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Make arbitrarily structured, arbitrary-dimension boxes and log-normal mocks.

powerbox is a pure-python code for creating density grids (or boxes) that have an arbitrary two-point distribution
(i.e. power spectrum). Primary motivations for creating the code were the simple creation of log-normal mock galaxy
distributions, but the methodology can be used for other applications.
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CHAPTER 1

Features

• Works in any number of dimensions.

• Really simple.

• Arbitrary isotropic power-spectra.

• Create Gaussian or Log-Normal fields

• Create discrete samples following the field, assuming it describes an over-density.

• Measure power spectra of output fields to ensure consistency.

• Seamlessly uses pyFFTW if available for ~double the speed.
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CHAPTER 2

Installation

powerbox only depends on numpy >= 1.6.2, which will be installed automatically if powerbox is installed
using pip (see below). Furthermore, it has the optional dependency of pyfftw, which if installed will offer ~2x
performance increase in large fourier transforms. This will be seamlessly used if installed.

To install pyfftw, simply do:

pip install pyfftw

To install powerbox, do:

pip install powerbox

Alternatively, the bleeding-edge version from git can be installed with:

pip install git+git://github.com/steven-murray/powerbox.git

Finally, for a development installation, download the source code and then run (in the top-level directory):

pip install -e .
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CHAPTER 3

Acknowledgment

If you find powerbox useful in your research, please cite the Journal of Open Source Software paper at https:
//doi.org/10.21105/joss.00850.
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CHAPTER 4

QuickLinks

• Docs: https://powerbox.readthedocs.io

• Quickstart: http://powerbox.readthedocs.io/en/latest/demos/getting_started.html
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CHAPTER 5

Contents

5.1 Examples

To help get you started using powerbox, we’ve compiled a few simple examples. Other examples can be found in
the API documentation for each object or by looking at some of the tests.

5.1.1 Getting Started with Powerbox

This demo will get you started with using powerbox for the most common tasks.

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

import powerbox as pbox

In [2]: pbox.__version__

Out[2]: '0.5.5'

Introduction

The power spectrum is ubiquitous in signal processing and spatial statistics. It measures the amplitude of fluctuations
in a given field over a range of scales. Famously, for an homogeneous Gaussian random field (i.e. one in which the
PDF of the value of the field over all locations yields a normal distribution), the power spectrum encodes the entire
information of the field. It is thus a hugely useful tool in characterising close-to-homogeneous scalar fields with close-
to-Gaussian PDFs. Examples of such fields are found in astrophysics, cosmology, fluid dynamics and various other
scientific areas (often as idealised systems).

Mathematically, the power spectrum is merely the normalised absolute square of the Fourier Transform of a signal:

𝑃 (�⃗�) ∝ |ℱ(�⃗�)|2. (5.1)

11
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In powerbox, we are concerned with fields of finite extent – usually subsamples of the true underlying field – that
is, we are concerned with “boxes” which will be periodic representations of the underlying field. To obtain a power
spectrum whose magnitude is independent of the volume of the box itself, we normalise by volume:

𝑃 (�⃗�) =
|ℱ(�⃗�)|2

𝑉
, (5.2)

yielding units of [𝑥]𝑛 for the power, with 𝑛 the number of dimensions in the box. In powerbox, normalising by the
volume is optional (and true by default). Note that many conventions exist for the fourier transform, each of them
entirely valid. In powerbox we support all of these conventions (see the Changing Fourier Conventions
example notebook for details), but the default is set to mimic those used for cosmological structure:

ℱ𝑘 =

∫︁
ℱ𝑥𝑒

−𝑖�⃗�·�⃗�𝑑𝑛�⃗� (5.3)

ℱ𝑥 = (2𝜋)−𝑛/2

∫︁
ℱ𝑘𝑒

𝑖�⃗�·�⃗�𝑑𝑛�⃗�. (5.4)

(5.5)

Note that if the field is homogeneous, then it is also isotropic – i.e. the field looks (statistically) the same in every
direction at every point. In this case, the power spectrum can be reduced to a one-dimensional quantity, 𝑃 (𝑘), where
k is the magnitude of the fluctuation scale. It is these homogeneous and isotropic fields that powerbox is designed
to work with.

The aim of powerbox is to make it easy to do the following two things:

1. Given a box representing a scalar field, evaluate 𝑃 (𝑘).

2. Given a function 𝑃 (𝑘) representing an isotropic power spectrum, construct a realisation of a finite, periodic,
discretised field, 𝛿𝑥(�⃗�) in 𝑛 dimensions whose power is 𝑃 (𝑘).

The first point is relatively simple (though it is useful to be able to do it easily and fast). The second point is less
trivial: in particular, it is not fully defined. The information in 𝑃 (𝑘) is a complete representation of 𝛿𝑥 iff the PDF
of 𝛿𝑥 is Gaussian, and 𝛿𝑥 is periodic. In powerbox, we will always assume that 𝛿𝑥 is periodic. However, it is not
always usefule to assume that its PDF is Gaussian. In particular, many scalar fields are positive-bounded (for example,
density fields), while a Gaussian has support over all R. This can easily yield un-physical boxes. In powerbox, we
offer support for creating fields for two kinds of PDFs: the Gaussian and the log-normal (which is positive bounded).

Properties of the power spectrum

In powerbox, when creating scalar fields from a given power spectrum, the power spectrum itself is passed as a
callable function of one parameter (i.e. 𝑘). In general, to be physically meaningful, the power spectrum should have
the following properties:

1. 𝑃 (𝑘) > 0,∀𝑘

2.
∫︀∞
0

𝑃 (𝑘)𝑑𝑘 converges.

The first property is internally checked by powerbox and raises an error if not satisfied. The second property is not
enforced, as in powerbox only a finite range of 𝑘 is used (determined by box size and resolution). As long as the
power is finite over this range, the field will be well-specified. Note that this assumes that the power outside of the
range of 𝑘 specified is zero.

Create a 2D Gaussian field with power-law power-spectrum

There are two useful classes in powerbox: the basic PowerBox, and one for log-normal fields:
LogNormalPowerBox. To see their options just use help(pbox.PowerBox).

For a basic 2D Gaussian field with a power-law power-spectrum, one can use the following:
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In [3]: pb = pbox.PowerBox(
N=512, # Number of grid-points in the box
dim=2, # 2D box
pk = lambda k: 0.1*k**-2., # The power-spectrum
boxlength = 1.0, # Size of the box (sets the units of k in pk)
seed = 1010 # Set a seed to ensure the box looks the same every time (optional)

)

plt.imshow(pb.delta_x(),extent=(0,1,0,1))
plt.colorbar()
plt.show()

The delta_x output is always zero-mean, so it can be interpreted as an over-density field, 𝜌(𝑥)/𝜌 − 1. The caveat
to this is that an overdensity field is physically invalid below -1. To ensure the physical validity of the field, the option
ensure_physical can be set, which clips the field:

In [4]: pb = pbox.PowerBox(
N=512, # Number of grid-points in the box
dim=2, # 2D box
pk = lambda k: 0.1*k**-2., # The power-spectrum
boxlength = 1.0, # Size of the box (sets the units of k in pk)
seed = 1010, # Set a seed to ensure the box looks the same every time (optional)
ensure_physical=True # ** Ensure the delta_x is a physically valid over-density **

)

plt.imshow(pb.delta_x(),extent=(0,1,0,1))
plt.colorbar()
plt.show()

5.1. Examples 13
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If you are actually dealing with over-densities, then this clipping solution is probably a bit hacky. What you want is a
log-normal field. . .

