PyPI version License Python versions supported Format

https://travis-ci.org/pmacosta/pplot.svg?branch=master Windows continuous integration Continuous integration coverage Documentation status

Description

This module can be used to create high-quality, presentation-ready X-Y graphs quickly and easily

Class hierarchy

The properties of the graph (figure in Matplotlib parlance) are defined in an object of the pplot.Figure class.

Each figure can have one or more panels, whose properties are defined by objects of the pplot.Panel class. Panels are arranged vertically in the figure and share the same independent axis. The limits of the independent axis of the figure result from the union of the limits of the independent axis of all the panels. The independent axis is shown by default in the bottom-most panel although it can be configured to be in any panel or panels.

Each panel can have one or more data series, whose properties are defined by objects of the pplot.Series class. A series can be associated with either the primary or secondary dependent axis of the panel. The limits of the primary and secondary dependent axis of the panel result from the union of the primary and secondary dependent data points of all the series associated with each axis. The primary axis is shown on the left of the panel and the secondary axis is shown on the right of the panel. Axes can be linear or logarithmic.

The data for a series is defined by a source. Two data sources are provided: the pplot.BasicSource class provides basic data validation and minimum/maximum independent variable range bounding. The pplot.CsvSource class builds upon the functionality of the pplot.BasicSource class and offers a simple way of accessing data from a comma-separated values (CSV) file. Other data sources can be programmed by inheriting from the pplot.functions.DataSource abstract base class (ABC). The custom data source needs to implement the following methods: __str__, _set_indep_var and _set_dep_var. The latter two methods set the contents of the independent variable (an increasing real Numpy vector) and the dependent variable (a real Numpy vector) of the source, respectively.

_images/Class_hierarchy_example.png

Figure 1: Example diagram of the class hierarchy of a figure. In this particular example the figure consists of 3 panels. Panel 1 has a series whose data comes from a basic source, panel 2 has three series, two of which come from comma-separated values (CSV) files and one that comes from a basic source. Panel 3 has one series whose data comes from a basic source.

Axes tick marks

Axes tick marks are selected so as to create the most readable graph. Two global variables control the actual number of ticks, pplot.constants.MIN_TICKS and pplot.constants.SUGGESTED_MAX_TICKS. In general the number of ticks are between these two bounds; one or two more ticks can be present if a data series uses interpolation and the interpolated curve goes above (below) the largest (smallest) data point. Tick spacing is chosen so as to have the most number of data points “on grid”. Engineering notation (i.e. 1K = 1000, 1m = 0.001, etc.) is used for the axis tick marks.

Example

# plot_example_1.py
from __future__ import print_function
import os
import sys
import matplotlib
import numpy
import pplot

def main(fname, no_print):
    """
    Example of how to use the pplot library
    to generate presentation-quality plots
    """
    ###
    # Series definition (Series class)
    ###
    # Extract data from a comma-separated (csv)
    # file using the CsvSource class
    wdir = os.path.dirname(__file__)
    csv_file = os.path.join(wdir, 'data.csv')
    series1_obj = [pplot.Series(
        data_source=pplot.CsvSource(
            fname=csv_file,
            rfilter={'value1':1},
            indep_col_label='value2',
            dep_col_label='value3',
            indep_min=None,
            indep_max=None,
            fproc=series1_proc_func,
            fproc_eargs={'xoffset':1e-3}
        ),
        label='Source 1',
        color='k',
        marker='o',
        interp='CUBIC',
        line_style='-',
        secondary_axis=False
    )]
    # Literal data can be used with the BasicSource class
    series2_obj = [pplot.Series(
        data_source=pplot.BasicSource(
            indep_var=numpy.array([0e-3, 1e-3, 2e-3]),
            dep_var=numpy.array([4, 7, 8]),
        ),
        label='Source 2',
        color='r',
        marker='s',
        interp='STRAIGHT',
        line_style='--',
        secondary_axis=False
    )]
    series3_obj = [pplot.Series(
        data_source=pplot.BasicSource(
            indep_var=numpy.array([0.5e-3, 1e-3, 1.5e-3]),
            dep_var=numpy.array([10, 9, 6]),
        ),
        label='Source 3',
        color='b',
        marker='h',
        interp='STRAIGHT',
        line_style='--',
        secondary_axis=True
    )]
    series4_obj = [pplot.Series(
        data_source=pplot.BasicSource(
            indep_var=numpy.array([0.3e-3, 1.8e-3, 2.5e-3]),
            dep_var=numpy.array([8, 8, 8]),
        ),
        label='Source 4',
        color='g',
        marker='D',
        interp='STRAIGHT',
        line_style=None,
        secondary_axis=True
    )]
    ###
    # Panels definition (Panel class)
    ###
    panel_obj = pplot.Panel(
        series=series1_obj+series2_obj+series3_obj+series4_obj,
        primary_axis_label='Primary axis label',
        primary_axis_units='-',
        secondary_axis_label='Secondary axis label',
        secondary_axis_units='W',
        legend_props={'pos':'lower right', 'cols':1}
    )
    ###
    # Figure definition (Figure class)
    ###
    fig_obj = pplot.Figure(
        panels=panel_obj,
        indep_var_label='Indep. var.',
        indep_var_units='S',
        log_indep_axis=False,
        fig_width=4*2.25,
        fig_height=3*2.25,
        title='Library pplot Example'
    )
    # Save figure
    output_fname = os.path.join(wdir, fname)
    if not no_print:
        print('Saving image to file {0}'.format(output_fname))
    fig_obj.save(output_fname)

def series1_proc_func(indep_var, dep_var, xoffset):
    """ Process data 1 series """
    return (indep_var*1e-3)-xoffset, dep_var

data.csv file
case value1 value2 value3
0 0 1 3
1 0 2 3
2 1 1 3.5
3 1 2 5.75
4 1 3 10.11
5 1 4 8.88
6 2 1 1
7 2 2 3

_images/plot_example_1.png

Figure 2: plot_example_1.png generated by plot_example_1.py


Interpreter

The package has been developed and tested with Python 2.6, 2.7, 3.3, 3.4 and 3.5 under Linux (Debian, Ubuntu), Apple OS X and Microsoft Windows

Installing

$ pip install pplot

Documentation

Available at Read the Docs

Contributing

  1. Abide by the adopted code of conduct

  2. Fork the repository from GitHub and then clone personal copy [1]:

    $ git clone \
          https://github.com/[github-user-name]/pplot.git
    Cloning into 'pplot'...
    ...
    $ cd pplot
    $ export PPLOT_DIR=${PWD}
    
  3. Install the project’s Git hooks and build the documentation. The pre-commit hook does some minor consistency checks, namely trailing whitespace and PEP8 compliance via Pylint. Assuming the directory to which the repository was cloned is in the $PPLOT_DIR shell environment variable:

    $ ${PPLOT_DIR}/sbin/complete-cloning.sh
    Installing Git hooks
    Building pplot package documentation
    ...
    
  4. Ensure that the Python interpreter can find the package modules (update the $PYTHONPATH environment variable, or use sys.paths(), etc.)

    $ export PYTHONPATH=${PYTHONPATH}:${PPLOT_DIR}
    
  5. Install the dependencies (if needed, done automatically by pip):

  6. Implement a new feature or fix a bug

  7. Write a unit test which shows that the contributed code works as expected. Run the package tests to ensure that the bug fix or new feature does not have adverse side effects. If possible achieve 100% code and branch coverage of the contribution. Thorough package validation can be done via Tox and Py.test:

    $ tox
    GLOB sdist-make: .../pplot/setup.py
    py26-pkg inst-nodeps: .../pplot/.tox/dist/pplot-...zip
    

    Setuptools can also be used (Tox is configured as its virtual environment manager) [2]:

    $ python setup.py tests
    running tests
    running egg_info
    writing requirements to pplot.egg-info/requires.txt
    writing pplot.egg-info/PKG-INFO
    ...
    

    Tox (or Setuptools via Tox) runs with the following default environments: py26-pkg, py27-pkg, py33-pkg, py34-pkg and py35-pkg [3]. These use the Python 2.6, 2.7, 3.3, 3.4 and 3.5 interpreters, respectively, to test all code in the documentation (both in Sphinx *.rst source files and in docstrings), run all unit tests, measure test coverage and re-build the exceptions documentation. To pass arguments to Py.test (the test runner) use a double dash (--) after all the Tox arguments, for example:

    $ tox -e py27-pkg -- -n 4
    GLOB sdist-make: .../pplot/setup.py
    py27-pkg inst-nodeps: .../pplot/.tox/dist/pplot-...zip
    ...
    

    Or use the -a Setuptools optional argument followed by a quoted string with the arguments for Py.test. For example:

    $ python setup.py tests -a "-e py27-pkg -- -n 4"
    running tests
    ...
    

    There are other convenience environments defined for Tox [4]:

    • py26-repl, py27-repl, py33-repl, py34-repl and py35-repl run the Python 2.6, 2.7, 3.3, 3.4 or 3.5 REPL, respectively, in the appropriate virtual environment. The pplot package is pip-installed by Tox when the environments are created. Arguments to the interpreter can be passed in the command line after a double dash (--)

    • py26-test, py27-test, py33-test, py34-test and py35-test run py.test using the Python 2.6, 2.7, 3.3, 3.4 or Python 3.5 interpreter, respectively, in the appropriate virtual environment. Arguments to py.test can be passed in the command line after a double dash (--) , for example:

      $ tox -e py34-test -- -x test_pplot.py
      GLOB sdist-make: [...]/pplot/setup.py
      py34-test inst-nodeps: [...]/pplot/.tox/dist/pplot-[...].zip
      py34-test runtests: PYTHONHASHSEED='680528711'
      py34-test runtests: commands[0] | [...]py.test -x test_pplot.py
      ===================== test session starts =====================
      platform linux -- Python 3.4.2 -- py-1.4.30 -- [...]
      ...
      
