

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	PostMonkey 1.0b documentation

PostMonkey 1.0b

PostMonkey is a simple Python (2.6+) wrapper for MailChimp’s API
version 1.3.

Features

	100% test coverage

	Connection handling via the excellent Requests [http://docs.python-requests.org] library

	Configurable timeout

	Simple Exceptions

Narrative Documentation

	Basics

	Reading MailChimp’s API

	API Reference

	Contributing

Support and Documentation

The official documentation is available at
http://postmonkey.readthedocs.org.

You can report bugs or open support requests in the github issue tracker [https://github.com/ericrasmussen/postmonkey/issues], or you can
discuss issues with me (erasmas) on irc.freenode.org. You can typically find
me in #pyramid.

Authors

Eric Rasmussen [http://github.com/ericrasmussen] is the primary author. When
he’s not busy reinventing the wheel he occasionally blogs on
Chromatic Leaves [http://chromaticleaves.com].

License

PostMonkey is available under a FreeBSD-derived license. See
LICENSE.txt [https://github.com/ericrasmussen/postmonkey/blob/master/LICENSE.txt]
for details.

 Copyright 2012, Eric Rasmussen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PostMonkey 1.0b documentation

Basics

Overview

Once you create a PostMonkey instance with your MailChimp API key,
you can use it to call MailChimp’s API methods directly:

from postmonkey import PostMonkey
pm = PostMonkey('your_api_key')
pm.ping() # returns u"Everything's Chimpy!"

If the MailChimp method call accepts parameters, you can supply them in the form
of keyword arguments. See Examples for common use cases, and refer to the
MailChimp API v1.3 official documentation [http://apidocs.mailchimp.com/api/rtfm/] for a complete list of method calls,
parameters, and response objects.

MailChimp has established guidelines/limits for API usage, so please refer
to their FAQ [http://apidocs.mailchimp.com/api/faq/] for information.

Note: it is the caller’s responsibility to supply valid method names and any
required parameters. If MailChimp receives an invalid request, PostMonkey
will raise a postmonkey.exceptions.MailChimpException containing the
error code and message. See MailChimp API v1.3 - Exceptions [http://apidocs.mailchimp.com/api/1.3/exceptions.field.php] for additional
details.

Examples

Create a new PostMonkey instance with a 10 second timeout for requests:

from postmonkey import PostMonkey
pm = PostMonkey('your_api_key', timeout=10)

Get the IDs for your campaign lists:

lists = pm.lists()

print the ID and name of each list
for list in lists['data']:
 print list['id'], list['name']

Subscribe “emailaddress” to list ID 5:

pm.listSubscribe(id=5, email_address="emailaddress")

Catch an exception returned by MailChimp (invalid list ID):

from postmonkey import MailChimpException
try:
 pm.listSubscribe(id=42, email_address="emailaddress")
except MailChimpException, e:
 print e.code # 200
 print e.error # u'Invalid MailChimp List ID: 42'

Get campaign data for all “sent” campaigns:

campaigns = pm.campaigns(filters=[{'status': 'sent'}])

print the name and count of emails sent for each campaign
for c in campaigns['data']:
 print c['title'], c['emails_sent']

 Copyright 2012, Eric Rasmussen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PostMonkey 1.0b documentation

Reading MailChimp’s API

Parameters and Types

So let’s be honest: these PostMonkey docs are lazy. You will find examples,
but you won’t find the complete API documented anywhere here. The main reason is
MailChimp’s API docs should be the one source of truth. Ultimately, no matter
how much effort we put into keeping these docs up to date, they won’t be a
substitute for reading the
actual API docs [http://apidocs.mailchimp.com/api/1.3/].

The problem is the actual API docs can be hard to read. Let’s define some
terms and work through a few examples so you can understand how they correspond
to using PostMonkey.

A typical PostMonkey call looks like this:

postmonkey_instance.mailchimpMethodName(param_1=value_1,
 param_2=value_2,
 param_n=value_n)

The keyword arguments you supply to the method are automatically translated into
a javascript object in the form:

{ 'param_1': value_1, 'param_2': value_2, 'param_3': value_3 }

Where each of the values is rendered into an appropriate JSON
representation by python’s
json module [http://docs.python.org/2/library/json.html].

This is all pretty standard so far, but the catch is that MailChimp doesn’t
document their API solely for JSON. The parameters they document use their own
internal types that are (relatively) neutral for the different formats they
support, but it’s not always immediately obvious how they translate to json
and back to python.

Here’s a pretty table that should help:

	MailChimp
	Python

	string
	string

	int
	int

	array
	dict or list

	boolean
	bool

The only surprising one there is that when MailChimp documents a parameter as
an array, they might mean you need a dict and they might mean you need a list.
If the docs were only for JSON, we could hope they would distinguish between
objects and arrays. Instead, their arrays appear to be the same as PHP arrays,
which can mean one of two things for our purposes:

	an associative array mapping keys to values

	an indexed array of values (where the keys are implicit indices beginning at 0)

Let’s look at a couple examples. Here are the documented parameters for the
listSubscribe method:

listSubscribe(string apikey,
 string id,
 string email_address,
 array merge_vars,
 string email_type,
 bool double_optin,
 bool update_existing,
 bool replace_interests,
 bool send_welcome)

At first glance, the merge_vars parameter appears ambiguous now that we know
it could be represented in python as a dict or a list. However, if you view
the table with detailed descriptions on the
documentation for listSubscribe [http://apidocs.mailchimp.com/api/1.3/listsubscribe.func.php],
you’ll see another listing of parameters and a description of fields that have
names. This indicates that you need to supply an associative array, meaning
a json object, meaning a python dict.

