
PursuedPyBear Documentation
Release 3.2.0

The PPB Community

Dec 21, 2023

CONTENTS:

1 Using these docs 3
1.1 As a New User . 3
1.2 As an Experienced User . 3

Python Module Index 49

Index 51

i

ii

PursuedPyBear Documentation, Release 3.2.0

PursuedPyBear, also known as ppb, exists to be an educational resource. Most obviously used to teach computer
science, it can be a useful tool for any topic that a simulation can be helpful. At its core, ppb provides a number of
features that make it perfect for video games. The GameEngine itself provides a pluggable subsystem architecture
where adding new features is as simple as subclassing and extending System.

Note: This document explains the practical and technical details of ppb. If you want to know more about what it is,
its goals, or why you should use it, check out this page or our website.

CONTENTS: 1

https://github.com/ppb/pursuedpybear/blob/canon/README.md
https://ppb.dev

PursuedPyBear Documentation, Release 3.2.0

2 CONTENTS:

CHAPTER

ONE

USING THESE DOCS

Our documentation is separated into practical steps and theoretical knowledge. The docs are made up of Tutorials,
which allow you to learn quickly, and guides which bring you to a specific goal. We also have a standard API reference.

1.1 As a New User

We recommend that new users start with the Getting Started Guide. This document assumes that you have basic
programming knowledge. If you don’t, check out the Python docs at https://docs.python.org.

1.2 As an Experienced User

Experienced users will likely want to start with our API Reference or our How To: The ppb Cookbook

1.2.1 Getting Started

This guide will start by getting you a fresh virtual environment and installing ppb. It will then walk you through building
a basic game that will look a lot like our sample game targets.py.

Prerequisites

Before you get started here, you should know the basics of Python. We use classes extensively in ppb, and you should
be comfortable with them. Consider the Python.org tutorial or automate the boring stuff to get started.

Additionally, you need to have Python 3.8 or later on your machine. You can install this via Python.org or Anaconda
whichever is more comfortable for you.

Installing ppb

Once you have a working Python install, you’re going to want to make a new folder. Open your shell (Terminal on Mac,
CMD or Powershell on Windows, your favorite tool on Linux) and run:

All Systems:

mkdir -p path/to/my_game
cd path/to/my_game

3

https://docs.python.org
https://docs.python.org/3/tutorial/index.html
http://automatetheboringstuff.com/
https://www.python.org/downloads/
https://www.anaconda.com/python-3-7-package-build-out-miniconda-release/

PursuedPyBear Documentation, Release 3.2.0

path/to/my_game can be any path you’d like, and the name can be anything you’d like. We cd into it so we have a
place to work.

The next step we’re going to do is set up a virtual environment. Python 3.6 comes with a tool to create them, so in your
terminal again:

All Systems:

python3 -m venv .venv

This creates a new python environment that we’ll use to make our game. To make the next few steps easier, we’ll want
to activate our virtual environment. This is different on Windows than anywhere else, so make sure to use the right
command.

Windows:

.venv\Scripts\activate.bat

Note: If you are installing ppb on WSL2 please refer to the Ubuntu section, below.

Linux and Mac:

source .venv/bin/activate

After you’ve done this, your shell prompt should include (.venv). We’re ready for installing ppb:

All Systems:

pip install ppb

Additionally, on Linux only you must install the SDL library:

Debian, Ubuntu:

sudo apt install libsdl2-2.0-0 libsdl2-mixer-2.0-0 libsdl2-image-2.0-0 libsdl2-gfx-1.0-0␣
→˓libsdl2-ttf-2.0-0

Fedora, CentOS, RHEL:

sudo dnf install SDL2 SDL2_ttf SDL2_image SDL2_gfx SDL2_mixer libmodplug

Arch, Manjaro:

sudo pacman -S sdl2 sdl2_ttf sdl2_image sdl2_gfx sdl2_mixer

You should see a few libraries get put together in your terminal, and when you have a prompt again, we’re ready to go!

4 Chapter 1. Using these docs

PursuedPyBear Documentation, Release 3.2.0

A Basic Game

The next step is to make a new file. If you’re using an IDE, open your game folder in that and make a new file called
main.py. If you’re using a plain text editor, you’ll want to open a new file and save it as main.py.

Note: main.py is just being used as a convention and this file can be named anything. If you change the name you’ll
want to use the new name in further commands.

In your code file, add this:

main.py:

import ppb

ppb.run()

Save your file, then run it from your shell:

All Systems:

python main.py

You should have a window! It will be 800 pixels wide and 600 pixels tall, and if you click the x button (or the red dot
on MacOS), it should close.

Now let’s add a Sprite. Sprites are game objects that can often move and are drawn to the screen. Add the following
code after your import. Note that ppb.run has a new parameter.

main.py:

import ppb

class Player(ppb.Sprite):
pass

def setup(scene):
scene.add(Player())

ppb.run(setup=setup)

When you run this, you should have the same window with a colored square in the middle.

At this point, if you have a png on your computer, you can move it into your project folder and call it player.png.
Rerun the file to see your character on screen!

Our sprite is currently static, but let’s change that. Inside your Player class, we’re going to add a function and some
class attributes.

main.py:

class Player(ppb.Sprite):
velocity = ppb.Vector(0, 1)

def on_update(self, update_event, signal):
self.position += self.velocity * update_event.time_delta

1.2. As an Experienced User 5

PursuedPyBear Documentation, Release 3.2.0

Now, your sprite should fly up off the screen.

Taking Control

This is cool, but most people expect a game to be something you can interact with. Let’s use keyboard controls to move
our Player around. First things first, we have some new things we want to import:

main.py:

import ppb
from ppb import keycodes
from ppb.events import KeyPressed, KeyReleased

These are the classes we’ll want in the next section to work.

The next step is we’ll need to redo out Player class. Go ahead and delete it, and put this in its place:

main.py:

class Player(ppb.Sprite):
position = ppb.Vector(0, -3)
direction = ppb.Vector(0, 0)
speed = 4

def on_update(self, update_event, signal):
self.position += self.direction * self.speed * update_event.time_delta

This new Player moves a certain distance based on time, and a direction vector and its own speed. Right now, our
direction is not anything (it’s the zero-vector), but we’ll change that in a moment. For now, go ahead and run the
program a few times, changing the parameters to the direction Vector and the speed and see what happens. You
can also modify position to see where you like your ship.

Now that you’re comfortable with the base mechanics of our new class, revert your changes to position, speed, and
direction. Then we can wire up our controls.

First, we’re going to define the four arrow keys as our controls. These can be set as class variables so we can change
them later:

main.py:

class Player(ppb.Sprite):
position = ppb.Vector(0, -3)
direction = ppb.Vector(0, 0)
speed = 4
left = keycodes.Left
right = keycodes.Right

The keycodes module contains all of the keys on a US based keyboard. If you want different controls, you can look
at the module documentation to find ones you prefer.

Now, under our on_update function we’re going to add two new event handlers. The snippet below doesn’t include
the class attributes we just defined, but don’t worry, just add the new methods at the end of the class, beneath your
on_update method.

main.py:

6 Chapter 1. Using these docs

PursuedPyBear Documentation, Release 3.2.0

class Player(ppb.Sprite):

def on_key_pressed(self, key_event: KeyPressed, signal):
if key_event.key == self.left:

self.direction += ppb.Vector(-1, 0)
elif key_event.key == self.right:

self.direction += ppb.Vector(1, 0)

def on_key_released(self, key_event: KeyReleased, signal):
if key_event.key == self.left:

self.direction += ppb.Vector(1, 0)
elif key_event.key == self.right:

self.direction += ppb.Vector(-1, 0)

So now, you should be able to move your player back and forth using the arrow keys.

Reaching Out

The next step will to make our player “shoot”. I use shoot loosely here, your character can be throwing things, or
blowing kisses, or anything, the only mechanic is we’re going to have a new object start at the player, and fly up.

First, we need a new class. We’ll put it under Player, but above setup.

main.py:

class Projectile(ppb.Sprite):
size = 0.25
direction = ppb.Vector(0, 1)
speed = 6

def on_update(self, update_event, signal):
if self.direction:

direction = self.direction.normalize()
else:

direction = self.direction
self.position += direction * self.speed * update_event.time_delta

If we wanted to, we could pull out this on_update function into a mixin that we could use with either of these classes,
but I’m going to leave that as an exercise to the reader. Just like the player, we can put a square image in the same folder
with the name projectile.png and it’ll get rendered, or we can let the engine make a colored square for us.

Let’s go back to our player class. We’re going to add a new button to the class attributes, then update the
on_key_pressedmethod. Just like before, I’ve removed some code from the sample, you don’t need to delete anything
here, just add the new lines: The class attributes right and projector will go after the line about speed and the new
elif will go inside your on_key_pressed handler after the previous elif.

main.py:

class Player(ppb.Sprite):

right = keycodes.Right
projector = keycodes.Space

(continues on next page)

1.2. As an Experienced User 7

PursuedPyBear Documentation, Release 3.2.0

(continued from previous page)

def on_key_pressed(self, key_event: KeyPressed, signal):
if key_event.key == self.left:

self.direction += ppb.Vector(-1, 0)
elif key_event.key == self.right:

self.direction += ppb.Vector(1, 0)
elif key_event.key == self.projector:

key_event.scene.add(Projectile(position=self.position + ppb.Vector(0, 0.5)))

Now, when you press the space bar, projectiles appear. They only appear once each time we press the space bar. Next
we need something to hit with our projectiles!

Something to Target

We’re going to start with the class like we did before. Below your Projectile class, add

main.py:

class Target(ppb.Sprite):

def on_update(self, update_event, signal):
for p in update_event.scene.get(kind=Projectile):

if (p.position - self.position).length <= self.size:
update_event.scene.remove(self)
update_event.scene.remove(p)
break

This code will go through all of the Projectiles available, and if one is inside the Target, we remove the Target
and the Projectile. We do this by accessing the scene that exists on all events in ppb, and using its get method to
find the projectiles. We also use a simplified circle collision, but other versions of collision can be more accurate, but
left up to your research.

Next, let’s instantiate a few of our targets to test this.

main.py:

def setup(scene):
scene.add(Player())

for x in range(-4, 5, 2):
scene.add(Target(position=ppb.Vector(x, 3)))

Now you can run your file and see what happens. You should be able to move back and forth near the bottom of the
screen, and shoot toward the top, where your targets will disappear when hit by a bullet.

Congratulations on making your first game.

For next steps, you should explore other tutorials. Similarly, you can discover new events in the event documentation.

8 Chapter 1. Using these docs

PursuedPyBear Documentation, Release 3.2.0

1.2.2 Tutorials

Tutorials live here, except for the basic Quick Start tutorial.

A tutorial is an complete project that takes you from an empty file to a working game.

1.2.3 How To: The ppb Cookbook

This section is for direct how tos to solve specific problems with ppb.

Test Pre-Release Features

Sometimes you want to try the latest features that have been developed for ppb before they have a formal release on
pypi. You have two options: provide a git uri to the ppb canon branch or use a dev release from test.pypi.org.

