
PopPUNK Documentation
Release 2.6.3

John Lees and Nicholas Croucher

Dec 16, 2023

CONTENTS:

1 Installation 3

2 Overview 5

3 Sketching (--create-db) 9

4 Data quality control (--qc-db) 17

5 Fitting new models (--fit-model) 19

6 Distributing PopPUNK models 45

7 Query assignment (poppunk_assign) 47

8 Creating visualisations 53

9 Minimum spanning trees 63

10 Subclustering with PopPIPE 67

11 Using GPUs 71

12 Troubleshooting 75

13 Scripts 79

14 Iterative PopPUNK 83

15 Citing PopPUNK 89

16 Reference documentation 91

17 Roadmap 139

18 Miscellaneous 141

19 Why use PopPUNK? 145

20 Citation 147

21 Index 149

Python Module Index 151

i

Index 153

ii

PopPUNK Documentation, Release 2.6.3

PopPUNK is a tool for clustering genomes. We refer to the clusters as variable-length-k-mer clusters, or VLKCs.
Biologically, these clusters typically represent distinct strains. We refer to subclusters of strains as lineages.

If you are new to PopPUNK, we’d recommend starting on Installation, then by reading the Overview.

The first version was targeted specifically as bacterial genomes, but the current version has also been used for viruses
(e.g. enterovirus, influenza, SARS-CoV-2) and eukaryotes (e.g. Candida sp., P. falciparum). Under the hood, Pop-
PUNK uses pp-sketchlib to rapidly calculate core and accessory distances, and machine learning tools written in python
to use these to cluster genomes. A detailed description of the method can be found in the paper.

Important: Looking for older versions of the documentation? For previous versions with the old API
(--assign-query, --refine-fit etc) see v2.2.0. For older versions which used mash, see v1.2.0.

CONTENTS: 1

https://github.com/johnlees/pp-sketchlib
https://doi.org/10.1101/gr.241455.118
https://poppunk.readthedocs.io/en/v2.2.0-docs/
https://poppunk.readthedocs.io/en/v1.2.2-docs/

PopPUNK Documentation, Release 2.6.3

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

The easiest way to install is through conda, which will also install the dependencies:

conda install poppunk

Then run with poppunk.

Important: From v2.1.0 onwards, PopPUNK requires python3.8 to run (which on many default Linux installations
is run using python3 rather than python).

Important: From v2.1.2 onwards, PopPUNK no longer supports mash. If you want to use older databases created
with mash, please downgrade to <v2

1.1 Installing with conda (recommended)

If you do not have conda you can install it through miniconda and then add the necessary channels:

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

Then run:

conda install poppunk

If you want to use GPUs, take a look at Using GPUs.

If you are having conflict issues with conda, our advice would be:

• Remove and reinstall miniconda.

• Never install anything in the base environment

• Create a new environment for PopPUNK with conda create -n pp_env poppunk

If you have an older version of PopPUNK, you can upgrade using this method – you may also wish to specify the
version, for example conda install poppunk==2.3.0 if you wish to upgrade.

conda-forge also has some helpful tips: https://conda-forge.org/docs/user/tipsandtricks.html

3

https://conda.io/miniconda.html
https://conda-forge.org/docs/user/tipsandtricks.html

PopPUNK Documentation, Release 2.6.3

1.2 Installing with pip

If you do not have conda, you can also install through pip:

python3 -m pip install poppunk

This may not deal with all necessary dependencies, but we are working on it and it should again be possible in an
upcoming release.

1.3 Clone the code

You can also clone the github to run the latest version, which is executed by:

git clone https://github.com/bacpop/PopPUNK.git && cd PopPUNK
python3 setup.py build
python3 setup.py install
python3 poppunk-runner.py

This will also give access to the Scripts.

You will need to install the dependencies yourself (you can still use conda or pip for this purpose). See environment.
yml:

mamba env create -f environment.yml
conda activate pp_env

4 Chapter 1. Installation

CHAPTER

TWO

OVERVIEW

This page details the way in which we would advise that you should use and run PopPUNK, if possible.

5

PopPUNK Documentation, Release 2.6.3

2.1 Use the command line interface

2.1.1 Installation and version

Install via conda if possible. Version 2.5.0 of PopPUNK and version 2.0.0 of pp-sketchlib are the current minimum
supported versions.

2.1.2 Use query assignment mode

If a database is available for your species (see https://www.bacpop.org/poppunk/) we would strongly recommend down-
loading it to use to cluster your genomes. This has many advantages:

• No need to run through the potentially complex model fitting.

• Assured model performance.

• Considerably faster run times.

• Use existing cluster definitions.

• Use the context of large, high quality reference populations to interpret your genomes’ clusters.

See Query assignment (poppunk_assign) for instructions on how to use this mode.

You can think of this as being similar to using an existing MLST/cgMLST/wgMLST scheme to define your sample’s
strains.

2.1.3 Fit your own model

If a database isn’t available for your species, you can fit your own. This consists of three steps:

1. Sketch your genomes (see Sketching (--create-db)).

2. Quality control your database (see Data quality control (--qc-db)).

3. Fit a model (see Fitting new models (--fit-model)).

4. Repeat step two, until you have a model which works for your needs.

After getting a good fit, you may want to share it with others so that they can use it to assign queries. See Distributing
PopPUNK models for advice. We would also be interested to hear from you if you’d like to add your new model to the
pre-fit databases above – please contact poppunk@poppunk.net.

2.1.4 Create visualisations

A number of plots are created by default. You can also create files for further visualisation in microreact, cytoscape,
grapetree and phandango. We have found that looking at the appearance of clusters on a tree is always very helpful,
and would recommend this for any fit.

Older versions of PopPUNK mandated this be chosen as part of the main analysis, and then with --generate-viz
mode. This is now run separately, after the main analysis, with poppunk_visualise.

See Creating visualisations for details on options.

6 Chapter 2. Overview

https://www.bacpop.org/poppunk/
mailto:poppunk@poppunk.net
https://microreact.org/
http://www.cytoscape.org/
http://dx.doi.org/10.1101/gr.232397.117
http://jameshadfield.github.io/phandango/

PopPUNK Documentation, Release 2.6.3

2.2 Use an online interface

If available, you may want to use one of the browser-based interfaces to PopPUNK. These include beebop and
pathogen.watch (S. pneumoniae only).

Using these interfaces requires nothing to be installed or set up, doesn’t require any genome data to be shared with us,
and will return interactive visualisations. If your species isn’t available, or you have large batches of genomes to cluster
you will likely want to use the command line interface instead.

2.2. Use an online interface 7

https://beebop.dide.ic.ac.uk/
https://pathogen.watch/genomes/all?genusId=1301&speciesId=1313

PopPUNK Documentation, Release 2.6.3

8 Chapter 2. Overview

CHAPTER

THREE

SKETCHING (--CREATE-DB)

The basis of all analysis is estimation of core and accessory genome distances between samples. PopPUNK uses
genome sketching to make analysis more efficient. In previous versions we used mash, however the current version
now requires pp-sketchlib.

This page details options related to sketching and distance calculation, and is relevant to both Query assignment (pop-
punk_assign) and Fitting new models (--fit-model).

3.1 Overview

Any input given to --r-files or --q-files will be sketched using the following steps:

1. Run pp-sketchlib to sketch all input genomes.

2. (r-files only) Run Data quality control (--qc-db) on the sketches. Remove, ignore or stop, depending on
--qc-filter.

3. (r-files only) Calculate random match chances and add to the database.

4. Save sketches in a HDF5 datbase (the .h5 file).

5. (r-files only) Calculate core and accessory distances between every pair of sketches, save in .npy and .pkl.

6. (q-files only) Calculate core and accessory distances between query and reference sketches.

7. Report any core distances greater than --max-a-dist (and quit, if an r-file).

To run this before Fitting new models (--fit-model), use --create-db:

poppunk --create-db --output database --r-files rlist.txt --threads 8

As noted elsewhere, the input is file which lists your sample names and paths to their sequence data. This file has no
header, is tab separated, and contains the sample name in the first column. Subsequent columns may contain paths
to either assembled or raw read data (the type will automatically be inferred by checking for the presence of quality
scores). Data may be gzipped or uncompressed:

MS1 ms1_assembled.fa
MS2 ms2_assembled.fa
SM14 SM14_1.fq.gz SM14_2.fq.gz

The rest of this page describes options to further control this process.

Note: Sketching considers k-mers on both the forward and reverse by default, as typically reads and assemblies are
not aligned to a single strand. For genomes where input is always on the same (forward) strand, as may be the case

9

https://github.com/johnlees/pp-sketchlib

PopPUNK Documentation, Release 2.6.3

with single-stranded viral genomes, use the --strand-preserved option to ignore the reverse strand k-mers.

3.1.1 Using pp-sketchlib directly

You can use pp-sketchlib directly to create sketches, though functionality is identical to doing this through Pop-
PUNK. You will need to run both sketch and query modes to generate the sketch database and the distance files as
in --create-db:

sketchlib sketch -l rfiles.txt -o database -s 10000 -k 15,31,2 --cpus 4
sketchlib query dist database -o dists --cpus 4

You may want to do this if you anticipate trying different k-mer sizes, are using the databases for other purposes, or
running a very large analysis where it is useful to split up the sketching and distance steps. Useful options include:

• sketchlib query jaccard – will output Jaccard distances at each k-mer length, rather than core and accessory
distances.

• --subset – to only calculate distances for a subset of the genomes in the reference database.

Warning: Some options have slightly different names. See the pp-sketchlib README for full details.

3.1.2 Viewing information about a database

Use poppunk_info on a HDF5 file:

> poppunk_info --db e_coli --simple

PopPUNK database: ecoli.h5
Sketch version: 9314bda28ed25a60dd40f9b9e896c0b269500fec
Contains random matches: True
Number of samples: 10287
K-mer sizes: 15,18,21,24,27
Sketch size: 9984

Sketch size is always rounded to the nearest 64.

Warning: The sketch version should match between databases you are comparing, but the program will still run
with a warning if they don’t. Check results carefully.

Without --simple to get further information for every sample (--output to save results to a file; --network to use
a non-default network file):

Sample,Length,Missing_bases,Frequency_A,Frequency_C,Frequency_G,Frequency_T,Component_
→˓label,Component_size,Node_degree
11657_5#1,4673808,2879,0.24679,0.257679,0.249401,0.24555,0,258,15
11657_5#10,4702152,4024,0.244373,0.252315,0.252617,0.249008,1,17,5
11657_5#12,5024448,5852,0.247563,0.245727,0.255955,0.24988,2,464,445
11657_5#13,5180468,5010,0.248152,0.251625,0.254893,0.244739,3,784,733
11657_5#14,5329972,13419,0.243371,0.260128,0.251946,0.244246,4,177,128

10 Chapter 3. Sketching (--create-db)

PopPUNK Documentation, Release 2.6.3

3.2 Choosing the right k-mer lengths

To get a sensitive estimate of accessory distance independent from core distance, a small a k-mer size as possible needs
to be included in the fit. However, for longer genomes too small a k-mer size will result in biased estimates of distances
as small k-mers will match at random. pp-sketchlib now includes a correction for random matches, but there is still a
lower limit at which this can work. A simple formula for estimating this is:

𝑟 = 1− (1− 2 · 4−𝑘)−𝑙

𝐽𝑟 =
𝑟2

2𝑟 − 𝑟2

where 𝑘 is the k-mer length, 𝑙 is the length of the genome and 𝐽𝑟 is the Jaccard distance expected by chance. When 𝐽𝑟
approaches 1, estimation will begin to fail.

Note: For genomes on a single strand, the factor of two in the first formula above should be excluded.

At the other end, choosing a 𝑘 which is too long will result in all k-mers mismatching. The greater the core distance 𝜋,
the lower the allowable maximum.

Some k-mer ranges for --min-k and --max-k we have found to work for various genomes:

Table 1: k-mer lengths by domain

Domain/pathogen Typical 𝑙 𝜋 min-k max-k
Beta-coronaviruses 20kb 0.1 6 15
Bacteria 2-5Mb ~0.01-0.04 13 29
Fungi 16Mb ~0.01 15 31
Plasmodium 23Mb 0.0005 17 31

A --k-step of four is usually sufficient, but drop this to two or three to give the best accuracy at the expense of
increased execution time.

A good model will have a straight line fit between log(𝐽) and 𝑘. Run with the --plot-fit option to randomly choose
a number of sample pairs to plot the relation between k-mer distances and core and accessory fits. This plot does not
have to be perfectly straight, but the general trend should be followed. If you have a point at the end going off the scale,
you will want to adjust your k-mer range.

3.2. Choosing the right k-mer lengths 11

PopPUNK Documentation, Release 2.6.3

3.2.1 Choosing the sketch size

The default sketch size 𝑠 is 10000. Note that this is 10-fold greater than the mash default of 1000 – this is required to
get sufficient resolution on 𝜋. For closely related genomes with smaller 𝜋, you may need to increase the sketch size.

As a rule of thumb, choose 𝑠 = 1
𝜋 based on the minimum resolution in 𝜋 you need to observe.

Important: Any Jaccard distances < 5
𝑠 will be ignored in the fit of core and accessory distances. This prevents

spurious matches between very close sketches dominating, when a poor minimum k-mer length has been chosen.

Note that a larger sketch size will result in a linear increase in database size and distance calculation time.

3.3 Sketching from read data

You can also use sequence reads rather than assemblies as input. The main differences are that this data is typically a
lot larger, and may contain false k-mers as the result of sequencing errors.

Read data is automatically detected for each input file. It may be interleaved, or given as forward and reverse reads.
Low frequency k-mers, which are assumed to be the result of sequencing error, will be filtered out automatically. Use
the --min-kmer-count option to set the minimum number of k-mers needed to be observed to include these. Most
error k-mers will appear only once, but ideally set this somewhere between 1 and the coverage:

12 Chapter 3. Sketching (--create-db)

PopPUNK Documentation, Release 2.6.3

In this example the coverage is around 150x, so most correct k-mers have a frequency centred around this point (there
is a second peak at twice this value, which are repeats). There is a large peak at a frequency of one, which are the error
k-mers. In this example any filter between 15-75 would be appropriate.

The default filter is a probabilistic countmin filter, assuming up to 134M unique k-mers. If you expect significantly
more k-mers than this, for example with longer genomes, you should add the --exact-count argument to use a hash
table instead. This is exact, but may use more memory.

3.4 Sketching RNA viruses

Firstly, if your viral genomes are single stranded, you probably need to add the --strand-preserved option.

For small genomes where strong selection is present, in the example here shown with influenza genomes, the third codon
bias may be so great that 6-mers (or any multiple of three) have fewer matches than 7-mers. In a mostly coding genome
the third codon position across a gene is more free to mutate, as it can cause non-synonymous changes, whereas the first
and second codons always cause coding changes. This can cause issues with the core-accessory regression pushing
some core distances to 0:

3.4. Sketching RNA viruses 13

PopPUNK Documentation, Release 2.6.3

A solution to this is to use k-mers with spaced seeds, where only every third base is added to the k-mer. This prevents
multiples of the codon size lining up with heavily mutated bases.

Table 2: Codon phased seeds

k-mer dense Phased seed
3 XXX X–X–X
4 XXXX X–X–X–X
5 XXXXX X–X–X–X–X

Add the --codon-phased option to enable this. This fixes the above example:

14 Chapter 3. Sketching (--create-db)

PopPUNK Documentation, Release 2.6.3

Note: When using a database constructed with codon phased seeds for Query assignment (poppunk_assign), codon
phased seeds will automatically be turned on for the query sequences too.

3.5 GPU acceleration

There are two pieces of heavy computation that can be accelerated with the use of a CUDA-enabled GPU:

• Sketching read data --gpu-sketch.

• Calculating core and accessory distances --gpu-dist.

We assume you have a GPU of at least compute capability v7.0 (Tesla) with drivers correctly installed. You do not
need the CUDA toolkit installed, as all libraries are included with the pp-sketchlib executable.

Note: You will see ‘GPU’ in the progress message if a GPU is successfully being used. If you see the usual CPU
version your install may not have been compiled with CUDA.

Sketching read data with the GPU is a hybrid algorithm which can take advantage of CPU threads too (which are used
to read and process the fastq files). You can add up to around 16 --threads to keep a typical consumer GPU busy.
The sequence data must fit in device memory, along with a 2Gb countmin filter. The countmin filter is 134M entries
wide. If you expect your reads to have more unique k-mers than this you may see an increased error rate.

3.5. GPU acceleration 15

PopPUNK Documentation, Release 2.6.3

Typical output will look like this:

Sketching 128 read sets on GPU device 0
also using 16 CPU cores
Sketching batch: 1 of 9
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
Sketching batch: 2 of 9
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
k = 29 (100%)
....

Calculating distances with the GPU will give slightly different results to CPU distances, but typically within 1%,
which should not usually affect downstream results. The sketches, random matches and distances must fit in the device
memory. Around 35k bacterial genomes uses around 10Gb of device memory, typical for a high-end consumer device.
If the device memory is exceeded the calculation will automatically be split into chunks, at only slightly reduced
efficiency. The amount of memory available and needed will be estimated at the start:

Calculating distances on GPU device 0
Estimated device memory required: 565Mb
Total device memory: 11019Mb
Free device memory: 10855Mb
Progress (GPU): 100.0%

Important: The GPU which is device 0 will be used by default. If you wish to target another GPU, use the --deviceid
option. This may be important on computing clusters where you must use your job’s allocated GPU.

16 Chapter 3. Sketching (--create-db)

CHAPTER

FOUR

DATA QUALITY CONTROL (--QC-DB)

PopPUNK now comes with some basic quality control options, which you should run on your sketch database made
with --create-db by running --qc-db as follows:

poppunk --qc-db --ref-db example_db --type-isolate 12754_4_79 --length-range 2000000␣
→˓3000000

For poppunk_assign, instead add --run-qc:

poppunk_assign --query queries.txt --db example_db --run-qc --max-zero-dist 1 --max-
→˓merge 3

The following criteria are available:

• Outlying genome length (calculated during sketching, for assemblies or reads) with --length-range and/or
--length-sigma.

• Too many ‘N’s with --prop-n and/or --upper-n.

• Outlying core or accessory distances with --max-pi-dist and --max-a-dist respectively.

• Too many zero distances with --max-zero-dist.

For poppunk --create-db only:

• Names of samples to remove (e.g. failing external QC) with --remove-samples.

For poppunk_assign only:

• Maximum number of clusters a single isolate can cause to merge with --max-merge.

• Betweenness of queries (not automated, just reported) with --betweenness.

In all cases a file will be written at qcreport.txt which lists the failing samples, and the reasons why they failed.
Adding --qc-keep will only write the file and not remove failing samples. You may also add --retain-failures
to write a separate sketch database with the failed samples.

Random match chances in PopPUNK are only calculated and added to the database after the chosen QC step. If you
use sketchlib directly, they will be added without any automated QC.

17

PopPUNK Documentation, Release 2.6.3

4.1 QC of input sequences

The first QC step is applied directly to the input sequences themselves, to identify poor quality sequences.

You can change the genome length cutoff with --length-sigma which sets the maximum number of standard devia-
tions from the mean, and --length-range which sets an absolute range of allowable sizes.

Ambiguous bases are controlled by --prop-n which gives the maximum percentage of Ns, and --upper-n which
gives the absolute maximum value.

4.2 QC of pairwise distances

The second QC step uses the pairwise distances, to enable the removal of outlier samples that may not be part of the
taxon being studied. This is with reference to a type isolate. The type isolate will be selected by PopPUNK, unless
specified using --type-isolate.

By default, the maximum allowed accessory distance is 0.5 to ensure you check for contamination. However, many
species do really have high accessory values above this range, in which case you should increase the value of
--max-a-dist.

The maximum allowed core distance is also 0.5, by default. This can be altered with --max-pi-dist.

All sequences differing from the type isolate by distances greater than either threshold will be identified by the analysis.

Each isolate may have a proportion of distances that are exactly zero as set by --max-zero-dist.

4.3 QC of the network (assign only)

Finally, you may also check network properties.

Maximum number of clusters a single isolate can cause to merge is set with --max-merge. More than this number of
links across the original clusters will result in removal of the isolate.

Betweenness of queries can be reported with --betweenness, which may be useful to prune the input in more complex
cases. This does not cause automated removal as it’s difficult to set a sensible threshold across datasets. You will
therefore need to re-run and remove samples yourself.

18 Chapter 4. Data quality control (--qc-db)

CHAPTER

FIVE

FITTING NEW MODELS (--FIT-MODEL)

If you cannot find an existing model for your species in the list you will want to fit your own. This process is flexible,
and there are five different models you can use depending on the population structure of your dataset.

Note: After fitting a model to a new species we would like to share it on our website, so others can use it for assigning
queries. If you are open to this, please read Distributing PopPUNK models after this page.

5.1 Overview

First, use poppunk --create-db to sketch your input data and calculate distances between all samples. This is
detailed in Sketching (--create-db).

Then, use poppunk --fit-model <model_name> with one of the following model names:

• bgmm – Bayesian Gaussian Mixture Model. Best for small sample collections with strain-structure. Works best
when distance distribution components are clearly separated.

• dbscan – HDBSCAN. A good general method for larger sample collections with strain-structure. Some points
will always be designated as noise, so a subsequent run of model refinement may help improve the fit.

• refine – Model refinement. Requires a model already fitted with bgmm or dbscan and attempts to improve
it by maximising the network score. Particularly useful when components overlap significantly (often due to
recombination), or when the strain boundary is thought to lie somewhere within a component.

• threshold – Apply a given core or accessory distance threshold to define VLKCs. Useful if a cutoff threshold
is already known/calculated, is estimated from a plot, or to compare a threshold between datasets or species.

• lineage – Lineage clustering. To find lineages within a strain (subclustering), or find clusters in a population
without strain structure. Uses a simple nearest neighbour approach so is more of a heuristic. Network scores are
not meaningful in this mode.

The most useful guide to deciding which model to use is the _distanceDistribution.png file showing the core
and accessory distances. More details on each of these models is given further down this page.

A completed fit will consist of:

• A _clusters.csv file, which gives the VLKC (strain) for each sample in the database.

• A _unword_clusters.csv file, which gives an English-pronounceable name instead of a number to each
VLKC.

• _fit.npz and _fit.pkl files, which contain numeric data and metadata for the fit.

• A _graph.gt file, which is the network defining the fit in graph-tool format.

19

https://www.bacpop.org/poppunk/

PopPUNK Documentation, Release 2.6.3

• Some plots of the fit, which depend on the specific model used.

• A .refs file, which lists the samples kept as ‘references’ for assigning future samples (see Distributing Pop-
PUNK models for more details).

This page will use 128 Listeria monocytogenes genomes from Kremer et al, which can be downloaded from figshare.
The distribution of core and accessory distances from the --create-db step is as follows:

We also show some examples with 616 Streptococcus pneumoniae genomes, which are more complex. These genomes
were collected from Massachusetts, first reported here and can be accessed here.

5.2 Common arguments

• --ref-db: the output prefix used with --create-db i.e. the directory where the .h5 file is located

• --output: where to save the model. If not specified this defaults to ref-db.

• --overwrite: overwrite any existing files in the output directory.

• --external-clustering: any additional labels to add to the cluster output.

• --graph-weights: save the edges weights in the network as their Euclidean core-accessory distances, rather
than as 0 or 1 (useful for visualising the network).

External clusters may be other cluster names, such as serotype, sequence type, cgMLST etc. VLKCs are mapped as
one-to-many, so that each strain is labelled with all of the clusters any of its members is assigned to in this file. This
input file must be comma separated, one sample per line, with the sample name as the first column, and other clusters

20 Chapter 5. Fitting new models (--fit-model)

https://doi.org/10.1016/j.cmi.2016.12.008
https://doi.org/10.6084/m9.figshare.7083389
https://www.nature.com/articles/ng.2625
https://www.nature.com/articles/sdata201558

PopPUNK Documentation, Release 2.6.3

as subsequent columns. A header line with ‘sample’ and the names of other cluster types is required. Output is to
output/output_external_clusters.csv.

5.3 How good is my fit?

We have found the best way to assess this is to use Creating visualisations on your output and look at your assigned
VLKCs against a tree, to determine whether they have the specificity required.

You can also compare models with their network score, and whether the output plots look as expected. Typically the
key thing is that your spatial component nearest the origin is accurate. More detail is given for each model below.

5.3.1 Interpreting the network summary

All fits will output a network summary which looks similar to this:

Network summary:
Components 59
Density 0.0531
Transitivity 0.9966
Mean betweenness 0.0331
Weighted-mean betweenness 0.0454
Score 0.9438
Score (w/ betweenness) 0.9126
Score (w/ weighted-betweenness) 0.9009

• Components are the number of VLKCs (strains) found using this model.

