
Powertrain Documentation
Release 0.0

VUIIS

May 21, 2014

Contents

1 The Problem & Goals of Powertrain 3
1.1 The Problem . 3
1.2 Standing on the shoulders of giants . 3
1.3 Powertrain Web Interface . 5
1.4 Powertrain Programmatic Interface . 5

2 Technical Specification 7
2.1 Models . 8

3 Application Programming Interface 9
3.1 Models . 9

i

ii

Powertrain Documentation, Release 0.0

Powertrain is not a new idea. Many groups around the world are attempting to create scalable systems for large-scale
medical image processing. In this respect, Powertrain is simply yet another attempt at building such a system.

Powertrain relies on three separate systems:

• REDCap, the web-based data-capture system from Vanderbilt.

• XNAT, eXtensible Neuroimaging Archive Tool from WUSTL.

• ACCRE, Vanderbilt’s compute cluster.

Contents:

Contents 1

http://project-redcap.org
http://xnat.org
http://accre.vanderbilt.edu

Powertrain Documentation, Release 0.0

2 Contents

CHAPTER 1

The Problem & Goals of Powertrain

Powertrain is written for researchers using VUIIS MR imaging infrastructure at Vanderbilt. While ideas implemented
within Powertrain may have broad applicability, we are designing Powertrain to be most useful to Vanderbilt re-
searchers who capture MR data at VUIIS. As such, this is not a generalized system for running large-scale imaging
analyses; we will make design & implementation decisions specific to infrastructure available at Vanderbilt. If similar
infrastructure is available elsewhere, other research engineers may find Powertrain useful.

1.1 The Problem

Data management (DM) of large neuroimaging projects is wide-ranging & difficult. Some things to consider:

• Storage & archival of raw data.

• Storage & processing of analyzed data.

• Linkability between MR data, subject demographics and out-of-/in-magnet behavioral tasks.

• Data provenance. Can we reliably reproduce the processing done to a particular dataset?

Unfortunately poor DM planning & implementation can ruin projects and good DM is difficult to design and more
difficult to achieve. However, good DM enables quite a few features important to a projects success including:

• Automatically-generated subject- and group-level analyses

• Integrated data security & backup

• Sharing of best practices with respect to neuroimaging analyses

• Reduced costs of equipment & personnel through shared infrastructure.

The majority of laboratories running neuroimaging experiments consider & run each project separately. Different
people, computing resources & standard operating procedures all decrease replicability & reproducibility while in-
creasing costs. More advanced labs may develop software and resources to manage their studies together. Rarely do
they consider how other labs might operate.

The principle idea behind Powertrain is that at a high level, all neuroimaging studies are the same and can be modeled
appropriately. Given such a model, proper data management should be a service executed at the institution level. Only
at this level can resources be optimally used & shared among all users.

1.2 Standing on the shoulders of giants

Briefly, Powertrain is built upon the following existing (and externally managed) systems:

3

http://vuiis.vanderbilt.edu

Powertrain Documentation, Release 0.0

1.2.1 XNAT

XNAT is a widely used informatics platform for medical imaging research. The platform provides a central archive for
multiple imaging systems (in this case, MR scanners) to push data using the DICOM standard for medical imaging. To
access data, researchers can use both a web-based user interface or REST-based Application Programming Interface
(API). Powertrain will predominantly use the XNAT API to download raw images and upload processed data.

The VUIIS installation of XNAT can be found here. For Powertrain, the VUIIS XNAT serves as the archive for all
images, both raw and processed. Raw data from the MR scanners go directly to XNAT and all processed data is
uploaded back to XNAT. Many layers of data security & backup are running against this system.

1.2.2 REDCap

REDCap is a web-based system for capturing & validating both research and clinical data. Users can easily cre-
ate production-quality databases in an afternoon and quickly begin capturing data for research or clinical purposes.
REDCap also provides an API to export & import both data and files saved through the web interface or generated
elsewhere. Powertrain will make heavy use of this API to securely download subject demographics & image session
metadata and upload non-imaging data produced during image analyses.

By putting data extracted during image processing alongside subject demographics & behavioral data, researchers can
quickly build group-level analyses. For instance, selecting subjects for a functional MRI (fMRI) analysis involves
filtering by demographics (age, race, etc), out-of-magnet behavioral data (IQ, task performance, etc), in-magnet be-
havioral data (fMRI task performance) and image quality (SNR, motion, pre-processing artifact detection, etc). All of
these measures can be stored in REDCap and be used to programmatically & reproducibly build second-level analyses.

On the other hand, metadata about the images collected on a session basis including the order of images captured
can likewise be captured in REDCap. Powertrain will rely heavily on this information to appropriately organize raw
images into “paradigms” or groups of related images.

Because Powertrain and not a human operator is organizing the images, many levels of image analyses can be auto-
matically generated & processed.