    • py26-cov, py27-cov, py33-cov, py34-cov and py35-cov test code and branch coverage using the Python 2.6, 2.7, 3.3, 3.4 or 3.5 interpreter, respectively, in the appropriate virtual environment. Arguments to py.test can be passed in the command line after a double dash (--). The report can be found in ${PPLOT_DIR}/.tox/py[PV]/usr/share/pplot/tests/htmlcov/index.html where [PV] stands for 26, 27, 33, 34 or 35 depending on the interpreter used

  8. Verify that continuous integration tests pass. The package has continuous integration configured for Linux (via Travis) and for Microsoft Windows (via Appveyor). Aggregation/cloud code coverage is configured via Codecov. It is assumed that the Codecov repository upload token in the Travis build is stored in the ${CODECOV_TOKEN} environment variable (securely defined in the Travis repository settings page). Travis build artifacts can be transferred to Dropbox using the Dropbox Uploader script (included for convenience in the ${PPLOT_DIR}/sbin directory). For an automatic transfer that does not require manual entering of authentication credentials place the APPKEY, APPSECRET, ACCESS_LEVEL, OAUTH_ACCESS_TOKEN and OAUTH_ACCESS_TOKEN_SECRET values required by Dropbox Uploader in the in the ${DBU_APPKEY}, ${DBU_APPSECRET}, ${DBU_ACCESS_LEVEL}, ${DBU_OAUTH_ACCESS_TOKEN} and ${DBU_OAUTH_ACCESS_TOKEN_SECRET} environment variables, respectively (also securely defined in Travis repository settings page)

  9. Document the new feature or bug fix (if needed). The script ${PPLOT_DIR}/sbin/build_docs.py re-builds the whole package documentation (re-generates images, cogs source files, etc.):

    $ ${PUTIL_DIR}/sbin/build_docs.py -h
    usage: build_docs.py [-h] [-d DIRECTORY] [-r]
                         [-n NUM_CPUS] [-t]
    
    Build pplot package documentation
    
    optional arguments:
      -h, --help            show this help message and exit
      -d DIRECTORY, --directory DIRECTORY
                            specify source file directory
                            (default ../pplot)
      -r, --rebuild         rebuild exceptions documentation.
                            If no module name is given all
                            modules with auto-generated
                            exceptions documentation are
                            rebuilt
      -n NUM_CPUS, --num-cpus NUM_CPUS
                            number of CPUs to use (default: 1)
      -t, --test            diff original and rebuilt file(s)
                            (exit code 0 indicates file(s) are
                            identical, exit code 1 indicates
                            file(s) are different)
    

    Output of shell commands can be automatically included in reStructuredText source files with the help of Cog and the docs.support.term_echo module.

    docs.support.term_echo.ste(command, nindent, mdir, fpointer)

    Simplified terminal echo; prints STDOUT resulting from a given Bash shell command (relative to the package sbin directory) formatted in reStructuredText

    Parameters:
    • command (string) – Bash shell command, relative to ${PUTIL_DIR}/sbin
    • nindent (integer) – Indentation level
    • mdir (string) – Module directory
    • fpointer (function object) – Output function pointer. Normally is cog.out but print or other functions can be used for debugging

    For example:

    .. This is a reStructuredText file snippet
    .. [[[cog
    .. import os, sys
    .. from docs.support.term_echo import term_echo
    .. file_name = sys.modules['docs.support.term_echo'].__file__
    .. mdir = os.path.realpath(
    ..     os.path.dirname(
    ..         os.path.dirname(os.path.dirname(file_name))
    ..     )
    .. )
    .. [[[cog ste('build_docs.py -h', 0, mdir, cog.out) ]]]
    
    .. code-block:: bash
    
    $ ${PUTIL_DIR}/sbin/build_docs.py -h
    usage: build_docs.py [-h] [-d DIRECTORY] [-r]
                         [-n NUM_CPUS] [-t]
                         [module_name [module_name ...]]
    ...
    
    .. ]]]
    
    docs.support.term_echo.term_echo(command, nindent=0, env=None, fpointer=None, cols=60)

    Terminal echo; prints STDOUT resulting from a given Bash shell command formatted in reStructuredText

    Parameters:
    • command (string) – Bash shell command
    • nindent (integer) – Indentation level
    • env (dictionary) – Environment variable replacement dictionary. The Bash command is pre-processed and any environment variable represented in the full notation (${...}) is replaced. The dictionary key is the environment variable name and the dictionary value is the replacement value. For example, if command is '${PYTHON_CMD} -m "x=5"' and env is {'PYTHON_CMD':'python3'} the actual command issued is 'python3 -m "x=5"'
    • fpointer (function object) – Output function pointer. Normally is cog.out but print or other functions can be used for debugging
    • cols (integer) – Number of columns of output

    Similarly Python files can be included in docstrings with the help of Cog and the docs.support.incfile module

    docs.support.incfile.incfile(fname, fpointer, lrange='1, 6-', sdir=None)

    Includes a Python source file in a docstring formatted in reStructuredText

    Parameters:
    • fname (string) – File name, relative to environment variable ${TRACER_DIR}
    • fpointer (function object) – Output function pointer. Normally is cog.out but print or other functions can be used for debugging
    • lrange (string) – Line range to include, similar to Sphinx literalinclude directive
    • sdir (string) – Source file directory. If None the ${TRACER_DIR} environment variable is used if it is defined, otherwise the directory where the docs.support.incfile module is located is used

    For example:

    def func():
        """
        This is a docstring. This file shows how to use it:
    
        .. =[=cog
        .. import docs.support.incfile
        .. docs.support.incfile.incfile('func_example.py', cog.out)
        .. =]=
        .. code-block:: python
    
            # func_example.py
            if __name__ == '__main__':
                func()
    
        .. =[=end=]=
        """
        return 'This is func output'
    

Footnotes

[1]All examples are for the bash shell
[2]It appears that Scipy dependencies do not include Numpy (as they should) so running the tests via Setuptools will typically result in an error. The pplot requirement file specifies Numpy before Scipy and this installation order is honored by Tox so running the tests via Tox sidesteps Scipy’s broken dependency problem but requires Tox to be installed before running the tests (Setuptools installs Tox if needed)
[3]It is assumed that all the Python interpreters are in the executables path. Source code for the interpreters can be downloaded from Python’s main site
[4]Tox configuration largely inspired by Ionel’s codelog

Changelog

  • 1.0.0 [2016-05-12]: Final release of 1.0.0 branch
  • 1.0.0rc1 [2016-05-12]: Initial commit, forked a subset from putil PyPI package

License

The MIT License (MIT)

Copyright (c) 2013-2016 Pablo Acosta-Serafini

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Contents

PyPI version License Python versions supported Format

https://travis-ci.org/pmacosta/pplot.svg?branch=master Windows continuous integration Continuous integration coverage Documentation status

Description

This module can be used to create high-quality, presentation-ready X-Y graphs quickly and easily

Class hierarchy

The properties of the graph (figure in Matplotlib parlance) are defined in an object of the pplot.Figure class.

Each figure can have one or more panels, whose properties are defined by objects of the pplot.Panel class. Panels are arranged vertically in the figure and share the same independent axis. The limits of the independent axis of the figure result from the union of the limits of the independent axis of all the panels. The independent axis is shown by default in the bottom-most panel although it can be configured to be in any panel or panels.

Each panel can have one or more data series, whose properties are defined by objects of the pplot.Series class. A series can be associated with either the primary or secondary dependent axis of the panel. The limits of the primary and secondary dependent axis of the panel result from the union of the primary and secondary dependent data points of all the series associated with each axis. The primary axis is shown on the left of the panel and the secondary axis is shown on the right of the panel. Axes can be linear or logarithmic.

The data for a series is defined by a source. Two data sources are provided: the pplot.BasicSource class provides basic data validation and minimum/maximum independent variable range bounding. The pplot.CsvSource class builds upon the functionality of the pplot.BasicSource class and offers a simple way of accessing data from a comma-separated values (CSV) file. Other data sources can be programmed by inheriting from the pplot.functions.DataSource abstract base class (ABC). The custom data source needs to implement the following methods: __str__, _set_indep_var and _set_dep_var. The latter two methods set the contents of the independent variable (an increasing real Numpy vector) and the dependent variable (a real Numpy vector) of the source, respectively.

_images/Class_hierarchy_example.png

Figure 1: Example diagram of the class hierarchy of a figure. In this particular example the figure consists of 3 panels. Panel 1 has a series whose data comes from a basic source, panel 2 has three series, two of which come from comma-separated values (CSV) files and one that comes from a basic source. Panel 3 has one series whose data comes from a basic source.

Axes tick marks

Axes tick marks are selected so as to create the most readable graph. Two global variables control the actual number of ticks, pplot.constants.MIN_TICKS and pplot.constants.SUGGESTED_MAX_TICKS. In general the number of ticks are between these two bounds; one or two more ticks can be present if a data series uses interpolation and the interpolated curve goes above (below) the largest (smallest) data point. Tick spacing is chosen so as to have the most number of data points “on grid”. Engineering notation (i.e. 1K = 1000, 1m = 0.001, etc.) is used for the axis tick marks.

Example

# plot_example_1.py
from __future__ import print_function
import os
import sys
import matplotlib
import numpy
import pplot

def main(fname, no_print):
    """
    Example of how to use the pplot library
    to generate presentation-quality plots
    """
    ###
    # Series definition (Series class)
    ###
    # Extract data from a comma-separated (csv)
    # file using the CsvSource class
    wdir = os.path.dirname(__file__)
    csv_file = os.path.join(wdir, 'data.csv')
    series1_obj = [pplot.Series(
        data_source=pplot.CsvSource(
            fname=csv_file,
            rfilter={'value1':1},
            indep_col_label='value2',
            dep_col_label='value3',
            indep_min=None,
            indep_max=None,
            fproc=series1_proc_func,
            fproc_eargs={'xoffset':1e-3}
        ),
        label='Source 1',
        color='k',
        marker='o',
        interp='CUBIC',
        line_style='-',
        secondary_axis=False
    )]
    # Literal data can be used with the BasicSource class
    series2_obj = [pplot.Series(
        data_source=pplot.BasicSource(
            indep_var=numpy.array([0e-3, 1e-3, 2e-3]),
            dep_var=numpy.array([4, 7, 8]),
        ),
        label='Source 2',
        color='r',
        marker='s',
        interp='STRAIGHT',
        line_style='--',
        secondary_axis=False
    )]
    series3_obj = [pplot.Series(
        data_source=pplot.BasicSource(
            indep_var=numpy.array([0.5e-3, 1e-3, 1.5e-3]),
            dep_var=numpy.array([10, 9, 6]),
        ),
        label='Source 3',
        color='b',
        marker='h',
        interp='STRAIGHT',
        line_style='--',
        secondary_axis=True
    )]
    series4_obj = [pplot.Series(
        data_source=pplot.BasicSource(
            indep_var=numpy.array([0.3e-3, 1.8e-3, 2.5e-3]),
            dep_var=numpy.array([8, 8, 8]),
        ),
        label='Source 4',
        color='g',
        marker='D',
        interp='STRAIGHT',
        line_style=None,
        secondary_axis=True
    )]
    ###
    # Panels definition (Panel class)
    ###
    panel_obj = pplot.Panel(
        series=series1_obj+series2_obj+series3_obj+series4_obj,
        primary_axis_label='Primary axis label',
        primary_axis_units='-',
        secondary_axis_label='Secondary axis label',
        secondary_axis_units='W',
        legend_props={'pos':'lower right', 'cols':1}
    )
    ###
    # Figure definition (Figure class)
    ###
    fig_obj = pplot.Figure(
        panels=panel_obj,
        indep_var_label='Indep. var.',
        indep_var_units='S',
        log_indep_axis=False,
        fig_width=4*2.25,
        fig_height=3*2.25,
        title='Library pplot Example'
    )
    # Save figure
    output_fname = os.path.join(wdir, fname)
    if not no_print:
        print('Saving image to file {0}'.format(output_fname))
    fig_obj.save(output_fname)

def series1_proc_func(indep_var, dep_var, xoffset):
    """ Process data 1 series """
    return (indep_var*1e-3)-xoffset, dep_var

data.csv file
case value1 value2 value3
0 0 1 3
1 0 2 3
2 1 1 3.5
3 1 2 5.75
4 1 3 10.11
5 1 4 8.88
6 2 1 1
7 2 2 3

