
Popper Documentation
Release 1.0.0

Ivo Jimenez

Oct 04, 2018

Contents

1 Getting Started 3
1.1 New pipeline . 3
1.2 Popper Run . 4
1.3 Adding Project to GitHub . 4
1.4 Adding Project to Travis . 4

2 Concepts 5
2.1 Scientific Exploration Pipelines . 5
2.2 Popper Pipelines . 6
2.3 Popper vs. Other Software . 8

3 CLI feautures 11
3.1 New pipeline initialization . 11
3.2 Executing a pipeline . 12
3.3 Specifying environment requirements . 12
3.4 Reusing existing pipelines . 12
3.5 Continuously validating a pipeline . 14
3.6 Popper Badges . 16
3.7 Visualizing a pipeline . 17
3.8 Adding metadata to a project . 17
3.9 Archiving and DOI generation . 18
3.10 The popper.yml configuration file . 19

4 CI features 23
4.1 Execution logic . 23
4.2 Execution environments . 25
4.3 Parametrizing pipelines . 26
4.4 Matrix Executions . 27
4.5 Popper Badges . 28

5 Examples 29
5.1 Pipeline portability . 29
5.2 Dataset Management . 29
5.3 Infrastructure automation . 29
5.4 Domain-specific pipelines . 30
5.5 Results Validation . 30
5.6 Pipeline Parametrization . 30

i

5.7 Provenance and automatic dependency resolution . 30

6 Other Resources 31
6.1 Automated Artifact Evaluation . 31
6.2 Self-paced Tutorial . 32

7 FAQ 33
7.1 How can we deal with large datasets? For example I have to work on large data of hundreds GB, how

would this be integrated into Popper? . 33
7.2 How can Popper capture more complex workflows? For example, automatically restarting failed tasks? 33
7.3 Can I follow Popper in computational science research, as opposed to computer science? 33
7.4 How to apply the Popper protocol for applications that take large quantities of computer time? 34

8 Contributing 35
8.1 Code of Conduct . 35
8.2 Contributing CLI features . 35
8.3 Contributing example pipelines . 35

9 Indices and tables 37

ii

Popper Documentation, Release 1.0.0

Popper is an experimentation protocol for organizing a academic article’s artifacts following a DevOps approach
(sometimes referred to as “SciOps”). This documentation describes the experimentation protocol and the Popper CLI
tool; it gives examples from multiple domains showing how to follow the protocol; and also shows how to use a CI
system to continuously validate Popperized experiments.

Contents 1

Popper Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Getting Started

Popper is a convention for organizing an academic article’s artifacts following a DevOps approach, with the goal of
making it easy for others (and yourself!) to repeat an experiment or analysis pipeline.

We first need to install the CLI tool by following these instructions. Show the available commands:

popper --help

Show which version you installed:

popper version

Create a project repository (if you are not familiar with git, look here):

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Initialize the popper repository and add the .popper.yml file to git:

popper init
git add .
git commit -m 'adds .popper.yml file'

1.1 New pipeline

Initialize pipeline using init (scaffolding):

popper init myexp

Show what this did:

3

https://en.wikipedia.org/wiki/DevOps
https://github.com/systemslab/popper/tree/master/cli#install
https://www.learnenough.com/git-tutorial

Popper Documentation, Release 1.0.0

ls -l pipelines/myexp

Commit the “empty” pipeline:

git add pipelines/myexp
git commit -m 'adding myexp scaffold'

1.2 Popper Run

Run popper run:

popper run

Once a pipeline is executed, one can show the logs:

ls -l pipelines/myexp/popper_logs

1.3 Adding Project to GitHub

Create a repository on github, register the remote repository to your local git and push all your commits:

git remote add origin git@github.com:<user>/<repo>
git push -u origin master

where <user> is your username and <repo> is the name of the repository you have created.

1.4 Adding Project to Travis

For this, we need to login to Travis CI using our Github credentials. Once this is done, we activate the project so it is
continuously validated.

