF to
Plink/EIGENSTRAT

Automates various simple file conversions. Currently the function is capable of converting between
VCF-based formats (i.e. VCF, compressed-VCF, and BCF) and PLINK-based formats (i.e. PED
and Binary-PED). Additional formats will be added as needed.

5.1.1 Input Command-line Arguments

--vcf <vcf_filename> Argument used to define the filename of the VCF file.

--vcf-fid <fid_str> Argument used to define the family ID for all VCF samples.

--ped-prefix <ped_prefix> Argument used to define the filename prefix of both PED and MAP
files.

--ped <ped_filename> Argument used to define the filename of the PED file. Called alongside
--map.

--map <map_filename> Argument used to define the filename of the MAP file. Called alongside
--ped.

34

PPP Documentation, Release 0.1.13

--binary-ped-prefix <binary_ped_prefix> Argument used to define the filename prefix of the
Binary-PED, FAM, and BIM files.

--binary-ped <ped_filename> Argument used to define the filename of the Binary-PED (i.e. BED)
file. Called alongside --fam and --bim.

--fam <fam_filename> Argument used to define the filename of the FAM file. Called alongside
--binary-ped and --bim.

--bim <bim_filename> Argument used to define the filename of the BIM file. Called alongside
--binary-ped and --fam.

5.1.2 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename, overrides --out-
prefix.

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension).

--out-format <vcf, vcf.gz, bcf, ped, ped-12, binary-ped, eigenstrat> Argument used to define the
desired output format. Formats include: uncompressed VCF (vcf); compressed VCF (vcf.gz);
BCF (bcf); PLINK text file (ped); PLINK "12" coded text file (ped-12); binary PLINK file
(binary-ped); and eigenstrat file (eigenstrat).

--overwrite Argument used to define if previous output should be overwritten.

5.1.3 Other Command-line Arguments

--delete-original Argument used to define that the original file should be deleted once converted.

--threads <thread_int> Argument used to define the number of threads. This argument is currently
only supported by conversions to/from PED and Binary-PED.

5.2 vcf_to_ima.py: VCF to IMa Conversion Function

Create IMa input file from four-gamete filtered VCF files.

An IM analysis requires an IM-formatted input file that contains multiple loci, where each locus has
sequence information for variant sites as determined by multiple individuals (which are grouped by
population). To produce this file, this script takes either a VCF file with a BED file that indicates
loci to be used or a VCF file per locus. A model file will be used to split the samples in the VCF(s)
into populations.

For each locus, a header line is created that contains several pieces of information, including number
of individuals per population at this locus, number of sites in sequences provided, mutation model,

5.2. vcf_to_ima.py: VCF to IMa Conversion Function 35

PPP Documentation, Release 0.1.13

inheritance scalar, and mutation rate per year at locus (over locus, not per base pair). Population
sizes and sequence ordering are handled internally, the inheritance scalar and mutation rate can be
set via commandline.

Loci provided as input must pass the four-gamete filtering criteria. In addition, if filtering has not
been previously done options are available to filter out indels (default), multiallelic sites, and CpGs
(with reference genome). Sites with missing data can either be filtered by dropping individuals
missing data from a locus from analysis at that locus, or by replacing the missing site with a
reference allele.

5.2.1 Input Arguments

--vcf <input_filename> Filename for input VCF if using BED file with locus information

--vcfs <vcf_filename_1>...*<vcf_filename_n>* One or multiple VCF input filenames where each
file contains sequences for a single locus. A file with lines corresponding to filenames can be
provided with --vcfs @<vcf_filelist>

--model-file <model_filename> Filename of model file.

--model <model name> If model file contains multiple models, use this argument to specify name
of population to use.

--reference-fasta <reference_filename> Filename for reference FASTA file. File can be uncom-
pressed or bg-zipped, but must be indexed with faidx. When option is specified, default
options are to include sequence in output loci but not filter for CpGs (use --parse-cpg)

--bed <bed_filename> Filename for BED file specifying loci if only one VCF is provided. Can be
used with multiple VCFs if line count aligns, used for getting correct locus length.

5.2.2 Output Arguments

--out <out_filename> Output filename.

5.2.3 Model Options

--mutrate <mutation rate> Set mutation rate per base pair (default is 1e-9). This value is multi-
plied by locus length to get mutation rate per locus.

--inheritance-scalar <scalar> Sets inheritance scalar for all loci. Default behavior is to set scalar
to 1 for non-X/Y/MT chromosomes, .75 for ’X’ and ’chrX’, and .25 for ’y’, ’chrY’, ’MT’,
and ’chrMT’.

5.2. vcf_to_ima.py: VCF to IMa Conversion Function 36

PPP Documentation, Release 0.1.13

5.2.4 Filtering Options

--remove-multiallele Set all multiallelic sites to be reference.

--drop-missing-sites <individual_count> Drops all sites where more than ’individual_count’ in-
dividuals are missing data. Default is -1 (no dropping), and 0 will drop all sites missing data
and replace them with the reference allele.

--drop-missing-inds If set, if an individual is missing data at a locus, that individual will not be
included at that locus and population counts for that locus will be adjusted.

--remove-cpg Requires --reference-fasta. If set, will replace CpG sites with reference allele at site,
setting them as invariant.

5.2.5 Other Options

--oneidx-start If set, indicates input BED regions are formatted as one-indexed, closed intervals, as
opposed to the BED default of zero-based, half-open intervals. For example, the first million
bases on a chromosome would be:

Zero-based, half-open: 0,1000000 One-based, closed: 1,1000000

--bed-column-index <start_col,end_col,chrom_col> Comma-separated list of zero-based indexes
of start, end, and chromosome name columns in input BED file. Default value for traditionally
structured BED is 1,2,0

--noseq If set, and --reference-fasta is provided, will not output invariant sites to IM file.

5.3 vcf_to_treemix.py: VCF to treemix Conversion Func-
tion

The treemix program was developed by Pickrell and Prichard (2012) to estimate phylogeny and
admixture for closely related populations.

Pickrell JK, Pritchard JK (2012) Inference of Population Splits and Mixtures from Genome-Wide
Allele Frequency Data. PLOS Genetics 8(11): e1002967.

The program can make use of very large numbers of SNPs.

vcf_to_treemix.py will generate a treemix input file from a vcf file.

If run using the --bed-file and --kblock options, the resulting treemix file can be run using the
’linkage disequilibrium’ (-k) option. Under this option each block of kblock SNPs are treated as a
linked group and different groups are treated as unlinked.

5.3. vcf_to_treemix.py: VCF to treemix Conversion Function 37

PPP Documentation, Release 0.1.13

5.3.1 Required Arguments

--vcf <input_vcf_filename> The name of the vcf file. This can be a bgzipped vcf file. .

--model-file <model_file_name> The name of a PPP model file.

--modelname <model_name> The name of a model in the model file. The treemix file to be
generated will contain the allele counts for each SNP in each of the populations. The treemix
run will estimate the phylogeny for the populations in the model.

--out <outpuf_file_name> The name of the treemix file to be generated. The file is bgzipped and
’.gz’ is added to the end of the name

5.3.2 Optional Aguments

--bed-file <BED_file_name> The BED file is a sorted UCSC-style bedfile containing chromosome
locations of the SNPs to be included in the output file. The BED file has no header. The first
column is the chromosome name (this must match the chromosome name in the vcf file). The
second column is start position (0-based, open interval) The third column is end position
(closed interval). Any other columns are ignored.

If used with --kblock, each of the BED file regions is used to generate one block of SNPs

--kblock <k_block_size> Used with --bed-file, for using treemix runtime option -k. k is the number
of SNPs in a block in the treemix file. If the actual number of SNPs in a BED file interval
is less than kblock, then additional invariant rows are added to the treemix file so the total
numbers of rows for that and every block is equal to kblock. k is set to 1000 by default. It
needs to be increased only when one or more BED file regions have more than k snps.

5.3.3 Example usage

Example command-lines:

vcf_to_treemix.py -h

vcf_to_treemix.py --vcf pan_example.vcf.gz --model-file panmodels.
→˓model --modelname 4Pop --out vcf_treemixtest1 --bed-file pan_example_
→˓regions.bed --kblock 1000

.. code-block:: bash

vcf_to_treemix.py --vcf pan_example.vcf.gz --model-file panmodels.
→˓model --modelname 4Pop --out vcf_treemixtest2

5.3. vcf_to_treemix.py: VCF to treemix Conversion Function 38

PPP Documentation, Release 0.1.13

5.4 vcf_to_gphocs.py: VCF to GPhocs Conversion Func-
tion

Generates an input sequence file for the G-Phocs program from a vcf file and a fasta reference file.

G-Phocs can estimate the phylogenetic and demographic history of a set of genomes, each sampled
at a large number of genomic regions or loci.

Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A. Bayesian inference of ancient human
demography from individual genome sequences. Nature Genetics 43 1031-1034. 2011

https://github.com/gphocs-dev/G-PhoCS/blob/master/GPhoCS_Manual.pdf

5.4.1 Required Arguments

--vcf <input_vcf_filename> The name of the vcf file. This can be a bgzipped vcf file. .

--model-file <model_file_name> The name of a PPP model file.

--model <model_name> The name of a model in the model file. The treemix file to be generated
will contain the allele counts for each SNP in each of the populations. The treemix run will
estimate the phylogeny for the populations in the model.