With pip Directly

To install with pip directly from github, enter the following command into your shell:

pip install git+https://github.com/ppb/pursuedpybear.git

If you want to use the test server for pypi instead:

pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/
→˓simple --pre ppb

With requirements.txt

To install using a requirements.txt file and the current git code, put git+https://github.com/ppb/
pursuedpybear.git as your requirement line then invoke pip as normal:

pip install -r requirements.txt

To install from test.pypi.org with a requirements file, put the following in your requirements.txt:

--index-url https://test.pypi.org/simple/
--extra-index-url https://pypi.org/simple
--pre
ppb

These options download ppb from test.pypi.org and the remaining dependencies from PyPI as normal.

Now you need to invoke pip as so:

pip install -r requirements.txt

1.2. As an Experienced User 9

https://test.pypi.org/
https://test.pypi.org/

PursuedPyBear Documentation, Release 3.2.0

Passing keyword arguments as configuration flags

Using run function and configuration examples. You can pass extra data to the keyword arguments of the run function
and these get passed automatically to the engine and the systems.

Code sample (resolution)

1 import ppb
2

3 RESOLUTION = (1200, 900)
4

5 ppb.run(resolution=RESOLUTION, difficulty_level=10)

1.2.4 API Reference

For as simple as the tutorials make ppb look there’s a lot of power under the hood. This section will cover the raw what
of the ppb API. To find out why decisions are made, see the Discussion section. A python game framework.

PursuedPyBear is object oriented and event driven. Practically, this means that most of your code will be organized
into classes. Game objects in ppb are Sprite instances, which get contained in Scenes. In turn, the GameEngine
contains the scenes and Systems. Events are defined as simple classes and event handlers are based on their names.

The classes, modules, and methods exported directly are the most used parts of the library and intended to be used by
users at all levels (barring make_engine). Advanced features tend to be in their own modules and subpackages.

Exports:

• Vector

• Scene

• Circle

• Image

• Sprite

• Square

• Sound

• Triangle

• events

• Font

• Text

• directions

ppb.run(setup: ~typing.Callable[[~ppb.scenes.Scene], None] = None, *, log_level=30, starting_scene=<class
'ppb.scenes.Scene'>, title='PursuedPyBear', **engine_opts)

Run a game.

This is the default entry point for ppb games.

Sample usage:

10 Chapter 1. Using these docs

PursuedPyBear Documentation, Release 3.2.0

import ppb

def setup(scene):
scene.add(ppb.Sprite())

ppb.run(setup)

Alternatively:

import ppb

class Game(ppb.Scene):
def __init__(self, **kwargs):

super().__init__(**kwargs)
self.add(ppb.Sprite())

ppb.run(starting_scene=Game)

See the Getting Started guide for a more complete guide to building games.

All parameters are optional.

Parameters

• setup (Callable[[Scene], None]) – Called with the first scene to allow initialization of
your game.

• log_level – The logging level from logging() to send to the console.

• starting_scene (type) – A scene class to use. Defaults to Scene

• title (str) – The title of the rendered window.

• engine_opts – Additional keyword arguments passed to the GameEngine.

ppb.make_engine(setup: ~typing.Callable[[~ppb.scenes.Scene], None] = None, *, starting_scene=<class
'ppb.scenes.Scene'>, title='PursedPyBear', **engine_opts)

Setup a GameEngine.

This function exists for third party modules to use the same code paths as run() for setting up their engine. If
you want to instantiate your own engine, you can do so directly using the constructor.

Parameters

• setup (Callable[[Scene], None]) – Called with the first scene to allow initialization of
your game.

• starting_scene (type) – A scene class to use. Defaults to Scene

• title (str) – The title of the rendered window.

• engine_opts – Additional keyword arguments passed to the GameEngine

Returns
A GameEngine instance.

1.2. As an Experienced User 11

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

PursuedPyBear Documentation, Release 3.2.0

Events

Events are the primary way objects in ppb communicate. This module contains the events defined by various systems
in ppb.

To respond to an event your event handler should be snake_cased on_event_name and accept an event instance and a
signal function as parameters. Example:

class MySprite(Sprite):
def on_update(self, event: Update, signal):

. . .

The signal() function accepts one parameter: an instance of an event class. You are not limited to predefined event
types, but can provide arbitrary instances.

Events as defined here are dataclasses.dataclass(), but ppb does not expect dataclasses; they are just a simple
way to quickly define new events. The name of the handler will always be based on the name of the class, with the
TitleCase name of the class converted to on_event_name function. The instance passed to signal() will be passed to
all the event handlers as the event parameter.

Basic Events

These events are the basic events you’ll want to build your games. You can make a variety of games using just them.

class ppb.events.Update(time_delta: float, scene: Scene = None)
A simulation tick.

Respond via on_update to advance the simulation of your game objects. Movement and other things that happen
“over time” are best implemented in your on_update methods.

scene: Scene = None

The currently running scene.

time_delta: float

Seconds since last Update

class ppb.events.PreRender(time_delta: float, scene: Scene = None)
The Renderer is preparing to render.

PreRender is called before every frame is rendered. Things that are strictly for display purposes (like the text
of a score board or the position of the camera) should happen on_pre_render.

scene: Scene = None

The currently running scene.

time_delta: float

Seconds since last PreRender.

class ppb.events.ButtonPressed(button: MouseButton, position: Vector, scene: Scene = None)
A mouse button was pressed.

The button is a MouseButton instance.

This represents the button in the active state. For acting when a button is released see ButtonReleased .

12 Chapter 1. Using these docs

https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PursuedPyBear Documentation, Release 3.2.0

class ppb.events.ButtonReleased(button: MouseButton, position: Vector, scene: Scene = None)
A mouse button was released.

The button is a MouseButton instance.

This represents the button in the inactive state. For acting when a button is clicked see ButtonPressed .

button: MouseButton

A mouse button: Primary, Secondary, or Tertiary

position: Vector

The game-world position of the event.

scene: Scene = None

The currently running scene.

class ppb.events.KeyPressed(key: KeyCode, mods: Set[KeyCode], scene: Scene = None)
A keyboard key was pressed.

The buttons are defined in ppb.keycodes.

This represents the key entering an active state, to respond to when a key is released see KeyReleased .

key: KeyCode

A KeyCode flag.

mods: Set[KeyCode]

A set of KeyCodes

scene: Scene = None

The currently running scene

class ppb.events.KeyReleased(key: KeyCode, mods: Set[KeyCode], scene: Scene = None)
A keyboard key was released.

The buttons are defined in ppb.keycodes.

This represents the key entering an inactive state, to respond to when a key is pressed see KeyPressed .

key: KeyCode

A KeyCode flag.

mods: Set[KeyCode]

A set of KeyCodes

scene: Scene = None

The currently running scene

class ppb.events.MouseMotion(position: Vector, delta: Vector, buttons: Collection[MouseButton], scene:
Scene = None)

The mouse moved.

If something should be tracking the mouse, this is the event to listen to.

buttons: Collection[MouseButton]

The state of the mouse buttons.

delta: Vector

The change in position since the last MouseMotion event.

1.2. As an Experienced User 13

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Collection

PursuedPyBear Documentation, Release 3.2.0

position: Vector

The game-world location of the mouse cursor.

scene: Scene = None

The currently running scene.

Command Events

These events are used in your code to achieve certain effects.

class ppb.events.Quit(scene: Scene = None)
A request to quit the program.

Fired in response to a close request from the OS, but can be signaled from inside one of your handlers to end the
program.

For example:

def on_update(self, event, signal):
signal(Quit())

This will stop the engine.

Respond with on_quit to perform any shut down tasks (like saving data.)

scene: Scene = None

The currently running scene.

class ppb.events.StartScene(new_scene: Scene | Type[Scene], kwargs: Dict[str, Any] = None, scene: Scene
= None)

An object requested a new scene to be started.

new_scene can be an instance or a class. If a class, must include kwargs. If new_scene is an instance kwargs
should be empty or None.

Before the previous scene pauses, a ScenePaused event will be fired. Any events signaled in response will be
delivered to the new scene.

After the ScenePaused event and any follow up events have been delivered, a SceneStarted event will be sent.

Examples:

• signal(new_scene=StartScene(MyScene(player=player))

• signal(new_scene=StartScene, kwargs={“player”: player}

Warning: In general, you should not respond to StartScene, if you want to respond to a new scene, see
SceneStarted .

kwargs: Dict[str, Any] = None

Keyword arguments to be passed to a scene type.

new_scene: Scene | Type[Scene]

A Scene class or instance

scene: Scene = None

The currently running scene.

14 Chapter 1. Using these docs

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Type

PursuedPyBear Documentation, Release 3.2.0

class ppb.events.ReplaceScene(new_scene: Scene | Type[Scene], kwargs: Dict[str, Any] = None, scene:
Scene = None)

An object requested a new scene to replace it.

new_scene can be an instance or a class. If a class, must include kwargs. If new_scene is an instance kwargs
should be empty or None.

Before the previous scene stops, a SceneStopped event will be fired. Any events signaled in response will be
delivered to the new scene.

After the SceneStopped event and any follow up events have been delivered, a SceneStarted event will be sent.

Examples:

• signal(ReplaceScene(MyScene(player=player))

• signal(ReplaceScene(new_scene=ReplacementScene, kwargs={“player”: player}))

Warning: In general, you should not respond to ReplaceScene, if you want to respond to a new scene, see
SceneStarted .

kwargs: Dict[str, Any] = None

Keyword arguments to be passed to a scene type.

new_scene: Scene | Type[Scene]

A Scene class or instance

scene: Scene = None

The currently running scene.

class ppb.events.StopScene(scene: Scene = None)
An object has requested the current scene be stopped.

Before the scene stops, a SceneStopped event will be fired. Any events signaled in response will be delivered
to the previous scene if it exists.

If there is a paused scene on the stack, a SceneContinued event will be fired after the responses to the
SceneStopped event.

Warning: In general, you should not respond to StopScene, if you want to respond to a scene ending, see
SceneStopped .

scene: Scene = None

The scene that is stopping.

class ppb.events.PlaySound(sound: Asset)
An object requested a sound be played.

Signal in an event handler to have a sound played.

Example:

signal(PlaySound(my_sound))

sound: Asset

A Sound asset.

1.2. As an Experienced User 15

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Type

PursuedPyBear Documentation, Release 3.2.0

Scene Transition Events

These are events triggered during the lifetime of a scene: it starting, stopping, etc.

The scene property on these events always refers to the scene these are about—ScenePaused.scene is the scene that
is being paused.

class ppb.events.SceneStarted(scene: Scene = None)
A new scene has started running.

This is delivered to a Scene shortly after it starts.

Responding to SceneStarted is a good choice for ppb.systems that change behavior based on the running scene,
or if you have start up work that requires the initial state to be set before it happens.

The scene lifetime events happen in the following order:

1. Always: SceneStarted

2. Optionally, Repeatable: ScenePaused

3. Optionally, Repeatable: SceneContinued

4. Optionally: SceneStopped

scene: Scene = None

The scene that is starting.

class ppb.events.ScenePaused(scene: Scene = None)
A scene that is running is being paused to allow a new scene to run.

This is delivered to a scene about to be paused when a StartScene event is sent to the engine. When this scene
resumes it will receive a SceneContinued event.

A middle event in the scene lifetime, started with SceneStarted .

scene: Scene = None

The scene that has paused.

class ppb.events.SceneContinued(scene: Scene = None)
A scene that had been paused has continued.

This is delivered to a scene as it resumes operation after being paused via a ScenePaused event.

From the middle of the event lifetime that begins with SceneStarted .

scene: Scene = None

The scene that is resuming.

class ppb.events.SceneStopped(scene: Scene = None)
A scene is being stopped and will no longer be available.