Generate .travis.yml file:

popper ci --service travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

Trigger an execution by pushing to github:

git push

Go to TravisCI website to see your experiments being executed.

4 Chapter 1. Getting Started

https://help.github.com/articles/create-a-repo/
https://docs.travis-ci.com/user/getting-started/#Prerequisites
https://docs.travis-ci.com/user/getting-started/#To-get-started-with-Travis-CI

CHAPTER 2

Concepts

2.1 Scientific Exploration Pipelines

Over the last decade software engineering and systems administration communities (also referred to as DevOps)
have developed sophisticated techniques and strategies to ensure “software reproducibility”, i.e. the reproducibility
of software artifacts and their behavior using versioning, dependency management, containerization, orchestration,
monitoring, testing and documentation. The key idea behind the Popper protocol is to manage every experiment
in computation and data exploration as a software project, using tools and services that are readily available now
and enjoy wide popularity. By doing so, scientific explorations become reproducible with the same convenience,
efficiency, and scalability as software repeatable while fully leveraging continuing improvements to these tools and
services. Rather than mandating a particular set of tools, the convention only expects components of an experiment to
be scripted. There are two main goals for Popper:

1. It should be usable in as many research projects as possible, regardless of their domain.

2. It should abstract underlying technologies without requiring a strict set of tools, making it possible to apply it
on multiple toolchains.

A common generic analysis/experimentation workflow involving a computational component is the one shown below.
We refer to this as a pipeline in order to abstract from experiments, simulations, analysis and other types of scientific
explorations. Although there are some projects that don’t fit this description, we focus on this model since it covers
a large portion of pipelines out there. Typically, the implementation and documentation of a scientific exploration is
commonly done in an ad-hoc way (custom bash scripts, storing in local archives, etc.).

5

https://en.wikipedia.org/wiki/DevOps

Popper Documentation, Release 1.0.0

2.2 Popper Pipelines

The idea behind Popper is simple: make an article self-contained by including in a code repository the manuscript
along with every experiment’s scripts, inputs, parametrization, results and validation. To this end we propose leverag-
ing state-of-the-art technologies and applying a DevOps approach to the implementation of scientific pipelines (also
referred to SciOps).

Popper is a convention (or protocol) that maps the implementation of a pipeline to software engineering (and De-
vOps/SciOps) best-practices followed in open-source software projects. If a pipeline is implemented by following
the Popper convention, we call it a popper-compliant pipeline or popper pipeline for short. A popper pipeline is
implemented using DevOps tools (e.g., version-control systems, lightweight OS-level virtualization, automated multi-
node orchestration, continuous integration and web-based data visualization), which makes it easier to re-execute and

6 Chapter 2. Concepts

https://en.wikipedia.org/wiki/DevOps#Scientific_DevOps_(SciOps)

Popper Documentation, Release 1.0.0

validate.

We say that an article (or a repository) is Popper-compliant if its scripts, dependencies, parameterization, results and
validations are all in the same respository (i.e., the pipeline is self-contained). If resources are available, one should
be able to easily re-execute a popper pipeline in its entirety. Additionally, the commit log becomes the lab notebook,
which makes the history of changes made to it available to readers, an invaluable tool to learn from others and “stand on
the shoulder of giants”. A “popperized” pipeline also makes it easier to advance the state-of-the-art, since it becomes
easier to extend existing work by applying the same model of development in OSS (fork, make changes, publish new
findings).