--bed-file <BED_file_name> The Bed file specifies the regions of the vcf file to be sampled. Each
row of the BED file (region) correspondes to one locus in the G-Phocs sequence file.

The BED file is a sorted UCSC-style bedfile containing chromosome locations of the SNPs
to be included in the output files. The BED file has no header. The first column is the
chromosome name (this must match the chromosome name in the vcf file). The second
column is start position (0-based, open interval) The third column is end position (closed
interval). Any other columns are ignored.

--out <output file name> Specifies the complete output filename.

--reference <reference fasta file> The reference genome fasta file is required in order to generate
full sequences from the SNP data in the vcf file.

5.4.2 Optional Aguments

--diploid <True (default)/False> By default G-Phocs works with a single sequence for each indi-
vidual, where heterozygous positions are shown using IUPAC ambiguity codes. If this option
is False, then only the first sequence of each individual is returned and heterozygous positions
are not shown.

--nloci <number of loci> By default the output file will contain as many loci as there are regions
in the BED file. With this option, the first nloci regions will be used.

5.4. vcf_to_gphocs.py: VCF to GPhocs Conversion Function 39

https://github.com/gphocs-dev/G-PhoCS/blob/master/GPhoCS_Manual.pdf

PPP Documentation, Release 0.1.13

5.4.3 Example usage

Example command-lines:

vcf_to_gphocs.py -h

vcf_to_gphocs.py --vcf pan_example.vcf.gz --reference pan_example_ref.
→˓fa --model-file panmodels.model --modelname 4Pop" --bed-file pan_
→˓example_regions.bed --outvcf_gphocs_test.out

5.5 vcf_to_fastsimcoal.py: VCF to fastsimcoal Conver-
sion Function

Generates Site Frequency Spectrum (SFS) files for fastsimcoal based on instructions in fastsimcoal
ver 2.6 manual.

Generates one-dimensional (1D), two-dimensional (2D) and multidimensional SFS files

All generated SFS files are contained in a zip file archive.

Excoffier, L. and M. Foll. 2011. fastsimcoal: a continuous-time coalescent simulator of genomic
diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27: 1332-1334.

5.5.1 Required Arguments

--vcf <input_vcf_filename> The name of the vcf file. This can be a bgzipped vcf file. .

--model-file <model_file_name> The name of a PPP model file.

--modelname <model_name> The name of a model in the model file. The treemix file to be
generated will contain the allele counts for each SNP in each of the populations. The treemix
run will estimate the phylogeny for the populations in the model.

--dim <dimension file type signifiers> One or more of ’1’, ’2’, or ’m’, for 1D, 2D or multidimen-
sional output files.

For 1D files:

• the filename suffix is _DAFpop#.obs for an array of derived allele counts. where ’#’
is replaced by the population number

• the filename suffix is _MAFpop#.obs for an array of minor allele counts.

For 2D files:

• the filename suffix is _jointDAFpop#_&.obs for an array of derived allele counts.
where # and & are population numbers, and # is larger than &

5.5. vcf_to_fastsimcoal.py: VCF to fastsimcoal Conversion Function 40

PPP Documentation, Release 0.1.13

• the filename suffix is _jointDAFpop#_&.obs for an array of minor allele counts.

For a multidimensional file:

• the filename suffix is _DSFS.obs for an array of derived allele counts.

• the filename suffix is _MSFS.obs for an array of minor allele counts.

5.5.2 Optional Aguments

--basename <name of outpuf file prefix> This is used to specify the prefix of the output files and
the prefix of the zip file archive. The default is "ppp_fsc" in the same folder as the vcf file

--bed-file <BED_file_name> The BED file is a sorted UCSC-style bedfile containing chromosome
locations of the SNPs to be included in the output files. The BED file has no header. The
first column is the chromosome name (this must match the chromosome name in the vcf file).
The second column is start position (0-based, open interval) The third column is end position
(closed interval). Any other columns are ignored.

--outgroup_fasta <name of alternative reference sequence> This option is used to specify the
name of a fasta file to use as an alternative reference to that used for the vcf file.

This fasta file must have been properly aligned to the reference used in the vcf file.

This option can be useful, for example, if an ancestral or outgroup reference is available that
more accurately identifies the ancestral (and thus derived) allele at each SNP than does the
reference used to make the vcf file.

--downsamplesizes <down sample sizes> A sequence of integers, one for each of the populations
in the model in the same order as populations listed in the model. The values specify the
down sampling to be used for each respective population. For a population with k>=1 diploid
individuals (2k>=2 genomes) in the model, the downsample count d must be 2<=d<=2k.

--folded <True/False> The folded option indicates that the folded sfs should be returned. If folded
is False (default) the sfs reports the count of the derived allele. If True, the sfs reports of the
count of the minor (less frequent) allele.

--randomsnpprop <floating point value between 0 and 1> This option can be used to randomly
sample a subset of SNPs. The default is to sample all biallelic SNPs.

--seed <integer> This is used with --randomsnpprop as the seed for the random number generator.

5.5.3 Example usage

Example command-lines:

vcf_to_fastsimcoal.py -h

5.5. vcf_to_fastsimcoal.py: VCF to fastsimcoal Conversion Function 41

PPP Documentation, Release 0.1.13

vcf_to_fastsimcoal.py --vcf pan_example2.vcf.gz --model-file panmodels.
→˓model --modelname 5Pop --downsamplesizes 3 3 3 4 2 --basename vcf_
→˓fsc2 --folded --dim 1 2 m --outgroup-fasta chr22_pan_example2_ref.fa

5.6 vcf_to_dadi.py: VCF to dadi Conversion Function

Generates a dadi snp file from a vcf file.

The dadi snp file format is described in the dadi manual

https://dadi.readthedocs.io/en/latest/user-guide/importing-data/#snp-data-format

Gutenkunst RN, Hernandez RD, Williams SH, Bustamante CD (2009) Inferring the joint demo-
graphic history of multiple populations from multidimensional SNP frequency data. PLoS Genet 5:
e1000695. DOI: 10.1371/journal.pgen.1000695

5.6.1 Required Arguments

--vcf <input_vcf_filename> The name of the vcf file. This can be a bgzipped vcf file. .

--model-file <model_file_name> The name of a PPP model file.

--modelname <model_name> The name of a model in the model file. The treemix file to be
generated will contain the allele counts for each SNP in each of the populations. The treemix
run will estimate the phylogeny for the populations in the model.

--out <output file name> Specifies the complete output filename.

5.6.2 Optional Aguments

--bed-file <BED_file_name> The BED file is a sorted UCSC-style bedfile containing chromosome
locations of the SNPs to be included in the output files. The BED file has no header. The
first column is the chromosome name (this must match the chromosome name in the vcf file).
The second column is start position (0-based, open interval) The third column is end position
(closed interval). Any other columns are ignored.

--outgroup_fasta <name of alternative reference sequence> This option is used to specify the
name of a fasta file to use as an alternative reference to that used for the vcf file.

This fasta file must have been properly aligned to the reference used in the vcf file.

This option can be useful, for example, if an ancestral or outgroup reference is available that
more accurately identifies the ancestral (and thus derived) allele at each SNP than does the
reference used to make the vcf file.

5.6. vcf_to_dadi.py: VCF to dadi Conversion Function 42

https://dadi.readthedocs.io/en/latest/user-guide/importing-data/#snp-data-format

PPP Documentation, Release 0.1.13

--comment <comment text> Comment text to be included in the header of the output file.

5.6.3 Example usage

Example command-lines:

vcf_to_dadi.py -h

vcf_to_dadi.py --vcf pan_example.vcf.gz --model-file panmodels.model
→˓ --modelname 4Pop --out vcf_dadisnp_bedfile_test.out --comment
→˓testing bedfile --bed-file pan_example_regions.bed

vcf_to_dadi.py --vcf pan_example2.vcf.gz --model-file panmodels.
→˓model --modelname 4Pop --out vcf_dadisnp_test.out --comment
→˓testing comment

vcf_to_dadi.py --vcf pan_example2.vcf.gz --model-file panmodels.model -
→˓-modelname 4Pop --out vcf_dadisnp_fasta_test.out --comment testing
→˓outgroup-fasta --outgroup-fasta chr22_pan_example2_ref.fa

5.6. vcf_to_dadi.py: VCF to dadi Conversion Function 43

CHAPTER 6

PPP Analyses

These functions were developed to perform the actual population genetic analyses for the PPP.
Please note that each functions was designed to use a specific file format and the use of a conversion
function may be required. See each function for more details.

6.1 eigenstrat_fstats.py: F-statistics Analysis

Automates the calculation of multiple admixture statistics, including: Patterson’s D, F4 statistic,
F4-ratio statistic, and F3 statistic.