This is delivered to a scene and it’s objects when a StopScene or ReplaceScene event is sent to the engine.

This is technically an optional event, as not all scenes in the stack will receive a SceneStopped event if a Quit
event was sent.

This is the end of the scene lifetime, see SceneStarted .

scene: Scene = None

The scene that is stopping.

16 Chapter 1. Using these docs

PursuedPyBear Documentation, Release 3.2.0

Engine Events

These are additional events from the engine mostly for advanced purposes.

class ppb.events.Idle(time_delta: float, scene: Scene = None)
A complete loop of the GameEngine main loop has finished.

This is an engine plumbing event to pump timing information to subsystems.

scene: Scene = None

The currently running scene.

time_delta: float

Seconds since last Idle.

class ppb.events.Render(scene: Scene = None)
The Renderer is rendering.

Warning: In general, responses to Render will not be reflected until the next render pass. If you want
changes to effect this frame, see PreRender

scene: Scene = None

The currently running scene.

class ppb.events.AssetLoaded(asset: Asset, total_loaded: int, total_queued: int)
An asset has finished loading.

asset: Asset

A Asset

total_loaded: int

The total count of loaded assets.

total_queued: int

The number of requested assets still waiting.

Clocks

PPB has several ways to mark time: fixed-rate updates, frames, and idle time. These are all exposed via the event
system.

Updates

The ppb.events.Update event is fired at a regular, fixed rate (defaulting to 60 times a second). This is well-suited
for simulation updates, such as motion, running NPC AIs, physics, etc.

1.2. As an Experienced User 17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PursuedPyBear Documentation, Release 3.2.0

Frames

The ppb.events.PreRender and ppb.events.Render are fired every frame. This is best used for particle systems,
animations, and anything that needs to update every rendered frame (even if the framerate varies).

Note: While both PreRender and Render are fired every frame, it is encouraged that games only use PreRender
to ensure proper sequencing. That is, it is not guaranteed when on_render() methods are called with respect to the
actual rendering.

Idle

ppb.events.Idle is fired whenever the core event loop has no more events. While this is primarily used by systems
for various polling things, it may be useful for games which have low-priority calculations to perform.

Assets

PursuedPyBear features a background, eager-loading asset system. The first time an asset is referenced, PPB starts
reading and parsing it in a background thread.

The data is kept in memory for the lifetime of the Asset. When nothing is referencing it any more, the Python garbage
collector will clean up the object and its data.

Asset instances are consolidated or “interned”: if you ask for the same asset twice, you’ll get the same instance back.
Note that this is a performance optimization and should not be relied upon (do not do things like asset1 is asset2).

General Asset Interface

All assets inherit from Asset. It handles the background loading system and the data logistics.

class ppb.assetlib.Asset(name)
A resource to be loaded from the filesystem and used.

Meant to be subclassed, but in specific ways.

file_missing()

Called if the file could not be found, to produce a default value.

Subclasses may want to define this.

Called in the background thread.

free()

Called by __del__() if the data was loaded.

Meant to free any resources held outside of Python.

load(timeout: float = None)
Gets the parsed data.

Will block until the data is loaded.

is_loaded()

Returns if the data has been loaded and parsed.

18 Chapter 1. Using these docs

https://docs.python.org/3/library/functions.html#float

PursuedPyBear Documentation, Release 3.2.0

background_parse(data: bytes)
Takes the data loaded from the file and returns the parsed data.

Subclasses probably want to override this.

Called in the background thread.

Subclassing

Asset makes specific assumptions and is only suitable for loading file-based assets. These make the consolidation,
background-loading, and other aspects of Asset possible.

You should really only implement three methods:

• background_parse(): This is called with the loaded data and returns an object constructed from that data.
This is called from a background thread and its return value is accessible from load()

This is an excellent place for decompression, data parsing, and other tasks needed to turn a pile of bytes into a
useful data structure.

• file_missing(): This is called if the asset is not found. Defining this method suppresses load() from raising
a FileNotFoundError and will instead call this, and load() will return what this returns.

For example, ppb.Image uses this to produce the default square.

• free(): This is to clean up any resources that would not normally be cleaned up by Python’s garbage collector.
If you are integrating external libraries, you may need this.

Concrete Assets

While Asset can load anything, it only produces bytes, limiting its usefulness. Most likely, you want a concrete
subclass that does something more useful.

class ppb.Image(name)
Loads an image file and parses it into a form usable by the renderer.

class ppb.Sound(name)
Loads and decodes an image file. A variety of formats are supported.

Asset Proxies and Virtual Assets

Asset Proxies and Virtual Assets are assets that implement the interface but either delegate to other Assets or are
completely synthesized.

For example, ppb.features.animation.Animation is an asset proxy that delegates to actual ppb.Image instances.

class ppb.assetlib.AbstractAsset

The asset interface.

This defines the common interface for virtual assets, proxy assets, and real/file assets.

is_loaded()

Returns if the data is ready now or if load() will block.

abstract load(timeout: float = None)
Get the data of this asset, in the appropriate form.

1.2. As an Experienced User 19

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/functions.html#float

PursuedPyBear Documentation, Release 3.2.0

not_found_message = ''

Can be overridden on child classes to add an additional message to show after “File not found: %r.”. See
Image.not_found_message for an example.

class ppb.Rectangle(red: int, green: int, blue: int, aspect_ratio: AspectRatio | Tuple[float | int, float | int] = (1,
1))

A rectangle image of a single color.

class ppb.Ellipse(red: int, green: int, blue: int, aspect_ratio: AspectRatio | Tuple[float | int, float | int] = (1, 1))
An ellipse image of a single color.

class ppb.Triangle(red: int, green: int, blue: int, aspect_ratio: AspectRatio | Tuple[float | int, float | int] = (1,
1))

A triangle image of a single color.

class ppb.Circle(r, g, b)
A convenience constructor for Ellipse that is a perfect circle.

class ppb.Square(r, g, b)
A constructor for Rectangle that produces a square image.

Game Object Model

The Game Object Model.

class ppb.gomlib.Children

A container for game objects.

Supports tagging.

add(child: GameObject, tags: Iterable[Hashable] = ())→ GameObject
Add a child.

Parameters

• child – Any Game Object. The item to be added.

• tags – An iterable of Hashable objects. (Probably strings.) Values that can be used to
retrieve a group containing the child.

Examples:

children.add(MyObject())

children.add(MyObject(), tags=("red", "blue")

get(*, kind: Type = None, tag: GameObject = None, **_)→ Iterator
Iterate over the objects by kind or tag.

Parameters

• kind – Any type. Pass to get a subset of contained items with the given type.

• tag – Any Hashable object. (Probably strings.) Pass to get a subset of contained items
with the given tag.

Pass both kind and tag to get objects that are both that type and that tag.

Examples:

20 Chapter 1. Using these docs

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Hashable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Iterator

PursuedPyBear Documentation, Release 3.2.0

children.get(type=MyObject)

children.get(tag="red")

children.get(type=MyObject, tag="red")

kinds()

Generates all types of the children (including super types)

remove(child: GameObject)→ GameObject
Remove the given object from the container.

Parameters
child – A hashable contained by container.

Example:

container.remove(myObject)

tags()

Generates all of the tags currently in the collections

walk()

Iterate over the children and their children.

class ppb.gomlib.GameObject(**props)
A generic parent class for game objects. Handles:

• Property-based init (Sprite(position=pos, image=img))

• Children management

add(child: GameObject, tags: Iterable = ())→ None
Shorthand for Children.add()

children: Children

The children of this object

get(*, kind: Type = None, tag: Hashable = None, **kwargs)→ Iterator
Shorthand for Children.get()

remove(child: GameObject)→ GameObject
Shorthand for Children.remove()

ppb.gomlib.walk(root)→ Iterable[GameObject]
Conducts a walk of the GOM tree from the root.

Includes the root.

Is non-recursive.

1.2. As an Experienced User 21

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Hashable
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Iterable

PursuedPyBear Documentation, Release 3.2.0

All About Scenes

Scenes are the terrain where sprites act. Each game has multiple scenes and may transition at any time.

class ppb.Scene(*, set_up: Callable = None, **props)

background_color: Sequence[int] = (0, 0, 100)

An RGB triple of the background, eg (0, 127, 255)

main_camera

An object representing the view of the scene that’s rendered

camera_class

alias of Camera

sprite_layers()→ Iterator
Return an iterator of the contained Sprites in ascending layer order.

Sprites are part of a layer if they have a layer attribute equal to that layer value. Sprites without a layer
attribute are considered layer 0.

This function exists primarily to assist the Renderer subsystem, but will be left public for other creative
uses.

Sprites

Sprites are game objects.

To use a sprite you use Scene.add to add it to a scene. When contained in an active scene, the engine will call the
various event handlers on the sprite.

When defining your own custom sprites, we suggest you start with Sprite. By subclassing Sprite, you get a number
of features automatically. You then define your event handlers as methods on your new class to produce behaviors.

All sprites in ppb are built from composition via mixins or subclassing via traditional Python inheritance.

If you don’t need the built in features of Sprite see BaseSprite.

Concrete Sprites

Concrete sprites are a combination of BaseSprite and various mixins. They implement a number of useful features
for game development and should be the primary classes you subclass when building game objects.

class ppb.Sprite(**props)
The default Sprite class.

Sprite defines no additional methods or attributes, but is made up of BaseSprite with the mixins
RotatableMixin, RenderableMixin, and SquareShapeMixin.

For most use cases, this is probably the class you want to subclass to make your game objects.

If you need rectangular sprites instead of squares, see RectangleSprite.

BaseSprite does not accept any positional arguments, and uses keyword arguments to set arbitrary state to the
BaseSprite instance. This allows rapid prototyping.

Example:

22 Chapter 1. Using these docs

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator

PursuedPyBear Documentation, Release 3.2.0

sprite = BaseSprite(speed=6)
print(sprite.speed)

This sample will print the numeral 6.

You may add any arbitrary data values in this fashion. Alternatively, it is considered best practice to subclass
BaseSprite and set the default values of any required attributes as class attributes.

Example:

class Rocket(ppb.sprites.BaseSprite):
velocity = Vector(0, 1)

def on_update(self, update_event, signal):
self.position += self.velocity * update_event.time_delta

add(child: GameObject, tags: Iterable = ())→ None
Shorthand for Children.add()

basis = Vector(0.0, -1.0)

The baseline vector, representing the “front” of the sprite

property bottom: float

The y-axis position of the bottom of the object.

Can be set to a number.

property bottom_left: Vector

The coordinates of the bottom left corner of the object.

Can be set to a ppb_vector.Vector.

property bottom_middle: Vector

The coordinates of the midpoint of the bottom of the object.

Can be set to a ppb_vector.Vector.

property center: Vector

The coordinates of the center point of the object. Equivalent to the position.

Can be set to a ppb_vector.Vector.

children: Children

The children of this object

property facing

The direction the “front” is facing.

Can be set to an arbitrary facing by providing a facing vector.

get(*, kind: Type = None, tag: Hashable = None, **kwargs)→ Iterator
Shorthand for Children.get()

property height

The height of the sprite.