• Density is the proportion of distances assigned as ‘within-strain’. Generally smaller is better as this gives more
specific clusters, but too close to zero may be an over-specific model.

• Transitivity measures whether every member of each strain is connected to every other member. Closer to 1 is
better, but this can be achieved with very loose fits.

• Score synthesises the above as (1 − density) * transitivity, which gives a single number between 0 (bad) and
1 (good) which in many cases is at a maximum when it accurately describes strains in the data.

• Two further scores for larger networks. See Alternative network scores for more information on these.

5.4 bgmm

This mode fits a Bayesian Gaussian mixture model to the core and accessory distances. With few points, methods
such as DBSCAN may struggle to find clusters due to the sparsity, whereas a BGMM can often find a good fit. A
further advantage is that the equation for the posterior is known, so all points will have an assignment and a non-linear
boundary found exactly.

However, when there are a very large number of points the likelihood has a tendency to totally override the prior in the
estimated posterior, meaning many overlapping components may be fitted, which may give poor clusters, and is less
robust to adding more data. It is possible for this mode to fail to converge, but it is more likely to produce a bad fit in
difficult cases.

The key parameter to specify is the maximum number of components --K. You should choose a number based on the
number of components you can see on your distance plot. This may be automatically reduced if there is insufficent

5.3. How good is my fit? 21

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html

PopPUNK Documentation, Release 2.6.3

evidence for this many components. As a rule of thumb, if you have under 150 samples or under 1000 samples and
clear components then this mode should give a good fit.

A better network score is evidence of a better fit, but the output files should also be used to judge this. With the test
dataset, four components are visible:

poppunk --fit-model bgmm --ref-db listeria --K 4
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting bgmm model to reference database

Fit summary:
Avg. entropy of assignment 0.0042
Number of components used 4

Scaled component means:
[0.9415286 0.90320047]
[0.11542755 0.24570244]
[0.20966101 0.37694884]
[0.00527421 0.07043826]

Network summary:
Components 31
Density 0.0897
Transitivity 1.0000
Score 0.9103

Removing 97 sequences

Done

In the output to the terminal:

• The average entropy of assignment is a measure of the certainty of assignment of each point. Lower is better.
Higher values may indicate overlapping components, perhaps due to high amounts of recombination between
strains.

• Number of components used is how many components from K were actually used in the spatial fit. This is usually
equal to K, but may be reduced in small datasets.

• Scaled component means are the centres of the fitted components in the model, where the core and accessory
distances have been rescaled between 0 and 1. These can be used with Using fit refinement when mixture model
totally fails.

The fit actually just uses the component closest to the origin – any distances assigned to this component are within-
strain. This is the most important part of the fit in this mode.

You can see that this gives a good network score, and fits the data well:

22 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

The position of the boundary is also produced (in red), along with contours of the fitted mixture components:

5.4. bgmm 23

PopPUNK Documentation, Release 2.6.3

If you make K too low, some components will be merged, resulting in a less-specific fit with fewer clusters, that do not
fully delineate all of the strains (in this case just finding the two main lineages of Listeria in this data):

poppunk --fit-model bgmm --ref-db listeria --K 2
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting bgmm model to reference database

Fit summary:
Avg. entropy of assignment 0.0007
Number of components used 2

Scaled component means:
[0.11627304 0.2432584]
[0.9415286 0.90320047]

Network summary:
Components 2
Density 0.5405
Transitivity 1.0000

(continues on next page)

24 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

Score 0.4595
Removing 126 sequences

Done

Too many components in a small dataset are automatically reduced to an appropriate number, obtaining the same good
fit as above:

poppunk --fit-model bgmm --ref-db listeria --K 10
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting bgmm model to reference database

Fit summary:
Avg. entropy of assignment 0.3195
Number of components used 4

Scaled component means:
[0.9415286 0.90320047]

(continues on next page)

5.4. bgmm 25

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

[3.72458739e-07 4.73196248e-07]
[0.00527421 0.07043826]
[0.20966682 0.37695524]
[0.11542849 0.2457043]
[1.68940242e-11 2.14632815e-11]
[7.66987488e-16 9.74431443e-16]
[3.48211781e-20 4.42391191e-20]
[1.58087904e-24 2.00845290e-24]
[7.17717973e-29 9.11836205e-29]

Network summary:
Components 31
Density 0.0897
Transitivity 1.0000
Score 0.9103

Removing 97 sequences

Done

In a dataset with more points, and less clear components, too many components can lead to a bad fit:

This is clearly a poor fit. The real issue is that the component whose mean is nearest the origin is unclear, and doesn’t
include all of the smallest distances.

26 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

5.5 dbscan

This mode uses HDBSCAN to find clusters in the core and accessory distances. This is a versatile clustering algorithm
capable of finding non-linear structure in the data, and can represent irregularly shaped components well. Possible
drawbacks are that a fit cannot always be found (this can happen for small datasets with sparse points, or for datasets
without much structure in the core and accessory), and that some points are classified as ‘noise’ so not all of their edges
are included in the network (these are the small black points).

Warning: HDBSCAN models are not backwards compatible from sklearn v1.0 onwards. We would recommend
using at least this version. Even better would be to then run model refinement (refine) to get a simpler and faster
model for onward query assignment.

dbscan usually needs little modification to run:

poppunk --fit-model dbscan --ref-db listeria
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting dbscan model to reference database

Fit summary:
Number of clusters 5
Number of datapoints 8128
Number of assignments 7804

Scaled component means
[0.94155383 0.90322459]
[0.00527493 0.07044794]
[0.20945986 0.37491995]
[0.12876077 0.34294888]
[0.11413982 0.24224743]

Network summary:
Components 31
Density 0.0897
Transitivity 1.0000
Score 0.9103

Removing 97 sequences

Done

In the output to the terminal:

• The number of clusters is the number of spatial components found in the data.

• Number of datapoints is the number of points used (all-vs-all distances), which may have been subsampled from
the maximum.

• Number of assignments is the number of points assign to one of the spatial components, so excluding noise
points.

5.5. dbscan 27

https://hdbscan.readthedocs.io/en/latest/

PopPUNK Documentation, Release 2.6.3

• Scaled component means are the centres of the fitted components in the model, where the core and accessory
distances have been rescaled between 0 and 1. These can be used with Using fit refinement when mixture model
totally fails.

The fit actually just uses the component closest to the origin – any distances assigned to this component are within-
strain. This is the most important part of the fit in this mode. In this case the identification of this component is identical
to the bgmm fit, so they produce the same strains. Note there is a small yellow cluster which is poorly defined, but as
it does not impact the within-strain cluster the fit is unaffected:

You can alter the fit with --D, which sets a maximum number of clusters, and --min-cluster-prop which sets the
minimum number of points a cluster can have (as a proportion of ‘Number of datapoints). If the means of both of the
core and accessory are not strictly increasing between the within-strain and next further component, the clustering fails.
In this case the minimum number of samples per cluster is halved, and the fit is tried again. If this goes below ten, no
fit can be found.

Increasing --min-cluster-prop or decreasing --D gets rid of the errant cluster above:

poppunk --fit-model dbscan --ref-db listeria --min-cluster-prop 0.01
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting dbscan model to reference database

(continues on next page)

28 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

Fit summary:
Number of clusters 4
Number of datapoints 8128
Number of assignments 7805

Scaled component means
[0.94155383 0.90322459]
[0.00522549 0.06876396]
[0.11515678 0.24488282]
[0.21152104 0.37635505]

Network summary:
Components 31
Density 0.0886
Transitivity 0.9953
Score 0.9071

Removing 95 sequences

Done

But note that a few more noise points are generated, and fewer samples are removed when pruning cliques:

Setting either --min-cluster-prop or --D too low can cause the fit to fail:

5.5. dbscan 29

PopPUNK Documentation, Release 2.6.3

poppunk --fit-model dbscan --ref-db listeria --min-cluster-prop 0.05
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting dbscan model to reference database

Failed to find distinct clusters in this dataset

5.6 refine

Model refinement is slightly different: it takes a model already fitted by bgmm or dbscan and tries to improve it by opti-
mising the network score. This starts with a parallelised global optimisation step, followed by a serial local optimisation
step (which can be turned off with --no-local). Use of multiple --cpus is effective for these model fits.

Briefly:

• A line between the within- and between-strain means is constructed

• The point on this line where samples go from being assigned as within-strain to between-strain is used as the
starting point

• A line normal to the first line, passing through this point is constructed. The triangle formed by this line and the
x- and y-axes is now the decision boundary. Points within this line are within-strain.

• The starting point is shifted by a distance along the first line, and a new decision boundary formed in the same
way. The network is reconstructed.

• The shift of the starting point is optimised, as judged by the network score. First globally by a grid search, then
locally near the global optimum.

Applying this to the Listeria DBSCAN fit (noting that you may specify a separate directory to load the model from
with --model-dir, if multiple model fits are available):

poppunk --fit-model refine --ref-db listeria --model-dir dbscan
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting refine model to reference database

Loading DBSCAN model
Loaded previous model of type: dbscan
Initial model-based network construction based on DBSCAN fit
Initial boundary based network construction
Decision boundary starts at (0.63,0.62)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
(continues on next page)

30 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

The returned value satisfies the termination criteria
(using xtol = 1e-05)
Network summary:

Components 29
Density 0.0897
Transitivity 0.9984
Score 0.9088

Removing 93 sequences

Done

As this model was already well fitted, this doesn’t change much, and finds very similar VLKC assignments (though
noise points are eliminated):

The default is to search along the entire range between the within- and between-strain clusters, but sometimes this
can include undesired optima, particularly near the origin. To exclude these, use --pos-shift to alter the distance
between the end of the search range and the origin and --neg-shift for the start of the search range.

This mode is more useful in species with a relatively high recombination rate the distinction between the within- and
between-strain distributions may be blurred in core and accessory space. This does not give the mixture model enough
information to draw a good boundary as the likelihood is very flat in this region:

5.6. refine 31

PopPUNK Documentation, Release 2.6.3

Although the score of this fit looks ok (0.904), inspection of the network and microreact reveals that it is too liberal
and VLKCs/strains have been merged. This is because some of the blur between the origin and the central distribution
has been included, and connected clusters together erroneously.

The likelihood of the model fit and the decision boundary looks like this:

32 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

Using the core and accessory distributions alone does not give much information about exactly where to put the bound-
ary, and the only way to fix this would be by specifying strong priors on the weights of the distributions. Fortunately
the network properties give information in the region, and we can use --refine-fit to tweak the existing fit and pick
a better boundary.

Here is the refined fit, which has a score of 0.939, and 62 rather than 32 components:

5.6. refine 33

PopPUNK Documentation, Release 2.6.3

Which, looking at the microreact output, is much better:

34 Chapter 5. Fitting new models (--fit-model)

https://microreact.org/project/SJxxLMcaf

PopPUNK Documentation, Release 2.6.3

5.6.1 Alternative network scores

Two additional network scores are now available using node betweenness. We have observed that in some refined fits
to large datasets, some clusters are merged with a single high-stress edge at a relatively large distance. These scores
aim to create a more conservative boundary that splits these clusters.

For these scores:

• The network is split into 𝑆 connected components (the strains) each of size 𝑤𝑖

• For each component with at least four nodes, the betweenness of the nodes are calculated

• Each component is summarised by the maximum betweenness of any member node 𝑏max
𝑖

score1 = score0 · (1−
1

𝑆

𝑆∑︁
𝑖=1

𝑏max
𝑖)

score2 = score0 · (1−
1

𝑆 · Σ𝑤𝑖

𝑆∑︁
𝑖=1

[𝑏max
𝑖 · 𝑤𝑖])

Score 1 is printed as score (w/ betweenness) and score 2 as score (w/ weighted-betweenness). Use --score-idx with
0 (default), 1 (betweenness) or 2 (weighted-betweenness) to choose which score to optimise in refine mode. The default
is the original score 0. Note that scores 1 and 2 may take longer to compute due to the betweenness calculation, though
this can take advantage of multiple --threads.

5.6.2 Unconstrained (two-dimensional) optimisation

In the default mode described above, the boundary gradient is set from the identified means in the input model, and the
position of the intercept is optimised (one-dimensional optimisation).

In cases where the gradient of the boundary is not well set by the two means in the plot, you can optimise both the
intercept and the gradient by adding the --unconstrained option (which is incompatible with --indiv-refine).
This will perform a global search of 20 x 20 (400 total) x- and y-intercept positions, followed by a 1D local search to
further optimise the intercept (unless --no-local is added).

As this calculates the boundary at ten times as many positions, it is generally expected to take ten times longer. However,
you can effectively parallelise this with up to 20 --threads:

poppunk --fit-model refine --ref-db listeria --model-dir dbscan --unconstrained --
→˓threads 4
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.2
sketchlib: /Users/jlees/Documents/Imperial/pp-sketchlib/build/lib.macosx-10.9-x86_64-

→˓3.8/pp_sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 4 threads
Mode: Fitting refine model to reference database

Loading BGMM 2D Gaussian model
Loaded previous model of type: bgmm
Initial model-based network construction based on Gaussian fit
Initial boundary based network construction
Decision boundary starts at (0.52,0.43)
Trying to optimise score globally
Trying to optimise score locally

(continues on next page)

5.6. refine 35

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Network summary:

Components 59
Density 0.0531
Transitivity 0.9966
Mean betweenness 0.0331
Weighted-mean betweenness 0.0454
Score 0.9438
Score (w/ betweenness) 0.9126
Score (w/ weighted-betweenness) 0.9009

Removing 545 sequences

Done

Which gives a slightly higher network score, though overall similar clusters:

This is because the gradient from the 1D optimisation was well set. Unconstrained optimisation can be useful with
clusters which aren’t parallel to the line that connects them. This is an example in E. coli:

36 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

Fig. 1: 1D refine fit between DBSCAN cluster centroids Fig. 2: Unconstrained 2D fit over a greater range

The search range will always be defined by a trapezium in light red – bounded by the two axes, and two lines passing
through the means which are normal to the line which connects the means.

5.6.3 Using fit refinement when mixture model totally fails

If the mixture model does not give any sort of reasonable fit to the points, you can manually provide a file with
--manual-start to give the starting parameters to --refine-fit mode. The format of this file is as follows:

start 0,0
end 0.5,0.6
scaled True

A key, followed by its value (space separated).

start and end define the points (x,y) to draw the line between. These define the two red points (and therefore the
search range) in the output plot.

scaled defines whether these are on the [0,1] scale. If these have been set using means from the terminal output this
should be True. Otherwise, if you have set them based on the plot (unscaled space), set to False.

5.6.4 Using core/accessory only

In some cases, such as analysis within a lineage, it may be desirable to use only core or accessory distances to classify
further queries. This can be achieved by adding the --indiv-refine both option, which will allow these boundaries
to be placed independently, allowing the best fit in each case:

poppunk --fit-model refine --ref-db listeria --model-dir dbscan --indiv-refine both
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting refine model to reference database

(continues on next page)

5.6. refine 37

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

Loading DBSCAN model
Loaded previous model of type: dbscan
Initial model-based network construction based on DBSCAN fit
Initial boundary based network construction
Decision boundary starts at (0.63,0.62)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Refining core and accessory separately
Initial boundary based network construction
Decision boundary starts at (0.63,0.62)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Initial boundary based network construction
Decision boundary starts at (0.63,0.62)
Trying to optimise score globally
Trying to optimise score locally

Optimization terminated successfully;
The returned value satisfies the termination criteria
(using xtol = 1e-05)
Network summary:

Components 29
Density 0.0897
Transitivity 0.9984
Score 0.9088

Network summary:
Components 31
Density 0.0897
Transitivity 1.0000
Score 0.9103

Network summary:
Components 31
Density 0.0808
Transitivity 0.9862
Score 0.9064

Removing 93 sequences

Done

There are three different networks, and the core and accessory boundaries will also be shown on the _refined_fit.png
plot as dashed gray lines:

38 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

To use one of these for your saved model, rerun, but instead setting --indiv-refine core or --indiv-refine
accessory.

5.6.5 Running with multiple boundary positions

To create clusters at equally spaced positions across the refinement range, add the --multi-boundary <n> argument,
with the number of positions specified by <n>. This will create up to <n> sets of clusters, with boundaries equally
spaced between the origin and the refined boundary position.

Trivial cluster sets, where every sample is in its own cluster, will be excluded, so the final number of clusters may be
less than <n>.

For a use of these cluster sets, see the Iterative PopPUNK section.

5.7 threshold

In this mode no model is fitted. You provide the threshold at which within- and between-strain distances is drawn.
This can be useful if refine cannot find a boundary due to a poorly performing network score, but one can clearly be
seen from the plot. It may also be useful to compare with other fits from related species where a boundary has been
identified using one of the fitting procedures.

Currently only a core-distance boundary is supported (if you would like an accessory or combined mode available,
please raise an issue). Provide the cutoff with --threshold:

5.7. threshold 39

https://github.com/johnlees/PopPUNK/issues

PopPUNK Documentation, Release 2.6.3

poppunk --fit-model threshold --ref-db listeria --threshold 0.003
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting threshold model to reference database

Network summary:
Components 31
Density 0.0897
Transitivity 1.0000
Score 0.9103

Removing 97 sequences

Done

40 Chapter 5. Fitting new models (--fit-model)

PopPUNK Documentation, Release 2.6.3

5.8 lineage

This mode defines clusters by joining nearest neighbours. As this will typically define subclusters within strains,
we refer to these as ‘lineages’. This can be used to find subclusters in addition to one of the above models, or for
species without strain-structure (e.g. some viruses, Neisseria gonorrhoeae, Mycobacterium tuberculosis). This is the
highest resolution (most specific clusters) provided directly by PopPUNK. If it does not meet your needs, take a look
at Subclustering with PopPIPE for other options.

A model is not fitted, and a simple data-driven heuristic is used. For each sample, the nearest 𝑘 neighbours will be
indentified, and joined in the network. Connected components of the network define lineages, as in the other models.
Only core distances are used (add --use-accessory to modify this), and in the case of ties all distances are included.
Note that these are not necessarily expected to be transitive, so network scores are not as informative of the optimum.

We refer to 𝑘 as the ‘rank’ of the model. Typically you won’t know which rank to use beforehand, so you can provide
multiple integer values to the --rank option, comma separated. Clusters from all ranks will be output, and all used
with Query assignment (poppunk_assign). 𝑘 = 1 is the most specific rank, and higher values will form looser clusters.
With the Listeria example:

poppunk --fit-model lineage --ref-db listeria --ranks 1,2,3,5
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Fitting lineage model to reference database

Network for rank 1
Network summary:

Components 26
Density 0.0271
Transitivity 0.1834
Score 0.1785

Network for rank 2
Network summary:

Components 12
Density 0.0428
Transitivity 0.3528
Score 0.3377

Network for rank 3
Network summary:

Components 6
Density 0.0589
Transitivity 0.4191
Score 0.3944

Network for rank 5
Network summary:

Components 2
Density 0.0904
Transitivity 0.5319
Score 0.4838

Parsed data, now writing to CSV

Done

5.8. lineage 41

PopPUNK Documentation, Release 2.6.3

This has produced four fits, with ranks 1, 2, 3 and 5 (with fit information contained in the .pkl file, and a .npz file for
each rank). The _clusters.csv will contain the clusters from the lowest rank. The _lineages.csv file contains all of the
assignments, a column with all of the ranks hyphen-separated (which will give clusters indentical to the lowest rank):

id,Rank_1_Lineage,Rank_2_Lineage,Rank_3_Lineage,Rank_5_Lineage,overall_Lineage
12673_8#24,18,2,2,1,18-2-2-1
12673_8#26,4,2,2,1,4-2-2-1
12673_8#27,26,1,1,1,26-1-1-1
12673_8#28,1,1,1,1,1-1-1-1
12673_8#29,4,2,2,1,4-2-2-1
12673_8#31,18,2,2,1,18-2-2-1
12673_8#32,9,8,1,1,9-8-1-1
12673_8#34,7,7,1,1,7-7-1-1
12673_8#36,1,1,1,1,1-1-1-1

The best way to assess the ranks is by visualising them (Creating visualisations):

poppunk_visualise --distances listeria/listeria.dists --ref-db listeria --microreact

Graph-tools OpenMP parallelisation enabled: with 1 threads
PopPUNK: visualise
Loading previously lineage cluster model
Writing microreact output
Parsed data, now writing to CSV
Building phylogeny
Running t-SNE

Done

This can be loaded in microreact: https://microreact.org/project/dVNMftmK6VXRvDxBfrH2y. Rank 1 has the small-
est clusters:

Rank 3 has larger clusters. Some of these clusters are polyphyletic on the core neighbour-joining tree:

42 Chapter 5. Fitting new models (--fit-model)

https://microreact.org/project/dVNMftmK6VXRvDxBfrH2y

PopPUNK Documentation, Release 2.6.3

At the model fit stage, you will also get histograms which show the distances included in the network, a useful com-
parison with the original distance distribution and between ranks:

Fig. 3: Rank 1 Fig. 4: Rank 3

5.9 Use an existing model with new data

There is also one further mode, --use-model, which may be useful in limited circumstances. This applies any of the
above models to a new dataset without refitting it. This may be useful if a reference dataset has changed (been added to
or removed from) and you do not wish to refit the model, for example because it is already in use. However, typically
you would use Query assignment (poppunk_assign) with --update-db to add to a model:

poppunk --use-model --ref-db new_db --model-dir old_db
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.6.0
(continues on next page)

5.9. Use an existing model with new data 43

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_
→˓sketchlib.cpython-38-darwin.so)

Graph-tools OpenMP parallelisation enabled: with 1 threads
Mode: Using previous model with a reference database

Loading BGMM 2D Gaussian model
Loaded previous model of type: bgmm
Network summary:

Components 31
Density 0.0897
Transitivity 1.0000
Score 0.9103

Removing 97 sequences

Done

44 Chapter 5. Fitting new models (--fit-model)

CHAPTER

SIX

DISTRIBUTING POPPUNK MODELS

If you have fitted a model yourself, you may be interested in distributing it so that others can use it for your species.
This will give consistent cluster names across datasets, mean the high-quality tested fit can be reused, and speeds up
future analysis.

Please contact us at poppunk@bacpop.org. We would be happy to add your sketches and fitted model to our other
databases.

6.1 Database contents

A database requires the following files:

• .h5. The sketch database, a HDF5 file.

• .dists.pkl and .dists.npy files. Distances for all vs all samples in the sketch database.

• _fit.npz and _fit.pkl files. Python files which describe the model fit.

• _graph.gt. The network relating distances, fit and strain assignment for all samples in the sketch database.

• _clusters.csv. The strain assignment of all samples in the sketch database.

If you used a lineage you will also need:

• rank_k_fit.npz. Distances for each rank 𝑘 fit.

• _lineages.csv. Combined lineage assignments for each rank.

You may also have .refs versions of these files, which are pruned to contain just the reference samples (see below).
We would highly recommend including the output/output.refs file with any database, even though it is not strictly
required, as it will speed up query assignment. Lineage models do not use references.

Note: If the database is very large, you may consider just distributing the .refs files. This will enable query as-
signment, but visualisation and subclustering within strains will no longer be possible, as full information within each
strain will be missing.

These databases can be automatically generated using the poppunk_distribute_fit.py script after model fitting.
See the Scripts page for more information.

45

mailto:poppunk@bacpop.org
https://poppunk.net/pages/databases.html

PopPUNK Documentation, Release 2.6.3

6.2 Picking references

PopPUNK automatically prunes redundant sequence information from databases by removing samples from cliques
(where every sample is in the same strain as every other sample). This algorithm has changed slightly from the originally
published one:

1. Split the graph into connected components (strains), which are analysed in parallel.

2. Identify a clique. If no samples in the clique are already references, add one sample as a reference.

3. Prune the clique from the graph, creating a subgraph.

4. Recursively apply steps 2-3 until only two samples or fewer remain.

5. Add the remaining samples as references

6. Create the reference graph, and find connected components again.

7. For any samples which are no longer in the same connected component, find a minimum path between them in
the full graph, and add all samples in this path as references.

This makes the algorithm scale better, and ensures clusters remain connected. You may find that more references are
picked than before using this method, which is a small cost for the increase robustness.

This process occurs automatically after the model fit. In the Listeria example:

Removing 97 sequences

31 strains are represented by 128− 97 = 31 references, exactly one reference per cluster, which is the minimum. The
refined fit removes 93 sequences with 29 strains, so some larger clusters need to be represented by multiple references.
The names of the chosen references are written to the .refs file. In addition, the distances, sketch database and graph
have the non-reference sequences pruned and saved with .refs suffixes. This gives a complete database suitable for
assignment with references only, should the full database be prohibitively large.