6.1.1 Command-line Usage

The admixture statistics automater may be called using the following command:

eigenstrat_fstats.py

Example usage

Command-line to calculate Patterson’s D:

eigenstrat_fstats.py --eigenstrat-prefix snps --calc-admix-statistic D -
→˓-admix-w-pop French --admix-x-pop Yoruba --admix-y-pop Vindija --
→˓admix-z-pop Chimp

44

PPP Documentation, Release 0.1.13

Command-line to calculate the F4-ratio:

eigenstrat_fstats.py --eigenstrat-prefix snps --calc-admix-statistic F4-
→˓ratio --admix-a-pop Altai --admix-b-pop Vindija --admix-c-pop Yoruba -
→˓-admix-x-pop French --admix-o-pop Chimp

6.1.2 Dependencies

• AdmixTools

• admixr

6.1.3 Input Command-line Arguments

--eigenstrat-prefix <input_prefix> Argument used to define the filename prefix shared by the
genotype file (.geno), the individual file (.ind), and the SNP file (.snp). Should not be used
alongside the specific file arguments (e.g. --geno).

--geno <geno_filename> Argument used to define the filename of the eigenstrat genotype file
(.geno). Must be called alongside --ind and --snp. Cannot be called alongside --eigenstrat-
prefix.

--ind <ind_filename> Argument used to define the filename of the eigenstrat individual file (.ind).
Must be called alongside --geno and --snp. Cannot be called alongside --eigenstrat-prefix.

--snp <snp_filename> Argument used to define the filename of the eigenstrat SNP file (.snp). Must
be called alongside --geno and --ind. Cannot be called alongside --eigenstrat-prefix.

--model-file <model_filename> Argument used to define the model file. Please note that this
argument cannot be used with the individual-based filters.

--model <model_str> Argument used to define the model (i.e. the individual(s) to include and/or
the populations for relevant statistics). May be used with any statistic. Please note that this
argument cannot be used with --pop-file argument or the individual-based filters.

6.1.4 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename, overrides --out-
prefix. Cannot be used if multiple output files are created.

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension)

--overwrite Argument used to define if previous output should be overwritten.

6.1. eigenstrat_fstats.py: F-statistics Analysis 45

https://github.com/DReichLab/AdmixTools
https://github.com/bodkan/admixr

PPP Documentation, Release 0.1.13

6.1.5 Statistic Command-line Specification

--calc-admix-statistic <D, F4, F4-ratio, F3> Argument used to define the admix statistic to be
calculated. Patterson’s D (D), F4 statistic (F4), F4-ratio statistic (F4-ratio), and F3 statistic
(F3). See below for details on the arguments requried by each statistic .

Statistic Command-line Requirements

It should be noted that each admix statistic has a specific set of population labels arguments. These
labels are used to specify a representive population. For instance, the argument ’--admix-w-pop
CEU’ will replace the W label of Patterson’s D and the F4 statistic with the CEU population. These
arguments may be found in the next section.

--calc-admix-statistic D Requires: --admix-w-pop/--admix-w-pop-file, --admix-x-pop/--
admix-x-pop-file, --admix-y-pop/--admix-y-pop-file, and --admix-z-pop/--admix-z-pop-
file.

--calc-admix-statistic F4 Requires: --admix-w-pop/--admix-w-pop-file, --admix-x-pop/--
admix-x-pop-file, --admix-y-pop/--admix-y-pop-file, and --admix-z-pop/--admix-z-pop-
file.

--calc-admix-statistic F4-ratio Requires: --admix-a-pop/--admix-a-pop-file, --admix-b-pop/--
admix-b-pop-file, --admix-c-pop/--admix-c-pop-file, --admix-x-pop/--admix-x-pop-file,
and --admix-o-pop/--admix-o-pop-file.

--calc-admix-statistic F3 Requires: --admix-a-pop/--admix-a-pop-file, --admix-b-pop/--
admix-b-pop-file, and --admix-c-pop/--admix-c-pop-file.

Additional Statistic Command-line Arguments

--admix-w-pop <w_pop_str> <w_pop1_str, w_pop2_str, etc.> Argument used to define the pop-
ulation(s) to represent W in the supported admixure statistic. This argument may be used
multiple times if desired. If multiple populations the statistic will be repeated until each
population has represented W.

--admix-w-pop-file <w_pop_filename> Argument used to define a file of population(s) to rep-
resent W in the supported admixure statistic. If multiple populations the statistic will be
repeated until each population has represented W.

--admix-x-pop <x_pop_str> <x_pop1_str, x_pop2_str, etc.> Argument used to define the popula-
tion(s) to represent X in the supported admixure statistic. This argument may be used multiple
times if desired. If multiple populations the statistic will be repeated until each population
has represented X.

--admix-x-pop-file <x_pop_filename> Argument used to define a file of population(s) to represent
X in the supported admixure statistic. If multiple populations the statistic will be repeated
until each population has represented X.

6.1. eigenstrat_fstats.py: F-statistics Analysis 46

PPP Documentation, Release 0.1.13

--admix-y-pop <y_pop_str> <y_pop1_str, y_pop2_str, etc.> Argument used to define the popula-
tion(s) to represent Y in the supported admixure statistic. This argument may be used multiple
times if desired. If multiple populations the statistic will be repeated until each population
has represented Y.

--admix-y-pop-file <y_pop_filename> Argument used to define a file of population(s) to represent
Y in the supported admixure statistic. If multiple populations the statistic will be repeated
until each population has represented Y.

--admix-z-pop <z_pop_str> <z_pop1_str, z_pop2_str, etc.> Argument used to define the popula-
tion(s) to represent Z in the supported admixure statistic. This argument may be used multiple
times if desired. If multiple populations the statistic will be repeated until each population
has represented Z.

--admix-z-pop-file <z_pop_filename> Argument used to define a file of population(s) to represent
Z in the supported admixure statistic. If multiple populations the statistic will be repeated
until each population has represented Z.

--admix-a-pop <a_pop_str> <a_pop1_str, a_pop2_str, etc.> Argument used to define the popula-
tion(s) to represent A in the supported admixure statistic. This argument may be used multiple
times if desired. If multiple populations the statistic will be repeated until each population
has represented A.

--admix-a-pop-file <a_pop_filename> Argument used to define a file of population(s) to represent
A in the supported admixure statistic. If multiple populations the statistic will be repeated
until each population has represented A.

--admix-b-pop <b_pop_str> <b_pop1_str, b_pop2_str, etc.> Argument used to define the popula-
tion(s) to represent B in the supported admixure statistic. This argument may be used multiple
times if desired. If multiple populations the statistic will be repeated until each population
has represented B.

--admix-b-pop-file <b_pop_filename> Argument used to define a file of population(s) to represent
B in the supported admixure statistic. If multiple populations the statistic will be repeated
until each population has represented B.

--admix-c-pop <c_pop_str> <c_pop1_str, c_pop2_str, etc.> Argument used to define the popula-
tion(s) to represent C in the supported admixure statistic. This argument may be used multiple
times if desired. If multiple populations the statistic will be repeated until each population
has represented C.

--admix-c-pop-file <c_pop_filename> Argument used to define a file of population(s) to represent
C in the supported admixure statistic. If multiple populations the statistic will be repeated
until each population has represented C.

6.1. eigenstrat_fstats.py: F-statistics Analysis 47

PPP Documentation, Release 0.1.13

6.2 admixture.py: Admixture Analysis

Automates the estimation of individual ancestries using Admixture. The functions allows for input
as: i) Binary-PED files or ii) PED 12-formatted files. The function is also capable of configuring
the optional arguments of Admixture.

6.2.1 Command-line Usage

The admixture automater may be called using the following command:

admixture.py

Example usage

Estimating individual ancestries for each sample within hapmap3.bed for three ancestral populations.

admixture.py --binary-ped-prefix hapmap3 --pop 3

6.2.2 Dependencies

• Admixture

6.2.3 Input Command-line Arguments

--ped-12-prefix <input_prefix> Argument used to define the filename prefix shared by the 12-
formatted ped file (.ped) and the map file (.map). Should not be used alongside the specific
file arguments (e.g. --ped).

--ped-12 <ped_filename> Argument used to define the filename of the plink 12-formatted ped file
(.ped). Must be called alongside --map. Cannot be called alongside --ped-prefix.

--map <map_filename> Argument used to define the filename of the plink map file (.map). Must
be called alongside --ped. Cannot be called alongside --ped-prefix.

--binary-ped-prefix <input_prefix> Argument used to define the filename prefix shared by the
binary ped file (.bed), the fam file (.fam), and the bim file (.bim). Should not be used alongside
the specific file arguments (e.g. --binary-ped).

--binary-ped <binary_ped_filename> Argument used to define the filename of the plink binary
ped file (.bed). Must be called alongside --fam and --bim. Cannot be called alongside
--binary-ped-prefix.

6.2. admixture.py: Admixture Analysis 48

http://software.genetics.ucla.edu/admixture/

PPP Documentation, Release 0.1.13

--fam <fam_filename> Argument used to define the filename of the plink fam file (.fam). Must be
called alongside --binary-ped and --bim. Cannot be called alongside --binary-ped-prefix.

--bim <bim_filename> Argument used to define the filename of the plink bim file (.bim). Must be
called alongside --binary-ped and --fam. Cannot be called alongside --binary-ped-prefix.

6.2.4 Output Command-line Arguments

--overwrite Argument used to define if previous output should be overwritten.

6.2.5 Required Command-line Arguments

--pop <K_int> Argument used to defines the number of ancestral populations.

--admix-method <em, block> Argument used to define the algorithm to use. Two algorithm are
supported: Block relaxation algorithm (block) or EM algorithm (em). By default, the Block
relaxation algorithm is used.