Setting the height of the sprite changes the size and width().

image = Ellipsis

(ppb.Image): The image asset

1.2. As an Experienced User 23

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Hashable
https://docs.python.org/3/library/typing.html#typing.Iterator

PursuedPyBear Documentation, Release 3.2.0

layer: int = 0

The layer a sprite exists on.

property left: float

The x-axis position of the left side of the object.

Can be set to a number.

property left_middle: Vector

The coordinates of the midpoint of the left side of the object.

Can be set to a ppb_vector.Vector.

position: Vector = Vector(0.0, 0.0)

(ppb.Vector): Location of the sprite

remove(child: GameObject)→ GameObject
Shorthand for Children.remove()

property right: float

The x-axis position of the right side of the object.

Can be set to a number.

property right_middle: Vector

The coordinates of the midpoint of the right side of the object.

Can be set to a ppb_vector.Vector.

rotate(degrees)
Rotate the sprite by a given angle (in degrees).

size = 1

The width and height of the object. Setting size changes the height() and width() of the sprite.

property top: float

The y-axis position of the top of the object.

Can be set to a number.

property top_left: Vector

The coordinates of the top left corner of the object.

Can be set to a ppb_vector.Vector.

property top_middle: Vector

The coordinates of the midpoint of the top of the object.

Can be set to a ppb_vector.Vector.

property top_right: Vector

The coordinates of the top right corner of the object.

Can be set to a ppb_vector.Vector.

property width

The width of the sprite.

Setting the width of the sprite changes size and height().

24 Chapter 1. Using these docs

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PursuedPyBear Documentation, Release 3.2.0

class ppb.RectangleSprite(**props)
A rectangle sprite.

Similarly to Sprite, RectangleSprite does not introduce any new methods or attributes. It’s made up of
BaseSprite with the mixins RotatableMixin, RenderableMixin, and RectangleShapeMixin.

BaseSprite does not accept any positional arguments, and uses keyword arguments to set arbitrary state to the
BaseSprite instance. This allows rapid prototyping.

Example:

sprite = BaseSprite(speed=6)
print(sprite.speed)

This sample will print the numeral 6.

You may add any arbitrary data values in this fashion. Alternatively, it is considered best practice to subclass
BaseSprite and set the default values of any required attributes as class attributes.

Example:

class Rocket(ppb.sprites.BaseSprite):
velocity = Vector(0, 1)

def on_update(self, update_event, signal):
self.position += self.velocity * update_event.time_delta

add(child: GameObject, tags: Iterable = ())→ None
Shorthand for Children.add()

basis = Vector(0.0, -1.0)

The baseline vector, representing the “front” of the sprite

property bottom: float

The y-axis position of the bottom of the object.

Can be set to a number.

property bottom_left: Vector

The coordinates of the bottom left corner of the object.

Can be set to a ppb_vector.Vector.

property bottom_middle: Vector

The coordinates of the midpoint of the bottom of the object.

Can be set to a ppb_vector.Vector.

property center: Vector

The coordinates of the center point of the object. Equivalent to the position.

Can be set to a ppb_vector.Vector.

children: Children

The children of this object

property facing

The direction the “front” is facing.

Can be set to an arbitrary facing by providing a facing vector.

1.2. As an Experienced User 25

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

PursuedPyBear Documentation, Release 3.2.0

get(*, kind: Type = None, tag: Hashable = None, **kwargs)→ Iterator
Shorthand for Children.get()

height: int = 1

The height of the sprite.

image = Ellipsis

(ppb.Image): The image asset

layer: int = 0

The layer a sprite exists on.

property left: float

The x-axis position of the left side of the object.

Can be set to a number.

property left_middle: Vector

The coordinates of the midpoint of the left side of the object.

Can be set to a ppb_vector.Vector.

position: Vector = Vector(0.0, 0.0)

(ppb.Vector): Location of the sprite

remove(child: GameObject)→ GameObject
Shorthand for Children.remove()

property right: float

The x-axis position of the right side of the object.

Can be set to a number.

property right_middle: Vector

The coordinates of the midpoint of the right side of the object.

Can be set to a ppb_vector.Vector.

rotate(degrees)
Rotate the sprite by a given angle (in degrees).

property top: float

The y-axis position of the top of the object.

Can be set to a number.

property top_left: Vector

The coordinates of the top left corner of the object.

Can be set to a ppb_vector.Vector.

property top_middle: Vector

The coordinates of the midpoint of the top of the object.

Can be set to a ppb_vector.Vector.

property top_right: Vector

The coordinates of the top right corner of the object.

Can be set to a ppb_vector.Vector.

width: int = 1

The width of the sprite.

26 Chapter 1. Using these docs

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Hashable
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PursuedPyBear Documentation, Release 3.2.0

Feature Mixins

These mixins are the various features already available in Sprite. Here for complete documentation.

class ppb.sprites.RenderableMixin

A class implementing the API expected by ppb.systems.renderer.Renderer.

The render expects a width and height (see RectangleMixin) and will skip rendering if a sprite has no shape.
You can use RectangleMixin, SquareMixin, or set the values yourself.

Additionally, if image is None, the sprite will not be rendered. If you just want a basic shape to be rendered, see
ppb.assets.

image = Ellipsis

(ppb.Image): The image asset

class ppb.sprites.RotatableMixin

A rotation mixin. Can be included with sprites.

Warning: rotation does not affect underlying shape (the corners are still in the same place), it only rotates
the sprites image and provides a facing.

basis = Vector(0.0, -1.0)

The baseline vector, representing the “front” of the sprite

property facing

The direction the “front” is facing.

Can be set to an arbitrary facing by providing a facing vector.

rotate(degrees)
Rotate the sprite by a given angle (in degrees).

class ppb.sprites.RectangleShapeMixin

A Mixin that provides a rectangular area to sprites.

Classes derived from RectangleShapeMixin default to the same size and shape as all ppb Sprites: A 1 game unit
by 1 game unit square. Just set the width and height in your constructor (Or as class attributes) to change
this default.

Note: The concrete class using RectangleShapeMixin must have a position attribute.

property bottom: float

The y-axis position of the bottom of the object.

Can be set to a number.

property bottom_left: Vector

The coordinates of the bottom left corner of the object.

Can be set to a ppb_vector.Vector.

property bottom_middle: Vector

The coordinates of the midpoint of the bottom of the object.

Can be set to a ppb_vector.Vector.

1.2. As an Experienced User 27

https://docs.python.org/3/library/functions.html#float

PursuedPyBear Documentation, Release 3.2.0

property center: Vector

The coordinates of the center point of the object. Equivalent to the position.

Can be set to a ppb_vector.Vector.

height: int = 1

The height of the sprite.

property left: float

The x-axis position of the left side of the object.

Can be set to a number.

property left_middle: Vector

The coordinates of the midpoint of the left side of the object.

Can be set to a ppb_vector.Vector.

property right: float

The x-axis position of the right side of the object.

Can be set to a number.

property right_middle: Vector

The coordinates of the midpoint of the right side of the object.

Can be set to a ppb_vector.Vector.

property top: float

The y-axis position of the top of the object.

Can be set to a number.

property top_left: Vector

The coordinates of the top left corner of the object.

Can be set to a ppb_vector.Vector.

property top_middle: Vector

The coordinates of the midpoint of the top of the object.

Can be set to a ppb_vector.Vector.

property top_right: Vector

The coordinates of the top right corner of the object.

Can be set to a ppb_vector.Vector.

width: int = 1

The width of the sprite.

class ppb.sprites.SquareShapeMixin

A Mixin that provides a square area to sprites.

Extends the interface of RectangleShapeMixin by using the size attribute to determine width() and
height(). Setting either width() or height() sets the size and maintains the square shape at the new size.

The default size of SquareShapeMixin is 1 game unit.

Please see RectangleShapeMixin for additional details.

28 Chapter 1. Using these docs

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PursuedPyBear Documentation, Release 3.2.0

property height

The height of the sprite.

Setting the height of the sprite changes the size and width().

size = 1

The width and height of the object. Setting size changes the height() and width() of the sprite.

property width

The width of the sprite.

Setting the width of the sprite changes size and height().

Base Classes

The base class of Sprite, use this if you need to change the low level expectations.

class ppb.sprites.BaseSprite(**props)
The base Sprite class. All sprites should inherit from this (directly or indirectly).

The things that define a BaseSprite:

• A position vector

• A layer

BaseSprite provides an __init__() method that sets attributes based on kwargs to make rapid prototyping
easier.

BaseSprite does not accept any positional arguments, and uses keyword arguments to set arbitrary state to the
BaseSprite instance. This allows rapid prototyping.

Example:

sprite = BaseSprite(speed=6)
print(sprite.speed)

This sample will print the numeral 6.

You may add any arbitrary data values in this fashion. Alternatively, it is considered best practice to subclass
BaseSprite and set the default values of any required attributes as class attributes.

Example:

class Rocket(ppb.sprites.BaseSprite):
velocity = Vector(0, 1)

def on_update(self, update_event, signal):
self.position += self.velocity * update_event.time_delta

add(child: GameObject, tags: Iterable = ())→ None
Shorthand for Children.add()

children: Children

The children of this object

get(*, kind: Type = None, tag: Hashable = None, **kwargs)→ Iterator
Shorthand for Children.get()

1.2. As an Experienced User 29

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Hashable
https://docs.python.org/3/library/typing.html#typing.Iterator

PursuedPyBear Documentation, Release 3.2.0

layer: int = 0

The layer a sprite exists on.

position: Vector = Vector(0.0, 0.0)

(ppb.Vector): Location of the sprite

remove(child: GameObject)→ GameObject
Shorthand for Children.remove()

Text Rendering

ppb supports basic text rendering: single font, single style, no wrapping. Rendered fonts are graphical Assets that can
be used any place you’d use ppb.Image

class Label(ppb.sprite):
image = ppb.Text("Hello, World", font=ppb.Font("resources/noto.ttf", size=12))

TrueType and OpenType fonts (both .ttf) are supported, but must be shipped with your game. (System fonts are not
supported.)

Note that fonts require a size in points. This controls the size the text is rendered at, but the size on screen is still
controlled by Sprite.size.

class ppb.Font(name, *, size, index=None)
A TrueType/OpenType Font

Parameters

• name – the filename to load

• size – the size in points

• index – the index of the font in a multi-font file (rare)

class ppb.Text(txt, *, font, color=(0, 0, 0))
A bit of rendered text.

Parameters

• txt – The text to display.

• font – The font to use (a ppb.Font)

• color – The color to use.

GameEngine

The GameEngine is the literal beating heart of ppb: It publishes the event queue, is the source of the Idle event, and
is the root container of the object tree.

Some of the engine of the API is definitely intended for advanced users. Use the various methods of GameEngine with
caution.

class ppb.GameEngine(first_scene: ~typing.Type | ~ppb.scenes.Scene, *, basic_systems=(<class
'ppb.systems.renderer.Renderer'>, <class 'ppb.systems.clocks.Updater'>, <class
'ppb.systems.inputs.EventPoller'>, <class 'ppb.systems.sound.SoundController'>, <class
'ppb.assetlib.AssetLoadingSystem'>), systems=(), scene_kwargs=None, **kwargs)

The core component of ppb.

To use the engine directly, treat it as a context manager:

30 Chapter 1. Using these docs

https://docs.python.org/3/library/functions.html#int

PursuedPyBear Documentation, Release 3.2.0

with GameEngine(Scene, **kwargs) as ge:
ge.run()

Parameters

• first_scene (Union[Type, scenes.Scene]) – A Scene type.

