
portal Documentation
Release

Author

March 02, 2017





Contents

1 Installation 3
1.1 Installation from the Python wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Installation from the sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Chambolle-Pock algorithm in PORTAL : a turotial 5
2.1 The Chambolle-Pock algorithm in PORTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Indices and tables 13

i



ii



portal Documentation, Release

Contents:

Contents 1



portal Documentation, Release

2 Contents



CHAPTER 1

Installation

Installation from the Python wheel

A Python wheel is provided for an easy installation. Simply download the wheel (.whl file) and install it with pip :

pip install --user wheel.whl

where wheel.whl is the wheel of the current version.

If you are updating PORTAL, you have to force the re-installation :

pip install --user --force-reinstall wheel.whl

Installation from the sources

Alternatively, you can build and install this package from the sources.

git clone git://github.com/pierrepaleo/portal

To generate a wheel, go in PORTAL root folder :

python setup.py bdist_wheel

The generated wheel can be installed with the aforementioned instructions.

Dependencies

To use PORTAL, you must have Python > 2.7 and numpy >= 1.8. These should come with standard Linux distributions.

Numpy is the only component absolutely required for PORTAL. For special applications, the following are required :

• The ASTRA toolbox for tomography applications

• pywt for Wavelets applications. This is a python module which can be installed with apt-get install
python-pywt

• scipy.ndimage is used for convolutions with small kernel sizes. If not installed, all the convolutions are
done in the Fourier domain, which can be slow.

Note : Python 3.* has not been tested yet.

3

https://github.com/astra-toolbox/astra-toolbox/


portal Documentation, Release

4 Chapter 1. Installation



CHAPTER 2

Chambolle-Pock algorithm in PORTAL : a turotial

The Chambolle-Pock algorithm in PORTAL

PORTAL implements a Chambolle-Pock solver for Total Variation regularization. It can solve problems of the type

where 𝐴 is specified by the user. The advantage of using the Chambolle-Pock algorithm for this kind of problem is
that each step is made of simple element-wise operations. This would not have been true for a FISTA Total Variation
solver with general operator 𝐴 :.

Example : Total Variation denoising

Here, the operator 𝐴 is simply the identity. The syntax of chambolle_pock_tv is the following

import portal

# Create the noisy image (30% of the max value)
import scipy.misc
l = scipy.misc.lena().astype('f')
pc = 0.3
lb = l + np.random.rand(l.shape[0], l.shape[1])* l.max() * pc

# Define the operator and its adjoint
Id = lambda x : x
K = Id
Kadj = Id
Lambda = 20.

res = portal.algorithms.chambollepock.chambolle_pock_tv(lb, A, Aadj, Lambda, n_it=101, return_all=False)
portal.utils.misc.my_imshow([lb, res], shape=(1,2), cmap="gray")

If the norm 𝐿 of 𝐾 =
[︀
𝐴,∇

]︀
is not provided, chambolle_pock_tv automatically computes it.

The chambollepock.chambolle_pock_l1_tv function can also be used for L1-TV minimization. This is
useful for noise containing strong outliers (eg. salt & pepper noise)

5



portal Documentation, Release

Fig. 2.1: Lena with gaussian noise, 30% of maximum value

Fig. 2.2: Lena denoised with Chambolle-Pock TV solver

6 Chapter 2. Chambolle-Pock algorithm in PORTAL : a turotial



portal Documentation, Release

Fig. 2.3: Lena with salt and pepper noise

Fig. 2.4: Lena denoised with Chambolle-Pock TV solver

2.1. The Chambolle-Pock algorithm in PORTAL 7



portal Documentation, Release

Example : Total Variation deblurring

Here, the operator 𝐴 is a blurring operator. It can be implemented with a convolution with a Gaussian kernel. PORTAL
implements the convolution operator (with any 1D or 2D kernel) and its adjoint.

import portal

sigma = 2.6

# Define the operator A and its adjoint
gaussian_kernel = portal.utils.misc.gaussian1D(sigma) # Faster separable convolution
Blur = portal.operators.convolution.ConvolutionOperator(gaussian_kernel)
A = lambda x : Blur*x
Aadj = lambda x : Blur.adjoint() * x

# Create the blurred image
import scipy.misc
l = scipy.misc.lena().astype('f')
lb = A(l)

Lambda = 5e-2
res = portal.algorithms.chambollepock.chambolle_pock_tv(lb, A, Aadj, Lambda, n_it=501, return_all=False)
portal.utils.misc.my_imshow([lb, res], shape=(1,2), cmap="gray")

(note that here it takes more iterations to converge, and the regularization parameter is much smaller than in the
denoising case).