6.2.6 Optional Command-line Arguments

--acceleration <acceleration_int> Argument used to defines the value of quasi-Newton accelera-
tion method.

--major-converge-likelihood <likelihood_float> Argument used to define the major terminaton
criterion. Halt when the log-likelihood increases by less than the specified value between
iterations.

--major-converge-iter <iter_int> Argument used to define the major terminaton criterion. Defines
the maximum number of iterations.

--minor-converge-likelihood <likelihood_float> Argument used to define the minor terminaton
criterion. Halt when the log-likelihood increases by less than the specified value between
iterations.

--minor-converge-iter <iter_int> Argument used to define the minor terminaton criterion. Defines
the maximum number of iterations.

--bootstrap <bootstrap_int> Argument used to define the number of bootstrap replicates.

--random-seed <seed_int> Argument used to define the seed value for the random number gener-
ator.

--threads <thread_int> Argument used to define the number of threads to be used for computation.

6.2. admixture.py: Admixture Analysis 49

PPP Documentation, Release 0.1.13

6.3 ima3_wrapper.py: IMa3 Analysis

Wrapper for IMa3 executable. This wrapper will handle locating the proper version of IMa3 for the
desired run, as well as providing multi-threading support if the system has the mpirun utility and
the IMa executable was compiled with it. Most options for IMa3 are described in the IMa3 manual,
and it is HIGHLY recommended that users overview this document before calling IMa3. Note that
wrapper functions (--threads,--ima-path) require two dashes, while IMa arguments use only one.

6.3.1 Input Arguments

-i <input_file> Name of IMa3 input file generated by PPP

-o <output_file> Name of IMa3 output file. Additional files will use this as prefix.

6.3.2 Parameter Arguments

-q <max_pop_size> Sets maximum population size parameter for all populations.

-m <migration_rate> Sets migration rate prior.

-t <max_split_time> Sets maximum splitting time parameter.

6.3.3 Wrapper Arguments

--threads <thread_count> Set number of threads to use. This will check that the proper version of
IMa3 has been compiled and the system has mpirun installed.

--ima-path <path_to_ima> Path to IMa executable to use if not on system path. This should
include the name of the executable, not just the path to it.

6.4 plink_linkage_disequilibrium.py: Linkage Disequilib-
rium Analysis

Automates the calculation of multiple LD statistics using Plink.

6.4.1 Command-line Usage

The LD statistics automater may be called using the following command:

6.3. ima3_wrapper.py: IMa3 Analysis 50

PPP Documentation, Release 0.1.13

plink_ld.py

Example usage

Command-line to calculate Lewontin’s D-prime statistic

plink_ld.py --ped-prefix hapmap1 --ld-format table --ld-statistic r2 --
→˓table-d-statistic dprime

6.4.2 Dependencies

• plink 1.9

• plink 2.0 <https://www.cog-genomics.org/plink/2.0/>

6.4.3 Input Command-line Arguments

--ped-prefix <input_prefix> Argument used to define the filename prefix shared by the ped file
(.ped) and the map file (.map). Should not be used alongside the specific file arguments (e.g.
--ped).

--ped <ped_filename> Argument used to define the filename of the plink ped file (.ped). Must be
called alongside --map. Cannot be called alongside --ped-prefix.

--map <map_filename> Argument used to define the filename of the plink map file (.map). Must
be called alongside --ped. Cannot be called alongside --ped-prefix.

--binary-ped-prefix <input_prefix> Argument used to define the filename prefix shared by the
binary ped file (.bed), the fam file (.fam), and the bim file (.bim). Should not be used alongside
the specific file arguments (e.g. --binary-ped).

--binary-ped <binary_ped_filename> Argument used to define the filename of the plink binary
ped file (.bed). Must be called alongside --fam and --bim. Cannot be called alongside
--binary-ped-prefix.

--fam <fam_filename> Argument used to define the filename of the plink fam file (.fam). Must be
called alongside --binary-ped and --bim. Cannot be called alongside --binary-ped-prefix.

--bim <bim_filename> Argument used to define the filename of the plink bim file (.bim). Must be
called alongside --binary-ped and --fam. Cannot be called alongside --binary-ped-prefix.

--allow-extra-chr Argument used to force invalid chromosome names to be accepted.

6.4. plink_linkage_disequilibrium.py: Linkage Disequilibrium Analysis 51

https://www.cog-genomics.org/plink2/

PPP Documentation, Release 0.1.13

6.4.4 Output Command-line Arguments

--out-format <output_format> Argument used to define the output format. Supported formats
include: gzip compressed (gzipped); standard uncompresed (standard); single-precision
binary (bin32); and double-precision binary (bin64). Please note that both binary formats are
only supported when called with the square --lf-format. By default gzip compressed files are
produced.

--out <output_filename> Argument used to define the complete output filename, overrides --out-
prefix. Cannot be used if multiple output files are created.

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension)

--overwrite Argument used to define if previous output should be overwritten.

6.4.5 Basic LD Command-line Arguments

--ld-statistic <r, r2> Argument used to define the correlation statistic to report. Two options are
supported: the raw inter-variant allele count correlations (r) and squared correlations (r2).

--ld-format <table, square, square-zero, triangle, inter-chr> Argument used to define the matrix
result format. Five formats are supported: The matrix as a limited window in table format
(table); A symmetric matrix (square); a square matrix in which the cells of the upper right
triangle are zeroed out (square-zero); only the lower-triangular of the matrix (triangle); the
matrix with all pairs in a table (inter-chr). --ld-window-snps <snp_int>

Argument used to define the maximum number of SNPs between LD comparisons.

--ld-window-kb <snp_int> Argument used to define the maximum distance in bp between
LD comparisons.

--ld-window-cm <snp_int> Argument used to define the maximum distance in cM between
LD comparisons.

Table Command-line Arguments

Please note that the following arguments may only be used with --ld-format table.

--table-d-statistic <dprime, dprime-signed, d> Argument used to add the specified D
statistic to table-formatted results. Three options are supported: the absolute value of
Lewontin’s D-prime statistic (dprime); Lewontin’s D-prime statistic (dprime-signed);
and the value of D prior to division by Dmax (d). --table-in-phase

Argument used to add in-phase allele pairs to table-formatted results.

--table-maf Argument used to add MAF values to table-formatted results.

6.4. plink_linkage_disequilibrium.py: Linkage Disequilibrium Analysis 52

PPP Documentation, Release 0.1.13

--table-r2-threshold <r2_float> Argument used to define the threshold for filtering
pairs of r2 values.

--table-snp <snp_str> <snp1_str, snp2_str, etc.> Argument used to define one or
more SNP(s) for LD analysis. This argument may be used

multiple times if desired.

--table-snps <snp_filename> Argument used to define a file with one or more SNP(s) for LD
analysis.

6.5 vcf_to_sfs.py: Site Frequency Spectrum generator

For generating the site frequency spectrum (sfs)for a population model from a vcf file.

The sfs is an array with as many dimensions as populations in the model. For example, if population
samples are in order A,B, C then position (i,j,k) of the array refers to the count of SNPs with derived
alleles that were observed to have a count of i in A, j in B, and k in C

If the sfs is folded then the count in a cell of the sfs is the number of SNPs with that combination of
minor allele counts.

This script can be run in stand-alone mode, or for more flexibility it can be imported to give access
to more general functions for building and manipulating the sfs.

All vcf handling assumes that all individuals are diploid at all SNPs.

6.5.1 Required Arguments

--vcf <input_vcf_filename> The name of the vcf file. This can be a bgzipped vcf file. .

--model-file <model_file_name> The name of a PPP model file.

--modelname <model_name> The name of a model in the model file. The treemix file to be
generated will contain the allele counts for each SNP in each of the populations. The treemix
run will estimate the phylogeny for the populations in the model.

--out <out file name> The name of an output file. If --out is omitted the default is ppp_sfs.out in
the same folder as the vcffile This will be a tab-delimited file If the number of dimensions is
2, the sfs is contained in the rows and columns, otherwise the values are given on the first line
of the file

6.5.2 Optional Aguments

--bed-file <BED_file_name> The BED file is a sorted UCSC-style bedfile containing chromosome
locations of the SNPs to be included in the output files. The BED file has no header. The

6.5. vcf_to_sfs.py: Site Frequency Spectrum generator 53

PPP Documentation, Release 0.1.13

first column is the chromosome name (this must match the chromosome name in the vcf file).
The second column is start position (0-based, open interval) The third column is end position
(closed interval). Any other columns are ignored.

--outgroup_fasta <name of alternative reference sequence> This option is used to specify the
name of a fasta file to use as an alternative reference to that originally used for the vcf file.

This fasta file must have been properly aligned to the reference used in the vcf file.

This option can be useful, for example, if an ancestral or outgroup reference is available that
more accurately identifies the ancestral (and thus derived) allele at each SNP than does the
reference used to make the vcf file.

--downsamplesizes <down sample sizes> A sequence of integers, one for each of the populations
in the model in the same order as populations listed in the model. The values specify the
down sampling to be used for each respective population. For a population with k>=1 diploid
individuals (2k>=2 genomes) in the model, the downsample count d must be 2<=d<=2k.

--folded <True/False> The folded option indicates that the folded sfs should be returned. If folded
is False (default) the sfs reports the count of the derived allele. If True, the sfs reports of the
count of the minor (less frequent) allele.

