portal Documentation
Release

Author

March 02, 2017

Contents

1 Installation 3
1.1 Installation from the Python wheel 3
1.2 Installation fromthe sources L e e 3
1.3 Dependencies v v i e e e e e e e e e e e e e e e e e 3
2 Chambolle-Pock algorithm in PORTAL : a turotial 5
2.1 The Chambolle-Pock algorithm in PORTAL 5
2.2 Mathematical background oL 10

3 Indices and tables 13

portal Documentation, Release

Contents:

Contents 1

portal Documentation, Release

2 Contents

CHAPTER 1

Installation

Installation from the Python wheel

A Python wheel is provided for an easy installation. Simply download the wheel (.whl file) and install it with pip :

‘pip install --user wheel.whl

where wheel whl is the wheel of the current version.

If you are updating PORTAL, you have to force the re-installation :

’pip install --user —--force-reinstall wheel.whl

Installation from the sources

Alternatively, you can build and install this package from the sources.

’git clone git://github.com/pierrepaleo/portal

To generate a wheel, go in PORTAL root folder :

’python setup.py bdist_wheel

The generated wheel can be installed with the aforementioned instructions.

Dependencies

To use PORTAL, you must have Python > 2.7 and numpy >= 1.8. These should come with standard Linux distributions.
Numpy is the only component absolutely required for PORTAL. For special applications, the following are required :
e The ASTRA toolbox for tomography applications

» pywt for Wavelets applications. This is a python module which can be installed with apt—-get install
python-pywt

¢ scipy.ndimage is used for convolutions with small kernel sizes. If not installed, all the convolutions are
done in the Fourier domain, which can be slow.

Note : Python 3.* has not been tested yet.

https://github.com/astra-toolbox/astra-toolbox/

portal Documentation, Release

4 Chapter 1. Installation

CHAPTER 2

Chambolle-Pock algorithm in PORTAL : a turotial

The Chambolle-Pock algorithm in PORTAL

PORTAL implements a Chambolle-Pock solver for Total Variation regularization. It can solve problems of the type

where A is specified by the user. The advantage of using the Chambolle-Pock algorithm for this kind of problem is
that each step is made of simple element-wise operations. This would not have been true for a FISTA Total Variation
solver with general operator A :.

Example : Total Variation denoising

Here, the operator A is simply the identity. The syntax of chambolle_pock_tv is the following

import portal

Create the noisy image (30% of the max value)

import scipy.misc

1 = scipy.misc.lena() .astype('f")

pc = 0.3

1lb = 1 + np.random.rand(l.shape[0], 1l.shape[l])* l.max() % pcC

Define the operator and its adjoint
Id = lambda x : x

K = Id

Kadj = Id

Lambda = 20.

res = portal.algorithms.chambollepock.chambolle_pock_tv(lb, A, Aadj, Lambda, n_it=101,
portal.utils.misc.my_imshow ([1lb, res], shape=(1,2), cmap="gray")

If the norm L of K = [A, V] is not provided, chambolle_pock_tv automatically computes it.

The chambollepock.chambolle_pock_11_tv function can also be used for L1-TV minimization. This is
useful for noise containing strong outliers (eg. salt & pepper noise)

return_all=F«

portal Documentation, Release

Fig. 2.1: Lena with gaussian noise, 30% of maximum value

Fig. 2.2: Lena denoised with Chambolle-Pock TV solver

6 Chapter 2. Chambolle-Pock algorithm in PORTAL : a turotial

portal Documentation, Release

Fig. 2.3: Lena with salt and pepper noise

Fig. 2.4: Lena denoised with Chambolle-Pock TV solver

2.1. The Chambolle-Pock algorithm in PORTAL 7

portal Documentation, Release

Example : Total Variation deblurring

Here, the operator A is a blurring operator. It can be implemented with a convolution with a Gaussian kernel. PORTAL
implements the convolution operator (with any 1D or 2D kernel) and its adjoint.

import portal
sigma = 2.6

Define the operator A and its adjoint

gaussian_kernel = portal.utils.misc.gaussianlD (sigma) # Faster separable convolution
Blur = portal.operators.convolution.ConvolutionOperator (gaussian_kernel)

A = lambda x : Blur+*x

Aadj = lambda x : Blur.adjoint () = x

Create the blurred image
import scipy.misc

1 = scipy.misc.lena() .astype('f")
1b = A(1)

Lambda = 5e-2
res = portal.algorithms.chambollepock.chambolle_pock_tv(lb, A, Aadj, Lambda, n_it=501,
portal.utils.misc.my_imshow([lb, res], shape=(1,2), cmap="gray")

(note that here it takes more iterations to converge, and the regularization parameter is much smaller than in the
denoising case).