• basic_systems (Iterable[systemslib.System]) – :class:systemslib.Systems
that are considered the “default”. Includes: Renderer, Updater, EventPoller,
SoundController, AssetLoadingSystem.

• systems (Iterable[systemslib.System]) – Additional user defined systems.

• scene_kwargs (Dict[str, Any]) – Keyword arguments passed along to the first scene.

• kwargs – Additional keyword arguments. Passed to the systems.

Warning: Passing in your own basic_systems can have unintended consequences. Consider passing via
systems parameter instead.

property current_scene

The top of the scene stack.

Returns
The currently running scene.

Return type
ppb.Scene

loop_once()

Iterate once.

If you’re embedding ppb in an external event loop call once per loop.

main_loop()

Loop forever.

If you’re embedding ppb in an external event loop you should not use this method. Call GameEngine.
loop_once() instead.

on_quit(quit_event: Quit, signal: Callable[[Any], None])
Shut down the event loop.

Do not call this method directly. It is called by the GameEngine when a Quit event is fired.

on_replace_scene(event: ReplaceScene, signal)
Replace the running scene with a new one.

Do not call this method directly. It is called by the GameEngine when a ReplaceScene event is fired.

on_start_scene(event: StartScene, signal: Callable[[Any], None])
Start a new scene. The current scene pauses.

Do not call this method directly. It is called by the GameEngine when a StartScene event is fired.

on_stop_scene(event: StopScene, signal: Callable[[Any], None])
Stop a running scene. If there’s a scene on the stack, it resumes.

Do not call this method directly. It is called by the GameEngine when a StopScene event is fired.

1.2. As an Experienced User 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

PursuedPyBear Documentation, Release 3.2.0

publish()

Publish the next event to every object in the tree.

register(event_type: Type | ellipsis, callback: Callable[[], Any])
Register a callback to be applied to an event at time of publishing.

Primarily to be used by subsystems.

The callback will receive the event. Your code should modify the event in place. It does not need to return
it.

Parameters

• event_type – The class of an event.

• callback – A callable, must accept an event, and return no value.

Returns
None

run()

Begin the main loop.

If you have not entered the GameEngine, this function will enter it for you before starting.

Example:

GameEngine(Scene, **kwargs).run()

signal(event, *, targets=None)
Add an event to the event queue.

Thread-safe.

You will rarely call this directly from a GameEngine instance. The current GameEngine instance will pass
it’s signal method as part of publishing an event.

Events can be targetted–they will only be delivered to specific objects instead of the whole tree. Note that
this might cause objects to receive an event if they are no longer part of the object tree.

start()

Starts the engine.

Called by GameEngine.run() before GameEngine.main_loop().

You shouldn’t call this yourself unless you’re embedding ppb in another event loop.

start_systems()

Initialize the systems.

Sound Effects

Sound effects can be triggered by sending an event:

def on_button_pressed(self, event, signal):
signal(PlaySound(sound=ppb.Sound('toot.ogg')))

The following sound formats are supported:

• OGG (with both Vorbis and Opus)

• FLAC

32 Chapter 1. Using these docs

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/Vorbis
https://en.wikipedia.org/wiki/Opus_(audio_format)
https://en.wikipedia.org/wiki/FLAC

PursuedPyBear Documentation, Release 3.2.0

• MP3

• WAV

• AIFF

• MOD

• VOC

Additionally, MIDI may be supported.

Note: As is usual with assets, you should instantiate your ppb.Sound as soon as possible, such as at the class level.

Reference

class ppb.events.PlaySound(sound: Asset)
An object requested a sound be played.

Signal in an event handler to have a sound played.

Example:

signal(PlaySound(my_sound))

sound: Asset

A Sound asset.

class ppb.Sound(name)
The asset to use for sounds. A variety of file formats are supported.

Camera

Cameras are objects that straddle the line between game space and screen space. The renderer uses the position of the
camera to translate Sprite's positions to the screen in order to make them visible.

The Renderer inserts a Camera into the current scene in response to the SceneStarted .

class ppb.camera.Camera(renderer, target_game_unit_width: Real, viewport_dimensions: Tuple[int, int])
A simple Camera.

Intentionally tightly coupled to the renderer to allow information flow back and forth.

There is a one-to-one relationship between cameras and scenes.

You can subclass Camera to add event handlers. If you do so, set the camera_class class attribute of your scene
to your subclass. The renderer will instantiate the correct type.

You shouldn’t instantiate your own camera in general. If you want to override the Camera, see above.

Parameters

• renderer (Renderer) – The renderer associated with the camera.

• target_game_unit_width (Real) – The number of game units wide you would like to
display. The actual width may be less than this depending on the ratio to the viewport (as it
can only be as wide as there are pixels.)

1.2. As an Experienced User 33

https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/WAV
https://en.wikipedia.org/wiki/Audio_Interchange_File_Format
https://en.wikipedia.org/wiki/MOD_(file_format)
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PursuedPyBear Documentation, Release 3.2.0

• viewport_dimensions (Tuple[int, int]) – The pixel dimensions of the rendered view-
port in (width, height) form.

property height: Real

The game unit height of the viewport.

See ppb.sprites for details about game units.

When setting this property, the resulting height may be slightly different from the value provided based on
the ratio between the height of the window in screen pixels and desired number of game units to represent.

When you set the height, the width will change as well.

point_is_visible(point: Vector)→ bool
Determine if a given point is in view of the camera.

Parameters
point (Vector) – A vector representation of a point in game units.

Returns
Whether the point is in view or not.

Return type
bool

sprite_in_view(sprite: Sprite)→ bool
Determine if a given sprite is in view of the camera.

Does not guarantee that the sprite will be rendered, only that it exists in the visible space.

A sprite without area (size=0 or lacking width, height, or any of the sides accessors) behave as
point_is_visible().

Parameters
sprite – The sprite to check

Type
Sprite

Returns
Whether the sprite is in the space in view of the camera.

Return type
bool

translate_point_to_game_space(point: Vector)→ Vector
Convert a vector from screen position to game position.

Parameters
point (Vector) – A vector in pixels

Returns
A vector in game units.

Return type
Vector

translate_point_to_screen(point: Vector)→ Vector
Convert a vector from game position to screen position.

Parameters
point (Vector) – A vector in game units

34 Chapter 1. Using these docs

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PursuedPyBear Documentation, Release 3.2.0

Returns
A vector in pixels.

Return type
Vector

property width: Real

The game unit width of the viewport.

See ppb.sprites for details about game units.

When setting this property, the resulting width may be slightly different from the value provided based on
the ratio between the width of the window in screen pixels and desired number of game units to represent.

When you set the width, the height will change as well.

Warning: Setting the game unit dimensions of a camera (whether via Camera.width , Camera.height, or the
target_game_unit_width of the Camera constructor) will affect both Camera.width and Camera.height.
Their ratio is determined by the defined window.

Directions

The ordinal directions.

A collection of normalized vectors to be referenced by name.

Best used for the positions or facings of Sprites.

ppb.directions.Down = Vector(0.0, -1.0)

Unit vector to the bottom of the screen from center.

ppb.directions.DownAndLeft = Vector(-0.7071067811865475, -0.7071067811865475)

Unit vector diagonally down and to the left of the screen from center.

ppb.directions.DownAndRight = Vector(0.7071067811865475, -0.7071067811865475)

Unit vector diagonally down and to the right of the screen from center.

ppb.directions.Left = Vector(-1.0, 0.0)

Unit vector to the left of the screen from center.

ppb.directions.Right = Vector(1.0, 0.0)

Unit vector to the right of the screen from center.

ppb.directions.Up = Vector(0.0, 1.0)

Unit vector to the top of the screen from center.

ppb.directions.UpAndLeft = Vector(-0.7071067811865475, 0.7071067811865475)

Unit vector diagonally up and to the left of the screen from center.

ppb.directions.UpAndRight = Vector(0.7071067811865475, 0.7071067811865475)

Unit vector diagonally up and to the right of the screen from center.

1.2. As an Experienced User 35

https://docs.python.org/3/library/numbers.html#numbers.Real

PursuedPyBear Documentation, Release 3.2.0

Deprecations and Other Changes

Documenting changes and informing uses about them is a very important part of maintaining a library. Handling this
is even discussed at length in Maintenance Schedules.

In order to facilitate this, we have a collection of utilities. Helpers for declaring deprecations, changes, renames, etc.

ppb.changelib.deprecated(reason='', version='', line_length=70, **kwargs)
This decorator can be used to insert a “deprecated” directive in your function/class docstring in order to docu-
ments the version of the project which deprecates this functionality in your library.

Parameters

• reason (str) – Reason message which documents the deprecation in your library (can be
omitted).

• version (str) – Version of your project which deprecates this feature. If you follow the
Semantic Versioning, the version number has the format “MAJOR.MINOR.PATCH”.

• line_length (int) – Max line length of the directive text. If non nul, a long text is wrapped
in several lines.

Keyword arguments can be:

• “action”: A warning filter used to activate or not the deprecation warning. Can be one of “error”, “ignore”,
“always”, “default”, “module”, or “once”. If None, empty or missing, the the global filtering mechanism
is used.

• “category”: The warning category to use for the deprecation warning. By default, the category class is
DeprecationWarning, you can inherit this class to define your own deprecation warning category.

Returns
a decorator used to deprecate a function.

Changed in version 1.2.13: Change the signature of the decorator to reflect the valid use cases.

ppb.changelib.renamed(old: str, new: Any, *, version: str, **kwargs)
Creates a name alias for a function, class, or method.

Parameters

• reason (str) – Reason message which documents the rename.

• version (str) – Version in which this rename occurred.

ppb.changelib.versionadded(reason='', version='', line_length=70)
This decorator can be used to insert a “versionadded” directive in your function/class docstring in order to doc-
uments the version of the project which adds this new functionality in your library.

Parameters

• reason (str) – Reason message which documents the addition in your library (can be omit-
ted).

• version (str) – Version of your project which adds this feature. If you follow the Semantic
Versioning, the version number has the format “MAJOR.MINOR.PATCH”, and, in the case
of a new functionality, the “PATCH” component should be “0”.

• line_length (int) – Max line length of the directive text. If non nul, a long text is wrapped
in several lines.

Returns
the decorated function.

36 Chapter 1. Using these docs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://semver.org/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://semver.org/
https://semver.org/
https://docs.python.org/3/library/functions.html#int

PursuedPyBear Documentation, Release 3.2.0

ppb.changelib.versionchanged(reason='', version='', line_length=70)
This decorator can be used to insert a “versionchanged” directive in your function/class docstring in order to
documents the version of the project which modifies this functionality in your library.

Parameters

• reason (str) – Reason message which documents the modification in your library (can be
omitted).

• version (str) – Version of your project which modifies this feature. If you follow the
Semantic Versioning, the version number has the format “MAJOR.MINOR.PATCH”.

• line_length (int) – Max line length of the directive text. If non nul, a long text is wrapped
in several lines.

Returns
the decorated function.

Features

Features are additional libraries included with PursuedPyBear. They are not “core” in the sense that you can not write
them youself, but they are useful tools to have when making games.

Animation

This is a simple animation tool, allowing individual frame files to be composed into a sprite animation, like so:

import ppb
from ppb.features.animation import Animation

class MySprite(ppb.Sprite):
image = Animation("sprite_{1..10}.png", 4)

Multi-frame files, like GIF or APNG, are not supported.

