

Postme.io Developers Documentation

	Overview
	Postme.io

	Postme API

	Postchain

	Terminology
	CCO Contract

	CBS Contract

	CBST Contract

	Editor Node

	Chartered Node

	Organization Node

	Peer Node

	Cluster

	Consortium

	Getting started
	Prerequisites
	Create an account on postme.io

	Entreprise account activation

	Create a new application

	Use your account as an editor

	Using Postme API
	Authentication

	Root URL

	Root Endpoint

	Using Postchain
	Create a new private/public keys

	Behaviour

	Postme HTTP API
	Companies

	Invoices

	Parties

	Data Models
	Address

	Company

	Contact

	Invoice

	InvoiceLine

	InvoiceLineItem

	JournalEntry

	Person

	KYC Editor

	KYC Organization

Overview

Postme.io

From duplicative invoice to single invoice.

Postme.io combines blockchain technology for billing.
We improve data security and transparency of payments in the business relationship.
Billing becomes simpler, cheaper, faster and more transparent.

Postme API

Postme API allows your favorite accounting system to communicate with Postchain, to reach a new level in data consistency.

Postchain

Postchain is a Blockchain infrastructure that routes invoices.

Terminology

There is some specialized terminology associated with Postme. To get started, you should at least know what we mean by this terms.

CCO Contract

A CCO (Company Chief Officer) contract link a user and its company. It attests that the user is a company’s officer.

CBS Contract

A CBS (Company Billing System) contract link an application (your billing system) to the company. A CCO contract is required to create a CBS contract into Postchain.

CBST Contract

A CBST (Company Billing System Third) contract link an application to third companies. A CCO contract is required to create a CBST contract into Postchain.

Editor Node

(in progress)

Chartered Node

(in progress)

Organization Node

(in progress)

Peer Node

(in progress)

Cluster

(in progress)

Consortium

(in progress)

Getting started

Prerequisites

Create an account on postme.io

First thing you need to do is creating an account on postme.io.

	Go to https://api.postme.io

	Click on “Create an account”

	Activate your email address

Then create or import your public and private keypair to do any action on Postchain
Keypairs on postme are generated using the EDCSA 58bits ... algorithm.. see Cryptography.

In your account section you will find a keypair generator to create new keypair.

Entreprise account activation

An enterprise account is necessary to create a new application.

	Go to https://api.postme.io/bo/company

	Fill the form with your company information

	Save

As you are the first user to have created this enterprise account. You are the default contact for this company.
Then we create a CCO contract that is timestamped in Postchain. The checkbox indicating that the user is a corporate officer must be validated.

Create a new application

The application will be linked with your company, allowing you to send your company’s invoices.

If you want to send your invoices into Postchain over the Postme API with your own invoicing system.

	From the dashboard, go to “My apps”

	Click on “New App”

	Enter a title for your app (i.e. “My invoicing system”)

	Save

Once your application is created, you can generate App ID/key pairs to get API access.
Then we create a CBS contract that is timestamped in Postchain. The checkbox indicating that the application is represented by the company.

	Click on “Generate New Key”

	Enter a name for the new generated key (i.e. “Test”)

	If you want to use these credentials for test purpose, check “Sandbox Mode”

Use your account as an editor

Necessary to send invoices from your customers.

(In progress)

Using Postme API

Authentication

	
POST /api/login

	Example request:

POST /api/login HTTP/1.1
Host: example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

	JSON Parameters:

	 	
	app_id (string) – your APP_ID

	app_secret (string) – your APP_SECRET

	Request Headers:

	 	
	Accept [http://tools.ietf.org/html/rfc7231#section-5.3.2] – application/json

	Response Headers:

	 	
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Authentication succeeded

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Wrong credentials

Root URL

If you send an HTTP GET request to the Postme API Root URL e.g. https://api.postme.io/api, then you should get an HTTP response with something like the following in the body:

(In Progress)

HTTP/1.1 200 OK
Content-Type: application/json

{
 "_links" : {
 "api_v1": "https://api.postme.io/api/v1/",
 "docs": "https://docs.postme.io/",
 "..."
 },
 "third_application": {
 "app_id": "5349162981239685"
 },
 "version": "0.1.0"
}

Root Endpoint

If you send an HTTP GET request to the Postme API Root Endpoint e.g. https://api.postme.io/api/v1, then you should get an HTTP response that allows you to discover the Postme API endpoints :

(In Progress)

HTTP/1.1 200 OK
Content-Type: application/json

{
 "_links" : {
 "self": "https://api.postme.io/api/v1/",
 "invoices": "https://api.postme.io/api/v1/invoices/",
 "..."
 }
}

Using Postchain

Create a new private/public keys

Behaviour

[image: _images/send_invoice_process.png]

Postme HTTP API

Companies

	
POST /api/company

	Push a new company.