Create a 2D Log-Normal field with power-law power spectrum

The LogNormalPowerBox class is called in exactly the same way, but the resulting field has a log-normal pdf with
the same power spectrum.

In [5]: lnpb = pbox.LogNormalPowerBox(
N=512, # Number of grid-points in the box
dim=2, # 2D box
pk = lambda k: 0.1*k**-2., # The power-spectrum
boxlength = 1.0, # Size of the box (sets the units of k in pk)
seed = 1010 # Use the same seed as our powerbox

)
plt.imshow(lnpb.delta_x(),extent=(0,1,0,1))
plt.colorbar()
plt.show()
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Again, the delta_x is zero-mean, but has a longer positive tail due to the log-normal nature of the distribution. This
means it is always greater than -1, so that the over-density field is always physical.

Create some discrete samples on the field

powerbox lets you easily create samples that follow the field:

In [6]: fig, ax = plt.subplots(1,2, sharex=True,sharey=True,gridspec_kw={"hspace":0}, subplot_kw={"ylim":(0,1),"xlim":(0,1)}, figsize=(10,5))

# Create a discrete sample using the PowerBox instance.
samples = pb.create_discrete_sample(nbar=50000, # nbar specifies the number density

min_at_zero=True # by default the samples are centred at 0. This shifts them to be positive.
)

ln_samples = lnpb.create_discrete_sample(nbar=50000, min_at_zero=True)

# Plot the samples
ax[0].scatter(samples[:,0],samples[:,1], alpha=0.2,s=1)
ax[1].scatter(ln_samples[:,0],ln_samples[:,1],alpha=0.2,s=1)
plt.show()

5.1. Examples 15
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Within each grid-cell, the placement of the samples is uniformly random. The samples can instead be placed on the
cell edge by setting randomise_in_cell to False.

Check the power-spectrum of the field

powerbox also contains a function for computing the (isotropic) power-spectrum of a field. This function accepts
either a box defining the field values at every co-ordinate, or a set of discrete samples. In the latter case, the routine
returns the power spectrum of over-densities, which matches the field that produced them. Let’s go ahead and compute
the power spectrum of our boxes, both from the samples and from the fields themselves:

In [7]: from powerbox import get_power

In [8]: # Only two arguments required when passing a field
p_k_field, bins_field = get_power(pb.delta_x(), pb.boxlength)
p_k_lnfield, bins_lnfield = get_power(lnpb.delta_x(), lnpb.boxlength)

# The number of grid points are also required when passing the samples
p_k_samples, bins_samples = get_power(samples, pb.boxlength,N=pb.N)
p_k_lnsamples, bins_lnsamples = get_power(ln_samples, lnpb.boxlength,N=lnpb.N)

Now we can plot them all together to ensure they line up:

In [9]: plt.plot(bins_field, 0.1*bins_field**-2., label="Input Power")

plt.plot(bins_field, p_k_field,label="Normal Field Power")
plt.plot(bins_samples, p_k_samples,label="Normal Sample Power")
plt.plot(bins_lnfield, p_k_lnfield,label="Log-Normal Field Power")
plt.plot(bins_lnsamples, p_k_lnsamples,label="Log-Normal Sample Power")

plt.legend()
plt.xscale('log')
plt.yscale('log')
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5.1.2 How Does Powerbox Work?

It may be useful to understand the workings of powerbox to some extent – either to diagnose performance issues or to
understand its behaviour in certain contexts.

The basic algorithm (for a Gaussian field) is the following:

1. Given a box length 𝐿 (parameter boxlength) and number of cells along a side, 𝑁 (parameter N), as well
as Fourier convention parameters (𝑎, 𝑏), determine wavenumbers along a side of the box: 𝑘 = 2𝜋𝑗/(𝑏𝐿), for
𝑗 ∈ (−𝑁/2, ..., 𝑁/2).

2. From these wavenumbers along each side, determine the magnitude of the wavenumbers at every point of the

𝑑-dimensional box, 𝑘𝑗 =
√︁∑︀𝑑

𝑖=1 𝑘
2
𝑖,𝑗 .

3. Create an array, 𝐺𝑗 , which assigns a complex number to each grid point. The complex number will have
magnitude drawn from a standard normal, and phase distributed evenly on (0, 2𝜋).

4. Determine 𝛿𝑘,𝑗 = 𝐺𝑗

√︀
𝑃 (𝑘𝑗).

5. Determine 𝛿𝑥 = 𝑉 ℱ−1(𝛿𝑘), with 𝑉 =
∏︀𝑑

𝑖=1 𝐿𝑖.

For a Log-Normal field, the steps are slightly more complex, and involve determining the power spectrum that would
be required on a Gaussian field to yield the same power spectrum for a log-normal field. The details of this approach
can be found in Coles and Jones (1991) or Beutler et al. (2011).

One characteristic of this algorithm is that it contains no information below the resolution scale 𝐿/𝑁 . Thus, a good
rule-of-thumb is to choose 𝑁 large enough to ensure that the smallest scale of interest is covered by a factor of 1.5,
i.e., if the smallest length-scale of interest is 𝑠, then use 𝑁 = 1.5𝐿/𝑠.

The range of 𝑘 used with this choice of 𝑁 also depends on the Fourier Convention used. For the default convention of
𝑏 = 1, the smallest scales are equivalent to 𝑘 = 𝜋𝑁/𝐿.

5.1. Examples 17
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5.1.3 Create a log-normal mock dark-matter distribution

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

import powerbox as pbox
pbox.__version__

Out[1]: '0.5.5'

In this demo, we create a mock dark-matter distribution, based on the cosmological power spectrum. To generate the
power-spectrum we use the hmf code (https://github.com/steven-murray/hmf).

In [2]: import hmf
hmf.__version__

Out[2]: '3.0.3'

The box can be set up like this:

In [3]: from scipy.interpolate import InterpolatedUnivariateSpline as spline
import numpy as np

# Set up a MassFunction instance to access its cosmological power-spectrum
mf = hmf.MassFunction(z=0)

# Generate a callable function that returns the cosmological power spectrum.
spl = spline(np.log(mf.k),np.log(mf.power),k=2)
power = lambda k : np.exp(spl(np.log(k)))

# Create the power-box instance. The boxlength is in inverse units of the k of which pk is a function, i.e.
# Mpc/h in this case.
pb = pbox.LogNormalPowerBox(N=256, dim=3, pk = power, boxlength= 500., seed=1234)

We will be using the delta_x quantity a couple of times throughout this demo, so we save it to a variable here.
Otherwise, powerbox will recalculate it each time it is called.

In [4]: deltax = pb.delta_x()

Now we can make a plot of a slice of the density field:

In [5]: plt.imshow(np.mean(deltax[:100,:,:],axis=0),extent=(0,100,0,100))
plt.colorbar()
plt.show()

18 Chapter 5. Contents
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And we can also compare the power-spectrum of the output field to the input power:

In [6]: p_k, kbins = pbox.get_power(deltax,pb.boxlength)
plt.plot(mf.k,mf.power,label="Input Power")
plt.plot(kbins,p_k,label="Sampled Power")
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()

Furthermore, we can sample a set of discrete particles on the field and plot them:

5.1. Examples 19
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In [7]: particles = pb.create_discrete_sample(nbar=0.003,min_at_zero=True)

plt.figure(figsize=(8,8))
plt.scatter(particles[:,0],particles[:,1],s=np.sqrt(100./particles[:,2]),alpha=0.2)
plt.xlim(0,500)
plt.ylim(0,500)
plt.show()

Or plot them in 3D!