Pausing

Animations support being paused and unpaused. In addition, there is a “pause level”, where multiple calls to pause()
cause the animation to become “more paused”. This is useful for eg, pausing on both scene pause and effect.

import ppb
from ppb.features.animation import Animation

class MySprite(ppb.Sprite):
image = Animation("sprite_{1..10}.png", 4)

def on_scene_paused(self, event, signal):
self.image.pause()

def on_scene_continued(self, event, signal):
self.image.unpause()

def set_status(self, frozen):
(continues on next page)

1.2. As an Experienced User 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://semver.org/
https://docs.python.org/3/library/functions.html#int

PursuedPyBear Documentation, Release 3.2.0

(continued from previous page)

if frozen:
self.image.pause()

else:
self.image.unpause()

Reference

class ppb.features.animation.Animation(filename, frames_per_second)
An “image” that actually rotates through numbered files at the specified rate.

Parameters

• filename (str) – A path containing a {2..4} indicating the frame number

• frames_per_second (number) – The number of frames to show each second

__init__(filename, frames_per_second)

Parameters

• filename (str) – A path containing a {2..4} indicating the frame number

• frames_per_second (number) – The number of frames to show each second

copy()

Create a new Animation with the same filename and framerate. Pause status and starting time are reset.

property current_frame

Compute the number of the current frame (0-indexed)

load()

Get the current frame path.

pause()

Pause the animation.

unpause()

Unpause the animation.

Two Phase Updates

A system for two phase updates: Update, and Commit.

class ppb.features.twophase.Commit

Fired after Update.

class ppb.features.twophase.TwoPhaseMixin

Mixin to apply to objects to handle two phase updates.

on_commit(event, signal)
Commit changes previously staged.

stage_changes(**kwargs)
Stage changes for the next commit.

These are just properties on the current object to update.

38 Chapter 1. Using these docs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PursuedPyBear Documentation, Release 3.2.0

class ppb.features.twophase.TwoPhaseSystem(**props)
Produces the Commit event.

Loading Screens

The loadingscene feature provides base classes for loading screens. BaseLoadingScene and its children all work by
listening to the asset system and when all known assets are loaded, continuing on.

class ppb.features.loadingscene.BaseLoadingScene(**kwargs)
Handles the basics of a loading screen.

get_progress_sprites()

Initialize the sprites in the scene, yielding the ones that should be tagged with progress.

Override me.

next_scene: ppb.Scene

The scene to transition to when loading is complete. May be a type or an instance.

update_progress(progress)
Updates the scene with the load progress (0->1).

Override me.

class ppb.features.loadingscene.ProgressBarLoadingScene(**kwargs)
Assumes that a simple left-to-right progress bar composed of individual sprites is used.

Users should still override get_progress_sprites().

loaded_image: ppb.Image

Image to use for sprites in the “loaded” state (left side)

unloaded_image: ppb.Image = None

Image to use for sprites in the “unloaded” state (right side)

update_progress(progress)
Looks for sprites tagged progress and sets them to “loaded” or “unloaded” based on the progress.

The “progress bar” is assumed to be horizontal going from left to right.

1.2.5 Discussion

Discussion is a place to talk about the history and why of specific parts of ppb. These items can be heavily technical
so primarily intended for advanced users.

Principles and Values

PursuedPyBear is a principles driven project. From its earliest days, it’s been guided by a set of ideals that suggest
the shape and form of any problem we encounter. From our primary focus on students and learners to our embracing
change of the code and our principles.

We have identified four principles as the root of all the others:

1.2. As an Experienced User 39

PursuedPyBear Documentation, Release 3.2.0

Students and Learners First

Our first commitment is to the new programmers and game makers who have made ppb their tool of choice. Whether
introduced to them by a teacher or discovered on their own, we care about their experiences primarily. However, we
won’t forget educators, professional developers, or hobbyists while doing so. Our success is most easily measured by
the diversity of our community, and that requires a focus on the early stages of use.

Creativity without Limits

The only limitation we accept is the limitations that come from the platform we’ve chosen: that being that the only
limitation to what you can apply with ppb is what the developer is capable of what Python is capable of.

This is why we consider being a code first engine so critical to our design. It’s one of many reasons we build with
Python first.

Fun

We believe tools that are a joy to use are more likely to be picked up for the long term. Being fun means more than
just joyful discovery. We care that complexity is neatly hidden until it’s necessary to be addressed. We want to reduce
“warts” in the API, increase overall discoverability, and allow you to work playfully.

Radical Acceptance

Over time, the needs of ppb as a project and as a community have changed. It started as a solo project to encourage
reuse of common patterns in one developer’s workflows. It’s now an education-focused community with a team of
active developers and a couple dozen contributors. As the needs shift, so too do our principles and processes.

By being willing to do hard work and experiment with improvements in code, we’ve been able to build better software.
ppb has seen three major architectures since it started. And this document replaces a previous version of our principles.
Those principles were:

• Education Friendly

• Idiomatic Python

• Object Oriented and Event Driven

• Hardware Library Agnostic

• Fun

You’ll notice that some of them are still with us in this document. Others you’ll find in the child documents of each of
the ones explored here. Some are less principles and more design decisions.

In general, we are always willing to field the idea of “maybe we should do it this way?” Those questions, even when
the answer is no, keep us thinking about how things are and how they could be.

Ultimately, ppb is aspirational as a project, and our principles reflect that.

40 Chapter 1. Using these docs

PursuedPyBear Documentation, Release 3.2.0

Student First

PursuedPyBear is, above all other usages, a tool for learning. We continually find ways to reduce the amount of previous
knowledge is required to get to your first functioning video game. The greatest example of this is the evolution of ppb
start up throughout time:

Originally, ppb was a strict MVC framework with required dependency injection and little concept of sensible defaults.
You had to know what each part of the system was, instantiate it, and then pass it to the next component.

We kept the dependency injection but rebuilt the engine to have strong opinions and defaults at every level of the system.
However, you had to know what a context manager was, and how to use one.

Today, we can make a functional game in 15 lines of code, and you never need to see the underlying context manager.

Progressive Revealing of Complexity

We want to encourage exploration and flexibility of the underlying tool, and one of the ways we achieve this is through
only revealing the complexity of the tool at the point you must understand it to do something. Our “Hello World!”
example requires only understanding how to invoke functions and how to write your own: the fundamental building
blocks of Python programming. In the next hour of exploration, it’s possible to learn what objects are, how classes are
defined and using them yourself. And from there, you can begin to learn more complex features of Python.

Whenever possible, we prefer to provide powerful and sensible defaults, but with as many options for advanced users
as possible.

No Apologies

Every language and tool ends up with a number of quirks known as “wats”. In ppbwe tend to call them “warts”: they’re
places where the knowledge you have of how a system works is thrown a curve ball that requires reassessing what you
know. There are popular wat talks for both Python and Javascript to get a feel for what we mean.

One way this bears out is that no matter what level your knowledge of ppb, learning something new should only add
to that knowledge, not require reassessment.

We also try to reduce the number of times a user is forced to ask “why is it like this and not like that?” Things that are
like messages should use the event queue. State should be contained by objects at the right level of abstraction. Things
should fit the model.

Creativity Without Limits

Our focus on creativity without limits is about supporting users at all skill levels, and to help guide them from their
first lines of code through contributing to open source.

From a game perspective, we don’t want to discourage any genre of game against any other. We don’t want to discourage
any given scale.

That isn’t to mean we don’t have some limitations: ppb is a 2d sprite-based engine, it’s built in Python, and it is code
first.

1.2. As an Experienced User 41

PursuedPyBear Documentation, Release 3.2.0

Code First

The primary reason we want ppb to be code first is because it allows the primary long term limitations set on users is
the limitations of the Python language itself.

Code first also means that learning ppb means learning patterns that can be applied to other kinds of software. A
student who learns with ppb shouldn’t need to ask “what comes next”, the answer should apparent: Whatever the next
project is that interests them.

No Early Optimization

This is one of those general rules of software development, but it’s something that creates limitations. If we over
optimize our toolset for one genre of video game, it adds friction to others. New features should be generally applicable
or explicitly optional.

The primary example of this is in the basic setup for ppb as a simple event loop with the update pattern at its core.
This is because it’s the most generally applicable pattern we have available. We provide a multi-phase update system
in features for games that need the ability to stage updates instead of immediately shifting the state.

Support All Users

We’re Students First, but students aren’t students forever, and we want ppb to grow with them. From their first tutorials
through to their first shipped video game, and hopefully: to their first open source contribution. This is about making
sure the resources and community are there to help develop ppb users.

From the user perspective, clear tutorials and example code. Open discussions about the design of the system. Type
hinting to allow the tools to help guide. Progressive revelation of complexity. All of this is meant to guide a user from
student to pro.

Once they’re ready to contribute we care about well defined processes and guidelines. A strong description of how
documentation is laid out. Where code lives and why.

Fun

This one is fairly self evident: Playing games is fun. Making games should be fun. And doing both with friends is
better.

Delightful to Use

One of the core ideas that embedded early in the project is that if some piece of ppb wasn’t fun to use, we should redo
it. Our goal with ppb is a genuinely delightful API. Much of this comes from reducing friction in use, but once in a
while it’s about making a change aimed at giving more expressive constructions.

One of the changes that we did that demonstrates this is making class attributes the default way to initialize state.
Combined with a powerful __init__ it has made rapid prototyping faster and more fun for end users.

42 Chapter 1. Using these docs

PursuedPyBear Documentation, Release 3.2.0

Encourage Playful Experimentation

This principle draws from many places: Our student focus, our focus on a delightful interface, and the observation that
people learn through play. As such we have spent a lot of focus on the first few hours of game development. From our
five minute live demos and various tutorials that are ripe for experimentation we want testing ideas to be painless and
recovering from a misstep to be as inexpensive as possible.

Community Focused

While ppb started as a solo project, it’s growth has been built on community. Decisions are made through discussion
and offering ideas is rarely discouraged.

Beyond the development of the project, one of our long term focuses is game distribution. Part of the fun of making
the small games ppb excel at is sharing them with others.

Radical Acceptance

While we do think the greater idea of radical acceptance is important, with regard to ppb, radical acceptance is about
inclusion, experimentation, and willingness to question our assumptions.

Accept Significant Change

We don’t want to be afraid of change. PursuedPyBear is a project about the API, and how humans interact with
computers changes over times. We shouldn’t be afraid to abandon API decisions if they stop proving useful.

The “back end” of ppb has changed significantly on four ocassions so far, changing when some limitation was reached.
Originally strictly powered by dependency injection, we learned that sensible defaults are incredibly important. That
shifted to a single monolithic API that ran all code directly in line. Then we peeled out the first few subsystems. They
were still called directly, but you could work on them separately from the engine itself. Then we moved to the Idle
event and messaging as the way to interact between subsystems and the engine itself. In time, even this pattern may
prove limiting and be changed.

Inclusion

PursuedPyBear started as the solo project of a trans woman with a non-standard education background. As it’s grown,
we have sought out and encouraged contributors from diverse backgrounds. We have a code of conduct that covers all
participation in the project.

We like being a diverse project, and we will protect the environment that let’s it be that way.

Education

While we are a tool for education, we acknowledge that not all learners learn the same way. The author was home
schooled and self taught software after college. Many of the teachers who advise the project come from more traditional
education backgrounds.