Example request:

POST /api/company HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "name": "My Organization",
 "address": {
 "address_1": "456 Street Name",
 "address_2": "",
 "postal_code": "69003",
 "city": "Lyon",
 "country_code": "FR"
 },
 "identification": {
 "siren_id": "654654654",
 "vat_id": "FR27654654654",
 "siret_id": "65465465400045"
 }
}

Example response:

HTTP/1.1 201 Created
Vary: Accept
Content-Type: application/json

	Request Headers:

	 	
	Accept [http://tools.ietf.org/html/rfc7231#section-5.3.2] – application/json

	Authorization [http://tools.ietf.org/html/rfc7235#section-4.2] – Bearer [TOKEN]

	Response Headers:

	 	
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Company created

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid params

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid Authorization Token

Invoices

	
POST /api/invoices

	Push a new invoice.

Example request:

POST /api/invoices HTTP/1.1
Host: example.com
Content-Type: application/json

Example response:

HTTP/1.1 202 Accepted
Vary: Accept
Content-Type: application/json

	JSON Parameters:

	 	
	invoice (object-invoice) – the invoice

	Request Headers:

	 	
	Accept [http://tools.ietf.org/html/rfc7231#section-5.3.2] – application/json

	Authorization [http://tools.ietf.org/html/rfc7235#section-4.2] – Bearer [TOKEN]

	Response Headers:

	 	
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Status Codes:	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Invoice successfully sent to postme

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid params

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid Authorization Token

Parties

	
POST /api/parties

	Push a new party.

Example request:

POST /api/parties HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "app_id": "456456",
 "app_reference": "CUSTOMER-145",
 "type": "individual",
 "person": {
 "name": "John Doe",
 "email": "john.doe@gmail.com",
 "phone": "+33601010101",
 "address": { }
 }
}

Example response:

HTTP/1.1 201 Created
Vary: Accept
Content-Type: application/json

	Request Headers:

	 	
	Accept [http://tools.ietf.org/html/rfc7231#section-5.3.2] – application/json

	Authorization [http://tools.ietf.org/html/rfc7235#section-4.2] – Bearer [TOKEN]

	Response Headers:

	 	
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Party created

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid params

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid Authorization Token

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – Another party with ID app_id already exists

	
GET /api/parties

	Get all parties

Example request:

GET /api/parties HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "id": "00b1c348-260b-11e7-80e3-c6514258f3b9",
 "app_id": "456456",
 "app_reference": "CUSTOMER-145",
 "type": "individual",
 "person": {
 "name": "John Doe",
 "email": "john.doe@gmail.com",
 "phone": "+33601010101",
 "address": { }
 }
 },
 {
 "id": "ffb057b4-260a-11e7-80e3-c6514258f3b9",
 "app_id": "456456",
 "app_reference": "CUSTOMER-145",
 "type": "individual",
 "person": {
 "name": "John Doe",
 "email": "john.doe@gmail.com",
 "phone": "+33601010101",
 "address": { }
 }
 }
]

	Request Headers:

	 	
	Authorization [http://tools.ietf.org/html/rfc7235#section-4.2] – Bearer [TOKEN]

	Response Headers:

	 	
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – A list of parties

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid params

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid Authorization Token

	
GET /api/parties/{app_id}

	Get the party with the ID app_id.

Example request:

GET /api/parties/456456 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": "fde7cc83-260a-11e7-80e3-c6514258f3b9",
 "app_id": "456456",
 "app_reference": "CUSTOMER-145",
 "type": "individual",
 "person": {
 "name": "John Doe",
 "email": "john.doe@gmail.com",
 "phone": "+33601010101",
 "address": { }
 }
}

	Request Headers:

	 	
	Authorization [http://tools.ietf.org/html/rfc7235#section-4.2] – Bearer [TOKEN]

	Response Headers:

	 	
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – A Party with that ID was found

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid params

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid Authorization Token

Data Models

Address

Structure

{
 "address_1": "",
 "address_2": "",
 "postal_code": "69003",
 "city": "Lyon",
 "country_code": "FR"
}

Attributes

	address_1 : Required. Address 1. type: string. format: alphanumeric, max length: 255 char.

	address_2 : Optional. Address 2. type: string. format: alphanumeric, max length: 255 char.

	postal_code : Required. Postal Code. type: string. format: alphanumeric, max length: 16 char.

	city : Required. Postal Code. type: string. format: alphanumeric, max length: 64 char.

	country_code : Required. Country code of the address. type: string. format: 2 digits As defined by the ISO 3166-1 alpha-2.