2.2.1 Repository Structure

The general repository structure is simple: a paper and pipelines folders on the root of the project with one
subfolder per pipeline

$> tree mypaper/
pipelines

exp1
README.md
output

exp1.csv
post.sh
view.ipynb

run.sh
setup.sh
teardown.sh
validate.sh

analysis1
README.md
...

analysis2
README.md
...

paper
build.sh
figures/
paper.tex
refs.bib

2.2.2 Pipeline Folder Structure

A minimal pipeline folder structure for an experiment or analysis is shown below:

$> tree -a paper-repo/pipelines/myexp
paper-repo/pipelines/myexp/

README.md
post-run.sh
run.sh
setup.sh
teardown.sh
validate.sh

Every pipeline has setup.sh, run.sh, post-run.sh, validate.sh and teardown.sh scripts that serve
as the entrypoints to each of the stages of a pipeline. All these return non-zero exit codes if there’s a failure. In the case

2.2. Popper Pipelines 7

Popper Documentation, Release 1.0.0

of validate.sh, this script should print to standard output one line per validation, denoting whether a validation
passed or not. In general, the form for validation results is [true|false] <statement> (see examples below).

[true] algorithm A outperforms B
[false] network throughput is 2x the IO bandwidth

The CLI tool includes a pipeline init subcommand that can be executed to scaffold a pipeline with the above
structure. The syntax of this command is:

popper pipeline init <name>

Where <name> is the name of the pipeline to initialize. More details on how pipelines are executed is presented in
the next section.

2.3 Popper vs. Other Software

With the goal of putting Popper in context, the following is a list of comparisons with other existing tools.

2.3.1 Scientific Workflow Engines

Scientific workflow engines are “a specialized form of a workflow management system designed specifically to com-
pose and execute a series of computational or data manipulation steps, or workflow, in a scientific application.” Taverna
and Pegasus are examples of widely used scientific workflow engines. For a comprehensive list, see here.

A Popper pipeline can be seen as the highest-level workflow of a scientific exploration, the one which users or automa-
tion services interact with (which can be visualized by doing popper workflow). A stage in a popper pipeline can
itself trigger the execution of a workflow on one of the aforementioned workflow engines. A way to visualize this is
shown in the following image:

The above corresponds to a pipeline whose run.sh stage triggers the execution of a workflow for a numeric weather
prediction setup (the code is available here). Ideally, the workflow specification files (e.g. in CWP format) would be
stored in the repository and be passed as parameter in a bash script that is part of a popper pipeline. For an example of
a popper pipeline using the Toil genomics workflow engine, see here.

2.3.2 Virtualenv, Conda, Packrat, etc.

Language runtime-specific tools for Python, R, and others, provide the ability of recreating and isolating environments
with all the dependencies that are needed by an application that is written in one of these languages. For exam-

8 Chapter 2. Concepts

https://github.com/systemslab/popper/popper
https://en.wikipedia.org/wiki/Scientific_workflow_system
https://taverna.incubator.apache.org/
https://pegasus.isi.edu/
https://github.com/pditommaso/awesome-pipeline
https://github.com/popperized/nwp-popper
http://www.commonwl.org/
https://github.com/BD2KGenomics/toil
https://github.com/popperized/PopperCI_Toil

Popper Documentation, Release 1.0.0

ple virtualenv can be used to create an isolated environment with all the dependencies of a python application,
including the version of the python runtime itself. This is a lightweight way of creating portable pipelines.

Popper pipelines automate and create an explicit record of the steps that need to be followed in order to create these
isolated environments. For an example of a pipeline of this kind, see here.

For pipelines that execute programs written in statically typed languages (e.g. C++), these types of tools are not a
good fit and other “full system” virtualization solutions such as Docker or Vagrant might be a better alternative. For
an example of such a pipeline, see here.

2.3.3 CI systems

Continuous Integration (CI) is a development practice where developers integrate and deploy code frequently with
the purpose of catching errors as early as possible. The pipelines associated to an article can benefit from using CI
services. If the output of a pipeline can be verified and validated by codifying any expectation, in the form of a unit
test (a command returning a boolean value), this can be tested on every change to pipeline scripts.

Travis CI is an open-source, hosted, distributed continuous integration service used to build and test software projects
hosted at GitHub. Alternatives to Travis CI are CircleCI and CodeShip. Other self-hosted solutions exist such as
Jenkins. Each of these services require users to specify and automate tests using their own configuration files (or
domain specific languages).