--randomsnpprop <floating point value between 0 and 1> This option can be used to randomly
sample a subset of SNPs. The default is to sample all biallelic SNPs.

--seed <integer> This is used with --randomsnpprop as the seed for the random number generator.

--makeint <True/False> If True, round the counts in the sfs to the nearest integer (default False)

6.5.3 Example usage

Example command-lines:

vcf_to_sfs.py -h

vcf_to_sfs.py --vcf pan_example2.vcf.gz --model-file panmodels.model --
→˓modelname 4Pop --downsamplesizes 3 3 3 4 --folded --outgroup-fasta
→˓chr22_pan_example2_ref.fa --out vcf_to_sfs_test1.txt

6.5.4 Importing Functions

This file has two functions that can be useful for working with site frequency spectra

6.5. vcf_to_sfs.py: Site Frequency Spectrum generator 54

PPP Documentation, Release 0.1.13

build_sfs()

The default script that runs when this file is run. This function can also be accessed directly by
importing this file.

• generates an sfs from a vcf file

• can handle an arbitrary number of dimensions (populations) and sample sizes, so long as each
population has at least a sample size of two genomes (i.e. one diploid individual)

• handles downsampling, and reduction of dimensions

• handles unfolded and folded sfs’s

• can take a BED file name to sample portions of a vcf file

• can handle an alternative reference genome for rooting, rather than that used in the vcf file

• the arguments closely resemble those used when the function is called by running this file

Required Arguments

The first three arguments are, in order, the vcf filename, the model file name, and the
name of the model. These are each strings.

Optional arguments

Each optional argument requires the use of the argument name.

BEDfilename The name of a ucsc-style bedfile with intervals to include

altreference The name of a fasta sequence file that contains the reference genome

folded True/False. To indicate that the folded sfs should be returned. (False is default)

downsamplesizes A list of sample sizes to be used if they are less than given in the model 2 <=
downsamplesizes[i] <= samplesizes[i]

randomsnpprop The proportion of snps to include using random sampling

seed A random number seed that can be used with randomsnpprop.

makeint Causes the array to be rounded to the nearest integer (dtype remains float)

out The name of a file to contain the sfs if out is not None, this will write a tab-delimited file of the
array

6.5. vcf_to_sfs.py: Site Frequency Spectrum generator 55

PPP Documentation, Release 0.1.13

Example usage

Example python code:

1 import vcf_to_sfs as vs
2 mysfs = vs.build_sfs(pan_example2.vcf.gz,panmodels.model,'4Pop',
3 folded=True,downsamplesizes=[3,3,3,4],
4 altreference='chr22_pan_example2_ref.fa',
5 out = 'mysfsfile.txt')

reduce_sfs_dims()

This function is for reducing the dimensionality of an sfs by summing across axes. It is
accessed by importing this file.

There are three required arguments in order:

• the sfs (i.e. a numpy array with as many dimensions as populations)

• an instance of Class model that specifies the populations and samples to which
the sfs corresponds.

• a list of names of the populations to keep in the reduced sfs

There is one optional argument, ’out’, if the reduced sfs is to be written to a file (e.g.
out=mysfs.txt)

Example usage

Example python code:

1 import vcf_to_sfs as vs
2 myreducedsfs = vs.reduce_sfs_dim(mysfs,mypopmodel,
3 ['A','B','C'],out="myreducedsfs_file.txt")

6.5. vcf_to_sfs.py: Site Frequency Spectrum generator 56

CHAPTER 7

PPP Utilities

The utility functions were developed to perform various tasks often needed when preparing files for
population genetic analyses.

7.1 vcf_utilities.py: VCF Utilities

Automates various utilites for VCF-formatted files. This currently includes: obtain a list of the
chromosomes within a VCF-based file, obtain a list of the samples within a VCF-based file,
concatenate multiple VCF-based files, merge multiple VCF-based files, and sort a VCF-based file.

7.1.1 Command-line Usage

The VCF utilites function may be called using the following command:

python vcf_utilites.py

Example usage

Concatenate multiple VCF files:

python vcf_utilites.py --vcfs chr21.vcf.gz chr22.vcf.gz --utility
→˓concatenate

57

PPP Documentation, Release 0.1.13

Merge multiple VCF files:

python vcf_utilites.py --vcfs chr22.ceu.vcf.gz chr22.yri.vcf.gz --
→˓utility merge

7.1.2 Dependencies

• BCFtools

7.1.3 Input Command-line Arguments

--vcf <input_filename> Argument used to define the filename of the VCF file.

--vcfs <input_filename> <input1_filename, input2_filename, etc.> Argument used to define the
filename of the VCF file(s). May be used multiple times.

7.1.4 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename, overrides --out-
prefix.

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension)

--overwrite Argument used to define if previous output should be overwritten.

7.1.5 Utility Command-line Specification

--utility <sample-list, chr-list, concatenate, merge, sort> Argument used to define the desired util-
ity. Current utilities include: creation of a file of the samples within the VCF (sample-list);
creation of a file of the chromosomes within the VCF (chr-list); combine multiple VCF files
with different variants but the same samples (concatenate); combine multiple VCF files with
different samples but the same variants (merge); or sort a single VCF file (sort).

Additional Utility Command-line Arguments

--record-merge-mode <none, snps, indels, both, all, id> Argument used to define the type of mul-
tiallelic records to create. Only usable with the merge utility.

--record-missing-as-ref Argument used to define that missing records should be converted to the
reference allele. Only usable with the merge and concatenate utilites.

7.1. vcf_utilities.py: VCF Utilities 58

https://samtools.github.io/bcftools/bcftools.html

PPP Documentation, Release 0.1.13

--out-format <vcf, vcf.gz, bcf> Argument used to define the desired output format. Formats in-
clude: uncompressed VCF (vcf); compressed VCF (vcf.gz) [default]; and BCF (bcf). Only
usable with the merge and concatenate utilites.

7.2 bed_utilities.py: BED Utilites

Automates various utilites for BED-formatted files. This currently includes: i) sample a BED file; ii)
subtract from a BED that overlap with a second BED file; iii) extend a BED upstream, downstream,
or both upstream and downstream; iv) sort a single BED; v) merge features within one or more
BED files; vi) create a BED of complementary features.

7.2.1 Command-line Usage

The BED utilites function may be called using the following command:

bed_utilities.py

7.2.2 Utilites

Windows Utility

Given a chromosome size file and a window size, the windows utility will generate a BED file of
interval features.

Example usage

Return a BED with interval features that do not extend outside the chromosomes:

bed_utilities.py --utility windows --chrom-file hg18.chrom.sizes --
→˓window-size 1000 --out hg18_windows.bed

7.2. bed_utilities.py: BED Utilites 59

PPP Documentation, Release 0.1.13

Sample Utility

Given a BED file and a sample size, the sample utility will generate a pseudorandomly sampled
BED. Please note that the random seed may be used to reproduced the sample.

Example usage

Sample 20 features from a BED file:

bed_utilities.py --utility sample --bed examples/files/chr1_sites.bed --
→˓sample-size 20

Sort Utility

Given an unsorted BED file, the sort utility will generate a sorted BED file.

Example usage

Sort an unsorted BED file:

bed_utilities.py --utility sort --bed examples/files/chr1_sites.
→˓unsorted.bed

7.2. bed_utilities.py: BED Utilites 60

PPP Documentation, Release 0.1.13

Extend Utility

Given a BED file and an extend length, the extend utility will increase the length of each feature
upstream, downstream, or both upstream and downstream.

Example usage

Extend upstream by 1kb:

bed_utilities.py --utility extend --bed examples/files/chr1_sites.bed --
→˓chrom-file examples/files/chr_sizes.txt --extend-upstream 1000

Extend downstream by 1kb:

bed_utilities.py --utility extend --bed examples/files/chr1_sites.bed --
→˓chrom-file examples/files/chr_sizes.txt --extend-downstream 1000

Extend flanks (i.e. both upstream and downstream) by 1kb:

bed_utilities.py --utility extend --bed examples/files/chr1_sites.bed --
→˓chrom-file examples/files/chr_sizes.txt--extend-flanks 1000

Subtract Utility

Given two BED files, the subtract utility will remove BED features from a BED file if they overlap
with the features from a second BED file.

Example usage

Remove BED features if they overlap features within the subtract BED file:

bed_utilities.py --utility subtract --bed examples/files/chr1_sites.
→˓bed --subtract-bed examples/files/chr1_sites.1.bed --subtract-entire-
→˓feature

Complement Utility

Given a BED file, the complementary utility will generate a BED file of complementary features.

7.2. bed_utilities.py: BED Utilites 61

PPP Documentation, Release 0.1.13

Example usage

Return a BED with features that do not overlap within the given file:

bed_utilities.py --utility complement --bed examples/files/chr1_sites.
→˓bed --chrom-file examples/files/chr_sizes.txt

Intersect Utility

Given a BED file and an intersect file, return only the interval features within the BED file that
overlap with the intersect file.

Example usage

Return a BED with only intersecting interval features:

bed_utilities.py --utility intersect --bed hg18_windows.bed --intersect-
→˓file Intersect.vcf.gz --out hg18_intersects.bed

Merge Utility

Given one or more BED files, the merge utility will generate a single sorted BED file of merged
BED features.