Note: Previous fans (users) of PopPUNK may remember the --full-db option which switched off reference picking.
This was useful, as reference-only databases always lost information. This option has now been removed, and reference
picking will always be run. Both full and reference databases are always produced (apart from in lineage mode). The
default assignment uses just references, but has the full database available for strain visualisation and subclustering.

If you interrupt the reference picking the output will still be valid. If you wish to run reference picking on a database
where it is missing (due to being from an older version, or interrupted) you can do this with the poppunk_references
script.

46 Chapter 6. Distributing PopPUNK models

CHAPTER

SEVEN

QUERY ASSIGNMENT (POPPUNK_ASSIGN)

This is the recommended mode to use PopPUNK, as long as a database is available for your species. If there is no
database available, you can fit your own (Fitting new models (--fit-model)).

Briefly, download your reference database and run:

poppunk_assign --db database --query qfile.txt \
--output poppunk_clusters --threads 8

7.1 Downloading a database

Current PopPUNK databases can be found here: https://www.bacpop.org/poppunk/

We refer to sequences in the database as references, and those being added as queries. The clusters assigned by Pop-
PUNK are variable-length-k-mer clusters (VLKCs).

A database called database will contain the following files, in database/:

• database.h5 – the sketches of the reference sequences generated by pp-sketchlib.

• database.dists.npy and database.dists.pkl – the core and accessory distances for all pairwise compar-
isons in the sketch database.

• database_fit.npz and database_fit.pkl – the model fit to the core and accessory distances.

• database_graph.gt – the network defining the fit (loadable with graph_tool).

• database_clusters.csv – the PopPUNK clusters for the reference sequences.

• database.refs – a minimal list of references needed to produce correct clusters.

If the .refs file is missing, all of the samples in the sketch database will be used in the distance calculations.

You can use the following arguments to individually target these items if necessary, for example when using an alter-
native fit, or if split across different directories. The examples below refer to the default database name:

• (required) --db database – the name of directory containing the .h5 file.

• --distances database/database.dists – prefix of the distances.

• --model-dir database – directory containing the model fit and network (dists + fit define the network).

• --previous-clustering database – directory containing the PopPUNK clusters for the references.

47

https://www.bacpop.org/poppunk/
https://www.bacpop.org/poppunk/

PopPUNK Documentation, Release 2.6.3

7.2 Clustering your genomes

Create a file which lists your sample names and paths to their sequence data. This file has no header, is tab separated,
and contains the sample name in the first column. Subsequent columns may contain paths to either assembled or raw
read data (the type will automatically be inferred by checking for the presence of quality scores). Data may be gzipped
or uncompressed:

MS1 ms1_assembled.fa
MS2 ms2_assembled.fa
SM14 SM14_1.fq.gz SM14_2.fq.gz

Save this as qfile.txt. You’re now ready to cluster them! Run the following command:

poppunk_assign --db database --query qfile.txt \
--output poppunk_clusters --threads 8

This will first of all sketch your input genomes, saving them in poppunk_clusters/poppunk_clusters.h5. If you
need to rerun part of the analysis with different options this will automatically be picked up and loaded.

Note: Data quality control (--qc-db) does not apply to query sequences. A test for maximum accessory distance will be
made, but the program will only emit warnings and will run with all genomes anyway. Most options for sketching will be
taken from the reference database, but you can still specify error filtering options from read input (--min-kmer-count
and --exact-count) and specify your input as --strand-preserved. See Sketching (--create-db) for more infor-
mation on these options.

Next, core and accessory distances between your input sketches and those in the database will be computed. This
has complexity 𝑂(𝑅𝑄) where 𝑅 is the number of samples in database_references.refs and 𝑄 is the number in
qfile.txt. These distances are then fed into the model and used to update the network, and therefore clusters.

The output will look something like this:

Graph-tools OpenMP parallelisation enabled: with 4 threads
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.5.1
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

→˓sketchlib.cpython-38-darwin.so)
Mode: Assigning clusters of query sequences

Sketching genomes using 8 thread(s)
Calculating distances using 8 thread(s)
Loading previously refined model
Network loaded: 2007 samples
Found novel query clusters. Calculating distances between them.
Could not find random match chances in database, calculating assuming equal base␣
→˓frequencies
Calculating distances using 8 thread(s)

Your VLKCs will be written to poppunk_clusters/poppunk_clusters_clusters.csv:

Taxon,Cluster
21946_6_66,9
22695_3_148,9
22984_8_88,9

(continues on next page)

48 Chapter 7. Query assignment (poppunk_assign)

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

21946_6_245,116
21946_6_189,814
22695_3_73,814
21946_6_50,422
21903_8_95,148
21903_8_250,301
22984_8_47,70

These names are identical to those used in the reference database, so retain the same meaning between studies. If new
clusters are found they will be numbered in ascending order from largest to smallest, beginning from the end of the
reference clusters.

Note: You may observe clusters merging (but never splitting). If your genomes do cause clusters to merge this will be
noted in the output, and the new clusters will be named using the old ones. For example, if clusters 23 and 38 merged,
the new cluster would be called 23_38.

By default, only the query genome clusters are included here. The reference genome clusters are considered unchanged
from the input. If there are many merges and you wish to know their new cluster IDs, use --update-db (Updating the
database).

You can use poppunk_visualise to look at your results. Here’s an example output to cytoscape, showing the clusters
as colours, reference genomes as circles and queries as triangles (open in a new tab to zoom on detail):

7.2. Clustering your genomes 49

PopPUNK Documentation, Release 2.6.3

7.2.1 Adding external cluster labels (MLST, CC etc)

Add the --external-clustering argument to add a CSV file of cluster definitions which the output will be ad-
ditionally labelled with, and output to database/database_external_clusters.csv. These can be any cluster
definitions you wish, with as many columns as you like. A header row is required:

sample,GPSC,MLST
23430_1_186,1,22
17794_6_29,23,43
12291_4_13,1,2

For each PopPUNK cluster, all the samples found in said cluster will be accumulated. From these accumulated samples
the external clusters will be collected, and assigned to all of these examples. This may give you a one-to-one mapping
between PopPUNK clusters and your external cluster, or you may find multiple external clusters refer to the PopPUNK
cluster giving output such as 227;811;763;824.

7.2.2 Using a model fitted with --indiv-refine

If the database was fitted with the refine fit mode, and indiv-refine you may have a core distance boundary, accessory
boundary and combined core-accessory boundary fit. The default is to use the combined boundary, to use the others
add --core-only or --accessory-only.

7.3 Increasing speed

Query assignment is the most efficient mode in which to run PopPUNK, typically requiring 𝑄 sketches and 𝑅𝑄 dis-
tances. If you are updating the database, this increases to 𝑄2+𝑅𝑄 distances. If you are assigning a very large number
of queries you can run poppunk_assign with --update-db repeatedly for batches of query input, as the 𝑄2 term
will be reduced by clique-pruning at each iteration.

Straightforward ways to increase speed include:

• Add --gpu-dist, if you have a GPU available.

• Add --gpu-sketch, if your input is all reads, and you have a GPU available. If your input is a mix of assemblies
and reads, run in two separate batches, with the batch of reads using this option.

• Increase --threads.

7.4 Updating the database

If you want to add your query genomes into the reference database so that they can be used to inform future cluster
assignment, this is as simple as adding the --update-db option to the command above. This is particularly useful
when novel query clusters have been found – they will then be the consistent name for future assignments:

poppunk_assign --db database --query qfile.txt \
--output poppunk_clusters --threads 8 --update-db

Graph-tools OpenMP parallelisation enabled: with 4 threads
PopPUNK (POPulation Partitioning Using Nucleotide Kmers)

(with backend: sketchlib v1.5.1
sketchlib: /Users/jlees/miniconda3/envs/pp-py38/lib/python3.8/site-packages/pp_

(continues on next page)

50 Chapter 7. Query assignment (poppunk_assign)

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

→˓sketchlib.cpython-38-darwin.so)
Mode: Assigning clusters of query sequences

Sketching 28 genomes using 4 thread(s)
Writing sketches to file
Calculating distances using 4 thread(s)
Loading BGMM 2D Gaussian model
Network loaded: 18 samples
Calculating all query-query distances
Could not find random match chances in database, calculating assuming equal base␣
→˓frequencies
Calculating distances using 4 thread(s)
Updating reference database to poppunk_clusters
Removing 27 sequences

Done

The new database contains all of the reference sequences, and all of your query sequences. The poppunk_clusters
folder will now contain all of the files of a reference database listed above, except for the model. You can use
--model-dir to target this for future assignment, or copy it over yourself. Alternatively, if you run with the same
--output folder as --ref-db, adding --overwrite, the original input folder will contain the updated database con-
taining everything needed.

Note: This mode can take longer to run with large numbers of input query genomes, as it will calculate all 𝑄2 query-
query distances, rather than just those found in novel query clusters.

7.5 Visualising results

If you wish to produce visualisations from query assignment results the best way to do this is to run with --update-db,
and then run poppunk_visualise on the output directory, as if visualising a full reference fit.

However, it is possible to run directly on the outputs by adding a --ref-db as used in the assign command, and
a --query-db which points to the --output directory used in the assign command. In this mode isolates will be
annotated depending on whether they were a query or reference input.

Warning: Without --update-db, visualisation is required to recalculate all query-query distances each time it is
called. If your query set is large and you want repeated visualisations, run poppunk_assign with --update-db.

See Creating visualisations for more details.

7.5. Visualising results 51

PopPUNK Documentation, Release 2.6.3

52 Chapter 7. Query assignment (poppunk_assign)

CHAPTER

EIGHT

CREATING VISUALISATIONS

We have moved visualisation tools into their own program poppunk_visualise, both to reinforce our commitment to
UK spellings, and so that you can rerun visualisations with different outputs and settings without rerunning the other
parts of the code.

Starting with either a full database where you have fitted a model (Fitting new models (--fit-model)), or output where
you have assigned queries using an existing database (Query assignment (poppunk_assign)), you can create outputs for
external interactive visualisation tools:

• Microreact – a genomic epidemiology visualisation tool, displaying clusters, phylogeny and accessory clustering.

• GrapeTree – a tool to visualise strains (designed for cgMLST).

• Phandango – visualisation linking genomes and phylogenies.

• Cytoscape – a network visualisation tool, which can be used to create, view and manipulate a layout of the graph.

At least one of these output types must be specified as a flag.

Important: If you run a visualisation on output from query assignment (Query assignment (poppunk_assign)) this
will not contain all the necessary distances, and they will be calculated before the visualisation files are produced.
You will see a message Note: Distance will be extended to full all-vs-all distances. If you are
running multiple visualisations this calculation will be completed every time. To avoid this re-run your assignment
with --update-db, which will add these distances in permanently.

8.1 Common options

Some typical commands for various input settings (with --microreact, but this can be altered to any output type)
with a database example.

Visualisation of a full database:

poppunk_visualise --ref-db example_db --output example_viz --microreact

Visualisation after query assignment:

poppunk_visualise --ref-db example_db --query-db example_query --output example_viz --
→˓microreact

Visualisation when sketches and models are in different folders:

53

https://microreact.org/
https://achtman-lab.github.io/GrapeTree/MSTree_holder.html
https://jameshadfield.github.io/phandango/#/
https://cytoscape.org/

PopPUNK Documentation, Release 2.6.3

poppunk_visualise --ref-db example_db --previous-clustering example_lineages/example_
→˓lineages_lineages.csv \
--model-dir example_lineages --output example_viz --microreact

Visualisation with a lineage model, which has been queried (query-query distances must be provided):

poppunk_visualise --distances example_query/example_query.dists --ref-db example_db \
--model-dir example_lineages --query-db example_lineage_query \
--output example_viz --microreact

Notable modifiers include:

• --include-files – give a file with a subset of names to be included in the visualisation.

• --external-clustering – other cluster names to map to strains (such as MLST, serotype etc), as described
in model fitting and query assignment.

• --info-csv – similar to the above, but a CSV which is simply (inner-)joined to the output on sample name.

• --rapidnj – the location of a rapidnj binary, used to build the core NJ tree. We highly recommend using this
for any tree-building (and is included with the conda install). This defaults to rapidnj on the PATH. Set blank
to use dendropy instead (slower, especially for large datasets).

• --core-only/--accessory-only – use the core or accessory fit from an individually refined model (see Using
core/accessory only).

• --threads, --gpu-dist, --deviceid, --strand-preserved – querying options used if extra distance cal-
culations are needed. To avoid these, rerun your query with --update-db.

8.2 Microreact

Adding the --microreact flag will create the following files:

• _microreact_clusters.csv – the strain or lineage assignments with headers formatted for microreact, plus anything
from --info-csv.

• _core_NJ.nwk – a neighbour-joining tree from the core distances.

• _perplexity20.0_accessory_mandrake.dot – a 2D embedding of the accessory distances, produced using man-
drake (in this case with Setting the perplexity parameter for mandrake 20).

From version 2.5.0 this will also include:

• .microreact – a Microreact compatible JSON containing all of the above, which
can be uploaded directly.

If you add --api-key and provide your account’s API key <https://docs.microreact.org/api/access-tokens>__ this
will automatically create an instance, and the URL will be output to the terminal.

Otherwise, open https://microreact.org/upload in your browser, and drag and drop these three files to create your visu-
alisation. Here is the result of running the visualisation on the Listeria BGMM model:

poppunk_visualise --ref-db listeria --microreact --threads 8

Graph-tools OpenMP parallelisation enabled: with 8 threads
PopPUNK: visualise
Loading BGMM 2D Gaussian model
Completed model loading

(continues on next page)

54 Chapter 8. Creating visualisations

https://birc.au.dk/software/rapidnj/
https://github.com/bacpop/mandrake
https://github.com/bacpop/mandrake
https://microreact.org/upload

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

Building phylogeny
Writing microreact output
Parsed data, now writing to CSV
Running mandrake
Running on CPU
Preprocessing 128 samples with perplexity = 20 took 0ms
Optimizing Progress: 99.9%, eta=0.0010, Eq=0.2583546852, clashes=2.1%
Optimizing done in 30s
Provide --api-key to create microreact automatically

Done

This can be viewed at https://microreact.org/project/3JAZKqzJiaNyViWXindNLv-listeria-poppunk-perplexity-20:

Useful controls include the tree shape, accessed with the control slider in the top right of the phylogeny page, and the
metadata labels, accessed with the ‘eye’ on the right of the page. When visualising lineages, changing the ‘Colour by’
is useful to compare results from different ranks.

8.2.1 Setting the perplexity parameter for mandrake

In mandrake an embedding of the accessory genome distances is found which represents local structure of the data.
Isolates with similar accessory content will visually appear in clusters together.

The perplexity sets a guess about the number of close neighbours each point has, and is a trade-off between local and
global structure. t-SNE (and by extension mandrake) is reasonably robust to changes in the perplexity parameter (set
with --perplexity when creating microreact output with --microreact), however we would recommend trying a
few values to get a good embedding for the accessory distances.

There is a good discussion of the effect of perplexity here and the sklearn documentation shows some examples of the
effect of changing perplexity. In mandrake, points will usually appear ‘tighter’ than in t-SNE, and form more obvious
clusters.

In the example with Listeria monocytogenes above, a perplexity of 20 gives clear clustering of the accessory genome
content, condordant with the core genome structure (data):

With a lower perplexity of 5, the clustering is not as tight, but it still looks ok (data):

8.2. Microreact 55

https://microreact.org/project/3JAZKqzJiaNyViWXindNLv-listeria-poppunk-perplexity-20
https://distill.pub/2016/misread-tsne/
http://scikit-learn.org/stable/auto_examples/manifold/plot_t_sne_perplexity.html
https://microreact.org/project/3JAZKqzJiaNyViWXindNLv-listeria-poppunk-perplexity-20
https://microreact.org/project/tXHmDR4NRfmTeemfjqbzip-listeria-poppunk-perplexity-5

PopPUNK Documentation, Release 2.6.3

30 is a good default, but you may wish to try other values, particularly with larger or smaller datasets. You can re-run
the mandrake using the poppunk_mandrake command, providing the distances from the previous run:

poppunk_mandrake --distances strain_db/strain_db.dists --output strain_db \
--perplexity 50

8.3 GrapeTree

Adding the --grapetree flag will create:

• _microreact_clusters.csv – the strain or lineage assignments with headers formatted for grapetree, plus anything
from --info-csv.

• _core_NJ.nwk – a neighbour-joining tree from the core distances.

Open https://achtman-lab.github.io/GrapeTree/MSTree_holder.html in your browser, and use the ‘Load files’ button
once for each of the files to add the tree and strain assignments to GrapeTree. This will display an unrooted tree with
your clusters:

56 Chapter 8. Creating visualisations

https://achtman-lab.github.io/GrapeTree/MSTree_holder.html

PopPUNK Documentation, Release 2.6.3

One of GrapeTree’s key features is the ability to collapse branches, and condense information into nodes. By going to
Tree Layout -> Branch style -> Collapse branches, and setting the long branch to be shortened, one can obtain a view
which shows strain prevalence and relationships:

There is also a handy ‘Export to Microreact’ button in GrapeTree, though this will not include the accessory embedding,
so you may wish to add the --microreact flag and generate the files yourself.

8.3. GrapeTree 57

PopPUNK Documentation, Release 2.6.3

8.4 Phandango

Adding the --phandango flag will create:

• _phandango_clusters.csv – the strain or lineage assignments with headers formatted for phandango, plus anything
from --info-csv.

• _core_NJ.tree – a neighbour-joining tree from the core distances.

Open https://www.phandango.net in your browser, and use the ‘Load files’ button once for each of the files to add the
tree and strain assignments to GrapeTree. This will display the tree with your clusters:

Press ‘s’ to access settings, and ‘p’ to create an .svg file. Phandango is most useful with a genome (.gff file), and either
a plot of recombination, accessory genome analysis or GWAS results. See the documentation for more information.

8.5 Cytoscape

Cytoscape is different from the above modes as it creates a layout and visualisation of the graph used to create strains
from distances. This can be useful for more detailed investigation of network scores, particularly in strains which have
less than perfect transitivity.

Add the --cytoscape option, and also --network-file to point to the network you wish to visualise:

poppunk_visualise --ref-db listeria --cytoscape --network-file listeria/listeria_graph.gt

Graph-tools OpenMP parallelisation enabled: with 1 threads
PopPUNK: visualise
Loading BGMM 2D Gaussian model
Writing cytoscape output
Network loaded: 128 samples
Parsed data, now writing to CSV

Done

Which will create:

58 Chapter 8. Creating visualisations

https://www.phandango.net

PopPUNK Documentation, Release 2.6.3

• _cytoscape.csv – the strain or lineage assignments with headers formatted for cytoscape, plus anything from
--info-csv.

• _cytoscape.graphml – the network in graphml format.

The .graphml file is an XML file which contains definitions of the nodes (samples) and edges (within-strain distances)
connecting them. If you used --graph-weights when you fitted your model the edges will be annotated with their
Euclidean distances in the ‘weight’ attribute (which you will need to tell cytoscape). These can be added with the
poppunk_add_weights script if this flag was not used.

Open cytoscape and drag and drop the .graphml file onto the window to import the network. Import -> table -> file to
load the CSV. Click ‘Select None’ then add the ‘id’ column as a key, and any required metadata columns (at least the
‘Cluster’ column) as attributes. Make sure ‘Node Table Columns’ is selected as the data type.

The graphml file does not contain a layout for the graph, that is, positions of nodes and edges are not specified for a
visualisation. These will be calculated by cytoscape, automatically for small graphs, and with the ‘Layout’ menu for
larger graphs. The ‘Prefuse force directed layout’ or ‘yFiles Organic Layout’ work well. Select the ‘weight’ dropdown
to use the edge-lengths when drawing the network.

Warning: We have found that making graphs with >10k nodes may exceed the memory on a typical laptop. To
view larger graphs, first splitting into subgraphs of each connected component is very helpful. Older versions of
cytoscape allowed you to split the graph into connected components, but newer versions have removed this feature.
This can be done programmatically with networkx or graph-tool in python, or igraph in R.

Click on ‘Style’ and change the node fill colour to be by cluster, the mapping type as discrete, then right click to
autogenerate a colour scheme (‘Random’ is usually best). You can also modify the node size and shape here. Here is
the Listeria example, using edge weights in the layout:

If you used assign query mode you will also have a column with ‘Query’ or ‘Reference’, which can be used to map to
different shapes or colours:

8.5. Cytoscape 59

http://www.cytoscape.org/

PopPUNK Documentation, Release 2.6.3

Adding an info CSV, or loading external tables directly into cytoscapes gives further options for investigating individual
strains:

In some cases, edges which are between strain links may have been erroneously included in the network. This could
be due to poor model fit, or a poor quality sequence. Use Tools -> NetworkAnalyzer -> Analyze Network to compute

60 Chapter 8. Creating visualisations

PopPUNK Documentation, Release 2.6.3

information for each node and edge. It may help to analyze connected components separately. They can be split under
Tools -> NetworkAnalyzer -> Subnetwork Creation.

Here is an example where an errant node is connecting two clusters into one large cluster, which should be split:

The incorrect node in question has a low CluteringCoefficient and high Stress. The EdgeBetweeness of its connections
are also high. Sorting the node and edge tables by these columns can find individual problems such as this.

8.5. Cytoscape 61

PopPUNK Documentation, Release 2.6.3

62 Chapter 8. Creating visualisations

CHAPTER

NINE

MINIMUM SPANNING TREES

Using the distances and a network, you can generate a minimum spanning tree. This can be useful when a neigbour
joining tree is difficult to produce, for example if the dataset is very large, and in some cases has uses in tracing spread
(take care with this interpretation, direction is not usually obvious).

There are three different ways to make MSTs, depending on how much data you have. Roughly:

• ‘Small’: Up to ∼ 103 samples.

• ‘Medium’: Up to ∼ 105 samples.

• ‘Large’: Over 105 samples.

In each mode, you can get as output:

• A plot of the MST as a graph layout, optionally coloured by strain.

• A plot of the MST as a graph layout, highlighting edge betweenness and node degree.

• The graph as a graphml file, to view in Cytoscape.

• The MST formatted as a newick file, to view in a tree viewer of your choice.

9.1 With small data

For a small dataset it’s feasible to find the MST from your (dense) distance matrix. In this case you can use Creating
visualisations with the --tree option: use --tree both to make both a MST and NJ tree, or --tree mst to just
make the MST:

poppunk_visualise --ref-db listeria --tree both --microreact --output dense_mst_viz

Graph-tools OpenMP parallelisation enabled: with 1 threads
PopPUNK: visualise
Loading BGMM 2D Gaussian model
Completed model loading
Generating MST from dense distances (may be slow)
Starting calculation of minimum-spanning tree
Completed calculation of minimum-spanning tree
Drawing MST
Building phylogeny
Writing microreact output
Parsed data, now writing to CSV
Running t-SNE

Done

63

PopPUNK Documentation, Release 2.6.3

Note the warning about using dense distances. If you are waiting a long time at this point, or running into memory
issues, considering using one of the approaches below.

Note: The default in this modeis to use core distances, but you can use accessory or Euclidean core-accessory distances
by modifying --mst-distances.

This will produce a file listeria_MST.nwk which can be loaded into Microreact, Grapetree or Phandango (or other
tree viewing programs). If you run with --cytoscape, the .graphml file of the MST will be saved instead.

You will also get two visualisations of a force-directed graph layout:

Fig. 1: MST coloured by strain Fig. 2: MST coloured by betweenness

The left plot colours nodes (samples) by their strain, with the colour selected at random. The right plot colours and
sizes nodes by degree, and edges colour and width is set by their betweenness.

9.2 With medium data

As the number of edges in a dense network will grow as 𝑂(𝑁2), you will likely find that as sample numbers grow
creating these visualisations becomes prohibitive in terms of both memory and CPU time required. To get around this,
you can first sparisfy your distance matrix before computing the MST. The lineage mode does exactly this: keeping
only a specified number of nearest neighbours for each sample.

Therefore, there are two steps to this process:

• Fit a lineage model to your data, using a high rank.

64 Chapter 9. Minimum spanning trees

PopPUNK Documentation, Release 2.6.3

• Use poppunk_mst to make the MST from the sparse matrix saved by this mode.