_images/plot_example_1.png

Figure 2: plot_example_1.png generated by plot_example_1.py


Interpreter

The package has been developed and tested with Python 2.6, 2.7, 3.3, 3.4 and 3.5 under Linux (Debian, Ubuntu), Apple OS X and Microsoft Windows

Installing

$ pip install pplot

Documentation

Available at Read the Docs

Contributing

  1. Abide by the adopted code of conduct

  2. Fork the repository from GitHub and then clone personal copy [1]:

    $ git clone \
          https://github.com/[github-user-name]/pplot.git
    Cloning into 'pplot'...
    ...
    $ cd pplot
    $ export PPLOT_DIR=${PWD}
    
  3. Install the project’s Git hooks and build the documentation. The pre-commit hook does some minor consistency checks, namely trailing whitespace and PEP8 compliance via Pylint. Assuming the directory to which the repository was cloned is in the $PPLOT_DIR shell environment variable:

    $ ${PPLOT_DIR}/sbin/complete-cloning.sh
    Installing Git hooks
    Building pplot package documentation
    ...
    
  4. Ensure that the Python interpreter can find the package modules (update the $PYTHONPATH environment variable, or use sys.paths(), etc.)

    $ export PYTHONPATH=${PYTHONPATH}:${PPLOT_DIR}
    
  5. Install the dependencies (if needed, done automatically by pip):

  6. Implement a new feature or fix a bug

  7. Write a unit test which shows that the contributed code works as expected. Run the package tests to ensure that the bug fix or new feature does not have adverse side effects. If possible achieve 100% code and branch coverage of the contribution. Thorough package validation can be done via Tox and Py.test:

    $ tox
    GLOB sdist-make: .../pplot/setup.py
    py26-pkg inst-nodeps: .../pplot/.tox/dist/pplot-...zip
    

    Setuptools can also be used (Tox is configured as its virtual environment manager) [2]:

    $ python setup.py tests
    running tests
    running egg_info
    writing requirements to pplot.egg-info/requires.txt
    writing pplot.egg-info/PKG-INFO
    ...
    

    Tox (or Setuptools via Tox) runs with the following default environments: py26-pkg, py27-pkg, py33-pkg, py34-pkg and py35-pkg [3]. These use the Python 2.6, 2.7, 3.3, 3.4 and 3.5 interpreters, respectively, to test all code in the documentation (both in Sphinx *.rst source files and in docstrings), run all unit tests, measure test coverage and re-build the exceptions documentation. To pass arguments to Py.test (the test runner) use a double dash (--) after all the Tox arguments, for example:

    $ tox -e py27-pkg -- -n 4
    GLOB sdist-make: .../pplot/setup.py
    py27-pkg inst-nodeps: .../pplot/.tox/dist/pplot-...zip
    ...
    

    Or use the -a Setuptools optional argument followed by a quoted string with the arguments for Py.test. For example:

    $ python setup.py tests -a "-e py27-pkg -- -n 4"
    running tests
    ...
    

    There are other convenience environments defined for Tox [4]:

    • py26-repl, py27-repl, py33-repl, py34-repl and py35-repl run the Python 2.6, 2.7, 3.3, 3.4 or 3.5 REPL, respectively, in the appropriate virtual environment. The pplot package is pip-installed by Tox when the environments are created. Arguments to the interpreter can be passed in the command line after a double dash (--)

    • py26-test, py27-test, py33-test, py34-test and py35-test run py.test using the Python 2.6, 2.7, 3.3, 3.4 or Python 3.5 interpreter, respectively, in the appropriate virtual environment. Arguments to py.test can be passed in the command line after a double dash (--) , for example:

      $ tox -e py34-test -- -x test_pplot.py
      GLOB sdist-make: [...]/pplot/setup.py
      py34-test inst-nodeps: [...]/pplot/.tox/dist/pplot-[...].zip
      py34-test runtests: PYTHONHASHSEED='680528711'
      py34-test runtests: commands[0] | [...]py.test -x test_pplot.py
      ===================== test session starts =====================
      platform linux -- Python 3.4.2 -- py-1.4.30 -- [...]
      ...
      
    • py26-cov, py27-cov, py33-cov, py34-cov and py35-cov test code and branch coverage using the Python 2.6, 2.7, 3.3, 3.4 or 3.5 interpreter, respectively, in the appropriate virtual environment. Arguments to py.test can be passed in the command line after a double dash (--). The report can be found in ${PPLOT_DIR}/.tox/py[PV]/usr/share/pplot/tests/htmlcov/index.html where [PV] stands for 26, 27, 33, 34 or 35 depending on the interpreter used

  8. Verify that continuous integration tests pass. The package has continuous integration configured for Linux (via Travis) and for Microsoft Windows (via Appveyor). Aggregation/cloud code coverage is configured via Codecov. It is assumed that the Codecov repository upload token in the Travis build is stored in the ${CODECOV_TOKEN} environment variable (securely defined in the Travis repository settings page). Travis build artifacts can be transferred to Dropbox using the Dropbox Uploader script (included for convenience in the ${PPLOT_DIR}/sbin directory). For an automatic transfer that does not require manual entering of authentication credentials place the APPKEY, APPSECRET, ACCESS_LEVEL, OAUTH_ACCESS_TOKEN and OAUTH_ACCESS_TOKEN_SECRET values required by Dropbox Uploader in the in the ${DBU_APPKEY}, ${DBU_APPSECRET}, ${DBU_ACCESS_LEVEL}, ${DBU_OAUTH_ACCESS_TOKEN} and ${DBU_OAUTH_ACCESS_TOKEN_SECRET} environment variables, respectively (also securely defined in Travis repository settings page)

  9. Document the new feature or bug fix (if needed). The script ${PPLOT_DIR}/sbin/build_docs.py re-builds the whole package documentation (re-generates images, cogs source files, etc.):

    $ ${PUTIL_DIR}/sbin/build_docs.py -h
    usage: build_docs.py [-h] [-d DIRECTORY] [-r]
                         [-n NUM_CPUS] [-t]
    
    Build pplot package documentation
    
    optional arguments:
      -h, --help            show this help message and exit
      -d DIRECTORY, --directory DIRECTORY
                            specify source file directory
                            (default ../pplot)
      -r, --rebuild         rebuild exceptions documentation.
                            If no module name is given all
                            modules with auto-generated
                            exceptions documentation are
                            rebuilt
      -n NUM_CPUS, --num-cpus NUM_CPUS
                            number of CPUs to use (default: 1)
      -t, --test            diff original and rebuilt file(s)
                            (exit code 0 indicates file(s) are
                            identical, exit code 1 indicates
                            file(s) are different)
    

    Output of shell commands can be automatically included in reStructuredText source files with the help of Cog and the docs.support.term_echo module.

    docs.support.term_echo.ste(command, nindent, mdir, fpointer)

    Simplified terminal echo; prints STDOUT resulting from a given Bash shell command (relative to the package sbin directory) formatted in reStructuredText

    Parameters:
    • command (string) – Bash shell command, relative to ${PUTIL_DIR}/sbin
    • nindent (integer) – Indentation level
    • mdir (string) – Module directory
    • fpointer (function object) – Output function pointer. Normally is cog.out but print or other functions can be used for debugging

    For example:

    .. This is a reStructuredText file snippet
    .. [[[cog
    .. import os, sys
    .. from docs.support.term_echo import term_echo
    .. file_name = sys.modules['docs.support.term_echo'].__file__
    .. mdir = os.path.realpath(
    ..     os.path.dirname(
    ..         os.path.dirname(os.path.dirname(file_name))
    ..     )
    .. )
    .. [[[cog ste('build_docs.py -h', 0, mdir, cog.out) ]]]
    
    .. code-block:: bash
    
    $ ${PUTIL_DIR}/sbin/build_docs.py -h
    usage: build_docs.py [-h] [-d DIRECTORY] [-r]
                         [-n NUM_CPUS] [-t]
                         [module_name [module_name ...]]
    ...
    