Popper can be seen as a service-agnostic way of automating the execution of a pipeline on CI services with minimal
effort. The popper ci command generates configuration files that a CI service reads in order to execute a pipeline.
Additionally, Popper can be used to test a pipeline locally. Lastly, since the concept of a pipeline and validations
associated to them is a first-class citizen in Popper, we can not only check that a pipeline can execute correctly
(SUCCESS or FAIL statuses) but we can also verify that the output is the one expected by the original implementers
as explained here (GOLD status).

2.3.4 Reprozip / Sciunit

Reprozip “allows you to pack your research along with all necessary data files, libraries, environment variables and
options”, while Sciunit “are efficient, lightweight, self-contained packages of computational experiments that can be
guaranteed to repeat or reproduce regardless of deployment issues”. They accomplish this by making use of ptrace
to track all dependencies of an application. Popper can help in automating the tasks required to install these tools;
create and execute Reprozip packages and Sciunits; and re-execute experiments in order to verify that results are being
reproduced.

2.3. Popper vs. Other Software 9

https://virtualenv.pypa.io/
https://github.com/popperized/nwp-popper
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
https://travis-ci.org/
https://circleci.com
https://codeship.com
http://jenkins-ci.org
other_resources.html#ci-setup
cli_features.html#testing-locally
cli_features.html#continously-validating-a-pipeline
https://www.reprozip.org/
https://sciunit.run
https://en.wikipedia.org/wiki/Ptrace

Popper Documentation, Release 1.0.0

10 Chapter 2. Concepts

CHAPTER 3

CLI feautures

3.1 New pipeline initialization

Create a Git repository:

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Initialize the popper repository and add the configuration file to git:

popper init
git add .
git commit -m 'adds .popper.yml file'

Initialize pipeline using init (scaffolding):

popper init myexp

Show what this did:

ls -l pipelines/myexp

Commit the “empty” pipeline:

git add pipelines/myexp
git commit -m 'adding myexp scaffold'

11

Popper Documentation, Release 1.0.0

3.2 Executing a pipeline

To automatically run a pipeline:

popper run myexp

or to execute all the pipelines in a project:

popper run

Once a pipeline is run, one can show the logs:

ls -l pipelines/myexp/popper/host

For more on the execution logic, see here.

3.3 Specifying environment requirements

The require subcommand can be used to specify expectations on the environment, in particular, the availability of
certain environment variables and binary commands. To specify that a variable is required, the following can be done:

popper require --env VARIABLE_NAME

and for commands:

popper require --binary command-name

In either case, the popper run command will check, prior to executing a pipeline, the existence of these and will
proceed according to the value given to the --requirement-level flag of the run subcommand. By default, the
execution fails if a dependency is missing.

3.4 Reusing existing pipelines

Many times, when starting an experiment, it is useful to be able to use existing pipelines as scaffolding for the opera-
tions we wish to make. The Popperized GitHub organization exists as a curated list of existing Popperized experiments
and examples, for the purpose of both learning and scaffolding new projects. Additionally, the CLI includes capabili-
ties easily sift through and import these pipelines.

3.4.1 Searching for existing pipelines

The Popper CLI is capable of searching for premade and template pipelines that you can modify for your own uses.
You can use the popper search command to find pipelines using keywords. For example, to search for pipelines
that use docker you can simply run:

$ popper search docker
[####################################] Searching in popperized | 100%

Search results:

> popperized/popper-readthedocs-examples/docker-data-science

(continues on next page)

12 Chapter 3. CLI feautures

ci_features.html#execution-logic
https://github.com/popperized

Popper Documentation, Release 1.0.0

(continued from previous page)

> popperized/swc-lesson-pipelines/docker-data-science

By default, this command will look inside the Popperized GitHub organization but you can configure it to search the
GitHub organization or repository of your choice using the popper search --add <org-or-repo-name>
command. If you’ve added more organizations, you may list them with popper search --ls, or remove one
with popper search --rm <org-or-repo-name>

Additionally, when searching for a pipeline, you may choose to include the contents of the readme in your search if
you wish by providing the additional --include flag to popper search.