We seek to support learners no matter their education path.

1.2. As an Experienced User 43

https://ppb.dev/coc.html

PursuedPyBear Documentation, Release 3.2.0

Race

Similar to education, race should not be an obstacle to using or contributing to ppb. The maintainers recognize that
while that might be a thing we can obtain in the project, society is racist and we must work to be anti-racist in how we
manage the project and community.

Gender

The current team of maintainers are all trans feminine. We seek out women and gender minorities to contribute to the
project. We embrace all genders and hope to keep ppb the kind of community where it is safe to be who you are.

Be Willing To Try

When someone is willing to do the work for an idea the rest of the team isn’t sure about, let them take a chance at it.
Usage will tell us if the solution is appropriate, not our personal biases.

The Asset System

The asset system (ppb.assetlib) is probably one of the more involved parts of the PPB engine, most likely because
it is one of the very few places where multithreading takes place.

It was made to help give a handle on the problems surrounding loading data into games and the management of said
data.

To that end, we had several goals when we built the asset system:

• Allow declaring resources at a fairly abstract level

• Optimistically load resources in the background as soon as possible

• Provide a layer of abstraction between how data is loaded and the use of that data

As part of this, we also built the VFS library (ppb.vfs), which treats the Python module import system as a filesystem
and allows loading data from it, to make it clear where and how resource files should be added to a project, and provide
all the flexibility of the Python module system.

Concepts

Out of this, we define a few high-level concepts:

• Asset: Some kind of way data is loaded & parsed. Usually the result is some internal engine data type.

• Real or File Asset: Loads data from the VFS (such as ppb.Image)

• Virtual Asset: Synthesizes data from nothing (such as ppb.Ellipse)

• Proxy Asset: Wraps other asset types (such as ppb.features.animation.Animation)

The idea is that the place where the asset is used does not care what kind of asset is used, only that it produces the right
kind of data–nothing in the world can make the renderer accept a ppb.Sound .

44 Chapter 1. Using these docs

PursuedPyBear Documentation, Release 3.2.0

Implementation

So how did we do this?

A lot of the heavy lifting is provided by the concurrent.futures package from the standard library. On top of this,
AssetLoadingSystem and Asset cooperate to implement background file reading. After the data is read, it is handed
to the instance and processed into its final form.

Effort is taken to deduplicate assets: If two places refer to the same asset, it is normalized to the same instance. This
reduces both load times and memory usage.

A minor wrinkle in this is that assets are defined before the engine starts. The asset system does not actually begin
loading data until the engine and AssetLoadingSystem are initialized. This means that there’s no problems delivering
events and asset implementations know that initialization has happened.

Usage

None of this explains how you use the asset system for yourself.

Defining Assets

First of all, you have to define for yourself what kind of data the asset will produce. This is usually some kind of data
object to be consumed.

Then, you make an Asset subclass. There’s a few methods of note for overriding:

• Asset.background_parse(): Do the actual parsing. Accepts the bytes loaded from the file, and returns the
data object that the asset is wrapping.

• Asset.file_missing(): If defined, this will be called if the file is not found, and is expected to return a
synthesized stand-in object. If not defined, Asset.load() will raise an error.

• Asset.free(): Handles cleanup in the case where resources need to be explicitly cleaned. Note that because
this is called in the context of __del__(), care must be taken around referring to globals or other modules.

At the point of use, all you need to do is call Asset.load() and you will get the object created by the asset. This will
block if the background processing is incomplete.

Proxy Assets

Proxy assets are simply assets that wrap other, more concrete assets. One example of this is ppb.features.
animation, where Animation wraps multiple Image instances.

Writing your own proxy asset just means returning the results of your inner asset’s Asset.load() from your own.

1.2. As an Experienced User 45

https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures
https://docs.python.org/3/reference/datamodel.html#object.__del__

PursuedPyBear Documentation, Release 3.2.0

Maintenance Schedules

This is a record of the intended maintenance schedules for various releases and dependency support.

Python Version Support

PursuedPyBear supports all CPython versions supported by the PSF at any level.

We tend to start testing new versions of cPython when they reach the release candidate stage, but don’t guarantee
compatibility until at least one ppb release after the formal release of a Python version.

We drop old versions of Python during the breaking release each year (see next section) to prevent breaking mid year
for school environments.

Release Schedules

PursuedPyBear targets four releases a year, based on the solstices and equinoxes:

• Around the northward equinox, which is about March 20th.

• Around the northern solstice, which is about June 20th. (This will always be a x.0 release.)

• Around the southward equinox, which is about September 20th.

• Around the southern solstice, which is about December 21st.

We prefer to use the directional names of the solstices and equinoxes as we support a global community. Naming them
after their seasons would leave out portions of the world.

About four weeks before the target release date, we freeze any new feature merges. This means any PR that is a feature
or enhancement (not a bug fix, documentation change, or examples) may be approved, but held until after the release.

At the same time as freeze, we try to release the first beta of the new version. If there has been any changes, we like to
release a new beta the next week, and one more the week after if bug fixes are still being submitted.

If the beta has been stable, at 2 weeks before the release, we like to cut a release candidate. At this point the majority
of accepted PRs are documentation and bug fix related. We will cut as many release candidates as we see fit over the
following two weeks.

On or around the expected release date, we will cut a final release.

On Versioning

You may recognized from the note on the Northern Solstice release that ppb uses a form of Calendar Versions or calver.
Given a release version like y.m.p:

The y is a year tag. Version 1.0 is the June 2021 release of ppb.

The m is a minor version. We will bump this during the three other releases of the year. It starts at 0 and should never
be higher than 3.

The p is a patch. For the most part this will be excluded from the version string. If it is present, it represents a bug fix
release outside of the above release cadence.

46 Chapter 1. Using these docs

https://www.python.org/downloads/

PursuedPyBear Documentation, Release 3.2.0

Deprecations and API Breakages

PursuedPyBear as a project seeks to minimize how much we break existing users experiences. While we want to be
able to continue to experiment and evolve the APIs for performance, we need strict rules about how we implement and
deliver them.

When an API change becomes necessary we will follow the following steps:

1. In the next ppb release the existing behavior and name will throw a DeprecationWarning.

2. We will continue to support the existing behavior for at least one calendar year.

3. Following this period, the deprecated behavior and name will be removed or replaced in the next major (x.0)
release. These releases take place in the Northern Solstice release each year.

Some examples:

If a feature gets deprecated during a major release like 1.0, it will need to be deprecated for the next three releases: 1.1,
1.2, and 1.3. It could then be removed in 2.0

Alternatively, if a feature is deprecated in 1.1, it will stay deprecated in 1.2, 1.3, and 2.0. This meets the deprecated for
one year step, but we cannot remove the feature in 2.1, 2.2, or 2.3. It would need to be removed in 3.0.

Regarding DeprecationWarnings

A DeprecationWarning is considered a minor change in ppb. This means they can happen in any release where the
minor version (The x in 1.x) is changed.

We will do our best to include instructions in the warning on how to update your code to avoid the DeprecationWarning
going forward.

PursuedPyBear’s Default Branch

The default branch for all ppb repositories is canon.

The maintainers had been discussing switching the default branch from master for multiple years. With the growing
public discussion of removing biased, racist, and discriminatory language from technical projects, we received a request
from a community member to prioritize this discussion.

We opened it up to the community to find a new name. The alternatives put forward were main, which is the name
settled on by github. We also had trunk suggested to tie to the idea of the “tree” that git commits make.

The idea for canon came from a few sources. From one maintainer it was suggested because PursuedPyBear is named
after a Shakespeare reference, and the idea of a “canon” was a silly enough connection to fit.

It was the most popular of the suggestions and thus we settled on it.

1.2. As an Experienced User 47

PursuedPyBear Documentation, Release 3.2.0

48 Chapter 1. Using these docs

PYTHON MODULE INDEX

p
ppb, 10
ppb.assets, 18
ppb.camera, 33
ppb.changelib, 36
ppb.directions, 35
ppb.events, 12
ppb.features.animation, 37
ppb.features.loadingscene, 39
ppb.features.twophase, 38
ppb.gomlib, 20
ppb.sprites, 22

49

PursuedPyBear Documentation, Release 3.2.0

50 Python Module Index

INDEX

Symbols
__init__() (ppb.features.animation.Animation

method), 38

A
AbstractAsset (class in ppb.assetlib), 19
add() (ppb.gomlib.Children method), 20
add() (ppb.gomlib.GameObject method), 21
add() (ppb.RectangleSprite method), 25
add() (ppb.Sprite method), 23
add() (ppb.sprites.BaseSprite method), 29
Animation (class in ppb.features.animation), 38
Asset (class in ppb.assetlib), 18
asset (ppb.events.AssetLoaded attribute), 17
AssetLoaded (class in ppb.events), 17

B
background_color (ppb.Scene attribute), 22
background_parse() (ppb.assetlib.Asset method), 18
BaseLoadingScene (class in

ppb.features.loadingscene), 39
BaseSprite (class in ppb.sprites), 29
basis (ppb.RectangleSprite attribute), 25
basis (ppb.Sprite attribute), 23
basis (ppb.sprites.RotatableMixin attribute), 27
bottom (ppb.RectangleSprite property), 25
bottom (ppb.Sprite property), 23
bottom (ppb.sprites.RectangleShapeMixin property), 27
bottom_left (ppb.RectangleSprite property), 25
bottom_left (ppb.Sprite property), 23
bottom_left (ppb.sprites.RectangleShapeMixin prop-

erty), 27
bottom_middle (ppb.RectangleSprite property), 25
bottom_middle (ppb.Sprite property), 23
bottom_middle (ppb.sprites.RectangleShapeMixin

property), 27
button (ppb.events.ButtonReleased attribute), 13
ButtonPressed (class in ppb.events), 12
ButtonReleased (class in ppb.events), 12
buttons (ppb.events.MouseMotion attribute), 13

C
Camera (class in ppb.camera), 33
camera_class (ppb.Scene attribute), 22
center (ppb.RectangleSprite property), 25
center (ppb.Sprite property), 23
center (ppb.sprites.RectangleShapeMixin property), 27
Children (class in ppb.gomlib), 20
children (ppb.gomlib.GameObject attribute), 21
children (ppb.RectangleSprite attribute), 25
children (ppb.Sprite attribute), 23
children (ppb.sprites.BaseSprite attribute), 29
Circle (class in ppb), 20
Commit (class in ppb.features.twophase), 38
copy() (ppb.features.animation.Animation method), 38
current_frame (ppb.features.animation.Animation

property), 38
current_scene (ppb.GameEngine property), 31

D
delta (ppb.events.MouseMotion attribute), 13
deprecated() (in module ppb.changelib), 36
Down (in module ppb.directions), 35
DownAndLeft (in module ppb.directions), 35
DownAndRight (in module ppb.directions), 35

E
Ellipse (class in ppb), 20

F
facing (ppb.RectangleSprite property), 25
facing (ppb.Sprite property), 23
facing (ppb.sprites.RotatableMixin property), 27
file_missing() (ppb.assetlib.Asset method), 18
Font (class in ppb), 30
free() (ppb.assetlib.Asset method), 18

G
GameEngine (class in ppb), 30
GameObject (class in ppb.gomlib), 21
get() (ppb.gomlib.Children method), 20
get() (ppb.gomlib.GameObject method), 21