    .. ]]]
    
    docs.support.term_echo.term_echo(command, nindent=0, env=None, fpointer=None, cols=60)

    Terminal echo; prints STDOUT resulting from a given Bash shell command formatted in reStructuredText

    Parameters:
    • command (string) – Bash shell command
    • nindent (integer) – Indentation level
    • env (dictionary) – Environment variable replacement dictionary. The Bash command is pre-processed and any environment variable represented in the full notation (${...}) is replaced. The dictionary key is the environment variable name and the dictionary value is the replacement value. For example, if command is '${PYTHON_CMD} -m "x=5"' and env is {'PYTHON_CMD':'python3'} the actual command issued is 'python3 -m "x=5"'
    • fpointer (function object) – Output function pointer. Normally is cog.out but print or other functions can be used for debugging
    • cols (integer) – Number of columns of output

    Similarly Python files can be included in docstrings with the help of Cog and the docs.support.incfile module

    docs.support.incfile.incfile(fname, fpointer, lrange='1, 6-', sdir=None)

    Includes a Python source file in a docstring formatted in reStructuredText

    Parameters:
    • fname (string) – File name, relative to environment variable ${TRACER_DIR}
    • fpointer (function object) – Output function pointer. Normally is cog.out but print or other functions can be used for debugging
    • lrange (string) – Line range to include, similar to Sphinx literalinclude directive
    • sdir (string) – Source file directory. If None the ${TRACER_DIR} environment variable is used if it is defined, otherwise the directory where the docs.support.incfile module is located is used

    For example:

    def func():
        """
        This is a docstring. This file shows how to use it:
    
        .. =[=cog
        .. import docs.support.incfile
        .. docs.support.incfile.incfile('func_example.py', cog.out)
        .. =]=
        .. code-block:: python
    
            # func_example.py
            if __name__ == '__main__':
                func()
    
        .. =[=end=]=
        """
        return 'This is func output'
    

Footnotes

[1]All examples are for the bash shell
[2]It appears that Scipy dependencies do not include Numpy (as they should) so running the tests via Setuptools will typically result in an error. The pplot requirement file specifies Numpy before Scipy and this installation order is honored by Tox so running the tests via Tox sidesteps Scipy’s broken dependency problem but requires Tox to be installed before running the tests (Setuptools installs Tox if needed)
[3]It is assumed that all the Python interpreters are in the executables path. Source code for the interpreters can be downloaded from Python’s main site
[4]Tox configuration largely inspired by Ionel’s codelog

Changelog

  • 1.0.0 [2016-05-12]: Final release of 1.0.0 branch
  • 1.0.0rc1 [2016-05-12]: Initial commit, forked a subset from putil PyPI package

License

The MIT License (MIT)

Copyright (c) 2013-2016 Pablo Acosta-Serafini

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

API

Global variables

pplot.constants.AXIS_LABEL_FONT_SIZE = 18

Axis labels font size in points

Type:integer
pplot.constants.LINE_WIDTH = 2.5

Series line width in points

Type:float
pplot.constants.LEGEND_SCALE = 1.5

Scale factor for panel legend. The legend font size in points is equal to the axis font size divided by the legend scale

Type:number
pplot.constants.MARKER_SIZE = 14

Series marker size in points

Type:integer
pplot.constants.MIN_TICKS = 6

Minimum number of ticks desired for the independent and dependent axis of a panel

Type:integer
pplot.constants.PRECISION = 10

Number of mantissa significant digits used in all computations

Type:integer
pplot.constants.SUGGESTED_MAX_TICKS = 10

Maximum number of ticks desired for the independent and dependent axis of a panel. It is possible for a panel to have more than SUGGESTED_MAX_TICKS in the dependent axis if one or more series are plotted with an interpolation function and at least one interpolated curve goes above or below the maximum and minimum data points of the panel. In this case the panel will have SUGGESTED_MAX_TICKS+1 ticks if some interpolation curve is above the maximum data point of the panel or below the minimum data point of the panel; or the panel will have SUGGESTED_MAX_TICKS+2 ticks if some interpolation curve(s) is(are) above the maximum data point of the panel and below the minimum data point of the panel

Type:integer
pplot.constants.TITLE_FONT_SIZE = 24

Figure title font size in points

Type:integer

Functions

pplot.parameterized_color_space(param_list, offset=0, color_space='binary')

Computes a color space where lighter colors correspond to lower parameter values

Parameters:
  • param_list (list) – Parameter values
  • offset (OffsetRange) – Offset of the first (lightest) color
  • color_space (ColorSpaceOption) – Color palette (case sensitive)
Return type:

Matplotlib color map

Raises:
  • RuntimeError (Argument `color_space` is not valid)
  • RuntimeError (Argument `offset` is not valid)
  • RuntimeError (Argument `param_list` is not valid)
  • TypeError (Argument `param_list` is empty)
  • ValueError (Argument `color_space` is not one of ‘binary’, ‘Blues’, ‘BuGn’, ‘BuPu’, ‘GnBu’, ‘Greens’, ‘Greys’, ‘Oranges’, ‘OrRd’, ‘PuBu’, ‘PuBuGn’, ‘PuRd’, ‘Purples’, ‘RdPu’, ‘Reds’, ‘YlGn’, ‘YlGnBu’, ‘YlOrBr’ or ‘YlOrRd’ (case insensitive))

Classes

class pplot.functions.DataSource

Bases: object

Abstract base class for data sources. The following example is a minimal implementation of a data source class:

# plot_example_2.py
import pplot

class MySource(pplot.DataSource, object):
    def __init__(self):
        super(MySource, self).__init__()

    def __str__(self):
        return super(MySource, self).__str__()

    def _set_dep_var(self, dep_var):
        super(MySource, self)._set_dep_var(dep_var)

    def _set_indep_var(self, indep_var):
        super(MySource, self)._set_indep_var(indep_var)

    dep_var = property(
        pplot.DataSource._get_dep_var, _set_dep_var
    )

    indep_var = property(
        pplot.DataSource._get_indep_var, _set_indep_var
    )

Warning

The abstract methods listed below need to be defined in a child class

__str__()

Pretty prints the stored independent and dependent variables. For example:

>>> from __future__ import print_function
>>> import numpy, docs.support.plot_example_2
>>> obj = docs.support.plot_example_2.MySource()
>>> obj.indep_var = numpy.array([1, 2, 3])
>>> obj.dep_var = numpy.array([-1, 1, -1])
>>> print(obj)
Independent variable: [ 1.0, 2.0, 3.0 ]
Dependent variable: [ -1.0, 1.0, -1.0 ]
_set_dep_var(dep_var)

Sets the dependent variable (casting to float type). For example:

>>> import numpy, docs.support.plot_example_2
>>> obj = docs.support.plot_example_2.MySource()
>>> obj.dep_var = numpy.array([-1, 1, -1])
>>> obj.dep_var
array([-1.,  1., -1.])
_set_indep_var(indep_var)

Sets the independent variable (casting to float type). For example:

>>> import numpy, docs.support.plot_example_2
>>> obj = docs.support.plot_example_2.MySource()
>>> obj.indep_var = numpy.array([1, 2, 3])
>>> obj.indep_var
array([ 1.,  2.,  3.])
class pplot.BasicSource(indep_var, dep_var, indep_min=None, indep_max=None)

Bases: pplot.functions.DataSource

Objects of this class hold a given data set intended for plotting. It is a convenient way to plot manually-entered data or data coming from a source that does not export to a comma-separated values (CSV) file.

Parameters:
  • indep_var (IncreasingRealNumpyVector) – Independent variable vector
  • dep_var (RealNumpyVector) – Dependent variable vector
  • indep_min (RealNum or None) – Minimum independent variable value. If None no minimum thresholding is applied to the data
  • indep_max – Maximum independent variable value. If None no maximum thresholding is applied to the data
Return type:

pplot.BasicSource

Raises:
  • RuntimeError (Argument `dep_var` is not valid)
  • RuntimeError (Argument `indep_max` is not valid)
  • RuntimeError (Argument `indep_min` is not valid)
  • RuntimeError (Argument `indep_var` is not valid)
  • ValueError (Argument `indep_min` is greater than argument `indep_max`)
  • ValueError (Argument `indep_var` is empty after `indep_min`/`indep_max` range bounding)
  • ValueError (Arguments `indep_var` and `dep_var` must have the same number of elements)
__str__()

Prints source information. For example:

# plot_example_4.py
import numpy, pplot

def create_basic_source():
    obj = pplot.BasicSource(
        indep_var=numpy.array([1, 2, 3, 4]),
        dep_var=numpy.array([1, -10, 10, 5]),
        indep_min=2, indep_max=3
    )
    return obj
>>> from __future__ import print_function
>>> import docs.support.plot_example_4
>>> obj = docs.support.plot_example_4.create_basic_source()
>>> print(obj)
Independent variable minimum: 2
Independent variable maximum: 3
Independent variable: [ 2.0, 3.0 ]
Dependent variable: [ -10.0, 10.0 ]
dep_var

Gets or sets the dependent variable data

Type:RealNumpyVector
Raises:

(when assigned)

  • RuntimeError (Argument `dep_var` is not valid)
  • ValueError (Arguments `indep_var` and `dep_var` must have the same number of elements)
indep_max

Gets or sets the maximum independent variable limit. If None no maximum thresholding is applied to the data

Type:RealNum or None
Raises:

(when assigned)

  • RuntimeError (Argument `indep_max` is not valid)
  • ValueError (Argument `indep_min` is greater than argument `indep_max`)
  • ValueError (Argument `indep_var` is empty after `indep_min`/`indep_max` range bounding)
indep_min

Gets or sets the minimum independent variable limit. If None no minimum thresholding is applied to the data

Type:RealNum or None
Raises:

(when assigned)

  • RuntimeError (Argument `indep_min` is not valid)
  • ValueError (Argument `indep_min` is greater than argument `indep_max`)
  • ValueError (Argument `indep_var` is empty after `indep_min`/`indep_max` range bounding)
indep_var

Gets or sets the independent variable data

Type:IncreasingRealNumpyVector
Raises:

(when assigned)

  • RuntimeError (Argument `indep_var` is not valid)
  • ValueError (Argument `indep_var` is empty after `indep_min`/`indep_max` range bounding)
  • ValueError (Arguments `indep_var` and `dep_var` must have the same number of elements)
class pplot.CsvSource(fname, indep_col_label, dep_col_label, rfilter=None, indep_min=None, indep_max=None, fproc=None, fproc_eargs=None)

Bases: pplot.functions.DataSource

Objects of this class hold a data set from a CSV file intended for plotting. The raw data from the file can be filtered and a callback function can be used for more general data pre-processing

Parameters:
  • fname (FileNameExists) – Comma-separated values file name
  • indep_col_label (string) – Independent variable column label (case insensitive)
  • dep_col_label (string) – Dependent variable column label (case insensitive)
  • rfilter (CsvRowFilter or None) – Row filter specification. If None no row filtering is performed
  • indep_min – Minimum independent variable value. If None no minimum thresholding is applied to the data
  • indep_max – Maximum independent variable value. If None no maximum thresholding is applied to the data
  • fproc (Function or None) – Data processing function. If None no processing function is used
  • fproc_eargs (dictionary or None) – Data processing function extra arguments. If None no extra arguments are passed to the processing function (if defined)
Return type:

pplot.CsvSource

Note

The row where data starts in the comma-separated file is auto-detected as the first row that has a number (integer or float) in at least one of its columns