In [8]: from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(particles[:,0], particles[:,1], particles[:,2],s=1,alpha=0.2)
plt.show()
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Then check that the power-spectrum of the sample matches the input:

In [9]: p_k_sample, kbins_sample = pbox.get_power(particles, pb.boxlength,N=pb.N)

plt.plot(mf.k,mf.power,label="Input Power")
plt.plot(kbins_sample,p_k_sample,label="Sampled Power Discrete")
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()

5.1. Examples 21
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5.1.4 Changing Fourier Conventions

The powerbox package allows for arbitrary Fourier conventions. Since (continuous) Fourier Transforms can be
defined using different definitions of the frequency term, and varying normalisations, we allow any consistent combi-
nation of these, using the same parameterisation that Mathematica uses, i.e.:

𝐹 (𝑘) =

(︂
|𝑏|

(2𝜋)1−𝑎

)︂𝑛/2 ∫︁
𝑓(𝑟)𝑒−𝑖𝑏k·r𝑑𝑛r

for the forward-transform and

𝑓(𝑟) =

(︂
|𝑏|

(2𝜋)1+𝑎

)︂𝑛/2 ∫︁
𝐹 (𝑘)𝑒+𝑖𝑏k·r𝑑𝑛k

for its inverse. Here 𝑛 is the number of dimensions in the transform, and 𝑎 and 𝑏 are free to be any real number. Within
powerbox, 𝑏 is taken to be positive.

The most common choice of parameters is (𝑎, 𝑏) = (0, 2𝜋), which are the parameters that for example numpy uses.
In cosmology (a field which powerbox was written in the context of), a more usual choice is (𝑎, 𝑏) = (1, 1), and so
these are the defaults within the PowerBox classes.

In this notebook we provide some examples on how to deal with these conventions.

Doing the DFT right.

In many fields, we are concerned primarily with the continuous FT, as defined above. However, typically we must
evaluate this numerically, and therefore use a DFT or FFT. While the conversion between the two is simple, it is all
too easy to forget which factors to normalise by to get back the analogue of the continuous transform.

That’s why in powerbox we provide some fast fourier transform functions that do all the hard work for you. They
not only normalise everything correctly to produce the continuous transform, they also return the associated fourier-
dual co-ordinates. And they do all this for arbitrary conventions, as defined above. And they work for any number of
dimensions.

22 Chapter 5. Contents
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Let’s take a look at an example, using a simple Gaussian field in 2D:

𝑓(𝑥) = 𝑒−𝜋𝑟2 ,

where 𝑟2 = 𝑥2 + 𝑦2.

The Fourier transform of this field, using the standard mathematical convention is:∫︁
𝑒−𝜋𝑟2𝑒−2𝜋𝑖𝑘·𝑥𝑑2𝑥 = 𝑒−𝜋𝑘2

,

where 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦 .

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from powerbox import fft,ifft
from powerbox.powerbox import _magnitude_grid
import powerbox as pbox

In [2]: pbox.__version__

Out[2]: '0.5.5'

In [3]: # Parameters of the field
L = 10.
N = 512
dx = L/N

x = np.arange(-L/2,L/2,dx)[:N] # The 1D field grid
r = _magnitude_grid(x,dim=2) # The magnitude of the co-ordinates on a 2D grid
field = np.exp(-np.pi*r**2) # Create the field

# Generate the k-space field, the 1D k-space grid, and the 2D magnitude grid.
k_field, k, rk = fft(field,L=L, # Pass the field to transform, and its size

ret_cubegrid=True # Tell it to return the grid of magnitudes.
)

# Plot the field minus the analytic result
plt.imshow(np.abs(k_field)-np.exp(-np.pi*rk**2),extent=(k.min(),k.max(),k.min(),k.max()))
plt.colorbar();

5.1. Examples 23
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We can now of course do the inverse transform, to ensure that we return the original:

In [4]: x_field, x_, rx = ifft(k_field, L = L, # Note we can pass L=L, or Lk as the extent of the k-space grid.
ret_cubegrid=True)

plt.imshow(np.abs(x_field)-field,extent=(x.min(),x.max(),x.min(),x.max()))
plt.title("Residual Between Input and\n Forward+Inverse Transform", fontsize=14)
plt.colorbar()
plt.show();
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We can also check that the xgrid returned is the same as the input xgrid:

In [5]: x_ -x

Out[5]: array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])

Changing the convention

Suppose we instead required the transform∫︁
𝑒−𝜋𝑟2𝑒−𝑖𝜈·𝑥𝑑2𝑥 = 𝑒−𝜈2/4𝜋.

This is the same transform but with the Fourier-convention (𝑎, 𝑏) = (1, 1). We would do this like:

In [6]: # Generate the k-space field, the 1D k-space grid, and the 2D magnitude grid.
k_field, k, rk = fft(field,L=L, # Pass the field to transform, and its size

ret_cubegrid=True, # Tell it to return the grid of magnitudes.
a=1,b=1 # SET THE FOURIER CONVENTION

)

# Plot the field minus the analytic result
plt.imshow(np.abs(k_field)-np.exp(-1./(4*np.pi)*rk**2),extent=(k.min(),k.max(),k.min(),k.max()))
plt.colorbar();

5.1. Examples 25
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Again, specifying the inverse transform with these conventions gives back the original:

In [7]: x_field, x_, rx = ifft(k_field, L = L, # Note we can pass L=L, or Lk as the extent of the k-space grid.
ret_cubegrid=True,
a=1,b=1
)

plt.imshow(np.abs(x_field)-field,extent=(x.min(),x.max(),x.min(),x.max()))
plt.colorbar()
plt.show();
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Mixing up conventions

It may be that sometimes the forward and inverse transforms in a certain problem will have different conventions.
Say the forward transform has parameters (𝑎, 𝑏), and the inverse has parameters (𝑎′, 𝑏′). Then first taking the forward
transform, and then inverting it (in 𝑛-dimensions) would yield:(︂

𝑏′

𝑏(2𝜋)𝑎′−𝑎

)︂𝑛/2

𝑓

(︂
𝑏′𝑟

𝑏

)︂
,

and doing it the other way would yield: (︂
𝑏

𝑏′(2𝜋)𝑎′−𝑎

)︂𝑛/2

𝐹

(︂
𝑏𝑘

𝑏′

)︂
.

The fft and ifft functions handle these easily. For example, if (𝑎, 𝑏) = (0, 2𝜋) and (𝑎′, 𝑏′) = (0, 1), then the 2D
forward-then-inverse transform should be

𝑓(𝑟/(2𝜋))/2𝜋,

and the inverse-then-forward should be

2𝜋𝐹 (2𝜋𝑘).

In [8]: # Do the forward transform
k_field,k,rk = fft(field,L=L,a=0,b=2*np.pi, ret_cubegrid=True)

# Do the inverse transform, ensuring the boxsize is correct
mod_field,modx,modr = ifft(k_field,Lk=-2*k.min(),a=0,b=1, ret_cubegrid=True)

mod_field, bins = pbox.angular_average(mod_field, modr, 300)

plt.plot(bins,mod_field, label="Numerical",lw=3,ls='--')
plt.plot(bins,np.exp(-np.pi*(bins/(2*np.pi))**2)/(2*np.pi),label="Analytic")
plt.legend()
plt.yscale('log')
plt.xscale('log')
plt.ylim(1e-7,3)
plt.show()

/home/steven/miniconda3/envs/powerbox/lib/python3.6/site-packages/numpy/core/numeric.py:492: ComplexWarning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)
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Using Different Conventions in Powerbox

These fourier-transform wrappers are used inside powerbox to do the heavy lifting. That means that one can pass a
power spectrum which has been defined with arbitrary conventions, and receive a fully consistent box back.