Example usage

Merge BED features from a single BED file:

bed_utilities.py --utility merge --bed examples/files/chr1_sites.bed

Merge BED features from multiple BED files:

bed_utilities.py --utility merge --beds examples/files/chr1_sites.1.
→˓bed examples/files/chr1_sites.2.bed examples/files/chr1_sites.3.bed
→˓examples/files/chr1_sites.4.bed

7.2.3 Dependencies

• BEDtools

7.2. bed_utilities.py: BED Utilites 62

https://bedtools.readthedocs.io/en/latest/

PPP Documentation, Release 0.1.13

7.2.4 Input Command-line Arguments

--bed <input_filename> Argument used to define the filename of the BED file.

--beds <input_filename> <input1_filename, input2_filename, etc.> Argument used to define the
filename of the BED file(s). May be used multiple times.

--chrom-file <chrom_filename> Argument used to define the filename of a file with the sizes of
each chromosome. Chromosome size files must be tab-delimited as follows:

chr1 247249719
chr2 242951149
...
chrX 154913754
chrY 57772954

Appropriate files may be downloaded from the UCSC Genome Browser. The supported
ASSEMBLY.chrom.sizes file for each assembly may be found by clicking Genome se-
quence files and select annotations (followed by Standard genome sequence files and
select annotations on select assemblies).

7.2.5 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename.

--overwrite Argument used to define if previous output should be overwritten.

7.2.6 Utility Command-line Specification

--utility <sample, subtract, extend, sort, merge, complement> Argument used to define the de-
sired utility. Current utilities include: sample features from a BED file (sample); subtract
features from a BED file that overlap with features within a second BED file (subtract); extend
the flanks of features upstream, downstream, or both within a single BED file (extend); sort
the features within a single BED file (sort); merge features within one or more BED files
(merge); create a BED file of complementary features - i.e. features that do not overlap - from
a BED file (complement).

Window Utility Command-line Arguments

--window-size <window_size_int> Argument used to define the window/interval size to return.

Sample Utility Command-line Arguments

--sample-size <sample_size_int> Argument used to define the total sample size.

7.2. bed_utilities.py: BED Utilites 63

http://hgdownload.soe.ucsc.edu/downloads.html

PPP Documentation, Release 0.1.13

--random-seed <seed_int> Argument used to define the seed value for the random number gener-
ator.

Subtract Utility Command-line Arguments

--subtract-bed <subtract_file_filename> Argument used to define the BED file used for removing
features/positions.

--subtract-entire-feature Argument used to define if entire features within the input BED should
be removed if they overlap with features in subtract-bed.

--min-reciprocal-overlap <overlap_float> Argument used to define the minimum reciprocal over-
lap of features required for removal (e.g. 0.1 indicates 10% overlap).

--min-input-overlap <overlap_float> Argument used to define the minimum overlap of input
features required for removal.

--min-subtract-overlap <overlap_float> Argument used to define the minimum overlap of
subtract-bed features required for removal.

--subtract-entire-feature Argument used to define that features should be removed from the input
BED if the minimum overlap of --min-input-overlap or --min-subtract-overlap is reached.

Extend Utility Command-line Arguments

--extend-flanks <bp_int> Argument used to define the length of base pairs (bp) to extend both
upstream and downstream of features.

--extend-upstream <bp_int> Argument used to define the length of base pairs (bp) to extend
upstream of features.

--extend-downstream <bp_int> Argument used to define the length of base pairs (bp) to extend
downstream of features.

Intersect Utility Command-line Arguments

--intersect-file <intersect_file_filename> Argument used to define the BED/VCF/VCF.gz file used
to remove features that do not intersect with the given file’s features/variants. removing
features/positions.

Merge Utility Command-line Arguments

--max-merge-distance <bp_int> Argument used to define the maximum distance allowed between
features to be merged.

7.2. bed_utilities.py: BED Utilites 64

PPP Documentation, Release 0.1.13

7.3 vcf_bed_to_seq.py: Generate sequences from
VCF/BED Files

For generating a file with reconstituted sequences for regions of a vcf file.

Given a vcf file, a corresponding fasta reference file, a population model, and a specific interval,
this script will return a file containing reconstituted sequences - two for each diploid individual.

This script can be run in stand-alone mode, or for more flexibility it can be imported to give access
to more general functions for generating reconstituted sequences.

7.3.1 Required Arguments

--vcf <input_vcf_filename> The name of the vcf file. This can be a bgzipped vcf file. .

--model-file <model_file_name> The name of a PPP model file.

--modelname <model_name> The name of a model in the model file.

--fasta-reference <reference fasta file> The reference genome fasta file is required in order to
generate full sequences from the SNP data in the vcf file.

--region <region string> The region of the reference to return sequences from. Format: chromo-
some name,colon (:),first base number,dash(-),last base number. e.g. chr1:100392-101391

--out <out file name>

• the name of an output file. If --out is omitted the default is ppp_vcf_to_sequences.out

7.3.2 Optional Aguments

--return-single <True/False> If true, only a single sequence is returned for each individual in the
model. The sequence for a given individual uses the first allele given for that individual for
each SNP in the vcf file.

7.3.3 Example usage

Example command-lines:

vcf_bed_to_seq.py -h

vcf_bed_to_seq.py --vcf pan_example.vcf.gz --fasta-reference pan_
→˓example_ref.fa --model-file panmodels.model --modelname 4Pop --
→˓region 21:4431001-4499000 --out vcf_bed_to_seq_test.out

7.3. vcf_bed_to_seq.py: Generate sequences from VCF/BED Files 65

PPP Documentation, Release 0.1.13

7.3.4 Importing Functions

This file has two functions that can be useful for getting lists of reconstituted sequences
from a vcf file and a fasta reference file.

get_model_sequences_from_region()

Returns a list of sequences for a region in a vcf file and a samtools/pysam style region string.

Required Arguments

Each argument requires the use of the argument name.

vcf Either a vcf_reader (i.e. see vf.VcfReader()) or the name of a vcf file (can be bgzipped)

popmodel An instance of Class model. The individuals in the model must also be in the vcf file

seq_reference A string that either contains the DNA sequence for the region or is a string containing
the name of a fasta file. If a fasta file name, the chromosome name(s) in the fasta file must
match those in the vcf file

region Either a samtools/pysam style region string ("chromosome name:start-end") where the
chromosome name matches that used in the vcf file where start and end are the 1-based
endpoints (closed interval) Or an instance of class Region (Regions uses 0-based open interval
on the left)

return_single If True, return only the first sequence for an individual else, return two sequences
(default False)

Optional arguments

Each optional argument requires the use of the argument name.

return_single If True, return only the first sequence for an individual else, return two sequences
(default False)

out The name of a file to which the sequences are to be written (or appended if the file exists).

Example usage

Example python code

7.3. vcf_bed_to_seq.py: Generate sequences from VCF/BED Files 66

PPP Documentation, Release 0.1.13

1 import vcf_bed_to_seq as vbs
2 myregion,sequences = vbs.get_model_sequences_from_region(vcf="pan_

→˓example.vcf.gz",
3 popmodel=mymodel,seq_reference="pan_example_ref.fa",
4 region="21:4431001-4499000",return_single=False,
5 out = "chr21regionsequences.out")

get_model_sequences()

Returns a generator for getting sets of sequences from regions given in a BED file for
individuals in a model. Each call to next() returns a list of sequences for the next region
in the BED file

Arguments

Each argument requires the use of the argument name. All arguments are required with
the exception taht either BED_filename or region_string (but not both) must be used.

vcf the name of the vcf file (can be bgzipped)

model_file name of a model file

modelname The name of a model in model_file Either both model_file and modelname must be
used, or popmodel must be used

popmodel An instance of class model. The individuals in the model must also be in the vcf file
Either popmmodel or both model_file and modelname must be used

fasta_reference A fasta file with one more sequences corresponding to the vcf file typically these
are reference chromosome sequences the chromosome name(s) in the fasta file must match
those in the vcf file

BED_filename A sorted BED file giving regions from which to pull sequences the first column
with the chromosome name must match a name in the fasta_reference file The chromosome
names in the BED file must match those in the fasta file and the vcf file

region_string A pysam style region string, if only one region is to be returned

Example usage

Example python code:

1 a = get_model_sequences(vcf="pan_example.vcf.gz",
2 popmodel=mymodel,fasta_reference="pan_example_ref.fa",

(continues on next page)

7.3. vcf_bed_to_seq.py: Generate sequences from VCF/BED Files 67

PPP Documentation, Release 0.1.13

(continued from previous page)

3 BED_filename = "pan_example_regions.bed")
4 while True:
5 try:
6 s = next(a)# Will raise StopIteration if lines is exhausted
7 print(len(s),len(s[0]))
8 except StopIteration:
9 break # end loop

7.4 stat_sampler.py: STAT File Sampler

As a single statistic file may include far more loci/windows than a technique is capable of analyzing,
it is often necessary to sample the loci/windows from the file. Given a statistic file and a sampling
scheme, stat_sampler will generate a pseudorandomly sampled file.

In this illustration of the sampling process, the loci found within Data.VCF are pseudorandomly
sampled using the corrdinates found within the given statistic file.