You can see an example in merge_vars.

Now let’s look at listBatchUnsubscribe:

listBatchUnsubscribe(string apikey,
 string id,
 array emails,
 boolean delete_member,
 boolean send_goodbye,
 boolean send_notify)

When you read the
documentation for listBatchUnsubscribe [http://apidocs.mailchimp.com/api/1.3/listbatchunsubscribe.func.php]
and check the parameter descriptions, the “emails” parameter doesn’t mention
anything about names or keys, only an “array of email addresses”. This is our
clue that we can supply a python list like this:

postmonkey_instance.listBatchUnsubscribe(id='<your_list_id>',
 emails=['email_1', 'email_2'])

merge_vars in Depth

MailChimp allows you to store extra fields on subscriber accounts so you can
personalize campaigns. The simplest example is having your campaign begin with:

Hello, *|FNAME|*!

Where *|FNAME|* will be replaced with the value of each user’s FNAME merge
variable.

The MailChimp API docs declare these merge_vars to be of type “array”, but
as we just discovered, that can mean different things depending on the context.
In this case, they are defineitely referring to an associative array, which
can be easily represented as a python dict.

Here’s an example of calling listSubscribe with merge_vars:

pm.listSubscribe(id='<your_list_id>',
 email_address='<subscriber_email>',
 merge_vars={'FNAME': 'Mail', 'LNAME': 'Chimp'})

 Copyright 2012, Eric Rasmussen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PostMonkey 1.0b documentation

API Reference

PostMonkey

	
class postmonkey.PostMonkey(apikey='', endpoint=None, datacenter=None, timeout=None, **params)

	apikey

The API key for your MailChimp account, obtained from MailChimp.

endpoint

The URL used for API calls. Will be inferred from your API key unless
you specifically override it (not recommended except for testing).

datacenter

The MailChimp supplied data center for your account. Will be inferred
from your API key unless you specifically override it. Cannot be
accessed or modified after initialization.

params

Any extra keyword arguments supplied on initialization will be made
available in a dict via this attribute. Only include parameters that
should be used on each and every API call. For instance, if you
want to add a subscription form to your website, you can parameterize
the list’s ID.

postrequest

Defaults to requests.post, and should not be changed except for
testing or if you have a really good reason. If you do override it,
you must supply a function that takes a URL, a JSON encoded payload,
a dict of HTTP headers, and optionally a timeout (in seconds). Must
return a response object with a text attribute containing valid
JSON.

	
postmonkey.postmonkey_from_settings(settings)

	Factory method that takes a dict, finds keys prefixed with
‘postmonkey.’, and uses them to create a new PostMonkey instance.
Intended for use with console scripts or web frameworks that load config
file data into a dict.

Exceptions

	
exception postmonkey.exceptions.DeserializationError(obj)

	Raised if MailChimp responds with anything other than valid JSON.
PostMonkey uses MailChimp’s JSON API exclusively so it is unlikely
that this will be raised. The response that caused the error is
made available via the obj attribute.

	
exception postmonkey.exceptions.MailChimpException(code, error)

	If MailChimp returns an exception code as part of their response,
this exception will be raised. Contains the unmodified code (int) and
error (unicode) attributes returned by MailChimp.

	
exception postmonkey.exceptions.PostRequestError(exc)

	If any exception is made during the POST request to MailChimp’s server,
PostRequestError will be raised. It wraps the underlying exception
object and makes it available via the exc attribute.

	
exception postmonkey.exceptions.SerializationError(obj)

	Raised if a method call contains parameters that cannot be serialized to
JSON. The object that caused the error is made available via the obj
attribute.

 Copyright 2012, Eric Rasmussen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	PostMonkey 1.0b documentation

Contributing

Feature Additions/Requests

I’m very interested in discussing use cases that PostMonkey
doesn’t cover.

If you have an idea you want to discuss further, ping me (erasmas) on freenode,
or feel free to open an issue/submit a pull request (tests included, please!).

If you would like to issue a pull request, I also ask that you make the request
from a new feature.<your feature> branch so that I can spend some time testing
the code before merging to master.

Notes on Testing

The test suite is written in a way that may be unusual to some, so if you submit
a patch I only ask that you follow the testing methodology employed here. On a
technical level it boils down to:

	Parameterizing classes or functions that connect to outside systems

	In tests, supplying dummy instances of those classes

In general for unit tests I prefer explicit dummies to mocking.

 Copyright 2012, Eric Rasmussen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PostMonkey 1.0b documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 postmonkey	

 	
 	
 postmonkey.exceptions	

 Copyright 2012, Eric Rasmussen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PostMonkey 1.0b documentation

Index

 D
 | M
 | P
 | S

D

 	

 	DeserializationError

M

 	

 	MailChimpException

P

 	

 	PostMonkey (class in postmonkey)

 	postmonkey (module)

 	postmonkey.exceptions (module)

 	

 	postmonkey_from_settings() (in module postmonkey)

 	PostRequestError

S

 	

 	SerializationError

 Copyright 2012, Eric Rasmussen.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		PostMonkey 1.0b documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Eric Rasmussen.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