51

PursuedPyBear Documentation, Release 3.2.0

get() (ppb.RectangleSprite method), 25
get() (ppb.Sprite method), 23
get() (ppb.sprites.BaseSprite method), 29
get_progress_sprites()

(ppb.features.loadingscene.BaseLoadingScene
method), 39

H
height (ppb.camera.Camera property), 34
height (ppb.RectangleSprite attribute), 26
height (ppb.Sprite property), 23
height (ppb.sprites.RectangleShapeMixin attribute), 28
height (ppb.sprites.SquareShapeMixin property), 28

I
Idle (class in ppb.events), 17
Image (class in ppb), 19
image (ppb.RectangleSprite attribute), 26
image (ppb.Sprite attribute), 23
image (ppb.sprites.RenderableMixin attribute), 27
is_loaded() (ppb.assetlib.AbstractAsset method), 19
is_loaded() (ppb.assetlib.Asset method), 18

K
key (ppb.events.KeyPressed attribute), 13
key (ppb.events.KeyReleased attribute), 13
KeyPressed (class in ppb.events), 13
KeyReleased (class in ppb.events), 13
kinds() (ppb.gomlib.Children method), 21
kwargs (ppb.events.ReplaceScene attribute), 15
kwargs (ppb.events.StartScene attribute), 14

L
layer (ppb.RectangleSprite attribute), 26
layer (ppb.Sprite attribute), 23
layer (ppb.sprites.BaseSprite attribute), 29
Left (in module ppb.directions), 35
left (ppb.RectangleSprite property), 26
left (ppb.Sprite property), 24
left (ppb.sprites.RectangleShapeMixin property), 28
left_middle (ppb.RectangleSprite property), 26
left_middle (ppb.Sprite property), 24
left_middle (ppb.sprites.RectangleShapeMixin prop-

erty), 28
load() (ppb.assetlib.AbstractAsset method), 19
load() (ppb.assetlib.Asset method), 18
load() (ppb.features.animation.Animation method), 38
loaded_image (ppb.features.loadingscene.ProgressBarLoadingScene

attribute), 39
loop_once() (ppb.GameEngine method), 31

M
main_camera (ppb.Scene attribute), 22

main_loop() (ppb.GameEngine method), 31
make_engine() (in module ppb), 11
mods (ppb.events.KeyPressed attribute), 13
mods (ppb.events.KeyReleased attribute), 13
module

ppb, 10
ppb.assets, 18
ppb.camera, 33
ppb.changelib, 36
ppb.directions, 35
ppb.events, 12
ppb.features.animation, 37
ppb.features.loadingscene, 39
ppb.features.twophase, 38
ppb.gomlib, 20
ppb.sprites, 22

MouseMotion (class in ppb.events), 13

N
new_scene (ppb.events.ReplaceScene attribute), 15
new_scene (ppb.events.StartScene attribute), 14
next_scene (ppb.features.loadingscene.BaseLoadingScene

attribute), 39
not_found_message (ppb.assetlib.AbstractAsset at-

tribute), 19

O
on_commit() (ppb.features.twophase.TwoPhaseMixin

method), 38
on_quit() (ppb.GameEngine method), 31
on_replace_scene() (ppb.GameEngine method), 31
on_start_scene() (ppb.GameEngine method), 31
on_stop_scene() (ppb.GameEngine method), 31

P
pause() (ppb.features.animation.Animation method), 38
PlaySound (class in ppb.events), 15
point_is_visible() (ppb.camera.Camera method),

34
position (ppb.events.ButtonReleased attribute), 13
position (ppb.events.MouseMotion attribute), 13
position (ppb.RectangleSprite attribute), 26
position (ppb.Sprite attribute), 24
position (ppb.sprites.BaseSprite attribute), 30
ppb

module, 10
ppb.assets

module, 18
ppb.camera

module, 33
ppb.changelib

module, 36
ppb.directions

module, 35

52 Index

PursuedPyBear Documentation, Release 3.2.0

ppb.events
module, 12

ppb.features.animation
module, 37

ppb.features.loadingscene
module, 39

ppb.features.twophase
module, 38

ppb.gomlib
module, 20

ppb.sprites
module, 22

PreRender (class in ppb.events), 12
ProgressBarLoadingScene (class in

ppb.features.loadingscene), 39
publish() (ppb.GameEngine method), 31

Q
Quit (class in ppb.events), 14

R
Rectangle (class in ppb), 20
RectangleShapeMixin (class in ppb.sprites), 27
RectangleSprite (class in ppb), 24
register() (ppb.GameEngine method), 32
remove() (ppb.gomlib.Children method), 21
remove() (ppb.gomlib.GameObject method), 21
remove() (ppb.RectangleSprite method), 26
remove() (ppb.Sprite method), 24
remove() (ppb.sprites.BaseSprite method), 30
renamed() (in module ppb.changelib), 36
Render (class in ppb.events), 17
RenderableMixin (class in ppb.sprites), 27
ReplaceScene (class in ppb.events), 14
Right (in module ppb.directions), 35
right (ppb.RectangleSprite property), 26
right (ppb.Sprite property), 24
right (ppb.sprites.RectangleShapeMixin property), 28
right_middle (ppb.RectangleSprite property), 26
right_middle (ppb.Sprite property), 24
right_middle (ppb.sprites.RectangleShapeMixin prop-

erty), 28
RotatableMixin (class in ppb.sprites), 27
rotate() (ppb.RectangleSprite method), 26
rotate() (ppb.Sprite method), 24
rotate() (ppb.sprites.RotatableMixin method), 27
run() (in module ppb), 10
run() (ppb.GameEngine method), 32

S
Scene (class in ppb), 22
scene (ppb.events.ButtonReleased attribute), 13
scene (ppb.events.Idle attribute), 17

scene (ppb.events.KeyPressed attribute), 13
scene (ppb.events.KeyReleased attribute), 13
scene (ppb.events.MouseMotion attribute), 14
scene (ppb.events.PreRender attribute), 12
scene (ppb.events.Quit attribute), 14
scene (ppb.events.Render attribute), 17
scene (ppb.events.ReplaceScene attribute), 15
scene (ppb.events.SceneContinued attribute), 16
scene (ppb.events.ScenePaused attribute), 16
scene (ppb.events.SceneStarted attribute), 16
scene (ppb.events.SceneStopped attribute), 16
scene (ppb.events.StartScene attribute), 14
scene (ppb.events.StopScene attribute), 15
scene (ppb.events.Update attribute), 12
SceneContinued (class in ppb.events), 16
ScenePaused (class in ppb.events), 16
SceneStarted (class in ppb.events), 16
SceneStopped (class in ppb.events), 16
signal() (ppb.GameEngine method), 32
size (ppb.Sprite attribute), 24
size (ppb.sprites.SquareShapeMixin attribute), 29
Sound (class in ppb), 33
sound (ppb.events.PlaySound attribute), 15
Sprite (class in ppb), 22
sprite_in_view() (ppb.camera.Camera method), 34
sprite_layers() (ppb.Scene method), 22
Square (class in ppb), 20
SquareShapeMixin (class in ppb.sprites), 28
stage_changes() (ppb.features.twophase.TwoPhaseMixin

method), 38
start() (ppb.GameEngine method), 32
start_systems() (ppb.GameEngine method), 32
StartScene (class in ppb.events), 14
StopScene (class in ppb.events), 15

T
tags() (ppb.gomlib.Children method), 21
Text (class in ppb), 30
time_delta (ppb.events.Idle attribute), 17
time_delta (ppb.events.PreRender attribute), 12
time_delta (ppb.events.Update attribute), 12
top (ppb.RectangleSprite property), 26
top (ppb.Sprite property), 24
top (ppb.sprites.RectangleShapeMixin property), 28
top_left (ppb.RectangleSprite property), 26
top_left (ppb.Sprite property), 24
top_left (ppb.sprites.RectangleShapeMixin property),

28
top_middle (ppb.RectangleSprite property), 26
top_middle (ppb.Sprite property), 24
top_middle (ppb.sprites.RectangleShapeMixin prop-

erty), 28
top_right (ppb.RectangleSprite property), 26
top_right (ppb.Sprite property), 24

Index 53

PursuedPyBear Documentation, Release 3.2.0

top_right (ppb.sprites.RectangleShapeMixin property),
28

total_loaded (ppb.events.AssetLoaded attribute), 17
total_queued (ppb.events.AssetLoaded attribute), 17
translate_point_to_game_space()

(ppb.camera.Camera method), 34
translate_point_to_screen() (ppb.camera.Camera

method), 34
Triangle (class in ppb), 20
TwoPhaseMixin (class in ppb.features.twophase), 38
TwoPhaseSystem (class in ppb.features.twophase), 38

U
unloaded_image (ppb.features.loadingscene.ProgressBarLoadingScene

attribute), 39
unpause() (ppb.features.animation.Animation method),

38
Up (in module ppb.directions), 35
UpAndLeft (in module ppb.directions), 35
UpAndRight (in module ppb.directions), 35
Update (class in ppb.events), 12
update_progress() (ppb.features.loadingscene.BaseLoadingScene

method), 39
update_progress() (ppb.features.loadingscene.ProgressBarLoadingScene

method), 39

V
versionadded() (in module ppb.changelib), 36
versionchanged() (in module ppb.changelib), 36

W
walk() (in module ppb.gomlib), 21
walk() (ppb.gomlib.Children method), 21
width (ppb.camera.Camera property), 35
width (ppb.RectangleSprite attribute), 26
width (ppb.Sprite property), 24
width (ppb.sprites.RectangleShapeMixin attribute), 28
width (ppb.sprites.SquareShapeMixin property), 29

54 Index

	Using these docs
	As a New User
	As an Experienced User
	Getting Started
	Prerequisites
	Installing ppb
	A Basic Game
	Taking Control
	Reaching Out
	Something to Target

	Tutorials
	How To: The ppb Cookbook
	Test Pre-Release Features
	With pip Directly
	With requirements.txt

	Passing keyword arguments as configuration flags

	API Reference
	Events
	Basic Events
	Command Events
	Scene Transition Events
	Engine Events

	Clocks
	Updates
	Frames
	Idle

	Assets
	General Asset Interface
	Subclassing

	Concrete Assets
	Asset Proxies and Virtual Assets

	Game Object Model
	All About Scenes
	Sprites
	Concrete Sprites
	Feature Mixins
	Base Classes

	Text Rendering
	GameEngine
	Sound Effects
	Reference

	Camera
	Directions
	Deprecations and Other Changes
	Features
	Animation
	Pausing
	Reference

	Two Phase Updates
	Loading Screens

	Discussion
	Principles and Values
	Students and Learners First
	Creativity without Limits
	Fun
	Radical Acceptance
	Student First
	Progressive Revealing of Complexity
	No Apologies
	Creativity Without Limits
	Code First
	No Early Optimization
	Support All Users
	Fun
	Delightful to Use
	Encourage Playful Experimentation
	Community Focused
	Radical Acceptance
	Accept Significant Change
	Inclusion
	Education
	Race
	Gender
	Be Willing To Try

	The Asset System
	Concepts
	Implementation
	Usage
	Defining Assets
	Proxy Assets

	Maintenance Schedules
	Python Version Support
	Release Schedules
	On Versioning

	Deprecations and API Breakages
	Regarding DeprecationWarnings

	PursuedPyBear’s Default Branch

	Python Module Index
	Index