Raises:
  • OSError (File [fname] could not be found)
  • RuntimeError (Argument `dep_col_label` is not valid)
  • RuntimeError (Argument `dep_var` is not valid)
  • RuntimeError (Argument `fname` is not valid)
  • RuntimeError (Argument `fproc_eargs` is not valid)
  • RuntimeError (Argument `fproc` (function [func_name]) returned an illegal number of values)
  • RuntimeError (Argument `fproc` is not valid)
  • RuntimeError (Argument `indep_col_label` is not valid)
  • RuntimeError (Argument `indep_max` is not valid)
  • RuntimeError (Argument `indep_min` is not valid)
  • RuntimeError (Argument `indep_var` is not valid)
  • RuntimeError (Argument `rfilter` is not valid)
  • RuntimeError (Column headers are not unique in file [fname])
  • RuntimeError (File [fname] has no valid data)
  • RuntimeError (File [fname] is empty)
  • RuntimeError (Processing function [func_name] raised an exception when called with the following arguments: \n indep_var: [indep_var_value] \n dep_var: [dep_var_value] \n fproc_eargs: [fproc_eargs_value] \n Exception error: [exception_error_message])
  • TypeError (Argument `fproc` (function [func_name]) return value is not valid)
  • TypeError (Processed dependent variable is not valid)
  • TypeError (Processed independent variable is not valid)
  • ValueError (Argument `fproc` (function [func_name]) does not have at least 2 arguments)
  • ValueError (Argument `indep_min` is greater than argument `indep_max`)
  • ValueError (Argument `indep_var` is empty after `indep_min`/`indep_max` range bounding)
  • ValueError (Argument `rfilter` is empty)
  • ValueError (Arguments `indep_var` and `dep_var` must have the same number of elements)
  • ValueError (Column [col_name] (dependent column label) could not be found in comma-separated file [fname] header)
  • ValueError (Column [col_name] (independent column label) could not be found in comma-separated file [fname] header)
  • ValueError (Column [col_name] in row filter not found in comma- separated file [fname] header)
  • ValueError (Column [column_identifier] not found)
  • ValueError (Extra argument `*[arg_name]*` not found in argument `fproc` (function [func_name]) definition)
  • ValueError (Filtered dependent variable is empty)
  • ValueError (Filtered independent variable is empty)
  • ValueError (Processed dependent variable is empty)
  • ValueError (Processed independent and dependent variables are of different length)
  • ValueError (Processed independent variable is empty)
__str__()

Prints source information. For example:

# plot_example_3.py
import pmisc, pcsv

def cwrite(fobj, data):
    fobj.write(data)

def write_csv_file(file_handle):
    cwrite(file_handle, 'Col1,Col2\n')
    cwrite(file_handle, '0E-12,10\n')
    cwrite(file_handle, '1E-12,0\n')
    cwrite(file_handle, '2E-12,20\n')
    cwrite(file_handle, '3E-12,-10\n')
    cwrite(file_handle, '4E-12,30\n')

# indep_var is a Numpy vector, in this example time,
# in seconds. dep_var is a Numpy vector
def proc_func1(indep_var, dep_var):
    # Scale time to pico-seconds
    indep_var = indep_var/1e-12
    # Remove offset
    dep_var = dep_var-dep_var[0]
    return indep_var, dep_var

def create_csv_source():
    with pmisc.TmpFile(write_csv_file) as fname:
        obj = pplot.CsvSource(
            fname=fname,
            indep_col_label='Col1',
            dep_col_label='Col2',
            indep_min=2E-12,
            fproc=proc_func1
        )
    return obj
>>> from __future__ import print_function
>>> import docs.support.plot_example_3
>>> obj = docs.support.plot_example_3.create_csv_source()
>>> print(obj)  
File name: ...
Row filter: None
Independent column label: Col1
Dependent column label: Col2
Processing function: proc_func1
Processing function extra arguments: None
Independent variable minimum: 2e-12
Independent variable maximum: +inf
Independent variable: [ 2.0, 3.0, 4.0 ]
Dependent variable: [ 0.0, -30.0, 10.0 ]
dep_col_label

Gets or sets the dependent variable column label (column name)

Type:string
Raises:

(when assigned)

  • RuntimeError (Argument `dep_col_label` is not valid)
  • RuntimeError (Argument `fproc` (function [func_name]) returned an illegal number of values)
  • RuntimeError (Processing function [func_name] raised an exception when called with the following arguments: \n indep_var: [indep_var_value] \n dep_var: [dep_var_value] \n fproc_eargs: [fproc_eargs_value] \n Exception error: [exception_error_message])
  • TypeError (Argument `fproc` (function [func_name]) return value is not valid)
  • TypeError (Processed dependent variable is not valid)
  • TypeError (Processed independent variable is not valid)
  • ValueError (Column [col_name] (dependent column label) could not be found in comma-separated file [fname] header)
  • ValueError (Column [col_name] in row filter not found in comma- separated file [fname] header)
  • ValueError (Filtered dependent variable is empty)
  • ValueError (Filtered independent variable is empty)
  • ValueError (Processed dependent variable is empty)
  • ValueError (Processed independent and dependent variables are of different length)
  • ValueError (Processed independent variable is empty)
dep_var

Gets the dependent variable Numpy vector

fname

Gets or sets the comma-separated values file from which data series is to be extracted. It is assumed that the first line of the file contains unique headers for each column

Type:string
Raises:

(when assigned)

  • OSError (File [fname] could not be found)
  • RuntimeError (Argument `dep_var` is not valid)
  • RuntimeError (Argument `fname` is not valid)
  • RuntimeError (Argument `fproc` (function [func_name]) returned an illegal number of values)
  • RuntimeError (Argument `indep_var` is not valid)
  • RuntimeError (Argument `rfilter` is not valid)
  • RuntimeError (Column headers are not unique in file [fname])
  • RuntimeError (File [fname] has no valid data)
  • RuntimeError (File [fname] is empty)
  • RuntimeError (Processing function [func_name] raised an exception when called with the following arguments: \n indep_var: [indep_var_value] \n dep_var: [dep_var_value] \n fproc_eargs: [fproc_eargs_value] \n Exception error: [exception_error_message])
  • TypeError (Argument `fproc` (function [func_name]) return value is not valid)
  • TypeError (Processed dependent variable is not valid)
  • TypeError (Processed independent variable is not valid)
  • ValueError (Argument `indep_var` is empty after `indep_min`/`indep_max` range bounding)
  • ValueError (Argument `rfilter` is empty)
  • ValueError (Arguments `indep_var` and `dep_var` must have the same number of elements)
  • ValueError (Column [col_name] (dependent column label) could not be found in comma-separated file [fname] header)
  • ValueError (Column [col_name] (independent column label) could not be found in comma-separated file [fname] header)
  • ValueError (Column [col_name] in row filter not found in comma- separated file [fname] header)
  • ValueError (Column [column_identifier] not found)
  • ValueError (Filtered dependent variable is empty)
  • ValueError (Filtered independent variable is empty)
  • ValueError (Processed dependent variable is empty)
  • ValueError (Processed independent and dependent variables are of different length)
  • ValueError (Processed independent variable is empty)
fproc

Gets or sets the data processing function pointer. The processing function is useful for “light” data massaging, like scaling, unit conversion, etc.; it is called after the data has been retrieved from the comma-separated values file and the resulting filtered data set has been bounded (if applicable). If None no processing function is used.

When defined the processing function is given two arguments, a Numpy vector containing the independent variable array (first argument) and a Numpy vector containing the dependent variable array (second argument). The expected return value is a two-item Numpy vector tuple, its first item being the processed independent variable array, and the second item being the processed dependent variable array. One valid processing function could be:

# indep_var is a Numpy vector, in this example time,
# in seconds. dep_var is a Numpy vector
def proc_func1(indep_var, dep_var):
    # Scale time to pico-seconds
    indep_var = indep_var/1e-12
    # Remove offset
    dep_var = dep_var-dep_var[0]
    return indep_var, dep_var
Type:Function or None
Raises:

(when assigned)

  • RuntimeError (Argument `fproc` (function [func_name]) returned an illegal number of values)
  • RuntimeError (Argument `fproc` is not valid)
  • RuntimeError (Processing function [func_name] raised an exception when called with the following arguments: \n indep_var: [indep_var_value] \n dep_var: [dep_var_value] \n fproc_eargs: [fproc_eargs_value] \n Exception error: [exception_error_message])
  • TypeError (Argument `fproc` (function [func_name]) return value is not valid)
  • TypeError (Processed dependent variable is not valid)
  • TypeError (Processed independent variable is not valid)
  • ValueError (Argument `fproc` (function [func_name]) does not have at least 2 arguments)
  • ValueError (Extra argument `*[arg_name]*` not found in argument `fproc` (function [func_name]) definition)
  • ValueError (Processed dependent variable is empty)
  • ValueError (Processed independent and dependent variables are of different length)
  • ValueError (Processed independent variable is empty)
fproc_eargs

Gets or sets the extra arguments for the data processing function. The arguments are specified by key-value pairs of a dictionary, for each dictionary element the dictionary key specifies the argument name and the dictionary value specifies the argument value. The extra parameters are passed by keyword so they must appear in the function definition explicitly or keyword variable argument collection must be used (**kwargs, for example). If None no extra arguments are passed to the processing function (if defined)

Type:dictionary or None
Raises:

(when assigned)

  • RuntimeError (Argument `fproc_eargs` is not valid)
  • RuntimeError (Argument `fproc` (function [func_name]) returned an illegal number of values)
  • RuntimeError (Processing function [func_name] raised an exception when called with the following arguments: \n indep_var: [indep_var_value] \n dep_var: [dep_var_value] \n fproc_eargs: [fproc_eargs_value] \n Exception error: [exception_error_message])
  • TypeError (Argument `fproc` (function [func_name]) return value is not valid)
  • TypeError (Processed dependent variable is not valid)
  • TypeError (Processed independent variable is not valid)
  • ValueError (Extra argument `*[arg_name]*` not found in argument `fproc` (function [func_name]) definition)
  • ValueError (Processed dependent variable is empty)
  • ValueError (Processed independent and dependent variables are of different length)
  • ValueError (Processed independent variable is empty)

For example:

# plot_example_5.py
import sys, pmisc, pcsv
if sys.hexversion < 0x03000000:
    from pplot.compat2 import _write
else:
    from pplot.compat3 import _write

def write_csv_file(file_handle):
    _write(file_handle, 'Col1,Col2\n')
    _write(file_handle, '0E-12,10\n')
    _write(file_handle, '1E-12,0\n')
    _write(file_handle, '2E-12,20\n')
    _write(file_handle, '3E-12,-10\n')
    _write(file_handle, '4E-12,30\n')

def proc_func2(indep_var, dep_var, par1, par2):
    return (indep_var/1E-12)+(2*par1), dep_var+sum(par2)

def create_csv_source():
    with pmisc.TmpFile(write_csv_file) as fname:
        obj = pplot.CsvSource(
            fname=fname,
            indep_col_label='Col1',
            dep_col_label='Col2',
            fproc=proc_func2,
            fproc_eargs={'par1':5, 'par2':[1, 2, 3]}
        )
    return obj
>>> from __future__ import print_function
>>> import docs.support.plot_example_5
>>> obj = docs.support.plot_example_5.create_csv_source()
>>> print(obj)  
File name: ...
Row filter: None
Independent column label: Col1
Dependent column label: Col2
Processing function: proc_func2
Processing function extra arguments: None
Independent variable minimum: -inf
Independent variable maximum: +inf
Independent variable: [ 10, 11, 12, 13, 14 ]
Dependent variable: [ 16, 6, 26, -4, 36 ]
indep_col_label

Gets or sets the independent variable column label (column name)

Type:string
Raises:

(when assigned)

  • RuntimeError (Argument `fproc` (function [func_name]) returned an illegal number of values)
  • RuntimeError (Argument `indep_col_label` is not valid)
  • RuntimeError (Processing function [func_name] raised an exception when called with the following arguments: \n indep_var: [indep_var_value] \n dep_var: [dep_var_value] \n fproc_eargs: [fproc_eargs_value] \n Exception error: [exception_error_message])
  • TypeError (Argument `fproc` (function [func_name]) return value is not valid)
  • TypeError (Processed dependent variable is not valid)
  • TypeError (Processed independent variable is not valid)
  • ValueError (Column [col_name] (independent column label) could not be found in comma-separated file [fname] header)
  • ValueError (Column [col_name] in row filter not found in comma- separated file [fname] header)
  • ValueError (Filtered dependent variable is empty)
  • ValueError (Filtered independent variable is empty)
  • ValueError (Processed dependent variable is empty)
  • ValueError (Processed independent and dependent variables are of different length)
  • ValueError (Processed independent variable is empty)
indep_max

Gets or sets the maximum independent variable limit. If None no maximum thresholding is applied to the data

Type:RealNum or None
Raises:

(when assigned)

  • RuntimeError (Argument `indep_max` is not valid)
  • ValueError (Argument `indep_min` is greater than argument `indep_max`)
  • ValueError (Argument `indep_var` is empty after `indep_min`/`indep_max` range bounding)
indep_min

Gets or sets the minimum independent variable limit. If None no minimum thresholding is applied to the data

Type:RealNum or None
Raises:

(when assigned)

  • RuntimeError (Argument `indep_min` is not valid)
  • ValueError (Argument `indep_min` is greater than argument `indep_max`)
  • ValueError (Argument `indep_var` is empty after `indep_min`/`indep_max` range bounding)
indep_var

Gets the independent variable Numpy vector

rfilter

Gets or sets the row filter. If None no row filtering is performed

Type:CsvRowFilter or None
Raises:

(when assigned)

  • RuntimeError (Argument `fproc` (function [func_name]) returned an illegal number of values)
  • RuntimeError (Argument `rfilter` is not valid)
  • RuntimeError (Processing function [func_name] raised an exception when called with the following arguments: \n indep_var: [indep_var_value] \n dep_var: [dep_var_value] \n fproc_eargs: [fproc_eargs_value] \n Exception error: [exception_error_message])
  • TypeError (Argument `fproc` (function [func_name]) return value is not valid)
  • TypeError (Processed dependent variable is not valid)
  • TypeError (Processed independent variable is not valid)
  • ValueError (Argument `rfilter` is empty)
  • ValueError (Column [col_name] in row filter not found in comma- separated file [fname] header)
  • ValueError (Filtered dependent variable is empty)
  • ValueError (Filtered independent variable is empty)
  • ValueError (Processed dependent variable is empty)
  • ValueError (Processed independent and dependent variables are of different length)
  • ValueError (Processed independent variable is empty)
class pplot.Series(data_source, label, color='k', marker='o', interp='CUBIC', line_style='-', secondary_axis=False)

Bases: object

Specifies a series within a panel

Parameters:
  • data_source (pplot.BasicSource, pplot.CsvSource or others conforming to the data source specification) – Data source object
  • label (string) – Series label, to be used in the panel legend
  • color (polymorphic) – Series color. All Matplotlib colors are supported
  • marker (string or None) – Marker type. All Matplotlib marker types are supported. None indicates no marker
  • interp (InterpolationOption or None) – Interpolation option (case insensitive), one of None (no interpolation) ‘STRAIGHT’ (straight line connects data points), ‘STEP’ (horizontal segments between data points), ‘CUBIC’ (cubic interpolation between data points) or ‘LINREG’ (linear regression based on data points). The interpolation option is case insensitive
  • line_style (LineStyleOption or None) – Line style. All Matplotlib line styles are supported. None indicates no line
  • secondary_axis (boolean) – Flag that indicates whether the series belongs to the panel primary axis (False) or secondary axis (True)
Raises:
  • RuntimeError (Argument `color` is not valid)
  • RuntimeError (Argument `data_source` does not have an `dep_var` attribute)
  • RuntimeError (Argument `data_source` does not have an `indep_var` attribute)
  • RuntimeError (Argument `data_source` is not fully specified)
  • RuntimeError (Argument `interp` is not valid)
  • RuntimeError (Argument `label` is not valid)
  • RuntimeError (Argument `line_style` is not valid)
  • RuntimeError (Argument `marker` is not valid)
  • RuntimeError (Argument `secondary_axis` is not valid)
  • TypeError (Invalid color specification)
  • ValueError (Argument `interp` is not one of [‘STRAIGHT’, ‘STEP’, ‘CUBIC’, ‘LINREG’] (case insensitive))
  • ValueError (Argument `line_style` is not one of [‘-‘, ‘–’, ‘-.’, ‘:’])
  • ValueError (Arguments `indep_var` and `dep_var` must have the same number of elements)
  • ValueError (At least 4 data points are needed for CUBIC interpolation)
__str__()

Print series object information

color

Gets or sets the series line and marker color. All Matplotlib colors are supported

Type:polymorphic
Raises:

(when assigned)

  • RuntimeError (Argument `color` is not valid)
  • TypeError (Invalid color specification)
data_source

Gets or sets the data source object. The independent and dependent data sets are obtained once this attribute is set. To be valid, a data source object must have an indep_var attribute that contains a Numpy vector of increasing real numbers and a dep_var attribute that contains a Numpy vector of real numbers

Type:pplot.BasicSource, pplot.CsvSource or others conforming to the data source specification
Raises:

(when assigned)

  • RuntimeError (Argument `data_source` does not have an `dep_var` attribute)
  • RuntimeError (Argument `data_source` does not have an `indep_var` attribute)
  • RuntimeError (Argument `data_source` is not fully specified)
  • ValueError (Arguments `indep_var` and `dep_var` must have the same number of elements)
  • ValueError (At least 4 data points are needed for CUBIC interpolation)
interp

Gets or sets the interpolation option, one of None (no interpolation) 'STRAIGHT' (straight line connects data points), 'STEP' (horizontal segments between data points), 'CUBIC' (cubic interpolation between data points) or 'LINREG' (linear regression based on data points). The interpolation option is case insensitive

Type:InterpolationOption or None
Raises:

(when assigned)

  • RuntimeError (Argument `interp` is not valid)
  • ValueError (Argument `interp` is not one of [‘STRAIGHT’, ‘STEP’, ‘CUBIC’, ‘LINREG’] (case insensitive))
  • ValueError (At least 4 data points are needed for CUBIC interpolation)
label

Gets or sets the series label, to be used in the panel legend if the panel has more than one series

Type:string
Raises:(when assigned) RuntimeError (Argument `label` is not valid)
line_style

Sets or gets the line style. All Matplotlib line styles are supported. None indicates no line

Type:LineStyleOption
Raises:

(when assigned)

  • RuntimeError (Argument `line_style` is not valid)
  • ValueError (Argument `line_style` is not one of [‘-‘, ‘–’, ‘-.’, ‘:’])
marker

Gets or sets the series marker type. All Matplotlib marker types are supported. None indicates no marker

Type:string or None
Raises:(when assigned) RuntimeError (Argument `marker` is not valid)
secondary_axis

Sets or gets the secondary axis flag; indicates whether the series belongs to the panel primary axis (False) or secondary axis (True)

Type:boolean
Raises:(when assigned) RuntimeError (Argument `secondary_axis` is not valid)
class pplot.Panel(series=None, primary_axis_label='', primary_axis_units='', primary_axis_ticks=None, secondary_axis_label='', secondary_axis_units='', secondary_axis_ticks=None, log_dep_axis=False, legend_props=None, display_indep_axis=False)

Bases: object

Defines a panel within a figure

Parameters:
  • series (pplot.Series or list of pplot.Series or None) – One or more data series
  • primary_axis_label (string) – Primary dependent axis label
  • primary_axis_units (string) – Primary dependent axis units
  • primary_axis_ticks (list, Numpy vector or None) – Primary dependent axis tick marks. If not None overrides automatically generated tick marks if the axis type is linear. If None automatically generated tick marks are used for the primary axis
  • secondary_axis_label (string) – Secondary dependent axis label
  • secondary_axis_units (string) – Secondary dependent axis units
  • secondary_axis_ticks (list, Numpy vector or None) – Secondary dependent axis tick marks. If not None overrides automatically generated tick marks if the axis type is linear. If None automatically generated tick marks are used for the secondary axis
  • log_dep_axis (boolean) – Flag that indicates whether the dependent (primary and /or secondary) axis is linear (False) or logarithmic (True)
  • legend_props (dictionary or None) – Legend properties. See pplot.Panel.legend_props. If None the legend is placed in the best position in one column
  • display_indep_axis (boolean) – Flag that indicates whether the independent axis is displayed (True) or not (False)
Raises:
  • RuntimeError (Argument `display_indep_axis` is not valid)
  • RuntimeError (Argument `legend_props` is not valid)
  • RuntimeError (Argument `log_dep_axis` is not valid)
  • RuntimeError (Argument `primary_axis_label` is not valid)
  • RuntimeError (Argument `primary_axis_ticks` is not valid)
  • RuntimeError (Argument `primary_axis_units` is not valid)
  • RuntimeError (Argument `secondary_axis_label` is not valid)
  • RuntimeError (Argument `secondary_axis_ticks` is not valid)
  • RuntimeError (Argument `secondary_axis_units` is not valid)
  • RuntimeError (Argument `series` is not valid)
  • RuntimeError (Legend property `cols` is not valid)
  • RuntimeError (Series item [number] is not fully specified)
  • TypeError (Legend property `pos` is not one of [‘BEST’, ‘UPPER RIGHT’, ‘UPPER LEFT’, ‘LOWER LEFT’, ‘LOWER RIGHT’, ‘RIGHT’, ‘CENTER LEFT’, ‘CENTER RIGHT’, ‘LOWER CENTER’, ‘UPPER CENTER’, ‘CENTER’] (case insensitive))
  • ValueError (Illegal legend property `*[prop_name]*`)
  • ValueError (Series item [number] cannot be plotted in a logarithmic axis because it contains negative data points)
__bool__()