Let’s say, for example, that the fourier convention in your field was to use (𝑎, 𝑏) = (0, 1), so that the power spectrum
of a 2D field, 𝛿𝑥 was given by

𝑃 (𝑘) =
1

2𝜋

∫︁
𝛿𝑥𝑒

−𝑖𝑘𝑥𝑑2𝑥.

We now wish to create a realisation with a power spectrum following these conventions. Let’s say the power spectrum
is 𝑃 (𝑘) = 0.1𝑘−2.

In [9]: pb = pbox.PowerBox(
N=512,dim=2,pk = lambda k : 0.1*k**-3.,
a=0, b=1, # Set the Fourier convention
boxlength=50.0 # Has units of inverse k

)

plt.imshow(pb.delta_x(),extent=(0,50,0,50))
plt.colorbar()
plt.show()
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When we check the power spectrum, we also have to remember to set the Fourier convention accordingly:

In [10]: power, kbins = pbox.get_power(pb.delta_x(), pb.boxlength, a= 0,b =1)

plt.plot(kbins,power,label="Numerical")
plt.plot(kbins,0.1*kbins**-3.,label="Analytic")
plt.legend()
plt.xscale('log')
plt.yscale('log')
plt.show()
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5.2 License

Copyright (c) 2016 Steven Murray

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5.3 Changelog

5.3.1 v0.5.7 [24 Oct 2018]

Enhancements

• Added ability to use weights on k-modes in get_power.

Bugfixes

• Fixed bug on using ignore_zero_mode introduced in v0.5.6

• Added tests for ignore_zero_mode and k_weights

5.3.2 v0.5.6 [23 Oct 2018]

Enhancements

• Added ignore_zero_mode parameter to get_power.

Bugfixes

• Removed redundant seed parameter from create_discrete_sample().

5.3.3 v0.5.5 [19 July 2018]

Bugfixes

• log_bins wasn’t being passed through to angular_average correctly.

Enhancements

• angular_average() no longer requires coords to be passed as box of magnitudes.

• improved docs.

• fixed source divide by zero warning in PowerBox()
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5.3.4 v0.5.4 [30 May 2018]

Enhancements

• Added ability to do angular averaging in log-space bins

• When not all radial bins have co-ordinates in them, a more reasonable warning message is emitted.

• Removed redundant bincount call when only summing, not averaging (angularly).

Bugfixes

• Now properly deals with co-ordinates outside the bin range in angular_average (will only make a difference
when bins is passed as a vector). Note that this has meant that by default the highest-valued co-ordinate in the
box will not contribute to any bins any more.

• Fixed a bunch of tests in test_power which were using the wrong power index!

Internals

• Re-factored getting radial bins into _getbins() function.

5.3.5 v0.5.3 [22 May 2018]

Bugfixes

• Fixed a bug introduced in v0.5.1 where using bin_ave=False in angular_average_nd would fail.

5.3.6 v0.5.2 [17 May 2018]

Enhancements

• Added ability to calculate the variance of an angularly averaged quantity.

• Removed a redundant calculation of the bin weights in angular_average

Internals

• Updated version numbers of dev requirements.

5.3.7 v0.5.1 [4 May 2018]

Enhancements

• Added ability to not have dimensionless power spectra from get_power.

• Also return linearly-spaced radial bin edges from angular_average_nd

• Python 3 compatibility

Bugfixes

• Fixed bug where field was modified in-place unexpectedly in angular_average

• Now correctly flattens weights before getting the field average in angular_average_nd

v0.5.0 [7 Nov 2017] ——————~ Features

• Input boxes to get_power no longer need to have same length on every dimension.

• New angular_average_nd function to average over first n dimensions of an array.

Enhancements
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• Huge (5x or so) speed-up for angular_average function (with resulting speedup for get_power).

• Huge memory reduction in fft/ifft routines, with potential loss of some speed (TODO: optimise)

• Better memory consumption in PowerBox classes, at the expense of an API change (cached properties no longer
cached, or properties).

• Modified fftshift in dft to handle astropy Quantity objects (bit of a hack really)

Bugfixes

• Fixed issue where if the boxlength was passed as an integer (to fft/ifft), then incorrect results occurred.

• Fixed issue where incorrect first_edge assignment in get_power resulted in bad power spectrum. No longer
require this arg.

5.3.8 v0.4.3 [29 March 2017]

Bugfixes

• Fixed volume normalisation in get_power.

5.3.9 v0.4.2 [28 March 2017]

Features

• Added ability to cross-correlate boxes in get_power.

5.3.10 v0.4.1

Bugfixes

• Fixed cubegrid return value for dft functions when input boxes have different sizes on each dimension.

5.3.11 v0.4.0

Features

• Added fft/ifft wrappers which consistently return fourier transforms with arbitrary Fourier conventions.

• Boxes now may be composed with arbitrary Fourier conventions.

• Documentation!

Enhancements

• New test to compare LogNormalPowerBox with standard PowerBox.

• New project structure to make for easier location of functions.

• Code quality improvements

• New tests, better coverage.

Bugfixes

• Fixed incorrect boxsize for an odd number of cells

• Ensure mean density is correct in LogNormalPowerBox
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5.3.12 v0.3.2

Bugfixes

• Fixed bug in pyFFTW cache setting

5.3.13 v0.3.1

Enhancements

• New interface with pyFFTW to make fourier transforms ~twice as fast. No difference to the API.

5.3.14 v0.3.0

Features

• New functionality in get_power function to measure power-spectra of discrete samples.

Enhancements

• Added option to not store discrete positions in class (just return them)

• get_power now more streamlined and intuitive in its API

5.3.15 v0.2.3 [11 Jan 2017]

Enhancements

• Improved estimation of power (in get_power) for lowest k bin.

5.3.16 v0.2.2 [11 Jan 2017]

Bugfixes

• Fixed a bug in which the output power spectrum was a factor of sqrt(2) off in normalisation

5.3.17 v0.2.1 [10 Jan 2017]

Bugfixes

• Fixed output of create_discrete_sample when not randomising positions.

Enhancements

• New option to set bounds of discrete particles to (0, boxlength) rather than centring at 0.

5.3.18 v0.2.0 [10 Jan 2017]

Features

• New LogNormalPowerBox class for creating log-normal fields

Enhancements

• Restructuring of code for more flexibility after creation. Now requires cached_property package.
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5.3.19 v0.1.0 [27 Oct 2016]

First working version. Only Gaussian fields working.

5.4 Authors

• Steven Murray

5.4.1 Comments, corrections and suggestions

• Chris Jordan

5.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.5.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.5.2 Documentation improvements

powerbox could always use more documentation, whether as part of the official powerbox docs, in docstrings, or even
on the web in blog posts, articles, and such.

5.5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/steven-murray/powerbox/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

5.5.4 Development

To set up powerbox for local development:

1. Fork powerbox (look for the “Fork” button).

2. Clone your fork locally:
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git clone git@github.com:your_name_here/powerbox.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox)1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to CONTRIBUTORS.rst.