As an example, two commands might be:

poppunk --fit-model lineage --ref-db listeria_all --ranks 50 --threads 4 --output sparse_
→˓mst

poppunk_visualise --ref-db listeria --tree both --microreact \
--rank-fit sparse_mst/sparse_mst_rank50_fit.npz --output sparse_mst_viz --threads 4

Ideally you should pick a rank which is large enough to join all of the components together. If you don’t, components
will be artificially connected by nodes with the largest degree, at the largest included distance. Look for components
to be one:

Network for rank 100
Network summary:

Components 1
Density 0.3252
Transitivity 0.5740
Score 0.3873

This will produce a <name>_rank100_fit.npz file, which is the sparse matrix to load. You will also need your dense
distances, but only the .pkl file is loaded to label the samples. --previous-clustering is optional, and points to
any .csv output from PopPUNK. Note that the clusters produced from your high rank fit are likely to be meaningless,
so use clusters from a fit you are happy with. These are combined to give samples coloured by strain in the first plot:

Fig. 3: MST from a sparse matrix, coloured by strain Fig. 4: MST from a sparse matrix, coloured by between-
ness

9.3 With big data

For very large datasets, producing a dense distance matrix at all may become totally infeasible. Fortunately, it is possible
to add to the sparse matrix iteratively by making a lineage fit to a subset of your data, and then repeatedly adding in
blocks with poppunk_assign and --update-db:

poppunk --create-db --r-files qfile1.txt --output listeria_1
poppunk --fit-model lineage --ref-db listeria_1 --ranks 500 --threads 16

(continues on next page)

9.3. With big data 65

PopPUNK Documentation, Release 2.6.3

(continued from previous page)

poppunk_assign --ref-db listeria_1 --q-files qfile2.txt --output listeria_1 --threads 16␣
→˓--update-db
poppunk_assign --ref-db listeria_1 --q-files qfile3.txt --output listeria_1 --threads 16␣
→˓--update-db

This will calculate all vs. all distances, but many of them will be discarded at each stage, controlling the total memory
required. The manner in which the sparse matrix grows is predictable: 𝑁𝑘 + 2𝑁𝑄 + 𝑄2 − 𝑄 distances are saved at
each step, where 𝑁 is the number of references, 𝑄 is the number of requires queries and 𝑘 is the rank.

If you split the samples into roughly equally sized blocks of 𝑄 samples, the 𝑄2 terms dominate. So you can pick 𝑄
such that ∼ 3𝑄2 distances can be stored (each distance uses four bytes). The final distance matrix will contain 𝑁𝑘
distances, so you can choose a rank such that this will fit in memory.

You may then follow the process described above to use poppunk_visualise to generate an MST from your .npz
file after updating the database multiple times.

9.3.1 Using GPU acceleration for the graph

As an extra optimisation, you may add --gpu-graph to use cuGraph from the RAPIDS library to calculate the MST
on a GPU:

poppunk_visualise --ref-db listeria --tree both --rank-fit sparse_mst/sparse_mst_rank50_
→˓fit.npz\
--microreact --output sparse_mst_viz --threads 4 --gpu-graph

Graph-tools OpenMP parallelisation enabled: with 1 threads
Loading distances into graph
Calculating MST (GPU part)
Label prop iterations: 6
Label prop iterations: 5
Label prop iterations: 5
Label prop iterations: 4
Label prop iterations: 2
Iterations: 5
12453,65,126,13,283,660
Calculating MST (CPU part)
Completed calculation of minimum-spanning tree
Generating output
Drawing MST

This uses cuDF to load the sparse matrix (network edges) into the device, and cuGraph to do the MST calculation.
At the end, this is converted back into graph-tool format for drawing and output. Note that this process incurs some
overhead, so will likely only be faster for very large graphs where calculating the MST on a CPU is slow.

To turn off the graph layout and drawing for massive networks, you can use --no-plot.

Important: The RAPIDS packages are not included in the default PopPUNK installation, as they are in non-standard
conda channels. To install these packages, see the guide.

66 Chapter 9. Minimum spanning trees

https://docs.rapids.ai/api
https://docs.rapids.ai/api/cudf/stable/
https://rapids.ai/start.html#get-rapids

CHAPTER

TEN

SUBCLUSTERING WITH POPPIPE

10.1 Overview

You can run PopPIPE on your PopPUNK output, which will run subclustering and visualisation within your strains.
The pipeline consists of the following steps:

• Split files into their strains.

• Calculate core and accessory distances within each strain.

• Use the core distances to make a neighbour-joining tree.

• (lineage_clust mode) Generate clusters from core distances with lineage clustering in PopPUNK.

• Use ska to generate within-strain alignments.

• Use IQ-TREE to generate an ML phylogeny for each strain using this alignment, and the NJ tree as a starting
point.

• Use fastbaps to generate subclusters which are partitions of the phylogeny.

• Create an overall visualisation with both core and accessory distances, as in PopPUNK. The final tree consists
of refining the NJ tree by grafting the maximum likelihood trees for subclusters to their matching nodes.

An example DAG for the steps (excluding ska index, for which there is one per sample):

67

https://github.com/johnlees/PopPIPE
https://github.com/simonrharris/SKA
http://www.iqtree.org/
https://github.com/gtonkinhill/fastbaps

PopPUNK Documentation, Release 2.6.3

10.2 Installation

PopPIPE is a snakemake pipeline, which depends upon snakemake and pandas:

conda install snakemake pandas

Other dependencies will be automatically installed by conda the first time you run the pipeline. You can also install
them yourself and omit the -use-conda directive to snakemake:

conda env create -n poppipe --file=environment.yml

Then clone the repository:

git clone git@github.com:johnlees/PopPIPE.git

10.3 Usage

1. Modify config.yml as appropriate.

2. Run snakemake --cores <n_cores> --use-conda.

On a cluster or the cloud, you can use snakemake’s built-in --cluster argument:

snakemake --cluster qsub -j 16 --use-conda

See the snakemake docs for more information on your cluster/cloud provider.

10.3.1 Alternative runs

For quick and dirty clustering and phylogenies using core distances from pp-sketchlib alone, run:

snakemake --cores <n_cores> --use-conda lineage_clust

To create a visualisation on microreact:

snakemake –use-conda make_microreact

10.4 Config file

10.4.1 PopPIPE configuration

• script_location: The scripts/ directory, if not running from the root of this repository

• poppunk_db: The PopPUNK HDF5 database file, without the .h5 suffix.

• poppunk_clusters: The PopPUNK cluster CSV file, usually poppunk_db/poppunk_db_clusters.csv.

• poppunk_rfile: The --rfile used with PopPUNK, which lists sample names and files, one per line, tab
separated.

• min_cluster_size: The minimum size of a cluster to run the analysis on (recommended at least 6).

68 Chapter 10. Subclustering with PopPIPE

https://snakemake.readthedocs.io/en/stable/
https://snakemake.readthedocs.io/en/stable/executing/cluster-cloud.html)
https://github.com/johnlees/pp-sketchlib
https://microreact.org/

PopPUNK Documentation, Release 2.6.3

10.4.2 IQ-TREE configuration

• enabled: Set to false to turn off ML tree generation, and use the NJ tree throughout.

• mode: Set to full to run with the specified model, set to fast to run using --fast (like fasttree).

• model: A string for the -m parameter describing the model. Adding +ASC is recommended.

10.4.3 fastbaps configuration

• levels: Number of levels of recursive subclustering.

• script: Location of the run_fastbaps script. Find by running system.file("run_fastbaps", package
= "fastbaps") in R.

10.5 Updating a run

Running snakemake from the same directory will keep outputs where possible, so new additions will automatically be
included.

TODO: How to do this when adding new isolates with poppunk_assign

10.5. Updating a run 69

PopPUNK Documentation, Release 2.6.3

70 Chapter 10. Subclustering with PopPIPE

CHAPTER

ELEVEN

USING GPUS

PopPUNK can use GPU acceleration of sketching (only when using sequence reads), distance calculation, network
construction and some aspects of visualisation. Installing and configuring the required packages necessitates some
extra steps, outlined below.

11.1 Installing GPU packages

To use GPU acceleration, PopPUNK uses cupy, numba and the cudatoolkit packages from RAPIDS. Both cupy
and numba can be installed as standard packages using conda. The cudatoolkit packages need to be matched to
your CUDA version. The command nvidia-smi can be used to find the supported CUDA version. Installation of
the cudatoolkit with conda (or the faster conda alternative, mamba) should be guided by the RAPIDS guide. This
information will enable the installation of PopPUNK into a clean conda environment with a command such as (modify
the CUDA_VERSION variable as appropriate):

export CUDA_VERSION=11.3
conda create -n poppunk_gpu -c rapidsai -c nvidia -c conda-forge \
-c bioconda -c defaults rapids>=22.12 python=3.8 cudatoolkit=$CUDA_VERSION \
pp-sketchlib>=2.0.1 poppunk>=2.6.0 networkx cupy numba
conda activate poppunk_gpu

The version of pp-sketchlib on conda only supports some GPUs. A more general approach is to install from source.
This requires the installation of extra packages needed for building packages from source. Additionally, it is sometimes
necessary to install versions of the CUDA compiler (cuda-nvcc) and runtime API (cuda-cudart) that match the
CUDA version. Although conda can be used, creating such a complex environment can be slow, and therefore we
recommend mamba as a faster alternative:

export CUDA_VERSION=11.3
mamba create -n poppunk_gpu -c rapidsai -c nvidia -c conda-forge \
-c bioconda -c defaults rapids=22.12 python>=3.8 cudatoolkit=$CUDA_VERSION \
cuda-nvcc=$CUDA_VERSION cuda-cudart=$CUDA_VERSION networkx cupy numba cmake \
pybind11 highfive Eigen openblas libgomp libgfortran-ng poppunk>=2.6.0

Note: On OSX replace libgomp libgfortan-ng with llvm-openmp gfortran_impl_osx-64, and remove
libgomp from environment.yml.

Clone the sketchlib repository:

git clone https://github.com/bacpop/pp-sketchlib.git
cd pp-sketchlib

71

https://stackoverflow.com/questions/53422407/different-cuda-versions-shown-by-nvcc-and-nvidia-smi
https://mamba.readthedocs.io/en/latest/installation.html
https://rapids.ai/start.html#get-rapids

PopPUNK Documentation, Release 2.6.3

To correctly build pp-sketchlib, the GPU architecture needs to be correctly specified. The nvidia-smi com-
mand can be used to display the GPUs available to you. This can be used to identify the corresponding com-
pute version needed for compilation (typically of the form sm_*) using this guide or the more limited table be-
low. Edit the CMakeLists.txt if necessary to change the compute version to that used by your GPU. See the
CMAKE_CUDA_COMPILER_VERSION section.

Table 1: GPU compute versions

GPU Compute version
20xx series 75
30xx series 86
40xx series 89
V100 70
A100 80
A5000 86
H100 90

The conda-installed version of pp-sketchlib can then be removed with the command:

conda remove --force pp-sketchlib

Then run:

python setup.py install

You should see a message that the CUDA compiler is found, in which case the compilation and installation of sketchlib
will include GPU components:

-- Looking for a CUDA compiler
-- Looking for a CUDA compiler - /usr/local/cuda-11.1/bin/nvcc
-- CUDA found, compiling both GPU and CPU code
-- The CUDA compiler identification is NVIDIA 11.1.105
-- Detecting CUDA compiler ABI info
-- Detecting CUDA compiler ABI info - done
-- Check for working CUDA compiler: /usr/local/cuda-11.1/bin/nvcc - skipped
-- Detecting CUDA compile features
-- Detecting CUDA compile features - done

You can confirm that your custom installation of sketchlib is being used by checking the location of sketchlib library
reported by popppunk points to your python site-packages, rather than the conda version.

11.2 Selecting a GPU

A single GPU will be selected on systems where multiple devices are available. For sketching and distance calculations,
this can be specified by the --deviceid flag. Alternatively, all GPU-enabled functions will used device 0 by default.
Any GPU can be set to device 0 using the system CUDA_VISIBLE_DEVICES variable, which can be set before running
PopPUNK; e.g. to use GPU device 1:

export CUDA_VISIBLE_DEVICES=1

72 Chapter 11. Using GPUs

https://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
https://github.com/johnlees/pp-sketchlib/blob/master/CMakeLists.txt#L65-L68
https://github.com/johnlees/pp-sketchlib/blob/master/CMakeLists.txt#L65-L68

PopPUNK Documentation, Release 2.6.3

11.3 Using a GPU

By default, PopPUNK will use not use GPUs. To use them, you will need to add the flag --gpu-sketch (when con-
structing or querying a database using reads), --gpu-dist (when constructing or querying a database from assemblies
or reads), or --gpu-graph (when querying or visualising a database, or fitting a model).

11.3. Using a GPU 73

PopPUNK Documentation, Release 2.6.3

74 Chapter 11. Using GPUs

CHAPTER

TWELVE

TROUBLESHOOTING

This page deals with common issues in running the analysis. For issues with installing or running the software please
raise an issue on github.

12.1 Most/all of my samples merge when I run a query

If you see a gigantic merge when running poppunk_assign, for example:

Clusters 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 have merged into 1_2_3_4_5_6_7_8_9_10_11_
→˓12_13_14_15_16

This might be caused by:

• A single/a few ‘bad’ genome(s) with artificial zero/close-to-zero distances to many other samples, which links
much of the network together.

• A boundary which is actually a bit lax, and when more isolates are added, they have distances just below the
boundary between a few clusters, and there are enough of these to link more and more clusters together.

The first issue should be easy to fix with one of the following methods:

• Use --run-qc (see Data quality control (--qc-db)) with one or more of:

– --max-pi-dist and/or --max-a-dist to remove outlier distances.

– --max-zero-dist which sets the maximum proportion of zeros to other samples. Poor quality genomes
often end up with zero distances to many samples, linking them together.

– --max-merge which sets the maximum number of clusters a single query can cause to merge.

– --betweenness which will print all queries in order which have high stress in the network, and are likely
causing merges.

• Use --serial to run samples through one-by-one. This is a little less efficient than fully batched querying, but
much faster than running independent jobs. Note, lineage models and updating the database are not supported
with this mode.

The second issue above is potentially more insidiuous, and may require a refit to all the data to obtain a tighter boundary.
You can (mostly) keep old cluster IDs via the use of --external-clustering if you do this. Alternatively, you can
add the --serial command to type samples one at a time as above.

See issue 194 for more discussion.

75

https://github.com/bacpop/PopPUNK/issues/194

PopPUNK Documentation, Release 2.6.3

12.2 Memory/run-time issues

Here are some tips based on experiences analysing larger datasets:

• Add --threads – they are used fairly efficiently throughout.

• Consider the --gpu-sketch and --gpu-dists options is applicable, and a GPU is available.

• In --refine-model set --pos-shift 0 to avoid creating huge networks with close to 𝑁2 edges. Mixture
models normally need to be pruned.

• In --refine-model you may add the --no-local option to skip that step and decrease run-time, though gains
are likely marginal.

• Use --rapid-nj, if producing microreact output.

Another option for scaling is to run --create-db with a smaller initial set (not using the --full-db command), then
use --assign-query to add to this.

12.3 Known bugs

12.3.1 Calculating query-query distances when unnecessary

A bug in v2.4.0 only, (fixed in v2.5.0 and not in previous versions).

You will always see Found novel query clusters. Calculating distances between them. when running
poppunk_assign with more than one input sample. This should only happen when unassigned isolates/novel clusters
are found. Our check on this condition became invalid.

Additionally, this may have affected typing when query-query links were present, this appeared as invalid merges in
some tests. If you used this, you may wish to re-run with v2.5.0 or higher.

12.3.2 Older HDBSCAN models fail to load

tl;dr if you see an error ModuleNotFoundError: No module named 'sklearn.neighbors._dist_metrics'
you probably need to downgrade sklearn to v0.24.

The change in scikit-learn’s API in v1.0.0 and above mean that HDBSCAN models fitted with `sklearn <=v0.24`
will give an error when loaded. If you run into this, the solution is one of: - Downgrade sklearn to v0.24. - Run
model refinement to turn your model into a boundary model instead (this will change clusters). - Refit your model in
an environment with `sklearn >=v1.0.

If this is a common problem let us know, as we could write a script to ‘upgrade’ HDBSCAN models. See issue
[#213](https://github.com/bacpop/PopPUNK/issues/213) for more details.

76 Chapter 12. Troubleshooting

https://github.com/bacpop/PopPUNK/issues/213

PopPUNK Documentation, Release 2.6.3

12.3.3 When I look at my clusters on a tree, they make no sense

This is a bug caused by alphabetic sorting of labels in PopPUNK >=v2.0.0 with pp-sketchlib <v1.5.1. There are
three ways to fix this:

• Upgrade to PopPUNK >=v2.2 and pp-sketchlib >=v1.5.1 (preferred).

• Run scripts/poppunk_pickle_fix.py on your .dists.pkl file and re-run model fits.

• Create the database with poppunk_sketch --sketch and poppunk_sketch --query directly, rather than
PopPUNK --create-db.

12.3.4 I have updated PopPUNK, and my clusters still seemed scrambled

This is possible using query assignment with --update-db, or in some cases with --gpu-dists. Please update to
PopPUNK >=v2.4.0 with pp-sketchlib >=v1.7.0

12.3.5 Calculating distances using 0 thread(s)

This will lead to an error later on in execution. This is due to a version mismatch between PopPUNK and
pp-sketchlib. Installation of both packages via conda should keep the versions compatible, but there are ways
they can get out of sync.

The solution is as above: upgrade to PopPUNK >=v2.2 and pp-sketchlib >=v1.5.1.

12.4 Error/warning messages

12.4.1 Row name mismatch

PopPUNK may throw:

RuntimeError: Row name mismatch. Old: 6999_2#17.fa,6259_5#6.fa
New: 6952_7#16.fa,6259_5#6.fa

This is an error where the mash output order does not match the order in stored databases (.pkl). Most likely, the input
files are from different runs, possibly due to using --overwrite. Run again, giving each step its own output directory.

12.4.2 Samples are missing from the final network

When running --assign-query an error such as:

WARNING: Samples 7553_5#54.fa,6999_5#1.fa are missing from the final network

Means that samples present in --distances and or --ref-db are not present in the loaded network. This should be
considered an error as it will likely lead to other errors and warnings. Make sure the provided network is the one created
by applying the --model-dir to --distances, and that the same output directory has not been used and overwriten
by different steps or inputs.

12.4. Error/warning messages 77

PopPUNK Documentation, Release 2.6.3

12.4.3 Old cluster split across multiple new clusters

When running --assign-query, after distances have been calculated and queries are being assigned warnings such
as:

WARNING: Old cluster 1 split across multiple new clusters

Mean that a single cluster in the original clustering is now split into more than one cluster. This means something has
gone wrong, as the addition of new queries should only be able to merge existing clusters, not cause them to split.

Most likely, the --previous-clustering directory is inconsistent with the --ref-db and/or --model-dir. Make
sure the clusters are those created from the network being used to assign new queries.

If you want to change cluster names or assign queries to your own cluster definitions you can use the
--external-clustering argument instead.

78 Chapter 12. Troubleshooting

CHAPTER

THIRTEEN

SCRIPTS

Brief documentation on the helper scripts included in the package in the /scripts directory. To use these scripts you
will need to have a clone of the git repository, or they should also be installed with the prefix ‘poppunk’ (e.g to run
extract_distances.py, run the command poppunk_extract_distances.py).

13.1 Easy run mode

Previous versions of the software had an --easy-run mode which would run a pipeline of:

• --create-db to sketch genomes

• --fit-model --dbscan to fit a flexible model

• --refine-model to improve this model

This is now available as poppunk_easy_run.py which will chain calls to poppunk and poppunk_visualise to
replicate this functionality.

13.2 Iterative PopPUNK

You can combine the output from multiple to produce further analysis. For an easy way to create multiple clusters, try
the --multi-boundary option (Running with multiple boundary positions).

The script to analyse these is poppunk_iterate.py. Basic use is to provide the output directory as --db, but run
--help for other common options. This relies on finding files named <db>/<db>_boundary<n>_clusters.csv,
where <n> is the boundary iteration number (continuous integers increasing from zero). Clusters must contain at least
two samples.

This script will do the following:

1. Starting from the most specific clusters (nearest the origin), it will iteratively add new clusters which are either:

a) totally new clusters

b) subsets of existing clusters

c) existing clusters are subsets of the new cluster.

2. Remove duplicate clusters.

3. Calculate average core distance within this cluster set.

4. Create a tree by nesting smaller clusters within larger clusters they are subsets of.

5. Output the combined clusters, average core distances, and tree.

79

PopPUNK Documentation, Release 2.6.3

6. Cut this tree to pick a set of clusters under a similarity given by --cutoff.

13.3 Adding weights to the network

Converts binary within-cluster edge weights to the Euclidean core-accessory distance. This is equivalent to running
with --graph-weights:

poppunk_add_weights <name>_graph.gt <name>.dists <output>

Default output is a graph-tool file. Add --graphml to save as .graphml instead.

13.4 Writing the pairwise distances to an output file

By default PopPUNK does not write the calculated 𝜋𝑛 and 𝑎 distances out, as this contains 1
2𝑛 * (𝑛− 1) rows, which

gives a multi Gb file for large datasets.

However, if needed, there is a script available to extract these distances as a text file:

poppunk_extract_distances.py --distances strain_db.dists --output strain_db.dists.out

13.5 Writing network components to an output file

Visualisation of large networks with cytoscape may become challenging. It is possible to extract individual compo-
nents/clusters for visualisation as follows:

poppunk_extract_components.py strain_db_graph.gpickle strain_db

13.6 Calculating Rand indices

This script allows the clusters formed by different runs/fits/modes of PopPUNK to be compared to each other. 0
indicates the clusterings are totally discordant, and 1 indicates they are identical.

Run:

poppunk_calculate_rand_indices.py --input poppunk_gmm_clusters.csv,poppunk_dbscan_
→˓cluster.csv

The script will calculate the Rand index and the adjusted Rand index between all pairs of files provided (comma sepa-
rated) to the --input argument. These will be written to the file rand.out, which can be changed using --output.

The --subset argument can be used to restrict comparisons to include only specific samples listed in the provided
file.

80 Chapter 13. Scripts

https://en.wikipedia.org/wiki/Rand_index#Rand_index
https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index

PopPUNK Documentation, Release 2.6.3

13.7 Calculating silhouette indices

This script can be used to find how well the clusters project into core-accessory space by calculating the silhoutte index,
which measures how close samples are to others in their own cluster compared to samples from other clusters. The
silhoutte index is calculated for every sample and takes a value between -1 (poorly matched) to +1 (well matched). The
script reports the average of these indices across all samples, using Euclidean distances between the (normalised) core
and accessory divergences calculated by PopPUNK.

To run:

poppunk_calculate_silhouette.py --distances strain_db.dists --cluster-csv strain_db_
→˓clusters.csv

The following additional options are available for use with external clusterings (e.g. from hierBAPS):

• --cluster-col the (1-indexed) column index containing the cluster assignment

• --id-col the (1-indexed) column index containing the sample names

• --sub a string to remove from sample names to match them to those in --distances

13.8 Distributing PopPUNK models

This script automatically generates compressed and uncompressed directories containing all files required for distribu-
tion and reuse of PopPUNK model fits.

To run:

python poppunk_distribute_fit.py --dbdir database_directory --fitdir model_fit_directory␣
→˓--outpref output_prefix

The following additional arguments are available:

• --lineage specify only if lineage fit was used.

• --no-compress will not generate tar.bz2 archives

--dbdir and --fitdir can be the same directory, however both must still be specified. The output of this script is a
directory and a compressed tar.bz2 archive for each of the full dataset and representative genomes dataset.

13.7. Calculating silhouette indices 81

https://en.wikipedia.org/wiki/Silhouette_(clustering)

PopPUNK Documentation, Release 2.6.3

82 Chapter 13. Scripts

CHAPTER

FOURTEEN

ITERATIVE POPPUNK

14.1 Running with multiple boundary positions

To create clusters at equally spaced positions across the refinement range, add the --multi-boundary <n> argument,
with the number of positions specified by <n>. This will create up to <n> sets of clusters, with boundaries equally
spaced between the origin and the refined boundary position.

Trivial cluster sets, where every sample is in its own cluster, will be excluded, so the final number of clusters may be less
than <n>. The script to analyse these is poppunk_iterate.py. Basic usage is to provide the output directory as --db,
but run --help for other common options. This replies on finding files named <db>/<db>_boundary<n>_clusters.
csv, where <n> is the boundary iteration number (continuous integers increasing from zero). Clusters must contain at
least two samples.

The poppunk_iterate.py script performs the following steps:

1. Starting from the most specific clusters (nearest the origin), it will iteratively add new clusters which are either:

a. Total new clusters

b. Subsets of existing clusters

c. Existing clusters are subset of the new cluster.