Two pseudorandomly sampling schemes are provided: i) a random sampler that will randomly
select loci/windows and ii) a uniform sampler that will evenly sample across equal-sized bins of the
given statistic. Please note that all sampling is done without replacement.

For BED-based sampling, please see ../Utilities/bed_utilities.rst.

7.4.1 Command-line Usage

The statistic sampler may be called using the following command:

7.4. stat_sampler.py: STAT File Sampler 68

PPP Documentation, Release 0.1.13

stat_sampler.py

Example usage

Randomly sampling 20 windows from a windowed Fst statistic file
merged_chr1_10000.windowed.weir.fst.

stat_sampler.py --statistic-file examples/files/merged_chr1_10000.
→˓windowed.weir.fst --calc-statistic windowed-weir-fst --sampling-
→˓scheme random --sample-size 20

Uniform sampling 20 windows from four bins from a windowed pi statistic file
merged_chr1_10000.windowed.pi.

stat_sampler.py --statistic-file examples/files/merged_chr1_10000.
→˓windowed.pi --calc-statistic window-pi --sampling-scheme uniform --
→˓uniform-bins 4 --sample-size 20

7.4.2 Input Command-line Arguments

--statistic-file <statistic_filename> Argument used to define the filename of the statistic file for
sampling.

7.4.3 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename, overrides --out-
prefix. Cannot be used if multiple output files are created.

--out-prefix <output_prefix> Argument used to define the output prefix (i.e. filename without file
extension)

--overwrite Argument used to define if previous output should be overwritten.

7.4.4 Sampling Command-line Arguments

--calc-statistic <windowed-weir-fst, TajimaD, window-pi> Argument used to define the statistic
to be sampled. Windowed Fst (windowed-weir-fst), Tajima’s D (TajimaD), and windowed
nucleotide diversity (window-pi).

--sampling-scheme <random, uniform> Argument used to define the sampling scheme. Random
[Default] sampling or uniform sampling across of number of equal-sized bins.

--uniform-bins <bin_int> Argument used to define the number of bins in uniform sampling.

7.4. stat_sampler.py: STAT File Sampler 69

PPP Documentation, Release 0.1.13

--sample-size <sample_size_int> Argument used to define the total sample size. If using the
uniform sampling scheme, this number must be divisible by the number of bins.

--random-seed <seed_int> Argument used to define the seed value for the random number gener-
ator.

7.4. stat_sampler.py: STAT File Sampler 70

CHAPTER 8

Model File and Creation

A core aspect of the PPP is the use of Model files, JSON-based files used to assign and store
population models. A population model primarily consists of: the populations within the model;
the individuals in each population; and a population tree. Model files offer various benefits within the
PPP: i) automatic assignment of relevant populations, individuals, or other potential meta-data; ii)
simplified process to examine multiple models; and iii) a single repository of all relevant meta-data.

Model files may be created and edited using our model creator.

8.1 model_creator.py: Model File Creator

Many PPP functions were designed to automatically assign relevant populations and/or individuals
using a Model file. To enable this functionality, the model_creator.py function may be used to
produce Model files by either: i) manually entering the necessary information or ii) by using files
with the relevant information. It is also all possible to create multiple models simultaneously and
assign populations to more than a single model.

71

PPP Documentation, Release 0.1.13

A simple way to visualize models are as a hierarchy. Each Model may contain one or more
Populations and each Population may contain one or more Individuals.

8.1.1 Command-line Usage

The model creator may be called using the following command:

model_creator.py

Example 1: Simple Model

A basic model only require a single population (pop) with a single in individual (ind). Only three
commands are required:

1. Create and name a model: --model 1Pop

2. Assign a pop to a model: --model-pop 1Pop Paniscus

3. Assign an ind to a pop: --pop-ind Paniscus Pan_paniscus-9731_LB502

model_creator.py --model 1Pop --model-pop 1Pop Paniscus --pop-ind
→˓Paniscus Pan_paniscus-9731_LB502

Example 2: Model Using Files

A model may also be created using two file options:

1. Assign multiple pops to model: --model-pop-file 2Pop 2Pops.txt

2. Assign multiple inds to pop: --pop-ind-file Paniscus Paniscus.txt

model_creator.py --model 2Pop --model-pop-file 2Pop examples/files/
→˓2Pops.txt --pop-ind-file Paniscus examples/files/Paniscus.txt --pop-
→˓ind-file Troglodytes examples/files/Troglodytes.txt (continues on next page)

8.1. model_creator.py: Model File Creator 72

PPP Documentation, Release 0.1.13

(continued from previous page)

Listing 1: examples/files/2Pops.txt

Paniscus
Troglodytes

Listing 2: examples/files/Paniscus.txt

Pan_paniscus-9731_LB502
Pan_paniscus-A915_Kosana

Listing 3: examples/files/Troglodytes.txt

Pan_troglodytes_troglodytes-A957_Vaillant
Pan_troglodytes_troglodytes-A958_Doris

Example 3: Update Model in Model File

A model may be updated if desired using the following options:

1. Assign the model file: --model-file input.model

2. Assign the model to update: --update-model 2Pop

3. Assign a pop to remove from a model: --model-rm-pop 2Pop Troglodytes

4. Assign a new or previously created pop to a model: --model-pop 2Pop Schweinfurthii

5. Assign multiple inds to pop (if new): --pop-ind-file Schweinfurthii Schweinfurthii.txt

model_creator.py --model-file examples/files/input.model --update-
→˓model 2Pop --model-pop 2Pop Schweinfurthii --model-rm-pop 2Pop
→˓Troglodytes

Example 4: Update Population in Model File

A population may be updated if desired using the following options:

1. Assign the model file: --model-file input.model

2. Assign the pop to update: --update-pop Paniscus

3. Assign a ind to add to a pop: --pop-ind Paniscus Pan_paniscus-Unknown

4. Assign a ind to remove from a pop: --pop-rm-ind Paniscus Pan_paniscus-9731_LB502

8.1. model_creator.py: Model File Creator 73

PPP Documentation, Release 0.1.13

model_creator.py --model-file examples/files/input.model --update-pop
→˓Paniscus --pop-ind Paniscus Pan_paniscus-Unknown --pop-rm-ind
→˓Paniscus Pan_paniscus-9731_LB502

8.1.2 Standard Model Command-line Arguments

Except for --model-file all other model-based arguments may be used multiple times.

--model-file <str> Argument used to define the name of a model file.

--model <model_str> Argument used to define the name of a model to create.

--update-model <str> Argument used to define the name of a model to update. Allows for: i) tree
update and ii) populations to be added.

--update-pop <str> Argument used to define the name of a population to update. Allows for
individuals to be added.

--model-tree <model_str> <newick_str> Argument used to assign a population tree to a model, in
Newick format.

--model-tree-file <model_str> <newick_file> Argument used to assign a population tree file to a
model, in Newick format.

--model-pop <model_str> <pop_str> Argument used to assign a population to a model.

--model-pops <model_str> <pop1_str> <pop2_str> .. Argument used to assign a multiple popula-
tions to a model.

--model-pop-file <model_str> <pop_file> Argument used to assign a multiple populations to a
model using a file.

--pop-ind <pop_str> <ind_str> Argument used to assign a individual to a population.

--pop-inds <pop_str> <ind1_str> <ind2_str> .. Argument used to assign a multiple individuals to
a population.

--pop-ind-file <pop_str> <ind_file> Argument used to assign a multiple individuals to a popula-
tion using a file.

8.1.3 Model Update: Compatible Command-line Arguments

Please note: --update-model is required to update a model.

--update-model <str> Argument used to define the name of a model to update. Allows for: i) tree
update and ii) populations to be added and/or removed.

--model-file <str> Argument used to define the name of a model file.

8.1. model_creator.py: Model File Creator 74

PPP Documentation, Release 0.1.13

--model-tree <model_str> <newick_str> Argument may be used to replace a population tree, in
Newick format.

--model-tree-file <model_str> <newick_file> Argument may be used to replace a population usng
a tree file, in Newick format.

--model-pop <model_str> <pop_str> Argument used to assign a population to the model begin
updated.

--model-pops <model_str> <pop1_str> <pop2_str> .. Argument used to assign multiple popula-
tions to the model begin updated.

--model-pop-file <model_str> <pop_file> Argument used to assign multiple populations to the
model begin updated using a file.

--model-rm-pop <model_str> <pop_str> Argument used to remove a population to the model
begin updated.

--model-rm-pops <model_str> <pop1_str> <pop2_str> .. Argument used to remove multiple pop-
ulations to the model begin updated.

--model-rm-pop-file <model_str> <pop_file> Argument used to remove multiple populations to
the model begin updated using a file.

8.1.4 Population Update: Compatible Command-line Arguments

Please note: --update-pop is required to update a population.

--update-pop <str> Argument used to define the name of a population to update. Allows for
individuals to be added.

--model-file <str> Argument used to define the name of a model file.

--pop-ind <pop_str> <ind_str> Argument used to assign a individual to the population begin
updated.

--pop-inds <pop_str> <ind1_str> <ind2_str> .. Argument used to assign multiple individuals to
the population begin updated.

--pop-ind-file <pop_str> <ind_file> Argument used to assign multiple individuals to thr popula-
tion begin updated using a file.

--pop-rm-ind <pop_str> <ind_str> Argument used to remove a individual to the population begin
updated.