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

5.6 API Summary

5.6.1 powerbox.powerbox Module

A module defining two classes which can create arbitrary-dimensional fields with given power spectra. One such
function produces Gaussian fields, and the other LogNormal fields.

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though . . .
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In principle, these may be extended to other 1-point density distributions by subclassing PowerBox and over-writing
the same methods as are over-written in LogNormalPowerBox.

Classes

LogNormalPowerBox(*args, **kwargs) Calculate Log-Normal density fields with given power
spectra.

PowerBox(N, pk[, dim, boxlength, . . . ]) Calculate real- and fourier-space Gaussian fields gener-
ated with a given power spectrum.

LogNormalPowerBox

class powerbox.powerbox.LogNormalPowerBox(*args, **kwargs)
Bases: powerbox.powerbox.PowerBox

Calculate Log-Normal density fields with given power spectra.

See the documentation of PowerBox for a detailed explanation of the arguments, as this class has exactly the
same arguments.

This class calculates an (over-)density field of arbitrary dimension given an input isotropic power spectrum. In
this case, the field has a log-normal distribution of over-densities, always yielding a physically valid field.

Examples

To create a log-normal over-density field:

>>> from powerbox import LogNormalPowerBox
>>> lnpb = LogNormalPowerBox(100,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> overdensities = lnpb.delta_x
>>> grid = lnpb.x
>>> radii = lnpb.r

To plot the overdensities:

>>> import matplotlib.pyplot as plt
>>> plt.imshow(pb.delta_x)

Compare the fields from a Gaussian and Lognormal realisation with the same power:

>>> lnpb = LogNormalPowerBox(300,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> pb = PowerBox(300,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> fig,ax = plt.subplots(2,1,sharex=True,sharey=True,figsize=(12,5))
>>> ax[0].imshow(lnpb.delta_x,aspect="equal",vmin=-1,vmax=lnpb.delta_x.max())
>>> ax[1].imshow(pb.delta_x,aspect="equal",vmin=-1,vmax = lnpb.delta_x.max())

To create and plot a discrete version of the field:

>>> positions = lnpb.create_discrete_sample(nbar=1000.0, # Number density in
→˓terms of boxlength units
>>> randomise_in_cell=True)
>>> plt.scatter(positions[:,0],positions[:,1],s=2,alpha=0.5,lw=0)
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Attributes Summary

kvec The vector of wavenumbers along a side
r The radial position of every point in the grid
x The co-ordinates of the grid along a side

Methods Summary

correlation_array() The correlation function from the input power, on the
grid

create_discrete_sample(nbar[, . . . ]) Assuming that the real-space signal represents an
over-density with respect to some mean, create a
sample of tracers of the underlying density distribu-
tion.

delta_k() A realisation of the delta_k, i.e.
delta_x() The real-space over-density field, from the input

power spectrum
gauss_hermitian() A random array which has Gaussian magnitudes and

Hermitian symmetry
gaussian_correlation_array() The correlation function required for a Gaussian field

to produce the input power on a lognormal field
gaussian_power_array() The power spectrum required for a Gaussian field to

produce the input power on a lognormal field
k() The entire grid of wavenumber magitudes
power_array() The Power Spectrum (volume normalised) at self.k

Attributes Documentation

kvec
The vector of wavenumbers along a side

r
The radial position of every point in the grid

x
The co-ordinates of the grid along a side

Methods Documentation

correlation_array()
The correlation function from the input power, on the grid

create_discrete_sample(nbar, randomise_in_cell=True, min_at_zero=False, store_pos=False)
Assuming that the real-space signal represents an over-density with respect to some mean, create a sample
of tracers of the underlying density distribution.

Parameters

nbar [float] Mean tracer density within the box.

randomise_in_cell [bool, optional] Whether to randomise the positions of the tracers within
the cells, or put them at the grid-points (more efficient).
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min_at_zero [bool, optional] Whether to make the lower corner of the box at the origin,
otherwise the centre of the box is at the origin.

store_pos [bool, optional] Whether to store the sample of tracers as an instance variable
tracer_positions.

Returns

tracer_positions [float, array_like] (n, d)-array, with n the number of tracers and d the
number of dimensions. Each row represents a single tracer’s co-ordinates.

delta_k()
A realisation of the delta_k, i.e. the gaussianised square root of the unitless power spectrum (i.e. the
Fourier co-efficients)

delta_x()
The real-space over-density field, from the input power spectrum

gauss_hermitian()
A random array which has Gaussian magnitudes and Hermitian symmetry

gaussian_correlation_array()
The correlation function required for a Gaussian field to produce the input power on a lognormal field

gaussian_power_array()
The power spectrum required for a Gaussian field to produce the input power on a lognormal field

k()
The entire grid of wavenumber magitudes

power_array()
The Power Spectrum (volume normalised) at self.k

PowerBox

class powerbox.powerbox.PowerBox(N, pk, dim=2, boxlength=1.0, ensure_physical=False, a=1.0,
b=1.0, vol_normalised_power=True, seed=None)

Bases: object

Calculate real- and fourier-space Gaussian fields generated with a given power spectrum.

Parameters

N [int] Number of grid-points on a side for the resulting box (equivalently, number of wavenum-
bers to use).

pk [callable] A callable of a single (vector) variable k, which is the isotropic power spectrum.
The relationship of the k of which this is a function to the real-space co-ordinates, x, is
determined by the parameters a,b.

dim [int, default 2] Number of dimensions of resulting box.

boxlength [float, default 1.0] Length of the final signal on a side. This may have arbitrary units,
so long as pk is a function of a variable which has the inverse units.

ensure_physical [bool, optional] Interpreting the power spectrum as a spectrum of density fluc-
tuations, the minimum physical value of the real-space field, delta_x(), is -1. With
ensure_physical set to True, delta_x() is clipped to return values >-1. If this is
happening a lot, consider using LogNormalPowerBox.
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a,b [float, optional] These define the Fourier convention used. See powerbox.dft for details.
The defaults define the standard usage in cosmology (for example, as defined in Cosmolog-
ical Physics, Peacock, 1999, pg. 496.). Standard numerical usage (eg. numpy) is (a,b) =
(0,2pi).

vol_normalised_power [bool, optional] Whether the input power spectrum, pk, is volume-
weighted. Default True because of standard cosmological usage.

seed: int, optional A random seed to define the initial conditions. If not set, it will remain
random, and each call to eg. delta_x() will produce a different realisation.

Notes

A number of conventions need to be listed.

The conventions of using x for “real-space” and k for “fourier space” arise from cosmology, but this does not
affect anything – x could just as well stand for “time domain” and k for “frequency domain”.

The important convention is the relationship between x and k, or in other words, whether k is interpreted as an
angular frequency or ordinary frequency. By default, because of cosmological conventions, k is an angular fre-
quency, so that the fourier transform integrand is delta_k*exp(-ikx). The conventions can be changed arbitrarily
by setting the a,b parameters (see powerbox.dft for details).

The primary quantity of interest is delta_x(), which is a zero-mean Gaussian field with a power spectrum
equivalent to that which was input. Being zero-mean enables its direct interpretation as an overdensity field, and
this interpretation is enforced in the make_discrete_sample() method.

Note: None of the n-dimensional arrays that are created within the class are stored, due to the inefficiency in
memory consumption that this would imply. Thus, each large array is created and returned by their respective
method, to be stored/discarded by the user.