PORTAL can also help to determine if A and Aadj are actually adjoint of eachother — an important property for the
algorithm.

portal.operators.misc.check_adjoint (A, Aadj, lb.shape, lb.shape)

Fig. 2.5: Lena with gaussian blur

8 Chapter 2. Chambolle-Pock algorithm in PORTAL : a turotial

return_all=F«

portal Documentation, Release

Fig. 2.6: Lena deblurred with Chambolle-Pock TV solver

Example : Total Variation tomographic reconstruction

Here, the operator A is the forward tomography projector. PORTAL uses the ASTRA toolbox to compute the forward
and backward projector. For performances issues (the forward and backward projectors are implemented on GPU),
the operators A and AT are not exactly matched (i.e adjoint of eachother). In practice, this is not an issue for the
reconstruction.

import portal

Create phantom

import scipy.misc

1 = scipy.misc.lena() .astype (np.float32)
ph = portal.utils.misc.phantom_mask (1)

Create Projector and Backprojector

npx = 1l.shape[0]

nangles = 80

AST = portal.operators.tomography.AstraToolbox (npx, nangles)

Configure the TV regularization
Lambda = 5.0

Configure the optimization algorithm (Chambolle-Pock for TV min)
K = lambda x : AST.proj(x)

Kadj = lambda x : AST.backproj(x, filt=True)

n_it = 101

Run the algorithm to reconstruct the sinogram
sino = K(ph)
en, res = portal.algorithms.chambollepock.chambolle_pock_tv(sino, K, Kadj, Lambda, L=22

Display the result, compare to FBP
res_fbp = Kadj(sino)

2.1. The Chambolle-Pock algorithm in PORTAL 9

S5

n_it=301,

portal Documentation, Release

|portal.utils.misc.my_imshow((res_fbp, res), (1,2), cmap="gray", nocbar=True)

Fig. 2.7: Lena reconstructed with 80 projections, Filtered Backprojection

Note : the ASTRA toolbox comes with many available geometries ; but in PORTAL only the parallel geometry has
been wrapped.

Mathematical background

Presentation of the algorithm

The Chambolle-Pock algorithm is a very versatile method to solve various optimization problems.
Suppose you want to solve the problem

Or, equivalently

where F' and G are convex (possibly non smooth) and K is a linear operator.

The general form of the basic Chambolle-Pock algorithm can be written :

The primal step size 7 and the dual step size o should be chosen such that o7 < 1/L? where L is the norm of the
operator K.

This algorithm is not a proximal gradient descent — no gradient is computed here. This is a primal-dual method,
performing one step in the primal domain (prox of F') and one step in the dual domain (prox of G*) ; a kind of
combination of Douglas-Rachford (fully primal) and ADMM (fully dual).

Chambolle-Pock algorithm is actually much more versatile than proximal gradient algorithms — an even more flexible
algorithm is described here. All you need is defining an operator K, the functions F', G and their proximal. Computing
the proximal of F' or G is not straightforward in general. When this cannot be done in one step, there are two solutions
: re-write the optimization problem (see next section) or split again F' and G like in the aforementioned algorithm.

10 Chapter 2. Chambolle-Pock algorithm in PORTAL : a turotial

http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/publis/Condat-optim-SPL-2014.pdf

portal Documentation, Release

Fig. 2.8: Lena reconstructed from 80 projections with TV minimization

Deriving the algorithm for L2-TV

The Total Variation regularized image deblurring can be written
where A is a linear operator. An attempt to solve this problem with the Chambolle-Pock algorithm would be to write
However, the proximal operator of F' is

so it involves the computation of the inverse of +7A” A, which is an ill-posed problem. This inverse can be computed
if A is a convolution (since it is diagonalized by the Fourier Transform), for example in the deblurring case, but this is
not the case in general.

We’ll consider the case in which A” A is not easily invertible. The optimization problem has to be rewritten. We’ll
make use of the following equalities :

and
so the initial problem can be rewritten :

Noting that

with K = [é]

the problem becomes

which is the saddle-point formulation of the problem. Here, the proximal of F’ is the identity, and the proximal of G*
is separable with respect to ¢ and z (since G* is a separable sum of these variables). Its computation is straightforward

where B2, z is the projection onto the L-co ball of radius), which is an elementise operation.
Eventually, the Chambolle-Pock algorithm for this problem is :

Prototyping algorithms in the primal-dual framework is more difficult than for proximal gradient algorithms ; but it
enables much more flexibility. With PORTAL, the user just has to specify the linear operator for a fixed regularization.

2.2. Mathematical background 11

portal Documentation, Release

12 Chapter 2. Chambolle-Pock algorithm in PORTAL : a turotial

CHAPTER 3

Indices and tables

¢ genindex
* modindex

e search

13

	Installation
	Installation from the Python wheel
	Installation from the sources
	Dependencies

	Chambolle-Pock algorithm in PORTAL : a turotial
	The Chambolle-Pock algorithm in PORTAL
	Mathematical background

	Indices and tables