Returns True if the panel has at least a series associated with it, False otherwise

Note

This method applies to Python 3.x

__iter__()

Returns an iterator over the series object(s) in the panel. For example:

# plot_example_6.py
from __future__ import print_function
import numpy, pplot

def panel_iterator_example(no_print):
    source1 = pplot.BasicSource(
        indep_var=numpy.array([1, 2, 3, 4]),
        dep_var=numpy.array([1, -10, 10, 5])
    )
    source2 = pplot.BasicSource(
        indep_var=numpy.array([100, 200, 300, 400]),
        dep_var=numpy.array([50, 75, 100, 125])
    )
    series1 = pplot.Series(
        data_source=source1,
        label='Goals'
    )
    series2 = pplot.Series(
        data_source=source2,
        label='Saves',
        color='b',
        marker=None,
        interp='STRAIGHT',
        line_style='--'
    )
    panel = pplot.Panel(
        series=[series1, series2],
        primary_axis_label='Time',
        primary_axis_units='sec',
        display_indep_axis=True
    )
    if not no_print:
        for num, series in enumerate(panel):
            print('Series {0}:'.format(num+1))
            print(series)
            print('')
    else:
        return panel
>>> import docs.support.plot_example_6 as mod
>>> mod.panel_iterator_example(False)
Series 1:
Independent variable: [ 1.0, 2.0, 3.0, 4.0 ]
Dependent variable: [ 1.0, -10.0, 10.0, 5.0 ]
Label: Goals
Color: k
Marker: o
Interpolation: CUBIC
Line style: -
Secondary axis: False

Series 2:
Independent variable: [ 100.0, 200.0, 300.0, 400.0 ]
Dependent variable: [ 50.0, 75.0, 100.0, 125.0 ]
Label: Saves
Color: b
Marker: None
Interpolation: STRAIGHT
Line style: --
Secondary axis: False
__nonzero__()

Returns True if the panel has at least a series associated with it, False otherwise

Note

This method applies to Python 2.x

__str__()

Prints panel information. For example:

>>> from __future__ import print_function
>>> import docs.support.plot_example_6 as mod
>>> print(mod.panel_iterator_example(True))
Series 0:
   Independent variable: [ 1.0, 2.0, 3.0, 4.0 ]
   Dependent variable: [ 1.0, -10.0, 10.0, 5.0 ]
   Label: Goals
   Color: k
   Marker: o
   Interpolation: CUBIC
   Line style: -
   Secondary axis: False
Series 1:
   Independent variable: [ 100.0, 200.0, 300.0, 400.0 ]
   Dependent variable: [ 50.0, 75.0, 100.0, 125.0 ]
   Label: Saves
   Color: b
   Marker: None
   Interpolation: STRAIGHT
   Line style: --
   Secondary axis: False
Primary axis label: Time
Primary axis units: sec
Secondary axis label: not specified
Secondary axis units: not specified
Logarithmic dependent axis: False
Display independent axis: True
Legend properties:
   cols: 1
   pos: BEST
display_indep_axis

Gets or sets the independent axis display flag; indicates whether the independent axis is displayed (True) or not (False)

Type:boolean
Raises:(when assigned) RuntimeError (Argument `display_indep_axis` is not valid)
legend_props

Gets or sets the panel legend box properties; this is a dictionary that has properties (dictionary key) and their associated values (dictionary values). Currently supported properties are:

  • pos (string) – legend box position, one of 'BEST', 'UPPER RIGHT', 'UPPER LEFT', 'LOWER LEFT', 'LOWER RIGHT', 'RIGHT', 'CENTER LEFT', 'CENTER RIGHT', 'LOWER CENTER', 'UPPER CENTER' or 'CENTER' (case insensitive)
  • cols (integer) – number of columns of the legend box

If None the default used is {'pos':'BEST', 'cols':1}

Note

No legend is shown if a panel has only one series in it or if no series has a label

Type:dictionary
Raises:

(when assigned)

  • RuntimeError (Argument `legend_props` is not valid)
  • RuntimeError (Legend property `cols` is not valid)
  • TypeError (Legend property `pos` is not one of [‘BEST’, ‘UPPER RIGHT’, ‘UPPER LEFT’, ‘LOWER LEFT’, ‘LOWER RIGHT’, ‘RIGHT’, ‘CENTER LEFT’, ‘CENTER RIGHT’, ‘LOWER CENTER’, ‘UPPER CENTER’, ‘CENTER’] (case insensitive))
  • ValueError (Illegal legend property `*[prop_name]*`)
log_dep_axis

Gets or sets the panel logarithmic dependent (primary and/or secondary) axis flag; indicates whether the dependent (primary and/or secondary) axis is linear (False) or logarithmic (True)

Type:boolean
Raises:

(when assigned)

  • RuntimeError (Argument `log_dep_axis` is not valid)
  • RuntimeError (Argument `series` is not valid)
  • RuntimeError (Series item [number] is not fully specified)
  • ValueError (Series item [number] cannot be plotted in a logarithmic axis because it contains negative data points)
primary_axis_label

Gets or sets the panel primary dependent axis label

Type:string
Raises:(when assigned) RuntimeError (Argument `primary_axis_label` is not valid)
primary_axis_scale

Gets the scale of the panel primary axis, None if axis has no series associated with it

Type:float or None
primary_axis_ticks

Gets the primary axis (scaled) tick locations, None if axis has no series associated with it

Type:list or None
primary_axis_units

Gets or sets the panel primary dependent axis units

Type:string
Raises:(when assigned) RuntimeError (Argument `primary_axis_units` is not valid)
secondary_axis_label

Gets or sets the panel secondary dependent axis label

Type:string
Raises:(when assigned) RuntimeError (Argument `secondary_axis_label` is not valid)
secondary_axis_scale

Gets the scale of the panel secondary axis, None if axis has no series associated with it

Type:float or None
secondary_axis_ticks

Gets the secondary axis (scaled) tick locations, None if axis has no series associated with it

Type:list or None with it
secondary_axis_units

Gets or sets the panel secondary dependent axis units

Type:string
Raises:(when assigned) RuntimeError (Argument `secondary_axis_units` is not valid)
series

Gets or sets the panel series, None if there are no series associated with the panel

Type:pplot.Series, list of pplot.Series or None
Raises:

(when assigned)

  • RuntimeError (Argument `series` is not valid)
  • RuntimeError (Series item [number] is not fully specified)
  • ValueError (Series item [number] cannot be plotted in a logarithmic axis because it contains negative data points)
class pplot.Figure(panels=None, indep_var_label='', indep_var_units='', indep_axis_ticks=None, fig_width=None, fig_height=None, title='', log_indep_axis=False)

Bases: object

Generates presentation-quality plots

Parameters:
  • panels (pplot.Panel or list of pplot.Panel or None) – One or more data panels
  • indep_var_label (string) – Independent variable label
  • indep_var_units (string) – Independent variable units
  • indep_axis_ticks (list, Numpy vector or None) – Independent axis tick marks. If not None overrides automatically generated tick marks if the axis type is linear. If None automatically generated tick marks are used for the independent axis
  • fig_width (PositiveRealNum or None) – Hard copy plot width in inches. If None the width is automatically calculated so that there is no horizontal overlap between any two text elements in the figure
  • fig_height – Hard copy plot height in inches. If None the height is automatically calculated so that there is no vertical overlap between any two text elements in the figure
  • title (string) – Plot title
  • log_indep_axis (boolean) – Flag that indicates whether the independent axis is linear (False) or logarithmic (True)
Raises:
  • RuntimeError (Argument `fig_height` is not valid)
  • RuntimeError (Argument `fig_width` is not valid)
  • RuntimeError (Argument `indep_axis_ticks` is not valid)
  • RuntimeError (Argument `indep_var_label` is not valid)
  • RuntimeError (Argument `indep_var_units` is not valid)
  • RuntimeError (Argument `log_indep_axis` is not valid)
  • RuntimeError (Argument `panels` is not valid)
  • RuntimeError (Argument `title` is not valid)
  • RuntimeError (Figure object is not fully specified)
  • RuntimeError (Figure size is too small: minimum width [min_width], minimum height [min_height])
  • TypeError (Panel [panel_num] is not fully specified)
  • ValueError (Figure cannot be plotted with a logarithmic independent axis because panel [panel_num], series [series_num] contains negative independent data points)
__bool__()

Returns True if the figure has at least a panel associated with it, False otherwise

Note

This method applies to Python 3.x

__iter__()

Returns an iterator over the panel object(s) in the figure. For example:

# plot_example_7.py
from __future__ import print_function
import numpy, pplot

def figure_iterator_example(no_print):
    source1 = pplot.BasicSource(
        indep_var=numpy.array([1, 2, 3, 4]),
        dep_var=numpy.array([1, -10, 10, 5])
    )
    source2 = pplot.BasicSource(
        indep_var=numpy.array([100, 200, 300, 400]),
        dep_var=numpy.array([50, 75, 100, 125])
    )
    series1 = pplot.Series(
        data_source=source1,
        label='Goals'
    )
    series2 = pplot.Series(
        data_source=source2,
        label='Saves',
        color='b',
        marker=None,
        interp='STRAIGHT',
        line_style='--'
    )
    panel1 = pplot.Panel(
        series=series1,
        primary_axis_label='Average',
        primary_axis_units='A',
        display_indep_axis=False
    )
    panel2 = pplot.Panel(
        series=series2,
        primary_axis_label='Standard deviation',
        primary_axis_units=r'$\sqrt{{A}}$',
        display_indep_axis=True
    )
    figure = pplot.Figure(
        panels=[panel1, panel2],
        indep_var_label='Time',
        indep_var_units='sec',
        title='Sample Figure'
    )
    if not no_print:
        for num, panel in enumerate(figure):
            print('Panel {0}:'.format(num+1))
            print(panel)
            print('')
    else:
        return figure
>>> import docs.support.plot_example_7 as mod
>>> mod.figure_iterator_example(False)
Panel 1:
Series 0:
   Independent variable: [ 1.0, 2.0, 3.0, 4.0 ]
   Dependent variable: [ 1.0, -10.0, 10.0, 5.0 ]
   Label: Goals
   Color: k
   Marker: o
   Interpolation: CUBIC
   Line style: -
   Secondary axis: False
Primary axis label: Average
Primary axis units: A
Secondary axis label: not specified
Secondary axis units: not specified
Logarithmic dependent axis: False
Display independent axis: False
Legend properties:
   cols: 1
   pos: BEST