Warning: Due to the above note, repeated calls to eg. delta_x() will produce different realisations of
the real-space field, unless the seed parameter is set in the constructor.

Examples

To create a 3-dimensional box of gaussian over-densities, gridded into 100 bins, with cosmological conventions,
and a power-law power spectrum, simply use

>>> pb = PowerBox(100,lambda k : 0.1*k**-3., dim=3, boxlength=100.0)
>>> overdensities = pb.delta_x()
>>> grid = pb.x
>>> radii = pb.r

To create a 2D turbulence structure, with arbitrary units, once can use

>>> import matplotlib.pyplot as plt
>>> pb = PowerBox(1000, lambda k : k**-7./5.)
>>> plt.imshow(pb.delta_x())
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Attributes Summary

kvec The vector of wavenumbers along a side
r The radial position of every point in the grid
x The co-ordinates of the grid along a side

Methods Summary

create_discrete_sample(nbar[, . . . ]) Assuming that the real-space signal represents an
over-density with respect to some mean, create a
sample of tracers of the underlying density distribu-
tion.

delta_k() A realisation of the delta_k, i.e.
delta_x() The realised field in real-space from the input power

spectrum
gauss_hermitian() A random array which has Gaussian magnitudes and

Hermitian symmetry
k() The entire grid of wavenumber magitudes
power_array() The Power Spectrum (volume normalised) at self.k

Attributes Documentation

kvec
The vector of wavenumbers along a side

r
The radial position of every point in the grid

x
The co-ordinates of the grid along a side

Methods Documentation

create_discrete_sample(nbar, randomise_in_cell=True, min_at_zero=False, store_pos=False)
Assuming that the real-space signal represents an over-density with respect to some mean, create a sample
of tracers of the underlying density distribution.

Parameters

nbar [float] Mean tracer density within the box.

randomise_in_cell [bool, optional] Whether to randomise the positions of the tracers within
the cells, or put them at the grid-points (more efficient).

min_at_zero [bool, optional] Whether to make the lower corner of the box at the origin,
otherwise the centre of the box is at the origin.

store_pos [bool, optional] Whether to store the sample of tracers as an instance variable
tracer_positions.

Returns

tracer_positions [float, array_like] (n, d)-array, with n the number of tracers and d the
number of dimensions. Each row represents a single tracer’s co-ordinates.
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delta_k()
A realisation of the delta_k, i.e. the gaussianised square root of the power spectrum (i.e. the Fourier
co-efficients)

delta_x()
The realised field in real-space from the input power spectrum

gauss_hermitian()
A random array which has Gaussian magnitudes and Hermitian symmetry

k()
The entire grid of wavenumber magitudes

power_array()
The Power Spectrum (volume normalised) at self.k

5.6.2 powerbox.dft Module

A module defining some “nicer” fourier transform functions.

We define only two functions – an arbitrary-dimension forward transform, and its inverse. In each case, the transform
is designed to replicate the continuous transform. That is, the transform is volume-normalised and obeys correct
Fourier conventions.

The actual FFT backend is provided by pyFFTW if it is installed, which provides a significant speedup, and multi-
threading.

Conveniently, we allow for arbitrary Fourier convention, according to the scheme in http://mathworld.wolfram.com/
FourierTransform.html. That is, we define the forward and inverse n-dimensional transforms respectively as

𝐹 (𝑘) =

√︃
|𝑏|

(2𝜋)1−𝑎

𝑛 ∫︁
𝑓(𝑟)𝑒−𝑖𝑏k·r𝑑𝑛r

and

𝑓(𝑟) =

√︃
|𝑏|

(2𝜋)1+𝑎

𝑛 ∫︁
𝐹 (𝑘)𝑒+𝑖𝑏k·r𝑑𝑛k.

In both transforms, the corresponding co-ordinates are returned so a completely consistent transform is simple to get.
This makes switching from standard frequency to angular frequency very simple.

We note that currently, only positive values for b are implemented (in fact, using negative b is consistent, but one must
be careful that the frequencies returned are descending, rather than ascending).

Functions

fft(X[, L, Lk, a, b, axes, ret_cubegrid]) Arbitrary-dimension nice Fourier Transform.
ifft(X[, Lk, L, a, b, axes, ret_cubegrid]) Arbitrary-dimension nice inverse Fourier Transform.
fftfreq(N[, d, b]) Return the fourier frequencies for a box with N cells,

using general Fourier convention.
fftshift(x, *args, **kwargs) The same as numpy’s fftshift, except that it preserves

units (if Astropy quantities are used)
ifftshift(x, *args, **kwargs) The same as numpy’s ifftshift, except that it preserves

units (if Astropy quantities are used)
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fft

powerbox.dft.fft(X, L=None, Lk=None, a=0, b=6.283185307179586, axes=None,
ret_cubegrid=False)

Arbitrary-dimension nice Fourier Transform.

This function wraps numpy’s fftn and applies some nice properties. Notably, the returned fourier transform is
equivalent to what would be expected from a continuous Fourier Transform (including normalisations etc.). In
addition, arbitrary conventions are supported (see powerbox.dft for details).

Default parameters have the same normalising conventions as numpy.fft.fftn.

The output object always has the zero in the centre, with monotonically increasing spectral arguments.

Parameters

X [array] An array with arbitrary dimensions defining the field to be transformed. Should cor-
respond exactly to the continuous function for which it is an analogue. A lower-dimensional
transform can be specified by using the axes argument.

L [float or array-like, optional] The length of the box which defines X. If a scalar, each trans-
formed dimension in X is assumed to have the same length. If array-like, must be of the same
length as the number of transformed dimensions. The default returns the un-normalised DFT
(same as numpy).

Lk [float or array-like, optional] The length of the fourier-space box which defines the dual of
X. Only one of L/Lk needs to be provided. If provided, L takes precedence. If a scalar, each
transformed dimension in X is assumed to have the same length. If array-like, must be of
the same length as the number of transformed dimensions.

a,b [float, optional] These define the Fourier convention used. See powerbox.dft for details.
The defaults return the standard DFT as defined in numpy.fft.

axes [sequence of ints, optional] The axes to take the transform over. The default is to use all
axes for the transform.

ret_cubegrid [bool, optional] Whether to return the entire grid of frequency magnitudes.

Returns

ft [array] The DFT of X, normalised to be consistent with the continuous transform.

freq [list of arrays] The frequencies in each dimension, consistent with the Fourier conventions
specified.

grid [array] Only returned if ret_cubegrid is True. An array with shape given by axes
specifying the magnitude of the frequencies at each point of the fourier transform.

ifft

powerbox.dft.ifft(X, Lk=None, L=None, a=0, b=6.283185307179586, axes=None,
ret_cubegrid=False)

Arbitrary-dimension nice inverse Fourier Transform.

This function wraps numpy’s ifftn and applies some nice properties. Notably, the returned fourier transform
is equivalent to what would be expected from a continuous inverse Fourier Transform (including normalisations
etc.). In addition, arbitrary conventions are supported (see powerbox.dft for details).

Default parameters have the same normalising conventions as numpy.fft.ifftn.

Parameters
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X [array] An array with arbitrary dimensions defining the field to be transformed. Should cor-
respond exactly to the continuous function for which it is an analogue. A lower-dimensional
transform can be specified by using the axes argument. Note that this should have its zero
in the center.

Lk [float or array-like, optional] The length of the box which defines X. If a scalar, each trans-
formed dimension in X is assumed to have the same length. If array-like, must be of the same
length as the number of transformed dimensions. The default returns the un-normalised DFT
(the same as numpy).