Company

Structure

{
 "name": "My Organization",
 "address": {},
 "identification": {
 "siren_id": "654654654",
 "vat_id": "FR27654654654",
 "siret_id": "65465465400045",
 }
}

Attributes

	name Required. The name of the company. type: string. format: alphanumeric.

	address Required. Address of the company. type: object Address.

	
	identification Required. Identification of the company. type: object. Required fields are based on company’s address country_code

	
	siren_id ‘FR’: Required. SIREN Identification Number of the company (for french companies only). type: string. format: numeric.

	vat_id Optional. VAT Identification Number of the company. type: string. format: alphanumeric.

	siret_id Optional. SIRET Identification Number of the company branch (for french companies only). type: string. format: numeric.

Contact

Structure

{
 "name": "John Doe (accounting service)",
 "email": "john.doe@company.com",
 "phone": "+33601010101",
 "address": { }
}

Attributes

	name Required. Name of the contact. type: string. format: alpha.

	email Required. Email of the contact. type: string. format: valid email.

	phone Optional. Phone number of the contact. type: string. format: valid phone number as defined by E.164, the international public telecommunication numbering plan.

	address Optional. Address of the contact. type: object Address.

Invoice

Structure

{
 "app_invoice_id": "1234",
 "seller_party": {
 "app_party_id": "123123",
 "type": "professional",
 "company": { },
 "contacts": []
 },
 "buyer_party": {
 "app_party_id": "456456",
 "type": "professional",
 "company": { },
 "contacts": [],
 "person": { }
 },
 "delivery_address": { },
 "reference": "INV201701010004",
 "description": "My first invoice",
 "issue_date": "2017-01-01",
 "invoice_type_code": "S",
 "currency_code": "EUR",
 "taxes": [
 {
 "tax_rate": 5.5,
 "total": 200,
 "total_taxes": 11,
 "total_due": 211
 },
 {
 "tax_rate": 19.6,
 "total": 1000,
 "total_taxes": 196,
 "total_due": 1196
 }
],
 "total": 1200,
 "total_taxes": 207,
 "total_due": 1407,
 "terms": {
 "due_date": "2017-02-01",
 "payment": "Before Jun 31st",
 "vat": "Not applicable"
 },
 "lines": [],
 "journal_entries": [],
 "notes": "Some free text..."
}

Attributes

	app_invoice_id Required. Invoice identifier of the third party application. type: string. format: alphanumeric.

	seller_party Required. The seller party of the invoice.

	seller_party[app_party_id] Required. Party identifier of the third party application. type: string. format: alphanumeric.

	seller_party[type] Required. type: string. values: ‘professional’.

	seller_party[company] Required. The company of the seller party. type: object Company.

	seller_party[contacts] Required. Administrative contacts of the seller party. type: Array<object Contact>.

	buyer_party Required. The buyer party of the invoice.

	buyer_party[app_party_id] Required. Party identifier of the third party application. type: string. format: alphanumeric.

	buyer_party[type] Required. type: string. values: ‘professional’ | ‘institutional’ | ‘individual’.

	buyer_party[company] Required if type is professional (none otherwise). The company of the buyer party. type: object Company.

	buyer_party[contacts] Required if type is professional (none otherwise). Administrative contacts of the buyer party. type: Array<object Contact>.

	buyer_party[person] Required if type is individual (none otherwise). type: object Person.

	delivery_address Optional. Invoice’s Delivery Address. type: object Address.

	reference Required. Invoice reference number. type: string. format: alphanumeric.

	description Optional. Invoice description. type: string. format: alphanumeric.

	issue_date Required. type: string. format: date.

	invoice_type_code Required. Type of the invoice. type: char. value:s ‘S’ (standard) | ‘C’ (credit note).

	currency_code Required. Currency used in invoice format. type: string. format: 3 digits as defined by [ISO 4217](https://www.iso.org/iso-4217-currency-codes.html).

	taxes Optional. An array of taxes with a different rate for the invoice.

	total Required. Total amount of the invoice before taxes. type: decimal.

	total_taxes Required. Taxes amount of the invoice. type: decimal.

	total_due Required. Total amount of the invoice including taxes. type: decimal.

	terms: Optional. List of terms. See JSON example for available fields. type: Array<Dict>.

	lines Required. Invoice lines. type: Array<object InvoiceLine>.

	journal_entries Optional. Invoice’s journal entries. type: Array<object JournalEntry>.

	notes: Optional. Free text. type: string.