2. Remove duplicate clusters.

3. Calculate average core distance within this cluster set.

4. Create a tree by nesting smaller clusters within larger clusters whey are subsets of.

5. Output the combined clusters, average core distances, and tree.

6. Cut this tree to pick a set of clusters under a similarity given by a --cutoff.

14.2 Step-by-Step Tutorial

Step 1: Sketching (–create-db)

First, use poppunk --create-db to sketch input data and calculate distances between samples. For the details, refer
to Sketching (--create-db). To run this, using the following command:

poppunk --create-db --r-files rlist.txt --output <database> --threads 8

Step 2: Initial model fitting (–fit-model)

83

PopPUNK Documentation, Release 2.6.3

In iterative-PopPUNK, a universal model recommended for fitting the initial model is GMM with 2 or 3 components
(K=2 or K=3), because more datasets can be analysed using this setting (DBSCAN fits sometimes fail to coverage). The
details for model fitting can be found in Fitting new models (--fit-model). To run this, using the following command:

poppunk --fit-model bgmm --K 2 --ref-db <database> --output <database> --threads 16

Step 3: Multi-level clustering by moving decision boundary iteratively (–fit-model refine –multi-boundary)

After fitting the initial model with GMM (with 2 or 3 components), refine it by moving the decision boundary to
multiple positions between the origin and the combined decision boundary using the --multi-boundary option. To
expand within-strain component, use --neg-shift. Details can be found in Fitting new models (--fit-model) (the
refine section). To run this, use the following command:

poppunk --fit-model refine --multi-boundary 30 --ref-db <database> --output <database> --
→˓threads 16

Step 4: Choosing clusters under given similarity cutoffs (poppunk_iterate.py)

With <n> sets of clusters created in Step 3, poppunk_iterate.py is used to assemble a hierarchical tree of iterative-
PopPUNK clusters, while also calculating the average core distance within each cluster set. To run this step, use the
following command:

poppunk_iterate.py --db <database> --cutoff 0.2 --output <prefix> --cpus 16

Outputs:

• <prefix>_iterate.tree.nwk: this is the hierarchical tree of iterative-PopPUNK clusters.

• <prefix>_iterate.clusters.csv: this file contains all cluster sets from <n> positions, along with their corresponding
average core distances.

• <prefix>_iterative.cutoff_clusters.csv: this file contains a single set of clusters that meets a specified similarity
cutoff.

Note: We recommend using same name for <database> as in steps 1-3 (--ref-db and --output) to save the outputs
from each step in a same folder

14.3 Examples

The following example demonstrate how to use iterative-PopPUNK with 500 E.coli representative genomes from
Horesh et al. 2021. You can download the genomes at https://doi.org/10.6084/m9.figshare.13270073.

Step 1:

paste <(ls *fa) <(ls *fa) > rlist.txt
poppunk --create-db --r-files rlist.txt --output ecoli --threads 16

This will create a PopPUNK database named “ecoli” by sketching the input genomes using 16 threads. The program
will calculate random match chances using Monte Carlo and calculate distances using 16 threads. Once complete, the
sketches will be written to a local file.

Step 2

Next, fit a Bayesian Gaussian Mixture Model (bgmm) to reference database using the following commands:

84 Chapter 14. Iterative PopPUNK

https://doi.org/10.1099/mgen.0.000499
https://doi.org/10.6084/m9.figshare.13270073

PopPUNK Documentation, Release 2.6.3

poppunk --fit-model bgmm --K 2 --ref-db ecoli --output ecoli --threads 16

This will fit the bgmm model to the ecoli database, assign distances with the model, and summarize the fit. The
output will include the scaled component means and network summary.

Step 3

After fitting the bgmm model, refine the model using the following commands:

poppunk --fit-model refine --ref-db ecoli --output ecoli --multi-boundary 30 --threads 16

This will load the previous bgmm model, construct an initial model-based network, and optimize the score globally. The
program will then create multiple boundary fits and summarize the network. The output will include the components,
density, transitivity, mean betweenness, weighted-mean betweenness, score, score with betweenness and score with
weighted-betweenness.

Step 4

Finally, run poppunk_iterate.py with the following command to iterate over the PopPUNK analysis:

poppunk_iterate.py --db ecoli --cpus 16 --cutoff 0.2 --output 0.2_ecoli

This will run iteraive-PopPUNK with a cutoff 0.2 and output the results to files with prefix 0.2_ecoli.

14.4 Common questions

1. How can I use Iterative-PopPUNK to achieve sublineage clustering from a large outbreak dataset?

To demonstrate how to achieve multi-level clustering from a large outbreak setting using Iterative-PopPUNK, we will
use another example dataset consisting of 2,640 pathogenic Vibrio parahaemolyticus genomes from Yang et al. 2022.

Step 1: Creating a PopPUNK database

First, we need to create a reference database and fit a PopPUNK model using the following commands:

paste <(ls *fa) <(ls *fa) > rlist.txt
poppunk --create-db --r-files rlist.txt --output VP --threads 16
poppunk --fit-model bgmm --K 2 --ref-db VP --output VP --threads 16
poppunk --fit-model refine --ref-db VP --output VP --multi-boundary 30 --threads 16 --
→˓neg-shift -1
poppunk_iterate.py --db VP --cpus 16 --cutoff 0.5 --output 0.5_VP

After running Step 1, iterative-PopPUNK produces a result file 0.5_iterative.cutoff_clusters.csv, which
gives 9 PopPUNK clusters exactly corresponding to 9 clonal groups described in Yang et al. 2022.

Note: For closely related genomes (e.g. genomes within clonal group), we need to increase the sketch size for more
precise distance calculation. In this example, we increase the sketching size to 100000. For more information, please
refer to sketching section for details

Step 2: Sublineage clustering for clonal groups

Next, we extract the clonal groups estimated by Iterative-PoPUNK in Step 1 and run Iterative-PopPUNK again for
sublineage clustering. For example, we use the two largest clonal groups estimated in Step 1 for downstream analysis.

Sublineage clustering for clonal group CG3:

14.4. Common questions 85

https://doi.org/10.1038/s41564-022-01182-0

PopPUNK Documentation, Release 2.6.3

poppunk --create-db --r-files cg3_rlist.txt --output VP_cg3 --threads 16 --sketch-size␣
→˓100000
poppunk --fit-model bgmm --K 2 --ref-db VP_cg3 --output VP_cg3 --threads 16
poppunk --fit-model refine --ref-db VP_cg3 --output VP_cg3 --multi-boundary 30 --threads␣
→˓16
poppunk_iterate.py --db VP --cpus 16 --cutoff 0.4 --output 0.4_VP_cg3

Sublineage clustering for clonal group CG189:

poppunk --create-db --r-files cg189_rlist.txt --output VP_cg189 --threads 16 --sketch-
→˓size 100000
poppunk --fit-model bgmm --K 2 --ref-db VP_cg189 --output VP_cg189 --threads 16
poppunk --fit-model refine --ref-db VP_cg189 --output VP_cg189 --multi-boundary 30 --
→˓threads 16
poppunk_iterate.py --db VP --cpus 16 --cutoff 0.2 --output 0.2_VP_cg189

Results:

The results demonstrate the effectiveness of using iterative-PopPUNK for sublineage clustering in large outbreak
datasets. For example, in clonal group CG3, we extracted 274 outbreak groups (after removal of non-pathogenic
isolates), while iterative-PopPUNK identified 80 clusters with a 40% MACD cutoff. The concordance of iterative-
PopPUNK clustering with the identified outbreak groups was 60% (48/80), indicating that iterative-PopPUNK is able
to achieve a finer resolution than clonal level. Moreover, the isolate clustering concordance (i.e. isolates assigned to a
same group by both methods) was 90% (1596/1768), indicating high agreement between iterative-PopPUNK and out-
break groups at the isolate level. For clonal group CG189, iterative-PopPUNK identified 25 clusters with a 20% MACD

86 Chapter 14. Iterative PopPUNK

PopPUNK Documentation, Release 2.6.3

cutoff, which showed a cluster concordance of 80% (20/25) with outbreak groups, and an isolate clustering concor-
dance of 95% (259/273). It is worth noting that different genetic distance measurements can account for inconsistencies
between iterative-PopPUNK clusters and outbreak groups.

2. How can I determine when I should add “–neg-shift” or “–pos-shift” ?

Iterative-PopPUNK allows for the use of “–neg-shift” and “–pos-shift” parameters to refine the initial model fit and
estimate more clusters in either a higher or lower genetic level. These parameters adjust the decision boundary ranges
for cluster estimation.

By default, adding “–neg-shift” with a value below zero moves the initial decision boundary line towards a higher
genetic level, while a positive value for “–pos-shift” moves the line towards the origin. The value chosen for these
parameters should align with the research interests of the user.

For instance, consider the E. coli dataset. Without adding “–neg-shift”, iterative-PopPUNK may fail to find phy-
logroups. Figure 1 shows the distribution plot for this dataset with default settings, while Figure 2 shows the same plot
after adding a value of -0.25 for “–neg-shift”:

Fig. 1: Figure 1: refine fit with default settings Fig. 2: Figure 2: refine fit with default settings after
adding -0.25 neg-shift

In summary, users should determine whether to add “–neg-shift” or “–pos-shift” based on their research interests, and
adjust the value accordingly.

3. why does the number of clusters increase with larger cutoff values?

In iterative PopPUNK, the choice of cutoff value has a significant impact on the resulting number and composition of
clusters. In general, increasing the cutoff value leads to fewer and larger clusters, while decreasing the cutoff value
leads to more and smaller clusters. However, in some cases, increasing the cutoff value can paradoxically lead to an
increase in the number of clusters, which may seem counterintuitive.

To understand why this happens, we need to look at the role of average core distance (ACD) in cluster formation. ACD
is a measure of the average genetic distance between all pairs of isolates within a cluster. When the ACD is low, it
means that the isolates within the cluster are genetically similar to each other, while a high ACD indicates that there
are significant genetic differences between the isolates.

In a large dataset, the ACD of one cluster’s parent cluster is greatly affected by small clusters or singleton isolates. This
is because the ACD of a parent cluster is calculated as the average ACD of all the clusters it contains. As a result, if a
parent cluster contains one or more small clusters with extreme high ACD values, its own ACD value will be inflated,
which may cause it to be split into multiple singletons at higher cutoff values.

Consider the following simplified iterative-PopPUNK tree:

14.4. Common questions 87

PopPUNK Documentation, Release 2.6.3

In Figure A, a very small cutoff value results in no nodes being selected, leaving a set of 8 clusters or singletons. When
the cutoff is increased to 0.5 in Figure B, only one cluster, Cluster2, is selected. However, when a higher cutoff value
of 0.95 is adopted, Cluster3 is selected, and the remaining six isolates are left as singletons, resulting in a total of 7
clusters.

To address this issue, you can check the “<prefix>.clusters.csv” file to identify small clusters with extreme high ACD
values. If present, check the PopPUNK distribution plot (“<prefix>_distanceDistribution.png”) to determine if there
are any distanced components. You can remove low-quality or distanced samples from your dataset using the “–qc-db”
option (please refer to Data quality control (--qc-db)).

In the examples given above, removing the two isolates from Cluster3 would help to solve the problem and lead to a
more accurate clustering result.

By carefully selecting the cutoff value and performing quality control on the input data, you can obtain robust and
biologically meaningful clusterings with iterative PopPUNK.

88 Chapter 14. Iterative PopPUNK

CHAPTER

FIFTEEN

CITING POPPUNK

If you use PopPUNK, PopPIPE or pp-sketchlib in a scientific paper, we would appreciate a citation. As a minimum,
please cite the following paper(s):

Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, Croucher
NJ. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Research 29:1-13 (2019).
doi:10.1101/gr.241455.118

15.1 Generating citations and methods

You can add --citation to your PopPUNK command to generate a full list of papers to cite. This will also produce
a basic methods paragraph for you to edit and include. You can do this after running poppunk_assign or poppunk
--fit-model:

poppunk --citation --fit-model bgmm --ref-db example_db --K 4

gives:

We built a database of 28 isolates using pp-sketchlib version 1.7.0 (doi:10.5281/zenodo.4531418) with
sketch version 88ee3ff83ba294c928505f991e20078691ed090e, k-mer lengths 13-28, a sketch size of 9984
and dense seeds [6-8]. We assigned variable-length-k-mer clusters (VLKCs) using PopPUNK version 2.4.0
(doi:10.1101/gr.241455.118) by fitting a BGMM with 4 components [1-5].

or:

poppunk_assign --citation --query some_queries.txt --db example_db

gives:

We queried a database of 28 isolates and their pre-assigned variable-length-k-mer clusters
(VLKCs) using pp-sketchlib version 1.7.0 (doi:10.5281/zenodo.4531418) with sketch version
88ee3ff83ba294c928505f991e20078691ed090e, k-mer lengths 13-28, a sketch size of 9984 and
dense seeds [6-8]. We assigned the VLKCs using PopPUNK version 2.4.0 (doi:10.1101/gr.241455.118)
[1-5].

If your journal requires versions for all software packages, you may find running conda list helpful. Running
poppunk_info (Viewing information about a database) on your .h5 files will give useful information too.

89

https://dx.doi.org/10.1101/gr.241455.118

PopPUNK Documentation, Release 2.6.3

90 Chapter 15. Citing PopPUNK

CHAPTER

SIXTEEN

REFERENCE DOCUMENTATION

Documentation for module functions (for developers)

16.1 assign.py

poppunk_assign main function

PopPUNK.assign.assign_query(dbFuncs, ref_db, q_files, output, qc_dict, update_db, write_references,
distances, serial, threads, overwrite, plot_fit, graph_weights, model_dir,
strand_preserved, previous_clustering, external_clustering, core, accessory,
gpu_sketch, gpu_dist, gpu_graph, deviceid, save_partial_query_graph)

Code for assign query mode for CLI

PopPUNK.assign.assign_query_hdf5(dbFuncs, ref_db, qNames, output, qc_dict, update_db, write_references,
distances, serial, threads, overwrite, plot_fit, graph_weights, model_dir,
strand_preserved, previous_clustering, external_clustering, core,
accessory, gpu_dist, gpu_graph, save_partial_query_graph)

Code for assign query mode taking hdf5 as input. Written as a separate function so it can be called by web APIs

PopPUNK.assign.main()

Main function. Parses cmd line args and runs in the specified mode.

16.2 bgmm.py

Functions used to fit the mixture model to a database. Access using BGMMFit. BGMM using sklearn

PopPUNK.bgmm.findWithinLabel(means, assignments, rank=0)
Identify within-strain links

Finds the component with mean closest to the origin and also akes sure some samples are assigned to it (in the
case of small weighted components with a Dirichlet prior some components are unused)

Args:

means (numpy.array)
K x 2 array of mixture component means

assignments (numpy.array)
Sample cluster assignments

91

PopPUNK Documentation, Release 2.6.3

rank (int)
Which label to find, ordered by distance from origin. 0-indexed.

(default = 0)

Returns:

within_label (int)
The cluster label for the within-strain assignments

PopPUNK.bgmm.fit2dMultiGaussian(X, dpgmm_max_K=2)
Main function to fit BGMM model, called from fit()

Fits the mixture model specified, saves model parameters to a file, and assigns the samples to a component. Write
fit summary stats to STDERR.

Args:

X (np.array)
n x 2 array of core and accessory distances for n samples. This should be subsampled to 100000
samples.

dpgmm_max_K (int)
Maximum number of components to use with the EM fit. (default = 2)

Returns:

dpgmm (sklearn.mixture.BayesianGaussianMixture)
Fitted bgmm model

PopPUNK.bgmm.log_likelihood(X, weights, means, covars, scale)
modified sklearn GMM function predicting distribution membership

Returns the mixture LL for points X. Used by assign_samples() and plot_contours()

Args:

X (numpy.array)
n x 2 array of core and accessory distances for n samples

weights (numpy.array)
Component weights from fit2dMultiGaussian()

means (numpy.array)
Component means from fit2dMultiGaussian()

covars (numpy.array)
Component covariances from fit2dMultiGaussian()

scale (numpy.array)
Scaling of core and accessory distances from fit2dMultiGaussian()

Returns:

logprob (numpy.array)
The log of the probabilities under the mixture model

lpr (numpy.array)
The components of the log probability from each mixture component

PopPUNK.bgmm.log_multivariate_normal_density(X, means, covars, min_covar=1e-07)
Log likelihood of multivariate normal density distribution

Used to calculate per component Gaussian likelihood in assign_samples()

92 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

Args:

X (numpy.array)
n x 2 array of core and accessory distances for n samples

means (numpy.array)
Component means from fit2dMultiGaussian()

covars (numpy.array)
Component covariances from fit2dMultiGaussian()

min_covar (float)
Minimum covariance, added when Choleksy decomposition fails due to too few observations (default
= 1.e-7)

Returns:

log_prob (numpy.array)
An n-vector with the log-likelihoods for each sample being in this component

16.3 dbscan.py

Functions used to fit DBSCAN to a database. Access using DBSCANFit. DBSCAN using hdbscan

PopPUNK.dbscan.evaluate_dbscan_clusters(model)
Evaluate whether fitted dbscan model contains non-overlapping clusters

Args:

model (DBSCANFit)
Fitted model from fit()

Returns:

indistinct (bool)
Boolean indicating whether putative within- and between-strain clusters of points overlap

PopPUNK.dbscan.findBetweenLabel(assignments, within_cluster)
Identify between-strain links from a DBSCAN model

Finds the component containing the largest number of between-strain links, excluding the cluster identified as
containing within-strain links.

Args:

assignments (numpy.array)
Sample cluster assignments

within_cluster (int)
Cluster ID assigned to within-strain assignments, from findWithinLabel()

Returns:

between_cluster (int)
The cluster label for the between-strain assignments

PopPUNK.dbscan.fitDbScan(X, min_samples, min_cluster_size, cache_out)
Function to fit DBSCAN model as an alternative to the Gaussian

Fits the DBSCAN model to the distances using hdbscan

Args:

16.3. dbscan.py 93

PopPUNK Documentation, Release 2.6.3

X (np.array)
n x 2 array of core and accessory distances for n samples

min_samples (int)
Parameter for DBSCAN clustering ‘conservativeness’

min_cluster_size (int)
Minimum number of points in a cluster for HDBSCAN

cache_out (str)
Prefix for DBSCAN cache used for refitting

Returns:

hdb (hdbscan.HDBSCAN)
Fitted HDBSCAN to subsampled data

labels (list)
Cluster assignments of each sample

n_clusters (int)
Number of clusters used

16.4 mandrake.py

PopPUNK.mandrake.generate_embedding(seqLabels, accMat, perplexity, outPrefix, overwrite, kNN=50,
maxIter=10000000, n_threads=1, use_gpu=False, device_id=0)

Generate t-SNE projection using accessory distances

Writes a plot of t-SNE clustering of accessory distances (.dot)

Args:

seqLabels (list)
Processed names of sequences being analysed.

accMat (numpy.array)
n x n array of accessory distances for n samples.

perplexity (int)
Perplexity parameter passed to t-SNE

outPrefix (str)
Prefix for all generated output files, which will be placed in outPrefix subdirectory

overwrite (bool)
Overwrite existing output if present (default = False)

kNN (int)
Number of neigbours to use with SCE (cannot be > n_samples) (default = 50)

maxIter (int)
Number of iterations to run (default = 1000000)

n_threads (int)
Number of CPU threads to use (default = 1)

use_gpu (bool)
Whether to use GPU libraries

94 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

device_id (int)
Device ID of GPU to be used (default = 0)

Returns:

mandrake_filename (str)
Filename with .dot of embedding

16.5 models.py

Classes used for model fits

class PopPUNK.models.BGMMFit(outPrefix, max_samples=50000)
Class for fits using the Gaussian mixture model. Inherits from ClusterFit.

Must first run either fit() or load() before calling other functions

Args:

outPrefix (str)
The output prefix used for reading/writing

max_samples (int)
The number of subsamples to fit the model to

(default = 100000)

assign(X, values=False, progress=True)
Assign the clustering of new samples using assign_samples()

Args:

X (numpy.array)
Core and accessory distances

values (bool)
Return the responsibilities of assignment rather than most likely cluster

num_processes (int)
Number of threads to use

progress (bool)
Show progress bar

[default = True]

Returns:

y (numpy.array)
Cluster assignments or values by samples

fit(X, max_components)
Extends fit()

Fits the BGMM and returns assignments by calling fit2dMultiGaussian().

Fitted parameters are stored in the object.

Args:

X (numpy.array)
The core and accessory distances to cluster. Must be set if preprocess is set.

16.5. models.py 95

PopPUNK Documentation, Release 2.6.3

max_components (int)
Maximum number of mixture components to use.

Returns:

y (numpy.array)
Cluster assignments of samples in X

load(fit_npz, fit_obj)
Load the model from disk. Called from loadClusterFit()

Args:

fit_npz (dict)
Fit npz opened with numpy.load()

fit_obj (sklearn.mixture.BayesianGaussianMixture)
The saved fit object

plot(X, y)
Extends plot()

Write a summary of the fit, and plot the results using PopPUNK.plot.plot_results() and PopPUNK.
plot.plot_contours()

Args:

X (numpy.array)
Core and accessory distances

y (numpy.array)
Cluster assignments from assign()

save()

Save the model to disk, as an npz and pkl (using outPrefix).

class PopPUNK.models.ClusterFit(outPrefix, default_dtype=numpy.float32)
Parent class for all models used to cluster distances

Args:

outPrefix (str)
The output prefix used for reading/writing

copy(prefix)
Copy the model to a new directory

fit(X=None)
Initial steps for all fit functions.

Creates output directory. If preprocess is set then subsamples passed X

Args:

X (numpy.array)
The core and accessory distances to cluster. Must be set if preprocess is set.

(default = None)

default_dtype (numpy dtype)
Type to use if no X provided

96 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

no_scale()

Turn off scaling (useful for refine, where optimization is done in the scaled space).

plot(X=None)
Initial steps for all plot functions.

Ensures model has been fitted.

Args:

X (numpy.array)
The core and accessory distances to subsample.

(default = None)

class PopPUNK.models.DBSCANFit(outPrefix, max_samples=100000)
Class for fits using HDBSCAN. Inherits from ClusterFit.

Must first run either fit() or load() before calling other functions

Args:

outPrefix (str)
The output prefix used for reading/writing

max_samples (int)
The number of subsamples to fit the model to

(default = 100000)

assign(X, no_scale=False, progress=True)
Assign the clustering of new samples using assign_samples_dbscan()

Args:

X (numpy.array)
Core and accessory distances

no_scale (bool)
Do not scale X

[default = False]

progress (bool)
Show progress bar

[default = True]

Returns:

y (numpy.array)
Cluster assignments by samples

fit(X, max_num_clusters, min_cluster_prop)
Extends fit()

Fits the distances with HDBSCAN and returns assignments by calling fitDbScan().

Fitted parameters are stored in the object.

Args:

X (numpy.array)
The core and accessory distances to cluster. Must be set if preprocess is set.

16.5. models.py 97

PopPUNK Documentation, Release 2.6.3

max_num_clusters (int)
Maximum number of clusters in DBSCAN fitting

min_cluster_prop (float)
Minimum proportion of points in a cluster in DBSCAN fitting

Returns:

y (numpy.array)
Cluster assignments of samples in X

load(fit_npz, fit_obj)
Load the model from disk. Called from loadClusterFit()

Args:

fit_npz (dict)
Fit npz opened with numpy.load()

fit_obj (hdbscan.HDBSCAN)
The saved fit object

plot(X=None, y=None)
Extends plot()

Write a summary of the fit, and plot the results using PopPUNK.plot.plot_dbscan_results()

Args:

X (numpy.array)
Core and accessory distances

y (numpy.array)
Cluster assignments from assign()

save()

Save the model to disk, as an npz and pkl (using outPrefix).

class PopPUNK.models.LineageFit(outPrefix, ranks, max_search_depth, reciprocal_only,
count_unique_distances, dist_col=None, use_gpu=False)

Class for fits using the lineage assignment model. Inherits from ClusterFit.

Must first run either fit() or load() before calling other functions

Args:

outPrefix (str)
The output prefix used for reading/writing

ranks (list)
The ranks used in the fit

assign(rank)
Get the edges for the network. A little different from other methods, as it doesn’t go through the long form
distance vector (as coo_matrix is basically already in the correct gt format)

Args:

rank (int)
Rank to assign at

Returns:

98 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

y (list of tuples)
Edges to include in network

edge_weights(rank)
Get the distances for each edge returned by assign

Args:

rank (int)
Rank assigned at

Returns:

weights (list)
Distance for each assignment

extend(qqDists, qrDists)
Update the sparse distance matrix of nearest neighbours after querying

Args:

qqDists (numpy or cupy ndarray)
Two column array of query-query distances

qqDists (numpy or cupy ndarray)
Two column array of reference-query distances

Returns:

y (list of tuples)
Edges to include in network

fit(X, accessory)
Extends fit()

Gets assignments by using nearest neigbours.