PORTAL can also help to determine if A and Aadj are actually adjoint of eachother – an important property for the
algorithm.

portal.operators.misc.check_adjoint(A, Aadj, lb.shape, lb.shape)

Fig. 2.5: Lena with gaussian blur

8 Chapter 2. Chambolle-Pock algorithm in PORTAL : a turotial



portal Documentation, Release

Fig. 2.6: Lena deblurred with Chambolle-Pock TV solver

Example : Total Variation tomographic reconstruction

Here, the operator 𝐴 is the forward tomography projector. PORTAL uses the ASTRA toolbox to compute the forward
and backward projector. For performances issues (the forward and backward projectors are implemented on GPU),
the operators 𝐴 and 𝐴𝑇 are not exactly matched (i.e adjoint of eachother). In practice, this is not an issue for the
reconstruction.

import portal

# Create phantom
import scipy.misc
l = scipy.misc.lena().astype(np.float32)
ph = portal.utils.misc.phantom_mask(l)

# Create Projector and Backprojector
npx = l.shape[0]
nangles = 80
AST = portal.operators.tomography.AstraToolbox(npx, nangles)

# Configure the TV regularization
Lambda = 5.0

# Configure the optimization algorithm (Chambolle-Pock for TV min)
K = lambda x : AST.proj(x)
Kadj = lambda x : AST.backproj(x, filt=True)
n_it = 101

# Run the algorithm to reconstruct the sinogram
sino = K(ph)
en, res = portal.algorithms.chambollepock.chambolle_pock_tv(sino, K, Kadj, Lambda, L=22.5, n_it=301, return_all=True)

# Display the result, compare to FBP
res_fbp = Kadj(sino)

2.1. The Chambolle-Pock algorithm in PORTAL 9



portal Documentation, Release

portal.utils.misc.my_imshow((res_fbp, res), (1,2), cmap="gray", nocbar=True)

Fig. 2.7: Lena reconstructed with 80 projections, Filtered Backprojection

Note : the ASTRA toolbox comes with many available geometries ; but in PORTAL only the parallel geometry has
been wrapped.

Mathematical background

Presentation of the algorithm

The Chambolle-Pock algorithm is a very versatile method to solve various optimization problems.

Suppose you want to solve the problem

Or, equivalently

where 𝐹 and 𝐺 are convex (possibly non smooth) and 𝐾 is a linear operator.

The general form of the basic Chambolle-Pock algorithm can be written :

The primal step size 𝜏 and the dual step size 𝜎 should be chosen such that 𝜎𝜏 ≤ 1/𝐿2 where 𝐿 is the norm of the
operator 𝐾.

This algorithm is not a proximal gradient descent – no gradient is computed here. This is a primal-dual method,
performing one step in the primal domain (prox of 𝐹 ) and one step in the dual domain (prox of 𝐺*) ; a kind of
combination of Douglas-Rachford (fully primal) and ADMM (fully dual).

Chambolle-Pock algorithm is actually much more versatile than proximal gradient algorithms – an even more flexible
algorithm is described here. All you need is defining an operator 𝐾, the functions 𝐹 , 𝐺 and their proximal. Computing
the proximal of 𝐹 or 𝐺 is not straightforward in general. When this cannot be done in one step, there are two solutions
: re-write the optimization problem (see next section) or split again 𝐹 and 𝐺 like in the aforementioned algorithm.

10 Chapter 2. Chambolle-Pock algorithm in PORTAL : a turotial

http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/publis/Condat-optim-SPL-2014.pdf


portal Documentation, Release

Fig. 2.8: Lena reconstructed from 80 projections with TV minimization

Deriving the algorithm for L2-TV

The Total Variation regularized image deblurring can be written

where 𝐴 is a linear operator. An attempt to solve this problem with the Chambolle-Pock algorithm would be to write

However, the proximal operator of 𝐹 is

so it involves the computation of the inverse of +𝜏𝐴𝑇𝐴, which is an ill-posed problem. This inverse can be computed
if 𝐴 is a convolution (since it is diagonalized by the Fourier Transform), for example in the deblurring case, but this is
not the case in general.

We’ll consider the case in which 𝐴𝑇𝐴 is not easily invertible. The optimization problem has to be rewritten. We’ll
make use of the following equalities :

and

so the initial problem can be rewritten :

Noting that

with 𝐾 =

[︂
𝐴
∇

]︂
the problem becomes

which is the saddle-point formulation of the problem. Here, the proximal of 𝐹 is the identity, and the proximal of 𝐺*

is separable with respect to 𝑞 and 𝑧 (since 𝐺* is a separable sum of these variables). Its computation is straightforward
:

where 𝐵𝜆
∞𝑧 is the projection onto the L-∞ ball of radius 𝜆, which is an elementise operation.

Eventually, the Chambolle-Pock algorithm for this problem is :

Prototyping algorithms in the primal-dual framework is more difficult than for proximal gradient algorithms ; but it
enables much more flexibility. With PORTAL, the user just has to specify the linear operator for a fixed regularization.

2.2. Mathematical background 11



portal Documentation, Release

12 Chapter 2. Chambolle-Pock algorithm in PORTAL : a turotial



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

13


	Installation
	Installation from the Python wheel
	Installation from the sources
	Dependencies

	Chambolle-Pock algorithm in PORTAL : a turotial
	The Chambolle-Pock algorithm in PORTAL
	Mathematical background

	Indices and tables