InvoiceLine

Structure

{
 "description": "Food",
 "taxes": [
 {
 "tax_rate": 5.5,
 "total": 20,
 "total_taxes": 1.1,
 "total_due": 21.1
 },
 {
 "tax_rate": 19.6,
 "total": 10,
 "total_taxes": 1.96,
 "total_due": 11.96
 }
],
 "total": 30,
 "total_taxes": 2.07,
 "total_due": 32.07,
 "items": []
}

Attributes

	description Optional. Free form text. type: string. format: alphanumeric.

	taxes Optional. An array of taxes with a different rate for the invoice.

	total Required. Total amount of the invoice line before taxes. type: decimal.

	taxes Required. Taxes amount of the invoice line. type: decimal.

	total_due Required. Total amount of the invoice line including taxes. type: decimal.

	items Required. Line items. type: Array<object InvoiceLineItem>

InvoiceLineItem

Structure

{
 "lot_id": "ABCDE12345",
 "description": "Beef steak",
 "quantity": 12.5,
 "unit": "kg",
 "unit_price": 4,
 "total": 50,
 "tax_rate": 5.5,
 "total_taxes": 2.75,
 "total_due": 52.75,
 "journal_entries": []
}

Attributes

	lot_id Optional. Item’s lot identification number. type: string. format: alphanumeric

	description Required. type: string. format: alphanumeric.

	quantity Optional. type: decimal.

	unit Optional. type: string. format: alphanumeric

	unit_price Optional. type: decimal.

	total Required. Total amount of the invoice line item before taxes. type: decimal.

	total_taxes Required. Taxes amount of the invoice line item. type: decimal.

	total_due Required. Total amount of the invoice line item including taxes. type: decimal.

	journal_entries Optional. Item’s journal entries. type: Array<object JournalEntry>.

JournalEntry

Structure

{
 "app_journal_id": "2",
 "journal_code": "SA",
 "journal_description": "Sales",
 "account_number": "445710",
 "description": "Collected VAT",
 "debit": 0,
 "credit": 310.54
}

Attributes

	app_journal_id Optional. Journal ID of the accounting journal. type: string. format: alphanumeric.

	journal_code Optional. Journal code of the accounting journal. type: string. format: alphanumeric.

	journal_description Optional. Journal description of the accounting journal. type: string. format: alphanumeric.

	account_number Required. Account number for the accounting entry. type: string. format: alphanumeric.

	account_description Optional. Account description. type: string. format: alphanumeric

	debit Required. Debit amount. type: decimal

	credit Required. Credit amount. type: decimal

Person

Structure

{
 "name": "John Doe",
 "email": "john.doe@gmail.com",
 "phone": "+33601010101",
 "address": { }
}

Attributes

	name Required. Name of the person. type: string. format: alpha.

	email Required. Email of the person. type: string. format: valid email.

	phone Optional. Phone number of the person. type: string. format: valid phone number as defined by E.164, the international public telecommunication numbering plan.

	address Optional. Address of the person. type: object Address.

KYC Editor

KYC Organization

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/parties	

 	
 	
 GET /api/parties/{app_id}	

 	
 	
 POST /api/company	

 	
 	
 POST /api/invoices	

 	
 	
 POST /api/login	

 	
 	
 POST /api/parties	

Index

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Postme.io Developers Documentation

 		Overview

 		Postme.io

 		Postme API

 		Postchain

 		Terminology

 		CCO Contract

 		CBS Contract

 		CBST Contract

 		Editor Node

 		Chartered Node

 		Organization Node

 		Peer Node

 		Cluster

 		Consortium

 		Getting started

 		Prerequisites

 		Create an account on postme.io

 		Entreprise account activation

 		Create a new application

 		Use your account as an editor

 		Using Postme API

 		Authentication

 		Root URL

 		Root Endpoint

 		Using Postchain

 		Create a new private/public keys

 		Behaviour

 		Postme HTTP API

 		Companies

 		Invoices

 		Parties

 		Data Models

 		Address

 		Company

 		Contact

 		Invoice

 		InvoiceLine

 		InvoiceLineItem

 		JournalEntry

 		Person

 		KYC Editor

 		KYC Organization

_images/send_invoice_process.png

_static/up-pressed.png

_static/comment-bright.png