Args:

X (numpy.array)
The core and accessory distances to cluster. Must be set if preprocess is set.

accessory (bool)
Use accessory rather than core distances

Returns:

y (numpy.array)
Cluster assignments of samples in X

load(fit_npz, fit_obj)
Load the model from disk. Called from loadClusterFit()

Args:

fit_npz (dict)
Fit npz opened with numpy.load()

fit_obj (sklearn.mixture.BayesianGaussianMixture)
The saved fit object

16.5. models.py 99

PopPUNK Documentation, Release 2.6.3

plot(X, y=None)
Extends plot()

Write a summary of the fit, and plot the results using PopPUNK.plot.plot_results() and PopPUNK.
plot.plot_contours()

Args:

X (numpy.array)
Core and accessory distances

y (any)
Unused variable for compatibility with other plotting functions

save()

Save the model to disk, as an npz and pkl (using outPrefix).

class PopPUNK.models.NumpyShared(name, shape, dtype)

dtype

Alias for field number 2

name

Alias for field number 0

shape

Alias for field number 1

class PopPUNK.models.RefineFit(outPrefix)
Class for fits using a triangular boundary and network properties. Inherits from ClusterFit.

Must first run either fit() or load() before calling other functions

Args:

outPrefix (str)
The output prefix used for reading/writing

apply_threshold(X, threshold)
Applies a boundary threshold, given by user. Does not run optimisation.

Args:

X (numpy.array)
The core and accessory distances to cluster. Must be set if preprocess is set.

threshold (float)
The value along the x-axis (core distance) at which to draw the assignment boundary

Returns:

y (numpy.array)
Cluster assignments of samples in X

assign(X, slope=None)
Assign the clustering of new samples

Args:

X (numpy.array)
Core and accessory distances

100 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

slope (int)
Override self.slope. Default - use self.slope Set to 0 for a vertical line, 1 for a horizontal line, or 2
to use a slope

Returns:

y (numpy.array)
Cluster assignments by samples

fit(X, sample_names, model, max_move, min_move, startFile=None, indiv_refine=False,
unconstrained=False, multi_boundary=0, score_idx=0, no_local=False, betweenness_sample=100,
use_gpu=False)
Extends fit()

Fits the distances by optimising network score, by calling refineFit2D().

Fitted parameters are stored in the object.

Args:

X (numpy.array)
The core and accessory distances to cluster. Must be set if preprocess is set.

sample_names (list)
Sample names in X (accessed by iterDistRows())

model (ClusterFit)
The model fit to refine

max_move (float)
Maximum distance to move away from start point

min_move (float)
Minimum distance to move away from start point

startFile (str)
A file defining an initial fit, rather than one from --fit-model. See documentation for format.
(default = None).

indiv_refine (str)
Run refinement for core or accessory distances separately (default = None).

multi_boundary (int)
Produce cluster output at multiple boundary positions downward from the optimum. (default = 0).

unconstrained (bool)
If True, search in 2D and change the slope of the boundary

score_idx (int)
Index of score from networkSummary() to use [default = 0]

no_local (bool)
Turn off the local optimisation step. Quicker, but may be less well refined.

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers
are faster but less precise [default = 100]

use_gpu (bool)
Whether to use cugraph for graph analyses

Returns:

16.5. models.py 101

PopPUNK Documentation, Release 2.6.3

y (numpy.array)
Cluster assignments of samples in X

load(fit_npz, fit_obj)
Load the model from disk. Called from loadClusterFit()

Args:

fit_npz (dict)
Fit npz opened with numpy.load()

fit_obj (None)
The saved fit object (not used)

plot(X, y=None)
Extends plot()

Write a summary of the fit, and plot the results using PopPUNK.plot.plot_refined_results()

Args:

X (numpy.array)
Core and accessory distances

y (numpy.array)
Assignments (unused)

save()

Save the model to disk, as an npz and pkl (using outPrefix).

PopPUNK.models.assign_samples(chunk, X, y, model, scale, chunk_size, values=False)
Runs a models assignment on a chunk of input

Args:

chunk (int)
Index of chunk to process

X (NumpyShared)
n x 2 array of core and accessory distances for n samples

y (NumpyShared)
An n-vector to store results, with the most likely cluster memberships or an n by k matrix with the
component responsibilities for each sample.

weights (numpy.array)
Component weights from BGMMFit

means (numpy.array)
Component means from BGMMFit

covars (numpy.array)
Component covariances from BGMMFit

scale (numpy.array)
Scaling of core and accessory distances from BGMMFit

chunk_size (int)
Size of each chunk in X

values (bool)
Whether to return the responsibilities, rather than the most likely assignment (used for entropy calcu-
lation).

102 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

Default is False

PopPUNK.models.loadClusterFit(pkl_file, npz_file, outPrefix='', max_samples=100000, use_gpu=False)
Call this to load a fitted model

Args:

pkl_file (str)
Location of saved .pkl file on disk

npz_file (str)
Location of saved .npz file on disk

outPrefix (str)
Output prefix for model to save to (e.g. plots)

max_samples (int)
Maximum samples if subsampling X [default = 100000]

use_gpu (bool)
Whether to load npz file with GPU libraries for lineage models

Returns:

load_obj (model)
Loaded model

16.6 network.py

Functions used to construct the network, and update with new queries. Main entry point is constructNetwork() for
new reference databases, and findQueryLinksToNetwork() for querying databases. Network functions

PopPUNK.network.addQueryToNetwork(dbFuncs, rList, qList, G, assignments, model, queryDB, kmers=None,
distance_type='euclidean', queryQuery=False,
strand_preserved=False, weights=None, threads=1, use_gpu=False)

Finds edges between queries and items in the reference database, and modifies the network to include them.

Args:

dbFuncs (list)
List of backend functions from setupDBFuncs()

rList (list)
List of reference names

qList (list)
List of query names

G (graph)
Network to add to (mutated)

assignments (numpy.array)
Cluster assignment of items in qlist

model (ClusterModel)
Model fitted to reference database

queryDB (str)
Query database location

16.6. network.py 103

PopPUNK Documentation, Release 2.6.3

distances (str)
Prefix of distance files for extending network

kmers (list)
List of k-mer sizes

distance_type (str)
Distance type to use as weights in network

queryQuery (bool)
Add in all query-query distances (default = False)

strand_preserved (bool)
Whether to treat strand as known (i.e. ignore rc k-mers) when adding random distances. Only used if
queryQuery = True [default = False]

weights (numpy.array)
If passed, the core,accessory distances for each assignment, which will be annotated as an edge attribute

threads (int)
Number of threads to use if new db created

use_gpu (bool)
Whether to use cugraph for analysis

(default = 1)

Returns:

distMat (numpy.array)
Query-query distances

PopPUNK.network.add_self_loop(G_df , seq_num, weights=False, renumber=True)
Adds self-loop to cugraph graph to ensure all nodes are included in the graph, even if singletons.

Args:

G_df (cudf)
cudf data frame containing edge list

seq_num (int)
The expected number of nodes in the graph

renumber (bool)
Whether to renumber the vertices when added to the graph

Returns:

G_new (graph)
Dictionary of cluster assignments (keys are sequence names)

PopPUNK.network.checkNetworkVertexCount(seq_list, G, use_gpu)
Checks the number of network vertices matches the number of sequence names.

Args:

seq_list (list)
The list of sequence names

G (graph)
The network of sequences

use_gpu (bool)
Whether to use cugraph for graph analyses

104 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

PopPUNK.network.cliquePrune(component, graph, reference_indices, components_list)
Wrapper function around getCliqueRefs() so it can be called by a multiprocessing pool

PopPUNK.network.construct_dense_weighted_network(rlist, distMat, weights_type=None, use_gpu=False)
Construct an undirected network using sequence lists, assignments of pairwise distances to clusters, and the
identifier of the cluster assigned to within-strain distances. Nodes are samples and edges where samples are
within the same cluster

Will print summary statistics about the network to STDERR

Args:

rlist (list)
List of reference sequence labels

distMat (2 column ndarray)
Numpy array of pairwise distances

weights_type (str)
Type of weight to use for network

use_gpu (bool)
Whether to use GPUs for network construction

Returns:

G (graph)
The resulting network

PopPUNK.network.construct_network_from_assignments(rlist, qlist, assignments, within_label=1,
int_offset=0, weights=None, distMat=None,
weights_type=None, previous_network=None,
old_ids=None, adding_qq_dists=False,
previous_pkl=None, betweenness_sample=100,
summarise=True, use_gpu=False)

Construct an undirected network using sequence lists, assignments of pairwise distances to clusters, and the
identifier of the cluster assigned to within-strain distances. Nodes are samples and edges where samples are
within the same cluster

Will print summary statistics about the network to STDERR

Args:

rlist (list)
List of reference sequence labels

qlist (list)
List of query sequence labels

assignments (numpy.array or int)
Labels of most likely cluster assignment

within_label (int)
The label for the cluster representing within-strain distances

int_offset (int)
Constant integer to add to each node index

weights (list)
List of weights for each edge in the network

distMat (2 column ndarray)
Numpy array of pairwise distances

16.6. network.py 105

PopPUNK Documentation, Release 2.6.3

weights_type (str)
Measure to calculate from the distMat to use as edge weights in network - options are core, accessory
or euclidean distance

previous_network (str)
Name of file containing a previous network to be integrated into this new network

old_ids (list)
Ordered list of vertex names in previous network

adding_qq_dists (bool)
Boolean specifying whether query-query edges are being added to an existing network, such that not
all the sequence IDs will be found in the old IDs, which should already be correctly ordered

previous_pkl (str)
Name of file containing the names of the sequences in the previous_network

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

summarise (bool)
Whether to calculate and print network summaries with networkSummary() (default = True)

use_gpu (bool)
Whether to use GPUs for network construction

Returns:

G (graph)
The resulting network

PopPUNK.network.construct_network_from_df(rlist, qlist, G_df , weights=False, distMat=None,
previous_network=None, adding_qq_dists=False,
old_ids=None, previous_pkl=None,
betweenness_sample=100, summarise=True,
use_gpu=False)

Construct an undirected network using a data frame of edges. Nodes are samples and edges where samples are
within the same cluster

Will print summary statistics about the network to STDERR

Args:

rlist (list)
List of reference sequence labels

qlist (list)
List of query sequence labels

G_df (cudf or pandas data frame)
Data frame in which the first two columns are the nodes linked by edges

weights (bool)
Whether weights in the G_df data frame should be included in the network

distMat (2 column ndarray)
Numpy array of pairwise distances

previous_network (str or graph object)
Name of file containing a previous network to be integrated into this new network, or the already-loaded
graph object

106 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

adding_qq_dists (bool)
Boolean specifying whether query-query edges are being added to an existing network, such that not
all the sequence IDs will be found in the old IDs, which should already be correctly ordered

old_ids (list)
Ordered list of vertex names in previous network

previous_pkl (str)
Name of file containing the names of the sequences in the previous_network

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

summarise (bool)
Whether to calculate and print network summaries with networkSummary() (default = True)

use_gpu (bool)
Whether to use GPUs for network construction

Returns:

G (graph)
The resulting network

PopPUNK.network.construct_network_from_edge_list(rlist, qlist, edge_list, weights=None, distMat=None,
previous_network=None, adding_qq_dists=False,
old_ids=None, previous_pkl=None,
betweenness_sample=100, summarise=True,
use_gpu=False)

Construct an undirected network using a data frame of edges. Nodes are samples and edges where samples are
within the same cluster

Will print summary statistics about the network to STDERR

Args:

rlist (list)
List of reference sequence labels

qlist (list)
List of query sequence labels

G_df (cudf or pandas data frame)
Data frame in which the first two columns are the nodes linked by edges

weights (list)
List of edge weights

distMat (2 column ndarray)
Numpy array of pairwise distances

previous_network (str or graph object)
Name of file containing a previous network to be integrated into this new network, or the already-loaded
graph object

adding_qq_dists (bool)
Boolean specifying whether query-query edges are being added to an existing network, such that not
all the sequence IDs will be found in the old IDs, which should already be correctly ordered

old_ids (list)
Ordered list of vertex names in previous network

16.6. network.py 107

PopPUNK Documentation, Release 2.6.3

previous_pkl (str)
Name of file containing the names of the sequences in the previous_network

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

summarise (bool)
Whether to calculate and print network summaries with networkSummary() (default = True)

use_gpu (bool)
Whether to use GPUs for network construction

Returns:

G (graph)
The resulting network

PopPUNK.network.construct_network_from_sparse_matrix(rlist, qlist, sparse_input, weights=None,
previous_network=None, previous_pkl=None,
betweenness_sample=100, summarise=True,
use_gpu=False)

Construct an undirected network using a sparse matrix. Nodes are samples and edges where samples are within
the same cluster

Will print summary statistics about the network to STDERR

Args:

rlist (list)
List of reference sequence labels

qlist (list)
List of query sequence labels

sparse_input (numpy.array)
Sparse distance matrix from lineage fit

weights (list)
List of weights for each edge in the network

distMat (2 column ndarray)
Numpy array of pairwise distances

previous_network (str)
Name of file containing a previous network to be integrated into this new network

previous_pkl (str)
Name of file containing the names of the sequences in the previous_network

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

summarise (bool)
Whether to calculate and print network summaries with networkSummary() (default = True)

use_gpu (bool)
Whether to use GPUs for network construction

Returns:

G (graph)
The resulting network

108 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

PopPUNK.network.cugraph_to_graph_tool(G, rlist)
Save a network to disk

Args:

G (cugraph network)
Cugraph network

rlist (list)
List of sequence names

Returns:

G (graph-tool network)
Graph tool network

PopPUNK.network.extractReferences(G, dbOrder, outPrefix, outSuffix='', type_isolate=None,
existingRefs=None, threads=1, use_gpu=False)

Extract references for each cluster based on cliques

Writes chosen references to file by calling writeReferences()

Args:

G (graph)
A network used to define clusters

dbOrder (list)
The order of files in the sketches, so returned references are in the same order

outPrefix (str)
Prefix for output file

outSuffix (str)
Suffix for output file (.refs will be appended)

type_isolate (str)
Isolate to be included in set of references

existingRefs (list)
References that should be used for each clique

use_gpu (bool)
Use cugraph for graph analysis (default = False)

Returns:

refFileName (str)
The name of the file references were written to

references (list)
An updated list of the reference names

PopPUNK.network.fetchNetwork(network_dir, model, refList, ref_graph=False, core_only=False,
accessory_only=False, use_gpu=False)

Load the network based on input options

Returns the network as a graph-tool format graph, and sets the slope parameter of the passed model object.

Args:

network_dir (str)
A network used to define clusters

16.6. network.py 109

PopPUNK Documentation, Release 2.6.3

model (ClusterFit)
A fitted model object

refList (list)
Names of references that should be in the network

ref_graph (bool)
Use ref only graph, if available [default = False]

core_only (bool)
Return the network created using only core distances [default = False]

accessory_only (bool)
Return the network created using only accessory distances [default = False]

use_gpu (bool)
Use cugraph library to load graph

Returns:

genomeNetwork (graph)
The loaded network

cluster_file (str)
The CSV of cluster assignments corresponding to this network

PopPUNK.network.generate_minimum_spanning_tree(G, from_cugraph=False)
Generate a minimum spanning tree from a network

Args:

G (network)
Graph tool network

from_cugraph (bool)
If a pre-calculated MST from cugraph [default = False]

Returns:

mst_network (str)
Minimum spanning tree (as graph-tool graph)

PopPUNK.network.getCliqueRefs(G, reference_indices={})
Recursively prune a network of its cliques. Returns one vertex from a clique at each stage

Args:

G (graph)
The graph to get clique representatives from

reference_indices (set)
The unique list of vertices being kept, to add to

PopPUNK.network.get_cugraph_triangles(G)

Counts the number of triangles in a cugraph network. Can be removed when the cugraph issue https://github.
com/rapidsai/cugraph/issues/1043 is fixed.

Args:

G (cugraph network)
Network to be analysed

Returns:

110 Chapter 16. Reference documentation

https://github.com/rapidsai/cugraph/issues/1043
https://github.com/rapidsai/cugraph/issues/1043

PopPUNK Documentation, Release 2.6.3

triangle_count (int)
Count of triangles in graph

PopPUNK.network.get_vertex_list(G, use_gpu=False)
Generate a list of node indices

Args:

G (network)
Graph tool network

use_gpu (bool)
Whether graph is a cugraph or not [default = False]

Returns:

vlist (list)
List of integers corresponding to nodes

PopPUNK.network.load_network_file(fn, use_gpu=False)
Load the network based on input options

Returns the network as a graph-tool format graph, and sets the slope parameter of the passed model object.

Args:

fn (str)
Network file name

use_gpu (bool)
Use cugraph library to load graph

Returns:

genomeNetwork (graph)
The loaded network

PopPUNK.network.networkSummary(G, calc_betweenness=True, betweenness_sample=100, use_gpu=False)
Provides summary values about the network

Args:

G (graph)
The network of strains

calc_betweenness (bool)
Whether to calculate betweenness stats

use_gpu (bool)
Whether to use cugraph for graph analysis

Returns:

metrics (list)
List with # components, density, transitivity, mean betweenness and weighted mean betweenness

scores (list)
List of scores

PopPUNK.network.network_to_edges(prev_G_fn, rlist, adding_qq_dists=False, old_ids=None,
previous_pkl=None, weights=False, use_gpu=False)

Load previous network, extract the edges to match the vertex order specified in rlist, and also return weights if
specified.

16.6. network.py 111

PopPUNK Documentation, Release 2.6.3

Args:

prev_G_fn (str or graph object)
Path of file containing existing network, or already-loaded graph object

adding_qq_dists (bool)
Boolean specifying whether query-query edges are being added to an existing network, such that not
all the sequence IDs will be found in the old IDs, which should already be correctly ordered

rlist (list)
List of reference sequence labels in new network

old_ids (list)
List of IDs of vertices in existing network

previous_pkl (str)
Path of pkl file containing names of sequences in previous network

weights (bool)
Whether to return edge weights (default = False)

use_gpu (bool)
Whether to use cugraph for graph analyses

Returns:

source_ids (list)
Source nodes for each edge

target_ids (list)
Target nodes for each edge

edge_weights (list)
Weights for each new edge

PopPUNK.network.printClusters(G, rlist, outPrefix=None, oldClusterFile=None, externalClusterCSV=None,
printRef=True, printCSV=True, clustering_type='combined',
write_unwords=True, use_gpu=False)

Get cluster assignments

Also writes assignments to a CSV file

Args:

G (graph)
Network used to define clusters

rlist (list)
Names of samples

outPrefix (str)
Prefix for output CSV Default = None

oldClusterFile (str)
CSV with previous cluster assignments. Pass to ensure consistency in cluster assignment name. De-
fault = None

externalClusterCSV (str)
CSV with cluster assignments from any source. Will print a file relating these to new cluster assign-
ments Default = None

printRef (bool)
If false, print only query sequences in the output Default = True

112 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

printCSV (bool)
Print results to file Default = True

clustering_type (str)
Type of clustering network, used for comparison with old clusters Default = ‘combined’

write_unwords (bool)
Write clusters with a pronouncable name rather than numerical index Default = True

use_gpu (bool)
Whether to use cugraph for network analysis

Returns:

clustering (dict)
Dictionary of cluster assignments (keys are sequence names)

PopPUNK.network.printExternalClusters(newClusters, extClusterFile, outPrefix, oldNames, printRef=True)
Prints cluster assignments with respect to previously defined clusters or labels.

Args:

newClusters (set iterable)
The components from the graph G, defining the PopPUNK clusters

extClusterFile (str)
A CSV file containing definitions of the external clusters for each sample (does not need to contain all
samples)

outPrefix (str)
Prefix for output CSV (_external_clusters.csv)

oldNames (list)
A list of the reference sequences

printRef (bool)
If false, print only query sequences in the output

Default = True

PopPUNK.network.print_network_summary(G, betweenness_sample=100, use_gpu=False)
Wrapper function for printing network information

Args:

G (graph)
List of reference sequence labels

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

use_gpu (bool)
Whether to use GPUs for network construction

PopPUNK.network.process_previous_network(previous_network=None, adding_qq_dists=False,
old_ids=None, previous_pkl=None, vertex_labels=None,
weights=False, use_gpu=False)

Extract edge types from an existing network

Args:

16.6. network.py 113

PopPUNK Documentation, Release 2.6.3

previous_network (str or graph object)
Name of file containing a previous network to be integrated into this new network, or already-loaded
graph object

adding_qq_dists (bool)
Boolean specifying whether query-query edges are being added to an existing network, such that not
all the sequence IDs will be found in the old IDs, which should already be correctly ordered

old_ids (list)
Ordered list of vertex names in previous network

previous_pkl (str)
Name of file containing the names of the sequences in the previous_network ordered based on the
original network construction

vertex_labels (list)
Ordered list of sequence labels

weights (bool)
Whether weights should be extracted from the previous network

use_gpu (bool)
Whether to use GPUs for network construction

Returns:

extra_sources (list)
List of source node identifiers

extra_targets (list)
List of destination node identifiers

extra_weights (list or None)
List of edge weights

PopPUNK.network.process_weights(distMat, weights_type)
Calculate edge weights from the distance matrix

Args:

distMat (2 column ndarray)
Numpy array of pairwise distances

weights_type (str)
Measure to calculate from the distMat to use as edge weights in network - options are core, accessory
or euclidean distance

Returns:

processed_weights (list)
Edge weights

PopPUNK.network.save_network(G, prefix=None, suffix=None, use_graphml=False, use_gpu=False)
Save a network to disk

Args:

G (network)
Graph tool network

prefix (str)
Prefix for output file

114 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

use_graphml (bool)
Whether to output a graph-tool file in graphml format

use_gpu (bool)
Whether graph is a cugraph or not [default = False]

PopPUNK.network.sparse_mat_to_network(sparse_mat, rlist, use_gpu=False)
Generate a network from a lineage rank fit

Args:

sparse_mat (scipy or cupyx sparse matrix)
Sparse matrix of kNN from lineage fit

rlist (list)
List of sequence names

use_gpu (bool)
Whether GPU libraries should be used

Returns:

G (network)
Graph tool or cugraph network

PopPUNK.network.translate_network_indices(G_ref_df , reference_indices)
Function for ensuring an updated reference network retains numbering consistent with sample names

Args:

G_ref_df (cudf data frame)
List of edges in reference network

reference_indices (list)
The ordered list of reference indices in the original network

Returns:

G_ref (cugraph network)
Network of reference sequences

PopPUNK.network.vertex_betweenness(graph, norm=True)
Returns betweenness for nodes in the graph

PopPUNK.network.writeReferences(refList, outPrefix, outSuffix='')
Writes chosen references to file

Args:

refList (list)
Reference names to write

outPrefix (str)
Prefix for output file

outSuffix (str)
Suffix for output file (.refs will be appended)

Returns:

refFileName (str)
The name of the file references were written to

16.6. network.py 115

PopPUNK Documentation, Release 2.6.3

16.7 refine.py

Functions used to refine an existing model. Access using RefineFit. Refine mixture model using network properties

class PopPUNK.refine.NumpyShared(name, shape, dtype)

dtype

Alias for field number 2

name

Alias for field number 0

shape

Alias for field number 1

PopPUNK.refine.check_search_range(scale, mean0, mean1, lower_s, upper_s)
Checks a search range is within a valid range

Args:

scale (np.array)
Rescaling factor to [0, 1] for each axis

mean0 (np.array)
(x, y) of starting point defining line

mean1 (np.array)
(x, y) of end point defining line

lower_s (float)
distance along line to start search

upper_s (float)
distance along line to end search

Returns:

min_x, max_x
minimum and maximum x-intercepts of the search range

min_y, max_y
minimum and maximum x-intercepts of the search range

PopPUNK.refine.expand_cugraph_network(G, G_extra_df)
Reconstruct a cugraph network with additional edges.