3.4.2 Importing existing pipelines

Once you have found a pipeline you’re interested in importing, you can use popper add plus the full pipeline name
to add the pipeline to the popperized project:

$ popper add popperized/popper-readthedocs-examples/docker-data-science
Downloading pipeline docker-data-science as docker-data-science...
Updating popper configuration...
Pipeline docker-data-science has been added successfully.

This will download the contents of the repo to your project tree and register it in your .popper.yml configuration
file. If you want to add the pipeline inside a different folder, you can also specify that in the popper add command:

$ popper add popperized/popper-readthedocs-examples/docker-data-science docker-
→˓pipeline
Downloading pipeline docker-data-science as docker-pipeline...
Updating popper configuration...
Pipeline docker-pipeline has been added successfully.

$ tree
mypaper

pipelines
docker-pipeline

README.md
analyze.sh
docker

Dockerfile
app.py
generate_figures.py
requirements.txt

generate-figures.sh
results

naive_bayes.png
naive_bayes_results.csv
svm_estimator.png
svm_estimator_results.csv

setup.sh

You can also tell popper add to instead pull the pipeline from another git branch by optionally providing the
--branch <branch-name> option to the command.

3.4. Reusing existing pipelines 13

https://github.com/popperized

Popper Documentation, Release 1.0.0

3.5 Continuously validating a pipeline

The ci subcommand generates configuration files for multiple CI systems. The syntax of this command is the follow-
ing:

popper ci --service <name>

Where <name> is the name of CI system (see popper ci --help to get a list of supported systems). In the
following, we show how to link github with some of the supported CI systems. In order to do so, we first need to
create a repository on github and upload our commits:

set the new remote
git remote add origin <your-github-repo-url>

verify the remote URL
git remote -v

push changes in your local repository up to github
git push -u origin master

3.5.1 TravisCI

For this, we need an account at Travis CI. Assuming our Popperized repository is already on GitHub, we can enable
it on TravisCI so that it is continuously validated (see here for a guide). Once the project is registered on Travis, we
proceed to generate a .travis.yml file:

cd my-popper-repo/
popper ci --service travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

We then can trigger an execution by pushing to GitHub:

git push

After this, one go to the TravisCI website to see your pipelines being executed. Every new change committed to a
public repository will trigger an execution of your pipelines. To avoid triggering an execution for a commit, include a
line with [skip ci] as part of the commit message.

NOTE: TravisCI has a limit of 2 hours, after which the test is terminated and failed.

3.5.2 CircleCI

For CircleCI, the procedure is similar to what we do for TravisCI (see above):

1. Sign in to CircleCI using your github account and enable your repository.

2. Generate config files and add them to the repo:

14 Chapter 3. CLI feautures

http://travis-ci.org
https://docs.travis-ci.com/user/getting-started/
https://circleci.com/

Popper Documentation, Release 1.0.0

cd my-popper-repo/
popper ci --service circle
git add .circleci
git commit -m 'Adds CircleCI config files'
git push

3.5.3 GitLab-CI

For GitLab-CI, the procedure is similar to what we do for TravisCI and CircleCI (see above), i.e. generate config files
and add them to the repo:

cd my-popper-repo/
popper ci --service gitlab
git add .gitlab-ci.yml
git commit -m 'Adds GitLab-CI config file'
git push

If CI is enabled on your instance of GitLab, the above should trigger an execution of the pipelines in your repository.

3.5.4 Jenkins

For Jenkins, generating a Jenkinsfile is done in a similar way:

cd my-popper-repo/
popper ci --service jenkins
git add Jenkinsfile
git commit -m 'Adds Jenkinsfile'
git push

Jenkins is a self-hosted service and needs to be properly configured in order to be able to read a github project with
a Jenkinsfile in it. The easiest way to add a new project is to use the Blue Ocean UI. A step-by-step guide on
how to create a new project using the Blue Ocean UI can be found here. In particular, the New Pipeline from
a Single Repository has to be selected (as opposed to Auto-discover Pipelines).