L [float or array-like, optional] The length of the real-space box, defining the dual of X. Only
one of Lk/L needs to be passed. If L is passed, it is used. If a scalar, each transformed
dimension in X is assumed to have the same length. If array-like, must be of the same length
as the number of transformed dimensions. The default of Lk=1 returns the un-normalised
DFT.

a,b [float, optional] These define the Fourier convention used. See powerbox.dft for details.
The defaults return the standard DFT as defined in numpy.fft.

axes [sequence of ints, optional] The axes to take the transform over. The default is to use all
axes for the transform.

ret_cubegrid [bool, optional] Whether to return the entire grid of real-space co-ordinate mag-
nitudes.

Returns

ft [array] The IDFT of X, normalised to be consistent with the continuous transform.

freq [list of arrays] The real-space co-ordinate grid in each dimension, consistent with the
Fourier conventions specified.

grid [array] Only returned if ret_cubegrid is True. An array with shape given by axes
specifying the magnitude of the real-space co-ordinates at each point of the inverse fourier
transform.

fftfreq

powerbox.dft.fftfreq(N, d=1.0, b=6.283185307179586)
Return the fourier frequencies for a box with N cells, using general Fourier convention.

Parameters

N [int] The number of grid cells

d [float, optional] The interval between cells

b [float, optional] The fourier-convention of the frequency component (see powerbox.dft
for details).

Returns

freq [array] The N symmetric frequency components of the Fourier transform. Always centred
at 0.

fftshift

powerbox.dft.fftshift(x, *args, **kwargs)
The same as numpy’s fftshift, except that it preserves units (if Astropy quantities are used)
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All extra arguments are passed directly to numpy’s fftshift.

ifftshift

powerbox.dft.ifftshift(x, *args, **kwargs)
The same as numpy’s ifftshift, except that it preserves units (if Astropy quantities are used)

All extra arguments are passed directly to numpy’s ifftshift.

5.6.3 powerbox.tools Module

A set of tools for dealing with structured boxes, such as those output by powerbox. Tools include those for averaging
a field angularly, and generating the isotropic power spectrum.

Functions

angular_average(field, coords, bins[, . . . ]) Average a given field within radial bins.
angular_average_nd(field, coords, bins[, n, . . . ]) Average the first n dimensions of a given field within

radial bins.
get_power(deltax, boxlength[, deltax2, N, . . . ]) Calculate the isotropic power spectrum of a given field,

or cross-power of two similar fields.

angular_average

powerbox.tools.angular_average(field, coords, bins, weights=1, average=True, bin_ave=True,
get_variance=False, log_bins=False)

Average a given field within radial bins.

This function can be used in fields of arbitrary dimension (memory permitting), and the field need not be centred
at the origin. The averaging assumes that the grid cells fall completely into the bin which encompasses the co-
ordinate point for the cell (i.e. there is no weighted splitting of cells if they intersect a bin edge).

It is optimized for applying a set of weights, and obtaining the variance of the mean, at the same time as
averaging.

Parameters

field: nd-array An array of arbitrary dimension specifying the field to be angularly averaged.

coords: nd-array or list of n arrays. Either the magnitude of the co-ordinates at each point of
field, or a list of 1D arrays specifying the co-ordinates in each dimension.

bins: float or array. The bins argument provided to histogram. Can be an int or array speci-
fying radial bin edges.

weights: array, optional An array of the same shape as field, giving a weight for each entry.

average: bool, optional Whether to take the (weighted) average. If False, returns the (un-
weighted) sum.

bin_ave [bool, optional] Whether to return the bin co-ordinates as the (weighted) average of
cells within the bin (if True), or the regularly spaced edges of the bins.

get_variance [bool, optional] Whether to also return an estimate of the variance of the power
in each bin.
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log_bins [bool, optional] Whether to create bins in log-space.

Returns

field_1d [1D-array] The angularly-averaged field.

bins [1D-array] Array of same shape as field_1d specifying the radial co-ordinates of the bins.
Either the mean co-ordinate from the input data, or the regularly spaced bins, dependent on
bin_ave.

var [1D-array, optional] The variance of the averaged field (same shape as bins), estimated from
the mean standard error. Only returned if get_variance is True.

See also:

angular_average_nd Perform an angular average in a subset of the total dimensions.

Notes

If desired, the variance is calculated as the weight unbiased variance, using the formula at https://en.wikipedia.
org/wiki/Weighted_arithmetic_mean#Reliability_weights for the variance in each cell, and normalising by a
factor of 𝑉2/𝑉

2
1 to estimate the variance of the average.

Examples

Create a 3D radial function, and average over radial bins:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-5,5,128) # Setup a grid
>>> X,Y,Z = np.meshgrid(x,x,x)
>>> r = np.sqrt(X**2+Y**2+Z**2) # Get the radial co-ordinate of grid
>>> field = np.exp(-r**2) # Generate a radial field
>>> avgfunc, bins = angular_average(field,r,bins=100) # Call angular_average
>>> plt.plot(bins, np.exp(-bins**2), label="Input Function") # Plot input
→˓function versus ang. avg.
>>> plt.plot(bins, avgfunc, label="Averaged Function")

angular_average_nd

powerbox.tools.angular_average_nd(field, coords, bins, n=None, weights=1, average=True,
bin_ave=True, get_variance=False, log_bins=False)

Average the first n dimensions of a given field within radial bins.

This function be used to take “hyper-cylindrical” averages of fields. For a 3D field, with n=2, this is exactly
a cylindrical average. This function can be used in fields of arbitrary dimension (memory permitting), and the
field need not be centred at the origin. The averaging assumes that the grid cells fall completely into the bin
which encompasses the co-ordinate point for the cell (i.e. there is no weighted splitting of cells if they intersect
a bin edge).

It is optimized for applying a set of weights, and obtaining the variance of the mean, at the same time as
averaging.

Parameters

field [md-array] An array of arbitrary dimension specifying the field to be angularly averaged.
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coords [list of n arrays] A list of 1D arrays specifying the co-ordinates in each dimension to be
average.

bins [int or array.] Specifies the radial bins for the averaged dimensions. Can be an int or array
specifying radial bin edges.

n [int, optional] The number of dimensions to be averaged. By default, all dimensions are
averaged. Always uses the first n dimensions.

weights [array, optional] An array of the same shape as the first n dimensions of field, giving a
weight for each entry.

average [bool, optional] Whether to take the (weighted) average. If False, returns the (un-
weighted) sum.

bin_ave [bool, optional] Whether to return the bin co-ordinates as the (weighted) average of
cells within the bin (if True), or the linearly spaced edges of the bins

get_variance [bool, optional] Whether to also return an estimate of the variance of the power
in each bin.

log_bins [bool, optional] Whether to create bins in log-space.

Returns

field [(m-n+1)-array] The angularly-averaged field. The first dimension corresponds to bins,
while the rest correspond to the unaveraged dimensions.

bins [1D-array] The radial co-ordinates of the bins. Either the mean co-ordinate from the input
data, or the regularly spaced bins, dependent on bin_ave.

var [(m-n+1)-array, optional] The variance of the averaged field (same shape as field), estimated
from the mean standard error. Only returned if get_variance is True.