Args:

G (cugraph network)
Original cugraph network

extra_edges (cudf dataframe)
Data frame of edges to add

Returns:

G (cugraph network)
Expanded cugraph network

116 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

PopPUNK.refine.growNetwork(sample_names, i_vec, j_vec, idx_vec, s_range, score_idx=0, thread_idx=0,
betweenness_sample=100, write_clusters=None, use_gpu=False)

Construct a network, then add edges to it iteratively. Input is from pp_sketchlib.iterateBoundary1D
or``pp_sketchlib.iterateBoundary2D``

Args:

sample_names (list)
Sample names corresponding to distMat (accessed by iterator)

i_vec (list)
Ordered ref vertex index to add

j_vec (list)
Ordered query (==ref) vertex index to add

idx_vec (list)
For each i, j tuple, the index of the intercept at which these enter the network. These are sorted and
increasing

s_range (list)
Offsets which correspond to idx_vec entries

score_idx (int)
Index of score from networkSummary() to use [default = 0]

thread_idx (int)
Optional thread idx (if multithreaded) to offset progress bar by

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

write_clusters (str)
Set to a prefix to write the clusters from each position to files [default = None]

use_gpu (bool)
Whether to use cugraph for graph analyses

Returns:

scores (list)
-1 * network score for each of x_range. Where network score is from networkSummary()

PopPUNK.refine.likelihoodBoundary(s, model, start, end, within, between)
Wrapper function around fit2dMultiGaussian() so that it can go into a root-finding function for probabilities
between components

Args:

s (float)
Distance along line from mean0

model (BGMMFit)
Fitted mixture model

start (numpy.array)
The co-ordinates of the centre of the within-strain distribution

end (numpy.array)
The co-ordinates of the centre of the between-strain distribution

16.7. refine.py 117

PopPUNK Documentation, Release 2.6.3

within (int)
Label of the within-strain distribution

between (int)
Label of the between-strain distribution

Returns:

responsibility (float)
The difference between responsibilities of assignment to the within component and the between as-
signment

PopPUNK.refine.multi_refine(distMat, sample_names, mean0, mean1, scale, s_max, n_boundary_points,
output_prefix, num_processes=1, use_gpu=False)

Move the refinement boundary between the optimum and where it meets an axis. Discrete steps, output the
clusers at each step

Args:

distMat (numpy.array)
n x 2 array of core and accessory distances for n samples

sample_names (list)
List of query sequence labels

mean0 (numpy.array)
Start point to define search line

mean1 (numpy.array)
End point to define search line

scale (numpy.array)
Scaling factor of distMat

s_max (float)
The optimal s position from refinement (refineFit())

n_boundary_points (int)
Number of positions to try drawing the boundary at

num_processes (int)
Number of threads to use in the global optimisation step. (default = 1)

use_gpu (bool)
Whether to use cugraph for graph analyses

PopPUNK.refine.newNetwork(s, sample_names, distMat, mean0, mean1, gradient, slope=2, score_idx=0,
cpus=1, betweenness_sample=100, use_gpu=False)

Wrapper function for construct_network_from_edge_list() which is called by optimisation functions
moving a triangular decision boundary.

Given the boundary parameterisation, constructs the network and returns its score, to be minimised.

Args:

s (float)
Distance along line between start_point and mean1 from start_point

sample_names (list)
Sample names corresponding to distMat (accessed by iterator)

distMat (numpy.array or NumpyShared)
Core and accessory distances or NumpyShared describing these in sharedmem

118 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

mean0 (numpy.array)
Start point

mean1 (numpy.array)
End point

gradient (float)
Gradient of line to move along

slope (int)
Set to 0 for a vertical line, 1 for a horizontal line, or 2 to use a slope [default = 2]

score_idx (int)
Index of score from networkSummary() to use [default = 0]

cpus (int)
Number of CPUs to use for calculating assignment

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

use_gpu (bool)
Whether to use cugraph for graph analysis

Returns:

score (float)
-1 * network score. Where network score is from networkSummary()

PopPUNK.refine.newNetwork2D(y_idx, sample_names, distMat, x_range, y_range, score_idx=0,
betweenness_sample=100, use_gpu=False)

Wrapper function for thresholdIterate2D and growNetwork().

For a given y_max, constructs networks across x_range and returns a list of scores

Args:

y_idx (float)
Maximum y-intercept of boundary, as index into y_range

sample_names (list)
Sample names corresponding to distMat (accessed by iterator)

distMat (numpy.array or NumpyShared)
Core and accessory distances or NumpyShared describing these in sharedmem

x_range (list)
Sorted list of x-intercepts to search

y_range (list)
Sorted list of y-intercepts to search

score_idx (int)
Index of score from networkSummary() to use [default = 0]

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

use_gpu (bool)
Whether to use cugraph for graph analysis

Returns:

16.7. refine.py 119

PopPUNK Documentation, Release 2.6.3

scores (list)
-1 * network score for each of x_range. Where network score is from networkSummary()

PopPUNK.refine.readManualStart(startFile)
Reads a file to define a manual start point, rather than using --fit-model

Throws and exits if incorrectly formatted.

Args:

startFile (str)
Name of file with values to read

Returns:

mean0 (numpy.array)
Centre of within-strain distribution

mean1 (numpy.array)
Centre of between-strain distribution

scaled (bool)
True if means are scaled between [0,1]

PopPUNK.refine.refineFit(distMat, sample_names, mean0, mean1, scale, max_move, min_move, slope=2,
score_idx=0, unconstrained=False, no_local=False, num_processes=1,
betweenness_sample=100, use_gpu=False)

Try to refine a fit by maximising a network score based on transitivity and density.

Iteratively move the decision boundary to do this, using starting point from existing model.

Args:

distMat (numpy.array)
n x 2 array of core and accessory distances for n samples

sample_names (list)
List of query sequence labels

mean0 (numpy.array)
Start point to define search line

mean1 (numpy.array)
End point to define search line

scale (numpy.array)
Scaling factor of distMat

max_move (float)
Maximum distance to move away from start point

min_move (float)
Minimum distance to move away from start point

slope (int)
Set to 0 for a vertical line, 1 for a horizontal line, or 2 to use a slope

score_idx (int)
Index of score from networkSummary() to use [default = 0]

unconstrained (bool)
If True, search in 2D and change the slope of the boundary

120 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

no_local (bool)
Turn off the local optimisation step. Quicker, but may be less well refined.

num_processes (int)
Number of threads to use in the global optimisation step. (default = 1)

betweenness_sample (int)
Number of sequences per component used to estimate betweenness using a GPU. Smaller numbers are
faster but less precise [default = 100]

use_gpu (bool)
Whether to use cugraph for graph analyses

Returns:

optimal_x (float)
x-coordinate of refined fit

optimal_y (float)
y-coordinate of refined fit

optimised_s (float)
Position along search range of refined fit

16.8 plot.py

Plots of GMM results, k-mer fits, and microreact output

PopPUNK.plot.createMicroreact(prefix, microreact_files, api_key=None)
Creates a .microreact file, and instance via the API

Args:

prefix (str)
Prefix for output file

microreact_files (str)
List of Microreact files [clusters, dot, tree, mst_tree]

api_key (str)
API key for your account

PopPUNK.plot.distHistogram(dists, rank, outPrefix)
Plot a histogram of distances (1D)

Args:

dists (np.array)
Distance vector

rank (int)
Rank (used for name and title)

outPrefix (int)
Full path prefix for plot file

PopPUNK.plot.drawMST(mst, outPrefix, isolate_clustering, clustering_name, overwrite)
Plot a layout of the minimum spanning tree

Args:

16.8. plot.py 121

PopPUNK Documentation, Release 2.6.3

mst (graph_tool.Graph)
A minimum spanning tree

outPrefix (str)
Output prefix for save files

isolate_clustering (dict)
Dictionary of ID: cluster, used for colouring vertices

clustering_name (str)
Name of clustering scheme to be used for colouring

overwrite (bool)
Overwrite existing output files

PopPUNK.plot.get_grid(minimum, maximum, resolution)
Get a square grid of points to evaluate a function across

Used for plot_scatter() and plot_contours()

Args:

minimum (float)
Minimum value for grid

maximum (float)
Maximum value for grid

resolution (int)
Number of points along each axis

Returns:

xx (numpy.array)
x values across n x n grid

yy (numpy.array)
y values across n x n grid

xy (numpy.array)
n x 2 pairs of x, y values grid is over

PopPUNK.plot.outputsForCytoscape(G, G_mst, isolate_names, clustering, outPrefix, epiCsv, queryList=None,
suffix=None, writeCsv=True)

Write outputs for cytoscape. A graphml of the network, and CSV with metadata

Args:

G (graph)
The network to write

G_mst (graph)
The minimum spanning tree of G

isolate_names (list)
Ordered list of sequence names

clustering (dict)
Dictionary of cluster assignments (keys are nodeNames).

outPrefix (str)
Prefix for files to be written

122 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

epiCsv (str)
Optional CSV of epi data to paste in the output in addition to the clusters.

queryList (list)
Optional list of isolates that have been added as a query. (default = None)

suffix (string)
String to append to network file name. (default = None)

writeCsv (bool)
Whether to print CSV file to accompany network

PopPUNK.plot.outputsForGrapetree(combined_list, clustering, nj_tree, mst_tree, outPrefix, epiCsv,
queryList=None, overwrite=False)

Generate files for Grapetree

Write a neighbour joining tree (.nwk) from core distances and cluster assignment (.csv)

Args:

combined_list (list)
Name of sequences being analysed. The part of the name before the first ‘.’ will be shown in the output

clustering (dict or dict of dicts)
List of cluster assignments from printClusters(). Further clusterings (e.g. 1D core only) can be
included by passing these as a dict.

nj_tree (str or None)
String representation of a Newick-formatted NJ tree

mst_tree (str or None)
String representation of a Newick-formatted minimum-spanning tree

outPrefix (str)
Prefix for all generated output files, which will be placed in outPrefix subdirectory.

epiCsv (str)
A CSV containing other information, to include with the CSV of clusters

queryList (list)
Optional list of isolates that have been added as a query for colouring in the CSV. (default = None)

overwrite (bool)
Overwrite existing output if present (default = False).

PopPUNK.plot.outputsForMicroreact(combined_list, clustering, nj_tree, mst_tree, accMat, perplexity,
maxIter, outPrefix, epiCsv, queryList=None, overwrite=False,
n_threads=1, use_gpu=False, device_id=0)

Generate files for microreact

Output a neighbour joining tree (.nwk) from core distances, a plot of t-SNE clustering of accessory distances
(.dot) and cluster assignment (.csv)

Args:

combined_list (list)
Name of sequences being analysed. The part of the name before the first ‘.’ will be shown in the output

clustering (dict or dict of dicts)
List of cluster assignments from printClusters(). Further clusterings (e.g. 1D core only) can be
included by passing these as a dict.

16.8. plot.py 123

PopPUNK Documentation, Release 2.6.3

nj_tree (str or None)
String representation of a Newick-formatted NJ tree

mst_tree (str or None)
String representation of a Newick-formatted minimum-spanning tree

accMat (numpy.array)
n x n array of accessory distances for n samples.

perplexity (int)
Perplexity parameter passed to mandrake

maxIter (int)
Maximum iterations for mandrake

outPrefix (str)
Prefix for all generated output files, which will be placed in outPrefix subdirectory

epiCsv (str)
A CSV containing other information, to include with the CSV of clusters

queryList (list)
Optional list of isolates that have been added as a query for colouring in the CSV. (default = None)

overwrite (bool)
Overwrite existing output if present (default = False)

n_threads (int)
Number of CPU threads to use (default = 1)

use_gpu (bool)
Whether to use a GPU for t-SNE generation

device_id (int)
Device ID of GPU to be used (default = 0)

Returns:

outfiles (list)
List of output files create

PopPUNK.plot.outputsForPhandango(combined_list, clustering, nj_tree, mst_tree, outPrefix, epiCsv,
queryList=None, overwrite=False)

Generate files for Phandango

Write a neighbour joining tree (.tree) from core distances and cluster assignment (.csv)

Args:

combined_list (list)
Name of sequences being analysed. The part of the name before the first ‘.’ will be shown in the output

clustering (dict or dict of dicts)
List of cluster assignments from printClusters(). Further clusterings (e.g. 1D core only) can be
included by passing these as a dict.

nj_tree (str or None)
String representation of a Newick-formatted NJ tree

mst_tree (str or None)
String representation of a Newick-formatted minimum-spanning tree

outPrefix (str)
Prefix for all generated output files, which will be placed in outPrefix subdirectory

124 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

epiCsv (str)
A CSV containing other information, to include with the CSV of clusters

queryList (list)
Optional list of isolates that have been added as a query for colouring in the CSV. (default = None)

overwrite (bool)
Overwrite existing output if present (default = False)

threads (int)
Number of threads to use with rapidnj

PopPUNK.plot.plot_contours(model, assignments, title, out_prefix)
Draw contours of mixture model assignments

Will draw the decision boundary for between/within in red

Args:

model (BGMMFit)
Model we are plotting from

assignments (numpy.array)
n-vectors of cluster assignments for model

title (str)
The title to display above the plot

out_prefix (str)
Prefix for output plot file (.pdf will be appended)

PopPUNK.plot.plot_dbscan_results(X, y, n_clusters, out_prefix)
Draw a scatter plot (png) to show the DBSCAN model fit

A scatter plot of core and accessory distances, coloured by component membership. Black is noise

Args:

X (numpy.array)
n x 2 array of core and accessory distances for n samples.

Y (numpy.array)
n x 1 array of cluster assignments for n samples.

n_clusters (int)
Number of clusters used (excluding noise)

out_prefix (str)
Prefix for output file (.png will be appended)

PopPUNK.plot.plot_fit(klist, raw_matching, raw_fit, corrected_matching, corrected_fit, out_prefix, title)
Draw a scatter plot (pdf) of k-mer sizes vs match probability, and the fit used to assign core and accessory distance

K-mer sizes on x-axis, log(pr(match)) on y - expect a straight line fit with intercept representing accessory distance
and slope core distance

Args:

klist (list)
List of k-mer sizes

raw_matching (list)
Proportion of matching k-mers at each klist value

16.8. plot.py 125

PopPUNK Documentation, Release 2.6.3

raw_fit (numpy.array)
Fit to klist and raw_matching from fitKmerCurve()

corrected_matching (list)
Corrected proportion of matching k-mers at each klist value

corrected_fit (numpy.array)
Fit to klist and corrected_matching from fitKmerCurve()

out_prefix (str)
Prefix for output plot file (.pdf will be appended)

title (str)
The title to display above the plot

PopPUNK.plot.plot_refined_results(X, Y , x_boundary, y_boundary, core_boundary, accessory_boundary,
mean0, mean1, min_move, max_move, scale, threshold,
indiv_boundaries, unconstrained, title, out_prefix)

Draw a scatter plot (png) to show the refined model fit

A scatter plot of core and accessory distances, coloured by component membership. The triangular decision
boundary is also shown

Args:

X (numpy.array)
n x 2 array of core and accessory distances for n samples.

Y (numpy.array)
n x 1 array of cluster assignments for n samples.

x_boundary (float)
Intercept of boundary with x-axis, from RefineFit

y_boundary (float)
Intercept of boundary with y-axis, from RefineFit

core_boundary (float)
Intercept of 1D (core) boundary with x-axis, from RefineFit

accessory_boundary (float)
Intercept of 1D (core) boundary with y-axis, from RefineFit

mean0 (numpy.array)
Centre of within-strain distribution

mean1 (numpy.array)
Centre of between-strain distribution

min_move (float)
Minimum s range

max_move (float)
Maximum s range

scale (numpy.array)
Scaling factor from RefineFit

threshold (bool)
If fit was just from a simple thresholding

indiv_boundaries (bool)
Whether to draw lines for core and accessory refinement

126 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

title (str)
The title to display above the plot

out_prefix (str)
Prefix for output plot file (.png will be appended)

PopPUNK.plot.plot_results(X, Y , means, covariances, scale, title, out_prefix)
Draw a scatter plot (png) to show the BGMM model fit

A scatter plot of core and accessory distances, coloured by component membership. Also shown are ellipses for
each component (centre: means axes: covariances).

This is based on the example in the sklearn documentation.

Args:

X (numpy.array)
n x 2 array of core and accessory distances for n samples.

Y (numpy.array)
n x 1 array of cluster assignments for n samples.

means (numpy.array)
Component means from BGMMFit

covars (numpy.array)
Component covariances from BGMMFit

scale (numpy.array)
Scaling factor from BGMMFit

out_prefix (str)
Prefix for output plot file (.png will be appended)

title (str)
The title to display above the plot

PopPUNK.plot.plot_scatter(X, out_prefix, title, kde=True)
Draws a 2D scatter plot (png) of the core and accessory distances

Also draws contours of kernel density estimare

Args:

X (numpy.array)
n x 2 array of core and accessory distances for n samples.

out_prefix (str)
Prefix for output plot file (.png will be appended)

title (str)
The title to display above the plot

kde (bool)
Whether to draw kernel density estimate contours

(default = True)

PopPUNK.plot.writeClusterCsv(outfile, nodeNames, nodeLabels, clustering, output_format='microreact',
epiCsv=None, queryNames=None, suffix='_Cluster')

Print CSV file of clustering and optionally epi data

Writes CSV output of clusters which can be used as input to microreact and cytoscape. Uses pandas to deal with
CSV reading and writing nicely.

16.8. plot.py 127

PopPUNK Documentation, Release 2.6.3

The epiCsv, if provided, should have the node labels in the first column.

Args:

outfile (str)
File to write the CSV to.

nodeNames (list)
Names of sequences in clustering (includes path).

nodeLabels (list)
Names of sequences to write in CSV (usually has path removed).

clustering (dict or dict of dicts)
Dictionary of cluster assignments (keys are nodeNames). Pass a dict with depth two to include multiple
possible clusterings.

output_format (str)
Software for which CSV should be formatted (microreact, phandango, grapetree and cytoscape are
accepted)

epiCsv (str)
Optional CSV of epi data to paste in the output in addition to the clusters (default = None).

queryNames (list)
Optional list of isolates that have been added as a query.

(default = None)

16.9 sparse_mst.py

16.10 sketchlib.py

Sketchlib functions for database construction

PopPUNK.sketchlib.addRandom(oPrefix, sequence_names, klist, strand_preserved=False, overwrite=False,
threads=1)

Add chance of random match to a HDF5 sketch DB

Args:

oPrefix (str)
Sketch database prefix

sequence_names (list)
Names of sequences to include in calculation

klist (list)
List of k-mer sizes to sketch

strand_preserved (bool)
Set true to ignore rc k-mers

overwrite (str)
Set true to overwrite existing random match chances

threads (int)
Number of threads to use (default = 1)

128 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

PopPUNK.sketchlib.checkSketchlibLibrary()

Gets the location of the sketchlib library

Returns:

lib (str)
Location of sketchlib .so/.dyld

PopPUNK.sketchlib.checkSketchlibVersion()

Checks that sketchlib can be run, and returns version

Returns:

version (str)
Version string

PopPUNK.sketchlib.constructDatabase(assemblyList, klist, sketch_size, oPrefix, threads, overwrite,
strand_preserved, min_count, use_exact, calc_random=True,
codon_phased=False, use_gpu=False, deviceid=0)

Sketch the input assemblies at the requested k-mer lengths

A multithread wrapper around runSketch(). Threads are used to either run multiple sketch processes for each
klist value.

Also calculates random match probability based on length of first genome in assemblyList.

Args:

assemblyList (str)
File with locations of assembly files to be sketched

klist (list)
List of k-mer sizes to sketch

sketch_size (int)
Size of sketch (-s option)

oPrefix (str)
Output prefix for resulting sketch files

threads (int)
Number of threads to use (default = 1)

overwrite (bool)
Whether to overwrite sketch DBs, if they already exist. (default = False)

strand_preserved (bool)
Ignore reverse complement k-mers (default = False)

min_count (int)
Minimum count of k-mer in reads to include (default = 0)

use_exact (bool)
Use exact count of k-mer appearance in reads (default = False)

calc_random (bool)
Add random match chances to DB (turn off for queries)

codon_phased (bool)
Use codon phased seeds (default = False)

use_gpu (bool)
Use GPU for read sketching (default = False)

16.10. sketchlib.py 129

PopPUNK Documentation, Release 2.6.3

deviceid (int)
GPU device id (default = 0)

Returns:

names (list)
List of names included in the database (from rfile)

PopPUNK.sketchlib.createDatabaseDir(outPrefix, kmers)
Creates the directory to write sketches to, removing old files if unnecessary

Args:

outPrefix (str)
output db prefix

kmers (list)
k-mer sizes in db

PopPUNK.sketchlib.fitKmerCurve(pairwise, klist, jacobian)
Fit the function 𝑝𝑟 = (1− 𝑎)(1− 𝑐)𝑘

Supply jacobian = -np.hstack((np.ones((klist.shape[0], 1)), klist.reshape(-1, 1)))

Args:

pairwise (numpy.array)
Proportion of shared k-mers at k-mer values in klist

klist (list)
k-mer sizes used

jacobian (numpy.array)
Should be set as above (set once to try and save memory)

Returns:

transformed_params (numpy.array)
Column with core and accessory distance

PopPUNK.sketchlib.getKmersFromReferenceDatabase(dbPrefix)
Get kmers lengths from existing database

Args:

dbPrefix (str)
Prefix for sketch DB files

Returns:

kmers (list)
List of k-mer lengths used in database

PopPUNK.sketchlib.getSeqsInDb(dbname)
Return an array with the sequences in the passed database

Args:

dbname (str)
Sketches database filename

Returns:

seqs (list)
List of sequence names in sketch DB

130 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

PopPUNK.sketchlib.getSketchSize(dbPrefix)
Determine sketch size, and ensures consistent in whole database

sys.exit(1) is called if DBs have different sketch sizes

Args:

dbprefix (str)
Prefix for databases

Returns:

sketchSize (int)
sketch size (64x C++ definition)

codonPhased (bool)
whether the DB used codon phased seeds

PopPUNK.sketchlib.joinDBs(db1, db2, output, update_random=None)
Join two sketch databases with the low-level HDF5 copy interface

Args:

db1 (str)
Prefix for db1

db2 (str)
Prefix for db2

output (str)
Prefix for joined output

update_random (dict)
Whether to re-calculate the random object. May contain control arguments strand_preserved and
threads (see addRandom())

PopPUNK.sketchlib.queryDatabase(rNames, qNames, dbPrefix, queryPrefix, klist, self=True,
number_plot_fits=0, threads=1, use_gpu=False, deviceid=0)

Calculate core and accessory distances between query sequences and a sketched database

For a reference database, runs the query against itself to find all pairwise core and accessory distances.

Uses the relation 𝑝𝑟(𝑎, 𝑏) = (1− 𝑎)(1− 𝑐)𝑘

To get the ref and query name for each row of the returned distances, call to the iterator iterDistRows() with
the returned refList and queryList

Args:

rNames (list)
Names of references to query

qNames (list)
Names of queries

dbPrefix (str)
Prefix for reference sketch database created by constructDatabase()

queryPrefix (str)
Prefix for query sketch database created by constructDatabase()

klist (list)
K-mer sizes to use in the calculation

16.10. sketchlib.py 131

PopPUNK Documentation, Release 2.6.3

self (bool)
Set true if query = ref (default = True)

number_plot_fits (int)
If > 0, the number of k-mer length fits to plot (saved as pdfs). Takes random pairs of comparisons and
calls plot_fit() (default = 0)

threads (int)
Number of threads to use in the process (default = 1)

use_gpu (bool)
Use a GPU for querying (default = False)

deviceid (int)
Index of the CUDA GPU device to use (default = 0)

Returns:

distMat (numpy.array)
Core distances (column 0) and accessory distances (column 1) between refList and queryList

PopPUNK.sketchlib.readDBParams(dbPrefix)
Get kmers lengths and sketch sizes from existing database

Calls getKmersFromReferenceDatabase() and getSketchSize() Uses passed values if db missing

Args:

dbPrefix (str)
Prefix for sketch DB files

Returns:

kmers (list)
List of k-mer lengths used in database

sketch_sizes (list)
List of sketch sizes used in database

codonPhased (bool)
whether the DB used codon phased seeds

PopPUNK.sketchlib.removeFromDB(db_name, out_name, removeSeqs, full_names=False)
Remove sketches from the DB the low-level HDF5 copy interface

Args:

db_name (str)
Prefix for hdf database

out_name (str)
Prefix for output (pruned) database

removeSeqs (list)
Names of sequences to remove from database

full_names (bool)
If True, db_name and out_name are the full paths to h5 files

132 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

16.11 utils.py

General utility functions for data read/writing/manipulation in PopPUNK

PopPUNK.utils.check_and_set_gpu(use_gpu, gpu_lib, quit_on_fail=False)
Check GPU libraries can be loaded and set managed memory.

Args:

use_gpu (bool)
Whether GPU packages have been requested

gpu_lib (bool)
Whether GPU packages are available

Returns:

use_gpu (bool)
Whether GPU packages can be used

PopPUNK.utils.decisionBoundary(intercept, gradient)
Returns the co-ordinates where the triangle the decision boundary forms meets the x- and y-axes.

Args:

intercept (numpy.array)
Cartesian co-ordinates of point along line (transformLine()) which intercepts the boundary

gradient (float)
Gradient of the line

Returns:

x (float)
The x-axis intercept

y (float)
The y-axis intercept

PopPUNK.utils.get_match_search_depth(rlist, rank_list)
Return a default search depth for lineage model fitting.

Args:

rlist (list)
List of sequences in database

rank_list (list)
List of ranks to be used to fit lineage models

Returns:

max_search_depth (int)
Maximum kNN used for lineage model fitting

PopPUNK.utils.isolateNameToLabel(names)
Function to process isolate names to labels appropriate for visualisation.

Args:

names (list)
List of isolate names.

Returns:

16.11. utils.py 133

PopPUNK Documentation, Release 2.6.3

labels (list)
List of isolate labels.

PopPUNK.utils.iterDistRows(refSeqs, querySeqs, self=True)
Gets the ref and query ID for each row of the distance matrix

Returns an iterable with ref and query ID pairs by row.