As part of our efforts, we provide a ready-to-use Docker image for Jenkins with all the required dependencies. We
also host an instance of this image at http://ci.falsifiable.us and allow anyone to make use of this Jenkins server.

For more on the CI concept, see here. For a detailed explanation on all the CI features, see here. And for In this case,
as opposed

3.5.5 Testing Locally

The PopperCLI tool includes a run subcommand that can be executed to test locally. This subcommand is the same
that is executed by the PopperCI service, so the output of its invocation should be, in most cases, the same as the one
obtained when PopperCI executes it. This helps in cases where one is testing locally. To execute test locally:

cd my/paper/repo
popper run myexperiment

[####################################] None

status: SUCCESS

3.5. Continuously validating a pipeline 15

https://about.gitlab.com/features/gitlab-ci-cd/
https://jenkinsci.org
https://jenkins.io/projects/blueocean/
https://jenkins.io/doc/book/blueocean/creating-pipelines/
jenkins.html
http://ci.falsifiable.us
https://github.com/systemslab/popper/tree/master/popper

Popper Documentation, Release 1.0.0

The status of the execution, as well as the stdout and stderr output for each stage is stored in the popper/host
directory inside your pipeline. In addition to the host directory, a new directory will be created for every environment
you set your pipeline to run on.

popper/host
popper_status
post-run.sh.err
post-run.sh.out
run.sh.err
run.sh.out
setup.sh.err
setup.sh.out
teardown.sh.err
teardown.sh.out
validate.sh.err
validate.sh.out

These files are added to the .gitignore file so they won’t be committed to the git repository when doing git
add. To quickly remove them, one can clean the working tree:

get list of files that would be deleted
include directories (-d)
include ignored files (-x)
git clean -dx --dry-run

remove --dry-run and add --force to actually delete files
git clean -dx --force

Execution timeout

By default, popper runwill set a timeout on the execution of your pipelines. You may modify the timeout using the
--timeout option, in the form of popper run --timeout 600s. You can also disable the timeout altogether
by setting --timeout to 0.

3.6 Popper Badges

We maintain a badging service that can be used to keep track of the status of a pipeline.

16 Chapter 3. CLI feautures

https://help.github.com/articles/ignoring-files/

Popper Documentation, Release 1.0.0

Badges are commonly used to denote the status of a software project with respect to certain aspect, e.g. whether the
latest version can be built without errors, or the percentage of code that unit tests cover (code coverage). Badges
available for Popper are shown in the above figure. If badging is enabled, after the execution of a pipeline, the status
of a pipeline is recorded in the badging server (hosted at http://badges.falsifiable.us), which keeps track of the status
for every revision of a Popperized project. To retrieve the history for a Popper repo:

popper badge --history

A link to the badge can be included in the README.md page of a project, which is displayed on the web interface of
the version control system (GitHub, GitLab, etc.). The CLI tool can generate the link automatically:

popper badge --service popper

Which prints to stdout the text that should be added to the README.md file of the project. If the --inplace flag
is used, the link is added to the README.md file.

3.7 Visualizing a pipeline

Popper gives a user the ability to visualize the workflow of a pipeline using the popper workflow
pipeline_name command. The command generates a workflow diagram corresponding to a Popper pipeline,
in the .dot format. The string defining the graph is printed to stdout so it can be piped into other tools. For example,to
generate a png file, one can make use of the graphviz CLI tools:

popper workflow mypipe | dot -T png -o mypipe.png.