Panel 2:
Series 0:
   Independent variable: [ 100.0, 200.0, 300.0, 400.0 ]
   Dependent variable: [ 50.0, 75.0, 100.0, 125.0 ]
   Label: Saves
   Color: b
   Marker: None
   Interpolation: STRAIGHT
   Line style: --
   Secondary axis: False
Primary axis label: Standard deviation
Primary axis units: $\sqrt{{A}}$
Secondary axis label: not specified
Secondary axis units: not specified
Logarithmic dependent axis: False
Display independent axis: True
Legend properties:
   cols: 1
   pos: BEST
__nonzero__()

Returns True if the figure has at least a panel associated with it, False otherwise

Note

This method applies to Python 2.x

__str__()

Prints figure information. For example:

>>> from __future__ import print_function
>>> import docs.support.plot_example_7 as mod
>>> print(mod.figure_iterator_example(True))    
Panel 0:
   Series 0:
      Independent variable: [ 1.0, 2.0, 3.0, 4.0 ]
      Dependent variable: [ 1.0, -10.0, 10.0, 5.0 ]
      Label: Goals
      Color: k
      Marker: o
      Interpolation: CUBIC
      Line style: -
      Secondary axis: False
   Primary axis label: Average
   Primary axis units: A
   Secondary axis label: not specified
   Secondary axis units: not specified
   Logarithmic dependent axis: False
   Display independent axis: False
   Legend properties:
      cols: 1
      pos: BEST
Panel 1:
   Series 0:
      Independent variable: [ 100.0, 200.0, 300.0, 400.0 ]
      Dependent variable: [ 50.0, 75.0, 100.0, 125.0 ]
      Label: Saves
      Color: b
      Marker: None
      Interpolation: STRAIGHT
      Line style: --
      Secondary axis: False
   Primary axis label: Standard deviation
   Primary axis units: $\sqrt{{A}}$
   Secondary axis label: not specified
   Secondary axis units: not specified
   Logarithmic dependent axis: False
   Display independent axis: True
   Legend properties:
      cols: 1
      pos: BEST
Independent variable label: Time
Independent variable units: sec
Logarithmic independent axis: False
Title: Sample Figure
Figure width: ...
Figure height: ...
save(fname, ftype='PNG')

Saves the figure to a file

Parameters:
  • fname (FileName) – File name
  • ftype (string) – File type, either ‘PNG’ or ‘EPS’ (case insensitive). The PNG format is a raster format while the EPS format is a vector format
Raises:
  • RuntimeError (Argument `fname` is not valid)
  • RuntimeError (Argument `ftype` is not valid)
  • RuntimeError (Figure object is not fully specified)
  • RuntimeError (Unsupported file type: [file_type])
show()

Displays the figure

Raises:
  • RuntimeError (Figure object is not fully specified)
  • ValueError (Figure cannot be plotted with a logarithmic independent axis because panel [panel_num], series [series_num] contains negative independent data points)
axes_list

Gets the Matplotlib figure axes handle list or None if figure is not fully specified. Useful if annotations or further customizations to the panel(s) are needed. Each panel has an entry in the list, which is sorted in the order the panels are plotted (top to bottom). Each panel entry is a dictionary containing the following key-value pairs:

  • number (integer) – panel number, panel 0 is the top-most panel
  • primary (Matplotlib axis object) – axis handle for the primary axis, None if the figure has not primary axis
  • secondary (Matplotlib axis object) – axis handle for the secondary axis, None if the figure has no secondary axis
Type:list
fig

Gets the Matplotlib figure handle. Useful if annotations or further customizations to the figure are needed. None if figure is not fully specified

Type:Matplotlib figure handle or None
fig_height

Gets or sets the height (in inches) of the hard copy plot, None if figure is not fully specified.

Type:PositiveRealNum or None
Raises:(when assigned) RuntimeError (Argument `fig_height` is not valid)
fig_width

Gets or sets the width (in inches) of the hard copy plot, None if figure is not fully specified

Type:PositiveRealNum or None
Raises:(when assigned) RuntimeError (Argument `fig_width` is not valid)
indep_axis_scale

Gets the scale of the figure independent axis, None if figure is not fully specified

Type:float or None if figure has no panels associated with it
indep_axis_ticks

Gets the independent axis (scaled) tick locations, None if figure is not fully specified

Type:list
indep_var_label

Gets or sets the figure independent variable label

Type:string or None
Raises:

(when assigned)

  • RuntimeError (Argument `indep_var_label` is not valid)
  • RuntimeError (Figure object is not fully specified)
  • ValueError (Figure cannot be plotted with a logarithmic independent axis because panel [panel_num], series [series_num] contains negative independent data points)
indep_var_units

Gets or sets the figure independent variable units

Type:string or None
Raises:

(when assigned)

  • RuntimeError (Argument `indep_var_units` is not valid)
  • RuntimeError (Figure object is not fully specified)
  • ValueError (Figure cannot be plotted with a logarithmic independent axis because panel [panel_num], series [series_num] contains negative independent data points)
log_indep_axis

Gets or sets the figure logarithmic independent axis flag; indicates whether the independent axis is linear (False) or logarithmic (True)

Type:boolean
Raises:

(when assigned)

  • RuntimeError (Argument `log_indep_axis` is not valid)
  • RuntimeError (Figure object is not fully specified)
  • ValueError (Figure cannot be plotted with a logarithmic independent axis because panel [panel_num], series [series_num] contains negative independent data points)
panels

Gets or sets the figure panel(s), None if no panels have been specified

Type:pplot.Panel, list of pplot.panel or None
Raises:

(when assigned)

  • RuntimeError (Argument `fig_height` is not valid)
  • RuntimeError (Argument `fig_width` is not valid)
  • RuntimeError (Argument `panels` is not valid)
  • RuntimeError (Figure object is not fully specified)
  • RuntimeError (Figure size is too small: minimum width [min_width], minimum height [min_height])
  • TypeError (Panel [panel_num] is not fully specified)
  • ValueError (Figure cannot be plotted with a logarithmic independent axis because panel [panel_num], series [series_num] contains negative independent data points)
title

Gets or sets the figure title

Type:string or None
Raises:

(when assigned)

  • RuntimeError (Argument `title` is not valid)
  • RuntimeError (Figure object is not fully specified)
  • ValueError (Figure cannot be plotted with a logarithmic independent axis because panel [panel_num], series [series_num] contains negative independent data points)

Contracts pseudo-types

Introduction

The pseudo-types defined below can be used in contracts of the PyContracts or Pexdoc libraries. As an example, with the latter:

>>> from __future__ import print_function
>>> import pexdoc
>>> from pplot.ptypes import interpolation_option
>>> @pexdoc.pcontracts.contract(ioption='interpolation_option')
... def myfunc(ioption):
...     print('Option received: '+str(ioption))
...
>>> myfunc('STEP')
Option received: STEP
>>> myfunc(35)
Traceback (most recent call last):
    ...
RuntimeError: Argument `ioption` is not valid

Alternatively each pseudo-type has a checker function associated with it that can be used to verify membership. For example:

>>> import pplot.ptypes
>>> # None is returned if object belongs to pseudo-type
>>> pplot.ptypes.interpolation_option('STEP')
>>> # ValueError is raised if object does not belong to pseudo-type
>>> pplot.ptypes.interpolation_option(3.5) 
Traceback (most recent call last):
    ...
ValueError: [START CONTRACT MSG: interpolation_option]...

Description

ColorSpaceOption

Import as color_space_option. String representing a Matplotlib color space, one 'binary', 'Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr‘, 'YlOrRd' or None

InterpolationOption

Import as interpolation_option. String representing an interpolation type, one of 'STRAIGHT', 'STEP', 'CUBIC', 'LINREG' (case insensitive) or None

LineStyleOption

Import as line_style_option. String representing a Matplotlib line style, one of '-', '--', '-.', ':' or None

Checker functions

pplot.ptypes.color_space_option(obj)

Validates if an object is a ColorSpaceOption pseudo-type object

Parameters:

obj (any) – Object

Raises:
  • RuntimeError (Argument `*[argument_name]*` is not valid). The token *[argument_name]* is replaced by the name of the argument the contract is attached to
  • RuntimeError (Argument `*[argument_name]*` is not one of ‘binary’, ‘Blues’, ‘BuGn’, ‘BuPu’, ‘GnBu’, ‘Greens’, ‘Greys’, ‘Oranges’, ‘OrRd’, ‘PuBu’, ‘PuBuGn’, ‘PuRd’, ‘Purples’, ‘RdPu’, ‘Reds’, ‘YlGn’, ‘YlGnBu’, ‘YlOrBr’ or ‘YlOrRd). The token *[argument_name]* is replaced by the name of the argument the contract is attached to
Return type:

None

pplot.ptypes.interpolation_option(obj)

Validates if an object is an InterpolationOption pseudo-type object

Parameters:

obj (any) – Object

Raises:
  • RuntimeError (Argument `*[argument_name]*` is not valid). The token *[argument_name]* is replaced by the name of the argument the contract is attached to
  • RuntimeError (Argument `*[argument_name]*` is not one of [‘STRAIGHT’, ‘STEP’, ‘CUBIC’, ‘LINREG’] (case insensitive)). The token *[argument_name]* is replaced by the name of the argument the contract is attached to
Return type:

None

pplot.ptypes.line_style_option(obj)

Validates if an object is a LineStyleOption pseudo-type object

Parameters:

obj (any) – Object

Raises:
  • RuntimeError (Argument `*[argument_name]*` is not valid). The token *[argument_name]* is replaced by the name of the argument the contract is attached to
  • RuntimeError (Argument `*[argument_name]*` is not one of [‘-‘, ‘–’, ‘-.’, ‘:’]). The token *[argument_name]* is replaced by the name of the argument the contract is attached to
Return type:

None

Indices and tables