--pop-rm-inds <pop_str> <ind1_str> <ind2_str> .. Argument used to remove multiple individu-
als to the population begin updated.

--pop-rm-ind-file <pop_str> <ind_file> Argument used to remove multiple individuals to thr pop-
ulation begin updated using a file.

8.1. model_creator.py: Model File Creator 75

PPP Documentation, Release 0.1.13

8.1.5 Output Command-line Arguments

--out <output_filename> Argument used to define the complete output filename.

--overwrite Argument used to define if previous output should be overwritten.

An example Model file may be seen below:

[
{

"name": "2Pop",
"tree": "(Troglodytes,Verus);",
"pops": {

"Verus": {
"inds": [

"Pan_troglodytes_verus-9668_Bosco",
"Pan_troglodytes_verus-9730_Donald",
"Pan_troglodytes_verus-A956_Jimmie",
"Pan_troglodytes_verus-Clint",
"Pan_troglodytes_verus-X00100_Koby"

]
},
"Troglodytes": {

"inds": [
"Pan_troglodytes_troglodytes-A957_Vaillant",
"Pan_troglodytes_troglodytes-A958_Doris",
"Pan_troglodytes_troglodytes-A959_Julie",
"Pan_troglodytes_troglodytes-A960_Clara"

]
}

}
}
]

8.1. model_creator.py: Model File Creator 76

CHAPTER 9

Development

As it would be unlikely that the PPP would encompass all desired procedures/methods, we has
included this section to aid in the development of additional functionality for the PPP.

9.1 Development Guidelines

In general:

• Functions developed for the PPP should be modular – i.e. function independently – primar-
ily to maintain a flexible platform, this is especially important when considering Galaxy
integration.

• Functions should be able to be imported from pgpipe, so that multiple functions may be used
within a single python script or Jupyter notebook.

• Functions should support the use of Model files for automatic assignment of relevant meta-
data. Note: details on the model file class may be found below

• Functions that use third-party software should include the relevant reference(s) within log
files.

77

https://galaxyproject.org/
https://jupyter.org/

PPP Documentation, Release 0.1.13

9.2 Using PPP Classes

9.2.1 VCF Class

italic BOLD outside link: Google. internal link: examples

my_code.py

The VcfReader() class is responsible for integrating VCF files into the PPP. It can parse unzipped
and bgzipped VCFs (as well as BCFs), allowing for the SNP records of those files to be accessed in
multiple ways, such as sequentially or from a particular region (as implemented in the GeneRegion
class). It can also subsample requested individuals from a VCF using the ModelFile functionality
or by providing a list of individuals to sample. The class can be initialized as follows:

There are two primary operating modes for this class: operating on bgzipped or unzipped data. For
unzipped data, there is a requirement that records are fetched from the file sequentially, so selecting
records using gene regions requires those regions be sorted (as they are by default). For a bgzipped
file, a tabix index must be created in order to access any records.

To perform an action on different regions specified in a BED file:

To subsample the VCF for given individuals:

9.2.2 ModelFile Class

Model files may be read using the function read_model_file() found within the model.py module.
The reader accepts the filename (as a string) of the model file and returns a ModelFile class object
as shown below:

Read in the model file
model_file = pgpipe.model.read_model_file(“path/to/my_model_file.
→˓model”)

A ModelFile class object primarily behaves as a dictionary of Model class objects; the keys of the
dictionary are the model names (as strings) of the Model class objects whereas the values are the
objects themselves. Therefore, a Model named 2Pop may assigned as shown below:

Assign the 2Pop model, from model file
model_2pop = model_file[‘2Pop’]

A ModelFile class object also has two additional attributes:

• ind_file: If created, the filename of a file containing all the unique individuals found within
all models stored within the ModelFile.

9.2. Using PPP Classes 78

https://google.com//

PPP Documentation, Release 0.1.13

• exclude_file: If created, the filename of a file containing all the unique individuals found
within all models stored within the ModelFile that do not match a given list of individuals.

These attributes may be populated and their files created using the following functions: cre-
ate_ind_file() and create_exclude_ind_file(). The inverse operating can also be completed using
delete_ind_file() and delete_exclude_ind_file().

9.2.3 Model Class

The Model class is used to store model meta-data. The primary attributes of the class are:

• name: The name (as a string) of the model

• tree: The newick tree of the model

• pop_list: A list of the population names within the model

• ind_dict: A dictionary used to store the individuals within each population; the keys of the
dictionary are the population names whereas the values are lists of individuals.

• nind: A dictionary used to store the number of individuals within each population; the keys
of the dictionary are the population names whereas the values are individual counts.

• npop: The number of populations within the model

• inds: A list of all individuals in the model

A Model may be created with all primary attributes populated as shown below:

Create the model
model = pgpipe.model.Model("2Pop")

Assign the model tree
model.assign_tree("(A,B);")

Assign the populations and their individuals
model.assign_pop("A", ["Ind1", "Ind2", "Ind3"])
model.assign_pop("B", ["Ind4", "Ind5", "Ind6"])

A Model class object also has two additional attributes:

• pop_files: If created, a list of population filenames. Each population file consist of the
individuals found within the population.

• ind_file: If created, the filename of a file containing all the unique individuals found within
the model.

These attributes may be populated and their files created using the following functions: cre-
ate_ind_file() and create_pop_files(). The inverse operating can also be completed using
delete_ind_file() and delete_pop_files().

9.2. Using PPP Classes 79

PPP Documentation, Release 0.1.13

Lastly, a Model class object masy be assigned to a ModelFile class object as shown below:

Create ModelFile object
models = pgpipe.model.ModelFile()

Save the model
models[str(model.name)] = model

9.2. Using PPP Classes 80

CHAPTER 10

Contact Us

To report bugs or request help, please visit the PPP Github.

81

https://github.com/jaredgk/PPP/issues

CHAPTER 11

Citations

The PPP combines a number of software packages and analyses. Therefore, any packages and/or
analyses used in a PPP analysis should be cited alongside the PPP.

To aid in this endeavour, the log file of each operation will include relevant citations.

82

Python Module Index

a
admixture, 48

b
bed_utilities, 59

e
eigenstrat_fstats, 44

i
ima3_wrapper, 50
informative_loci_filter, 23

m
model_creator, 71

p
plink_linkage_disequilibrium, 50

s
stat_sampler, 68

v
vcf_bed_to_seq, 65
vcf_calc, 20
vcf_filter, 16
vcf_format_conversions, 34
vcf_four_gamete, 31
vcf_phase, 28
vcf_split, 26
vcf_to_dadi, 42
vcf_to_fastsimcoal, 40
vcf_to_gphocs, 39

vcf_to_ima, 35
vcf_to_sfs, 53
vcf_to_treemix, 37
vcf_utilities, 57

83

Index

A
admixture (module), 48

B
bed_utilities (module), 59

E
eigenstrat_fstats (module), 44

I
ima3_wrapper (module), 50
informative_loci_filter (module), 23

M
model_creator (module), 71

P
plink_linkage_disequilibrium

(module), 50

S
stat_sampler (module), 68

V
vcf_bed_to_seq (module), 65
vcf_calc (module), 20
vcf_filter (module), 16
vcf_format_conversions (module), 34
vcf_four_gamete (module), 31
vcf_phase (module), 28
vcf_split (module), 26
vcf_to_dadi (module), 42
vcf_to_fastsimcoal (module), 40

vcf_to_gphocs (module), 39
vcf_to_ima (module), 35
vcf_to_sfs (module), 53
vcf_to_treemix (module), 37
vcf_utilities (module), 57

84

	Introduction
	Creating Pipelines

	Installation
	From PyPi
	From Conda
	From Source
	Dependencies

	Usage and Examples
	Command-line Usage and Examples
	Module Usage and Examples

	PPP Core Functions
	vcf_filter.py: VCF Filter Function
	vcf_calc.py: VCF Statistic Calculator Function
	informative_loci_filter.py: Informative Loci Filter
	vcf_split.py: VCF Split Function
	vcf_phase.py: VCF Phase Function
	vcf_four_gamete.py: Four Gamete Test Function

	PPP Input File Generators
	vcf_format_conversions.py: VCF to Plink/EIGENSTRAT
	vcf_to_ima.py: VCF to IMa Conversion Function
	vcf_to_treemix.py: VCF to treemix Conversion Function
	vcf_to_gphocs.py: VCF to GPhocs Conversion Function
	vcf_to_fastsimcoal.py: VCF to fastsimcoal Conversion Function
	vcf_to_dadi.py: VCF to dadi Conversion Function

	PPP Analyses
	eigenstrat_fstats.py: F-statistics Analysis
	admixture.py: Admixture Analysis
	ima3_wrapper.py: IMa3 Analysis
	plink_linkage_disequilibrium.py: Linkage Disequilibrium Analysis
	vcf_to_sfs.py: Site Frequency Spectrum generator

	PPP Utilities
	vcf_utilities.py: VCF Utilities
	bed_utilities.py: BED Utilites
	vcf_bed_to_seq.py: Generate sequences from VCF/BED Files
	stat_sampler.py: STAT File Sampler

	Model File and Creation
	model_creator.py: Model File Creator

	Development
	Development Guidelines
	Using PPP Classes

	Contact Us
	Citations
	Python Module Index
	Index