Suppose you want to visualize the co2-emissions pipeline. Assuming that this pipeline is added to your repository (as
explained ini Searching and Importing pipelines, you need to type:

popper workflow co2-emissions | dot -T png -o co2_workflow.png

This will lead to the generation of the following dot graph:

3.8 Adding metadata to a project

Metadata to a project can be added using the metadata command, which adds a key-value pair to the repository
(to the .popper.yml file). For example:

popper metadata --add author='Jane Doe'

The above adds the metadata item author to the project. To retrieve the list of keys:

3.7. Visualizing a pipeline 17

http://badges.falsifiable.us
https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/co2-emissions
cli_features.html#searching-and-importing-existing-pipelines

Popper Documentation, Release 1.0.0

popper metadata

And one removes a key by doing:

popper metadata --rm author

3.9 Archiving and DOI generation

Currently the Popper CLI tool integrates with archival services Zenodo and FigShare for uploading the contents of the
repository. This is useful for archiving data that is not part of the Git repository (usually due to it being too big). In
addition, these services provide the ability of obtaining a DOI for the archive associated to the project.

3.9.1 Zenodo

The first step is to create an account on Zenodo and generate an API token. Follow these steps (taken from here):

1. Register for a Zenodo account if you don’t already have one.

2. Go to your Applications, to create a new token.

3. Select the OAuth scopes you need (you need at least deposit:write and deposit:actions).

Now add a set of minimal metadata (required by Zenodo, otherwise uploading will fail).

popper metadata --add title='<Your Title>'
popper metadata --add author1='<First Last, first.last@gmail.com, Affiliation>'
popper metadata --add abstract='<A short description of the your repo>'
popper metadata --add keywords='<comma, separated, keywords>'

Now use the popper archive command to perform the archiving.

popper archive --service zenodo

Enter the token obtained when prompted. Alternatively, this command checks the environment for a
POPPER_ZENODO_API_TOKEN variable and, if available, uses it to authenticate with the service.

By default, the archive command will only upload the snapshot of the project but will not publish it. In order to
publish and generate a DOI for the archive, pass the --publish flag to the archive command:

popper archive --service zenodo --publish

A URL containing the DOI will be printed to the terminal.

3.9.2 FigShare

Create a personal token using the following steps:

1. Go to https://figshare.com and create a new account.

2. Go to the Applications section of your profile and in the bottom click on Create Personal Token.

3. Keep the token safe for use in the next step.

Now add the list of minimal metadata entries (required by FigShare, otherwise uploading will fail).

18 Chapter 3. CLI feautures

http://developers.zenodo.org/#creating-a-personal-access-token
https://zenodo.org/signup
https://zenodo.org/account/settings/applications/
https://zenodo.org/account/settings/applications/tokens/new/
https://figshare.com
https://figshare.com/account/applications

Popper Documentation, Release 1.0.0

popper metadata --add title='Popper test archive'
popper metadata --add author1='Test Author, testauthor@gmail.com, popper'
popper metadata --add abstract='A short description of the article'
popper metadata --add keywords='comma, separated, keywords'
popper metadata --add categories='1656'

After this, the popper archive command is used to perform the archiving.

popper archive --service figshare

Enter the token obtained when prompted. Alternatively, this command checks the environment for a
POPPER_FIGSHARE_API_TOKEN variable and, if available, uses it to authenticate with the service.

By default, the archive command will only upload the snapshot of the project but will not publish it. In order to
publish and generate a DOI for the archive, pass the --publish flag to the archive command:

popper archive --service figshare --publish

A URL containing the DOI will be printed to the terminal.

3.10 The popper.yml configuration file

The popper command reads the .popper.yml file in the root of a project to figure out how to execute pipelines.
While this file can be manually created and modified, the popper command makes changes to this file depending on
which commands are executed.

The project folder we will use as example looks like the following:

$> tree -a -L 2 my-paper
my-paper/

.git

.popper.yml
paper
pipelines

analysis
data-generation

That is, it contains three pipelines named paper,data-generation and analysis. The .popper.yml for
this project looks like:

metadata:
access_right: open
license: CC-BY-4.0
publication_type: article
upload_type: publication

pipelines:
paper:
envs:
- host
path: paper
stages:
- build

data-generation:
envs:

(continues on next page)

3.10. The popper.yml configuration file 19

Popper Documentation, Release 1.0.0

(continued from previous page)

- host
path: pipelines/data-generation
stages:
- first
- second
- post-run
- validate
- teardown

analysis:
envs:
- host
path: pipelines/analysis
stages:
- run
- post-run
- validate
- teardown

popperized:
- github/popperized

At the top-level of the YAML file there are entries named pipelines, metadata and popperized.