Args:

refSeqs (list)
List of reference sequence names.

querySeqs (list)
List of query sequence names.

self (bool)
Whether a self-comparison, used when constructing a database. Requires refSeqs == querySeqs De-
fault is True

Returns:

ref, query (str, str)
Iterable of tuples with ref and query names for each distMat row.

PopPUNK.utils.joinClusterDicts(d1, d2)
Join two dictionaries returned by readIsolateTypeFromCsv() with return_dict = True. Useful for concate-
nating ref and query assignments

Args:

d1 (dict of dicts)
First dictionary to concat

d2 (dict of dicts)
Second dictionary to concat

Returns:

d1 (dict of dicts)
d1 with d2 appended

PopPUNK.utils.listDistInts(refSeqs, querySeqs, self=True)
Gets the ref and query ID for each row of the distance matrix

Returns an iterable with ref and query ID pairs by row.

Args:

refSeqs (list)
List of reference sequence names.

querySeqs (list)
List of query sequence names.

self (bool)
Whether a self-comparison, used when constructing a database. Requires refSeqs == querySeqs De-
fault is True

Returns:

ref, query (str, str)
Iterable of tuples with ref and query names for each distMat row.

134 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

PopPUNK.utils.readIsolateTypeFromCsv(clustCSV , mode='clusters', return_dict=False)
Read cluster definitions from CSV file.

Args:

clustCSV (str)
File name of CSV with isolate assignments

mode (str)
Type of file to read ‘clusters’, ‘lineages’, or ‘external’

return_type (str)
If True, return a dict with sample->cluster instead of sets [default = False]

Returns:

clusters (dict)
Dictionary of cluster assignments (keys are cluster names, values are sets containing samples in the
cluster). Or if return_dict is set keys are sample names, values are cluster assignments.

PopPUNK.utils.readPickle(pklName, enforce_self=False, distances=True)
Loads core and accessory distances saved by storePickle()

Called during --fit-model

Args:

pklName (str)
Prefix for saved files

enforce_self (bool)
Error if self == False

[default = True]

distances (bool)
Read the distance matrix

[default = True]

Returns:

rlist (list)
List of reference sequence names (for iterDistRows())

qlist (list)
List of query sequence names (for iterDistRows())

self (bool)
Whether an all-vs-all self DB (for iterDistRows())

X (numpy.array)
n x 2 array of core and accessory distances

PopPUNK.utils.readRfile(rFile, oneSeq=False)
Reads in files for sketching. Names and sequence, tab separated

Args:

rFile (str)
File with locations of assembly files to be sketched

oneSeq (bool)
Return only the first sequence listed, rather than a list (used with mash)

16.11. utils.py 135

PopPUNK Documentation, Release 2.6.3

Returns:

names (list)
Array of sequence names

sequences (list of lists)
Array of sequence files

PopPUNK.utils.read_rlist_from_distance_pickle(fn, allow_non_self=True)
Return the list of reference sequences from a distance pickle.

Args:

fn (str)
Name of distance pickle

allow_non_self (bool)
Whether non-self distance datasets are permissible

Returns:

rlist (list)
List of reference sequence names

PopPUNK.utils.set_env(**environ)
Temporarily set the process environment variables. >>> with set_env(PLUGINS_DIR=u’test/plugins’): . . .
“PLUGINS_DIR” in os.environ True >>> “PLUGINS_DIR” in os.environ False

PopPUNK.utils.setupDBFuncs(args)
Wraps common database access functions from sketchlib and mash, to try and make their API more similar

Args:

args (argparse.opts)
Parsed command lines options

qc_dict (dict)
Table of parameters for QC function

Returns:

dbFuncs (dict)
Functions with consistent arguments to use as the database API

PopPUNK.utils.stderr_redirected(to='/dev/null')
import os

with stdout_redirected(to=filename):
print(“from Python”) os.system(“echo non-Python applications are also supported”)

PopPUNK.utils.storePickle(rlist, qlist, self , X, pklName)
Saves core and accessory distances in a .npy file, names in a .pkl

Called during --create-db

Args:

rlist (list)
List of reference sequence names (for iterDistRows())

qlist (list)
List of query sequence names (for iterDistRows())

136 Chapter 16. Reference documentation

PopPUNK Documentation, Release 2.6.3

self (bool)
Whether an all-vs-all self DB (for iterDistRows())

X (numpy.array)
n x 2 array of core and accessory distances

pklName (str)
Prefix for output files

PopPUNK.utils.transformLine(s, mean0, mean1)
Return x and y co-ordinates for traversing along a line between mean0 and mean1, parameterised by a single
scalar distance s from the start point mean0.

Args:

s (float)
Distance along line from mean0

mean0 (numpy.array)
Start position of line (x0, y0)

mean1 (numpy.array)
End position of line (x1, y1)

Returns:

x (float)
The Cartesian x-coordinate

y (float)
The Cartesian y-coordinate

PopPUNK.utils.update_distance_matrices(refList, distMat, queryList=None, query_ref_distMat=None,
query_query_distMat=None, threads=1)

Convert distances from long form (1 matrix with n_comparisons rows and 2 columns) to a square form (2 NxN
matrices), with merging of query distances if necessary.

Args:

refList (list)
List of references

distMat (numpy.array)
Two column long form list of core and accessory distances for pairwise comparisons between reference
db sequences

queryList (list)
List of queries

query_ref_distMat (numpy.array)
Two column long form list of core and accessory distances for pairwise comparisons between queries
and reference db sequences

query_query_distMat (numpy.array)
Two column long form list of core and accessory distances for pairwise comparisons between query
sequences

threads (int)
Number of threads to use

Returns:

16.11. utils.py 137

PopPUNK Documentation, Release 2.6.3

seqLabels (list)
Combined list of reference and query sequences

coreMat (numpy.array)
NxN array of core distances for N sequences

accMat (numpy.array)
NxN array of accessory distances for N sequences

16.12 visualise.py

poppunk_visualise main function

PopPUNK.visualise.main()

Main function. Parses cmd line args and runs in the specified mode.

16.13 web.py

Functions used by the web API to convert a sketch to an h5 database, then generate visualisations and post results to
PopPUNK-web.

PopPUNK.web.api(query, ref_db)
Post cluster and tree information to microreact

PopPUNK.web.calc_prevalence(cluster, cluster_list, num_samples)
Cluster prevalences for Plotly.js

PopPUNK.web.graphml_to_json(network_dir)
Converts full GraphML file to JSON subgraph

PopPUNK.web.highlight_cluster(query, cluster)
Colour assigned cluster in Microreact output

PopPUNK.web.sketch_to_hdf5(sketches_dict, output)
Convert dict of JSON sketches to query hdf5 database

PopPUNK.web.summarise_clusters(output, species, species_db, qNames)
Retreieve assigned query and all cluster prevalences. Write list of all isolates in cluster for tree subsetting

138 Chapter 16. Reference documentation

CHAPTER

SEVENTEEN

ROADMAP

This document describes our future plans for additions to PopPUNK, pp-sketchlib and BeeBOP and BeeBOP. Tasks
are in order of priority.

17.1 PopPUNK

1. Containerise the workflow. See #193, #277, #278.

2. Add full worked tutorials back to the documentation #275.

3. Make the update pipeline more robust. See #273.

4. Codebase optimsation and refactoring

• Modularisation of the network code #249.

• Removing old functions #103

5. Add more species databases:

• N. meningitidis #267.

• H. influenzae #276.

6. Stable names for lineage/subclustering modes.

Other enhancements listed on the issue page are currently not planned.

17.2 pp-sketchlib

1. Update installation in package managers

• Update for new macOS #92

• Rebuild conda recipe for CUDA12 and newer HDF5 #46

2. Allow amino-acids as input #89.

Other enhancements listed on the issue page are currently not planned.

139

https://github.com/bacpop/pp-sketchlib
https://github.com/bacpop/beebop/
https://github.com/bacpop/PopPUNK/issues/193
https://github.com/bacpop/PopPUNK/issues/277
https://github.com/bacpop/PopPUNK/issues/278
https://github.com/bacpop/PopPUNK/issues/275
https://github.com/bacpop/PopPUNK/issues/273
https://github.com/bacpop/PopPUNK/issues/249
https://github.com/bacpop/PopPUNK/issues/103
https://github.com/bacpop/PopPUNK/issues/267
https://github.com/bacpop/PopPUNK/issues/276
https://github.com/bacpop/pp-sketchlib/issues
https://github.com/bacpop/ska.rust#planned-features
https://github.com/conda-forge/pp-sketchlib-feedstock/pull/46
https://github.com/bacpop/pp-sketchlib/issues/89
https://github.com/bacpop/pp-sketchlib/issues

PopPUNK Documentation, Release 2.6.3

17.3 BeeBOP

1. Update backend database to v8 #42.

2. Update CI images.

3. Add more info on landing page.

• News page.

• About page.

• Methods description.

4. Add custom cluster names (e.g. GPSCs)

5. Integration tests for error logging.

6. Persist user data.

• Persist microreact tokens #41.

• Allow user to change or delete tokens

7. Add linage/subclusters to results page #23.

8. Report sample quality to user.

9. Front-end update for large numbers of input files.

10. Add serotype prediction for S. pneumoniae.

11. Add multiple species databases.

140 Chapter 17. Roadmap

https://github.com/bacpop/beebop/pull/42
https://github.com/bacpop/beebop/pull/41
https://github.com/bacpop/beebop/pull/23

CHAPTER

EIGHTEEN

MISCELLANEOUS

18.1 Rejected/alternative logos

141

PopPUNK Documentation, Release 2.6.3

142 Chapter 18. Miscellaneous

PopPUNK Documentation, Release 2.6.3

18.1. Rejected/alternative logos 143

PopPUNK Documentation, Release 2.6.3

144 Chapter 18. Miscellaneous

CHAPTER

NINETEEN

WHY USE POPPUNK?

The advantages of PopPUNK are broadly that:

• It is fast, and scalable to over 105 genomes in a single run.

• Assigning new query sequences to a cluster using an existing database is scalable even beyond this.

• Cluster names remain consistent between studies, and other cluster labels such as MLST can be appended.

• Databases can be updated online (as sequences arrive).

• Online updating is equivalent to building databases from scratch.

• Databases can be kept small and managable by only keeping representative isolates.

• Databases naturally allow in-depth analysis of single clusters, but keeping the full context of the whole database.

• There is no bin cluster. Outlier isolates will be in their own cluster.

• Pre-processing, such as generation of an alignment, is not required.

• Raw sequence reads can be used as input, while being filtered for sequencing errors.

• The definition of clusters are biologically relevant.

• Many quantitative and graphical outputs are provided.

• A direct import into microreact is available, as well as cytoscape, grapetree and phandango.

• Everything is available within a single python executable.

145

https://microreact.org/
http://www.cytoscape.org/
http://dx.doi.org/10.1101/gr.232397.117
http://jameshadfield.github.io/phandango/

PopPUNK Documentation, Release 2.6.3

146 Chapter 19. Why use PopPUNK?

CHAPTER

TWENTY

CITATION

If you find PopPUNK useful, please cite as:

Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, Croucher
NJ. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Research 29:1-13 (2019).
doi:10.1101/gr.241455.118

See Citing PopPUNK for more details.

147

https://dx.doi.org/10.1101/gr.241455.118

PopPUNK Documentation, Release 2.6.3

148 Chapter 20. Citation

CHAPTER

TWENTYONE

INDEX

• genindex

• search

149

PopPUNK Documentation, Release 2.6.3

150 Chapter 21. Index

PYTHON MODULE INDEX

p
PopPUNK.assign, 91
PopPUNK.bgmm, 91
PopPUNK.dbscan, 93
PopPUNK.mandrake, 94
PopPUNK.models, 95
PopPUNK.network, 103
PopPUNK.plot, 121
PopPUNK.refine, 116
PopPUNK.sketchlib, 128
PopPUNK.sparse_mst, 128
PopPUNK.utils, 133
PopPUNK.visualise, 138
PopPUNK.web, 138

151

PopPUNK Documentation, Release 2.6.3

152 Python Module Index

INDEX

A
add_self_loop() (in module PopPUNK.network), 104
addQueryToNetwork() (in module PopPUNK.network),

103
addRandom() (in module PopPUNK.sketchlib), 128
api() (in module PopPUNK.web), 138
apply_threshold() (PopPUNK.models.RefineFit

method), 100
assign() (PopPUNK.models.BGMMFit method), 95
assign() (PopPUNK.models.DBSCANFit method), 97
assign() (PopPUNK.models.LineageFit method), 98
assign() (PopPUNK.models.RefineFit method), 100
assign_query() (in module PopPUNK.assign), 91
assign_query_hdf5() (in module PopPUNK.assign),

91
assign_samples() (in module PopPUNK.models), 102

B
BGMMFit (class in PopPUNK.models), 95

C
calc_prevalence() (in module PopPUNK.web), 138
check_and_set_gpu() (in module PopPUNK.utils), 133
check_search_range() (in module PopPUNK.refine),

116
checkNetworkVertexCount() (in module Pop-

PUNK.network), 104
checkSketchlibLibrary() (in module Pop-

PUNK.sketchlib), 128
checkSketchlibVersion() (in module Pop-

PUNK.sketchlib), 129
cliquePrune() (in module PopPUNK.network), 104
ClusterFit (class in PopPUNK.models), 96
construct_dense_weighted_network() (in module

PopPUNK.network), 105
construct_network_from_assignments() (in mod-

ule PopPUNK.network), 105
construct_network_from_df() (in module Pop-

PUNK.network), 106
construct_network_from_edge_list() (in module

PopPUNK.network), 107

construct_network_from_sparse_matrix() (in
module PopPUNK.network), 108

constructDatabase() (in module Pop-
PUNK.sketchlib), 129

copy() (PopPUNK.models.ClusterFit method), 96
createDatabaseDir() (in module Pop-

PUNK.sketchlib), 130
createMicroreact() (in module PopPUNK.plot), 121
cugraph_to_graph_tool() (in module Pop-

PUNK.network), 109

D
DBSCANFit (class in PopPUNK.models), 97
decisionBoundary() (in module PopPUNK.utils), 133
distHistogram() (in module PopPUNK.plot), 121
drawMST() (in module PopPUNK.plot), 121
dtype (PopPUNK.models.NumpyShared attribute), 100
dtype (PopPUNK.refine.NumpyShared attribute), 116

E
edge_weights() (PopPUNK.models.LineageFit

method), 99
evaluate_dbscan_clusters() (in module Pop-

PUNK.dbscan), 93
expand_cugraph_network() (in module Pop-

PUNK.refine), 116
extend() (PopPUNK.models.LineageFit method), 99
extractReferences() (in module PopPUNK.network),

109

F
fetchNetwork() (in module PopPUNK.network), 109
findBetweenLabel() (in module PopPUNK.dbscan),

93
findWithinLabel() (in module PopPUNK.bgmm), 91
fit() (PopPUNK.models.BGMMFit method), 95
fit() (PopPUNK.models.ClusterFit method), 96
fit() (PopPUNK.models.DBSCANFit method), 97
fit() (PopPUNK.models.LineageFit method), 99
fit() (PopPUNK.models.RefineFit method), 101
fit2dMultiGaussian() (in module PopPUNK.bgmm),

92

153

PopPUNK Documentation, Release 2.6.3

fitDbScan() (in module PopPUNK.dbscan), 93
fitKmerCurve() (in module PopPUNK.sketchlib), 130

G
generate_embedding() (in module Pop-

PUNK.mandrake), 94
generate_minimum_spanning_tree() (in module

PopPUNK.network), 110
get_cugraph_triangles() (in module Pop-

PUNK.network), 110
get_grid() (in module PopPUNK.plot), 122
get_match_search_depth() (in module Pop-

PUNK.utils), 133
get_vertex_list() (in module PopPUNK.network),

111
getCliqueRefs() (in module PopPUNK.network), 110
getKmersFromReferenceDatabase() (in module Pop-

PUNK.sketchlib), 130
getSeqsInDb() (in module PopPUNK.sketchlib), 130
getSketchSize() (in module PopPUNK.sketchlib), 130
graphml_to_json() (in module PopPUNK.web), 138
growNetwork() (in module PopPUNK.refine), 116

H
highlight_cluster() (in module PopPUNK.web), 138

I
isolateNameToLabel() (in module PopPUNK.utils),

133
iterDistRows() (in module PopPUNK.utils), 134

J
joinClusterDicts() (in module PopPUNK.utils), 134
joinDBs() (in module PopPUNK.sketchlib), 131

L
likelihoodBoundary() (in module PopPUNK.refine),

117
LineageFit (class in PopPUNK.models), 98
listDistInts() (in module PopPUNK.utils), 134
load() (PopPUNK.models.BGMMFit method), 96
load() (PopPUNK.models.DBSCANFit method), 98
load() (PopPUNK.models.LineageFit method), 99
load() (PopPUNK.models.RefineFit method), 102
load_network_file() (in module PopPUNK.network),

111
loadClusterFit() (in module PopPUNK.models), 103
log_likelihood() (in module PopPUNK.bgmm), 92
log_multivariate_normal_density() (in module

PopPUNK.bgmm), 92

M
main() (in module PopPUNK.assign), 91

main() (in module PopPUNK.visualise), 138
module

PopPUNK.assign, 91
PopPUNK.bgmm, 91
PopPUNK.dbscan, 93
PopPUNK.mandrake, 94
PopPUNK.models, 95
PopPUNK.network, 103
PopPUNK.plot, 121
PopPUNK.refine, 116
PopPUNK.sketchlib, 128
PopPUNK.sparse_mst, 128
PopPUNK.utils, 133
PopPUNK.visualise, 138
PopPUNK.web, 138

multi_refine() (in module PopPUNK.refine), 118

N
name (PopPUNK.models.NumpyShared attribute), 100
name (PopPUNK.refine.NumpyShared attribute), 116
network_to_edges() (in module PopPUNK.network),

111
networkSummary() (in module PopPUNK.network), 111
newNetwork() (in module PopPUNK.refine), 118
newNetwork2D() (in module PopPUNK.refine), 119
no_scale() (PopPUNK.models.ClusterFit method), 96
NumpyShared (class in PopPUNK.models), 100
NumpyShared (class in PopPUNK.refine), 116

O
outputsForCytoscape() (in module PopPUNK.plot),

122
outputsForGrapetree() (in module PopPUNK.plot),

123
outputsForMicroreact() (in module PopPUNK.plot),

123
outputsForPhandango() (in module PopPUNK.plot),

124

P
plot() (PopPUNK.models.BGMMFit method), 96
plot() (PopPUNK.models.ClusterFit method), 97
plot() (PopPUNK.models.DBSCANFit method), 98
plot() (PopPUNK.models.LineageFit method), 99
plot() (PopPUNK.models.RefineFit method), 102
plot_contours() (in module PopPUNK.plot), 125
plot_dbscan_results() (in module PopPUNK.plot),

125
plot_fit() (in module PopPUNK.plot), 125
plot_refined_results() (in module PopPUNK.plot),

126
plot_results() (in module PopPUNK.plot), 127
plot_scatter() (in module PopPUNK.plot), 127
PopPUNK.assign

154 Index

PopPUNK Documentation, Release 2.6.3

module, 91
PopPUNK.bgmm

module, 91
PopPUNK.dbscan

module, 93
PopPUNK.mandrake

module, 94
PopPUNK.models

module, 95
PopPUNK.network

module, 103
PopPUNK.plot

module, 121
PopPUNK.refine

module, 116
PopPUNK.sketchlib

module, 128
PopPUNK.sparse_mst

module, 128
PopPUNK.utils

module, 133
PopPUNK.visualise

module, 138
PopPUNK.web

module, 138
print_network_summary() (in module Pop-

PUNK.network), 113
printClusters() (in module PopPUNK.network), 112
printExternalClusters() (in module Pop-

PUNK.network), 113
process_previous_network() (in module Pop-

PUNK.network), 113
process_weights() (in module PopPUNK.network),

114

Q
queryDatabase() (in module PopPUNK.sketchlib), 131

R
read_rlist_from_distance_pickle() (in module

PopPUNK.utils), 136
readDBParams() (in module PopPUNK.sketchlib), 132
readIsolateTypeFromCsv() (in module Pop-

PUNK.utils), 134
readManualStart() (in module PopPUNK.refine), 120
readPickle() (in module PopPUNK.utils), 135
readRfile() (in module PopPUNK.utils), 135
RefineFit (class in PopPUNK.models), 100
refineFit() (in module PopPUNK.refine), 120
removeFromDB() (in module PopPUNK.sketchlib), 132

S
save() (PopPUNK.models.BGMMFit method), 96
save() (PopPUNK.models.DBSCANFit method), 98

save() (PopPUNK.models.LineageFit method), 100
save() (PopPUNK.models.RefineFit method), 102
save_network() (in module PopPUNK.network), 114
set_env() (in module PopPUNK.utils), 136
setupDBFuncs() (in module PopPUNK.utils), 136
shape (PopPUNK.models.NumpyShared attribute), 100
shape (PopPUNK.refine.NumpyShared attribute), 116
sketch_to_hdf5() (in module PopPUNK.web), 138
sparse_mat_to_network() (in module Pop-

PUNK.network), 115
stderr_redirected() (in module PopPUNK.utils), 136
storePickle() (in module PopPUNK.utils), 136
summarise_clusters() (in module PopPUNK.web),

138

T
transformLine() (in module PopPUNK.utils), 137
translate_network_indices() (in module Pop-

PUNK.network), 115

U
update_distance_matrices() (in module Pop-

PUNK.utils), 137

V
vertex_betweenness() (in module Pop-

PUNK.network), 115

W
writeClusterCsv() (in module PopPUNK.plot), 127
writeReferences() (in module PopPUNK.network),

115

Index 155

	Installation
	Installing with conda (recommended)
	Installing with pip
	Clone the code

	Overview
	Use the command line interface
	Installation and version
	Use query assignment mode
	Fit your own model
	Create visualisations

	Use an online interface

	Sketching (--create-db)
	Overview
	Using pp-sketchlib directly
	Viewing information about a database

	Choosing the right k-mer lengths
	Choosing the sketch size

	Sketching from read data
	Sketching RNA viruses
	GPU acceleration

	Data quality control (--qc-db)
	QC of input sequences
	QC of pairwise distances
	QC of the network (assign only)

	Fitting new models (--fit-model)
	Overview
	Common arguments
	How good is my fit?
	Interpreting the network summary

	bgmm
	dbscan
	refine
	Alternative network scores
	Unconstrained (two-dimensional) optimisation
	Using fit refinement when mixture model totally fails
	Using core/accessory only
	Running with multiple boundary positions

	threshold
	lineage
	Use an existing model with new data

	Distributing PopPUNK models
	Database contents
	Picking references

	Query assignment (poppunk_assign)
	Downloading a database
	Clustering your genomes
	Adding external cluster labels (MLST, CC etc)
	Using a model fitted with --indiv-refine

	Increasing speed
	Updating the database
	Visualising results

	Creating visualisations
	Common options
	Microreact
	Setting the perplexity parameter for mandrake

	GrapeTree
	Phandango
	Cytoscape

	Minimum spanning trees
	With small data
	With medium data
	With big data
	Using GPU acceleration for the graph

	Subclustering with PopPIPE
	Overview
	Installation
	Usage
	Alternative runs

	Config file
	PopPIPE configuration
	IQ-TREE configuration
	fastbaps configuration

	Updating a run

	Using GPUs
	Installing GPU packages
	Selecting a GPU
	Using a GPU

	Troubleshooting
	Most/all of my samples merge when I run a query
	Memory/run-time issues
	Known bugs
	Calculating query-query distances when unnecessary
	Older HDBSCAN models fail to load
	When I look at my clusters on a tree, they make no sense
	I have updated PopPUNK, and my clusters still seemed scrambled
	Calculating distances using 0 thread(s)

	Error/warning messages
	Row name mismatch
	Samples are missing from the final network
	Old cluster split across multiple new clusters

	Scripts
	Easy run mode
	Iterative PopPUNK
	Adding weights to the network
	Writing the pairwise distances to an output file
	Writing network components to an output file
	Calculating Rand indices
	Calculating silhouette indices
	Distributing PopPUNK models

	Iterative PopPUNK
	Running with multiple boundary positions
	Step-by-Step Tutorial
	Examples
	Common questions

	Citing PopPUNK
	Generating citations and methods

	Reference documentation
	assign.py
	bgmm.py
	dbscan.py
	mandrake.py
	models.py
	network.py
	refine.py
	plot.py
	sparse_mst.py
	sketchlib.py
	utils.py
	visualise.py
	web.py

	Roadmap
	PopPUNK
	pp-sketchlib
	BeeBOP

	Miscellaneous
	Rejected/alternative logos

	Why use PopPUNK?
	Citation
	Index
	Python Module Index
	Index