Examples

Create a 3D radial function, and average over radial bins. Equivalent to calling angular_average():

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-5,5,128) # Setup a grid
>>> X,Y,Z = np.meshgrid(x,x,x) # ""
>>> r = np.sqrt(X**2+Y**2+Z**2) # Get the radial co-ordinate of grid
>>> field = np.exp(-r**2) # Generate a radial field
>>> avgfunc, bins, _ = angular_average_nd(field,[x,x,x],bins=100) # Call
→˓angular_average
>>> plt.plot(bins, np.exp(-bins**2), label="Input Function") # Plot input
→˓function versus ang. avg.
>>> plt.plot(bins, avgfunc, label="Averaged Function")

Create a 2D radial function, extended to 3D, and average over first 2 dimensions (cylindrical average):

>>> r = np.sqrt(X**2+Y**2)
>>> field = np.exp(-r**2) # 2D field
>>> field = np.repeat(field,len(x)).reshape((len(x),)*3) # Extended to 3D
>>> avgfunc, avbins, coords = angular_average_nd(field, [x,x,x], bins=50, n=2)
>>> plt.plot(avbins, np.exp(-avbins**2), label="Input Function")
>>> plt.plot(avbins, avgfunc[:,0], label="Averaged Function")
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get_power

powerbox.tools.get_power(deltax, boxlength, deltax2=None, N=None, a=1.0, b=1.0, re-
move_shotnoise=True, vol_normalised_power=True, bins=None,
res_ndim=None, weights=None, weights2=None, dimension-
less=True, bin_ave=True, get_variance=False, log_bins=False, ig-
nore_zero_mode=False, k_weights=1)

Calculate the isotropic power spectrum of a given field, or cross-power of two similar fields.

This function, by default, conforms to typical cosmological power spectrum conventions – normalising by the
volume of the box and removing shot noise if applicable. These options are configurable.

Parameters

deltax [array-like] The field on which to calculate the power spectrum . Can either be arbitrarily
n-dimensional, or 2-dimensional with the first being the number of spatial dimensions, and
the second the positions of discrete particles in the field. The former should represent a
density field, while the latter is a discrete sampling of a field. This function chooses which
to use by checking the value of N (see below). Note that if a discrete sampling is used, the
power spectrum calculated is the “overdensity” power spectrum, i.e. the field re-centered
about zero and rescaled by the mean.

boxlength [float or list of floats] The length of the box side(s) in real-space.

deltax2 [array-like] If given, a box of the same shape as deltax, against which deltax will be
cross correlated.

N [int, optional] The number of grid cells per side in the box. Only required if deltax is a
discrete sample. If given, the function will assume a discrete sample.

a,b [float, optional] These define the Fourier convention used. See powerbox.dft for details.
The defaults define the standard usage in cosmology (for example, as defined in Cosmolog-
ical Physics, Peacock, 1999, pg. 496.). Standard numerical usage (eg. numpy) is (a,b) =
(0,2pi).

remove_shotnoise [bool, optional] Whether to subtract a shot-noise term after determining the
isotropic power. This only affects discrete samples.

vol_weighted_power [bool, optional] Whether the input power spectrum, pk, is volume-
weighted. Default True because of standard cosmological usage.

bins [int or array, optional] Defines the final k-bins output. If None, chooses a number based
on the input resolution of the box. Otherwise, if int, this defines the number of kbins, or if
an array, it defines the exact bin edges.

res_ndim [int, optional] Only perform angular averaging over first res_ndim dimensions. By
default, uses all dimensions.

weights, weights2 [array-like, optional] If deltax is a discrete sample, these are weights for
each point.

dimensionless: bool, optional Whether to normalise the cube by its mean prior to taking the
power.

bin_ave [bool, optional] Whether to return the bin co-ordinates as the (weighted) average of
cells within the bin (if True), or the linearly spaced edges of the bins

get_variance [bool, optional] Whether to also return an estimate of the variance of the power
in each bin.

log_bins [bool, optional] Whether to create bins in log-space.
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ignore_zero_mode [bool, optional] Whether to ignore the k=0 mode (or DC term).

k_weights [nd-array, optional] The weights of the n-dimensional k modes. This can be used to
filter out some modes completely.

Returns

p_k [array] The power spectrum averaged over bins of equal |𝑘|.

meank [array] The bin-centres for the p_k array (in k). This is the mean k-value for cells in that
bin.

var [array] The variance of the power spectrum, estimated from the mean standard error. Only
returned if get_variance is True.

Examples

One can use this function to check whether a box created with PowerBox has the correct power spectrum:

>>> from powerbox import PowerBox
>>> import matplotlib.pyplot as plt
>>> pb = PowerBox(250,lambda k : k**-2.)
>>> p,k = get_power(pb.delta_x,pb.boxlength)
>>> plt.plot(k,p)
>>> plt.plot(k,k**-2.)
>>> plt.xscale('log')
>>> plt.yscale('log')

48 Chapter 5. Contents



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

49



powerbox Documentation, Release 0.5.7

50 Chapter 6. Indices and tables



Python Module Index

p
powerbox.dft, 41
powerbox.powerbox, 35
powerbox.tools, 44

51



powerbox Documentation, Release 0.5.7

52 Python Module Index



Index

A
angular_average() (in module powerbox.tools), 44
angular_average_nd() (in module powerbox.tools), 45

C
correlation_array() (power-

box.powerbox.LogNormalPowerBox method),
37

create_discrete_sample() (power-
box.powerbox.LogNormalPowerBox method),
37

create_discrete_sample() (power-
box.powerbox.PowerBox method), 40

D
delta_k() (powerbox.powerbox.LogNormalPowerBox

method), 38
delta_k() (powerbox.powerbox.PowerBox method), 40
delta_x() (powerbox.powerbox.LogNormalPowerBox

method), 38
delta_x() (powerbox.powerbox.PowerBox method), 41

F
fft() (in module powerbox.dft), 42
fftfreq() (in module powerbox.dft), 43
fftshift() (in module powerbox.dft), 43

G
gauss_hermitian() (power-

box.powerbox.LogNormalPowerBox method),
38

gauss_hermitian() (powerbox.powerbox.PowerBox
method), 41

gaussian_correlation_array() (power-
box.powerbox.LogNormalPowerBox method),
38

gaussian_power_array() (power-
box.powerbox.LogNormalPowerBox method),
38

get_power() (in module powerbox.tools), 47

I
ifft() (in module powerbox.dft), 42
ifftshift() (in module powerbox.dft), 44

K
k() (powerbox.powerbox.LogNormalPowerBox method),

38
k() (powerbox.powerbox.PowerBox method), 41
kvec (powerbox.powerbox.LogNormalPowerBox at-

tribute), 37
kvec (powerbox.powerbox.PowerBox attribute), 40

L
LogNormalPowerBox (class in powerbox.powerbox), 36

P
power_array() (powerbox.powerbox.LogNormalPowerBox

method), 38
power_array() (powerbox.powerbox.PowerBox method),

41
PowerBox (class in powerbox.powerbox), 38
powerbox.dft (module), 41
powerbox.powerbox (module), 35
powerbox.tools (module), 44

R
r (powerbox.powerbox.LogNormalPowerBox attribute),

37
r (powerbox.powerbox.PowerBox attribute), 40

X
x (powerbox.powerbox.LogNormalPowerBox attribute),

37
x (powerbox.powerbox.PowerBox attribute), 40

53


	Features
	Installation
	Acknowledgment
	QuickLinks
	Contents
	Examples
	License
	Changelog
	Authors
	Contributing
	API Summary

	Indices and tables
	Python Module Index