1.2.3 ACCRE

The Vanderbilt Advanced Computing Center for Research & Education (ACCRE) provides advanced computing in-
frastructure for large-scale image processing. Including a computing cluster with over 7000 processor cores, networked
storage between compute nodes and an interface for submitting processing jobs to the compute cluster, ACCRE forms
the backbone of the computing infrastructure Powertrain requires for large-scale neuroimage processing.

In general, image processing requires the following steps:

1. Organization of raw data.

2. Script generation around publicly-available or in-house analysis programs.

3. Submission of these scripts to the compute cluster.

4. Asynchronous handling of finished and crashed jobs.

5. Manual Quality Assurance (QA) for correctness & usability.

Powertrain can handle steps 1-4 but because different research groups may perform QA with different parameters of
interest, Powertrain will instead make it as easy as possible for researchers to view rendered images of their data and
make QA judgements. Powertrain will send this QA classification to REDCap and/or XNAT, based on the researchers
needs.

4 Chapter 1. The Problem & Goals of Powertrain

http://xnat.org
http://xnat.vanderbilt.edu/xnat
http://project-redcap.org
http://www.accre.vanderbilt.edu

Powertrain Documentation, Release 0.0

1.3 Powertrain Web Interface

Users will interact with Powertrain primarily through a web-based interface. Through the UI, they will be able to
accomplish the following tasks:

• Create an account for themselves and request permission to view and/or administer projects.

• View available projects and sessions within each project.

• Within each session, view completed processing tasks. Captured logs of the processing as well as any rendered
images will be presented.

• If the user is an administrator to the project, they will be able to make QA judgements through the interface.

• If the user is an administrator, they can reset processing tasks so that Powertrain will re-submit the required
processing to the compute cluster.

• If the user can only view sessions, they can flag certain processing results for review by an administrator. The
administrators of the project will get an email notifying this action.

1.4 Powertrain Programmatic Interface

Initially, the programmatic interface to Powertrain will be limited to just receiving Data Entry Triggers from REDCap.
These triggers are generated by the REDCap server when data is saved within projects. These triggers give reseachers
the power to drive imaging data management within Powertrain simply by using their own REDCap database(s).

In the future we may explore implementing a RESTful API on top of Powertrain but this is not concrete.

1.3. Powertrain Web Interface 5

Powertrain Documentation, Release 0.0

6 Chapter 1. The Problem & Goals of Powertrain

CHAPTER 2

Technical Specification

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119

7

https://www.ietf.org/rfc/rfc2119.txt

Powertrain Documentation, Release 0.0

2.1 Models

8 Chapter 2. Technical Specification

CHAPTER 3

Application Programming Interface

3.1 Models

High Level

class powertrain.models.Project(**kwargs)
TODO: Documentation for Project

class powertrain.models.User(**kwargs)
TODO: Documentation for User

confirm(token)
Confirm User.email is valid and the actual human has access to this account.

Parameters token (str) – Confirmation token. Generated with
generate_confirmation_token

generate_confirmation_token(expiration=86400)
Generate a token used to confirm email addresses

Parameters expiration (int) – Time (seconds) after which token doesn’t work

generate_reset_token(expiration=86400)
Generate a token for resetting a password

Parameters expiration (int) – Time (seconds) after which token doesn’t work

reset_password(token, new_password)
Reset a password when given a proper token.

Handling matching passwords is done elsewhere.

Parameters

• token (str) – Generated with User.generate_reset_token

• new_password (str) – New password

verify_password(password)
Returns True when incoming password matches hashed version

Within Projects

class powertrain.models.MRSession(**kwargs)
TODO: Documentation for MRSession

class powertrain.models.Configuration(**kwargs)
TODO: Documentation for Configuration

9

Powertrain Documentation, Release 0.0

class powertrain.models.Task(**kwargs)
TODO: Documentation for Task

class powertrain.models.TaskSetup(**kwargs)
TODO: Documentation for TaskSetup

class powertrain.models.TaskTeardown(**kwargs)
TODO: Documentation for TaskTeardown

Within MRSessions

class powertrain.models.Scan(**kwargs)
TODO: Documentation for Scan

class powertrain.models.RawBehavior(**kwargs)
TODO: Documentation for RawBehavior

class powertrain.models.DerivedImage(**kwargs)
TODO: Documentation for DerivedImage

class powertrain.models.RawImage(**kwargs)
TODO: Documentation for RawImage

class powertrain.models.RawRender(**kwargs)
TODO: Documentation for RawRender

class powertrain.models.DerivedRender(**kwargs)
TODO: Documentation for DerivedRender

class powertrain.models.Job(**kwargs)
TODO: Documentation for Job

class powertrain.models.ExecutionUnit(**kwargs)
TODO: Documentation for ExecutionUnit

class powertrain.models.JobSetup(**kwargs)
TODO: Documentation for JobSetup

class powertrain.models.JobTeardown(**kwargs)
TODO: Documentation for JobTeardown

10 Chapter 3. Application Programming Interface

	The Problem & Goals of Powertrain
	The Problem
	Standing on the shoulders of giants
	Powertrain Web Interface
	Powertrain Programmatic Interface

	Technical Specification
	Models

	Application Programming Interface
	Models