3.10.1 Pipelines

The pipelines YAML entry specifies the details for all the available pipelines. For each pipeline, there is informa-
tion about:

• the environment(s) in which the pipeline is be executed.

• the path to that pipeline.

• the various stages that are present in it.

The special paper pipeline is generated by executing popper init paper and has by default a single stage
named build.sh.

envs

The envs entry in .popper.yml specifies the environment in which a pipeline is executed as part of the popper
run command. By default, a pipeline runs on the host, i.e. the same environment where the popper command runs.
By leveraging Docker, a pipeline can run on an environment different to the host. The list of available environments
can be shown by running:

popper env --ls

By default, the host is the registered environment when running popper init. The --env flag of the init
subcommand can be used to specify another environment. For example:

popper init mypipe --env=alpine-3.4

The above specifies that the pipeline named mypipe will be executed inside a docker container using the
falsifiable/popper:alpine-3.4 image.

To add more environment(s):

20 Chapter 3. CLI feautures

Popper Documentation, Release 1.0.0

popper env mypipe --add ubuntu-xenial,centos-7.2

To deregister an environment:

popper env mypipe --rm centos-7.2

Arbitrary images can be specified. The only requirement from the point of view of Popper is that they must have
popper installed in the image. For example:

popper env mypipe --add my-docker-repo/image-with-popper-inside

stages

The stages YAML entry specifies the sequence of stages that are executed by the popper run command.
By default, the popper init command generates scaffold scripts for setup.sh, run.sh, post-run.sh,
validate.sh, teardown.sh. If any of those are not present when the pipeline is executed using popper
run, they are just skipped (without throwing an error). At least one stage needs to be executed, otherwise popper
run throws an error.

If arbitrary names are desired for a pipeline, the --stages flag of the popper init command can be used. For
example:

popper init arbitrary_stages \
--stages 'preparation,execution,validation'

The above line generates the configuration for the arbitrary_stages pipeline showed in the example.

3.10.2 Metadata

The metadata YAML entry specifies a set of key-value pairs that describes and gives us information about a project.

By default, a project’s metadata will be initialized with the following key-value pairs:

$> popper metadata

access_right: open
license: CC-BY-4.0
publication_type: article
upload_type: publication

A custom key-value pair can be added using the popper metadata --add KEY=VALUE command. For example:

popper metadata --add year=2018

This adds a metadata entry ‘year’ to the metadata. The metadata will now look like:

access_right: open
license: CC-BY-4.0
publication_type: article
upload_type: publication
year: '2019'

To remove the entry ‘year’ from the metadata, the popper metadata --rm KEY command can be used as
show below:

3.10. The popper.yml configuration file 21

Popper Documentation, Release 1.0.0

popper metadata --rm year

3.10.3 Popperized Repositories and Organizations

The popperized YAML entry specifies the list of Github organizations and repositories that contain popperized
pipelines. By default, it points to the github/popperized organization. This list is used to look for pipelines as
part of the popper search command.

22 Chapter 3. CLI feautures

CHAPTER 4

CI features

Popper can be used to apply a CI service-agnostic approach to automating the execution of pipelines. The popper
ci command generates configuration files that a CI service reads in order to execute a pipeline. This section describes
this functionality. For more information on how to link your project to a CI service and how to test locally, check here.

4.1 Execution logic

When popper run is invoked, each pipeline is executed in alpha-numerical order. When a pipeline runs, each of
the stages is executed in the order specified by the --stages flag of the init command; the stages command;
or by manually editing the .popper.yml file.

The following is the list of high-level tasks that are executed when a pipeline is executed:

1. If specified, environmental requirements are checked. See here for more.

2. For every pipeline, sequentially invoke all the scripts for all the defined stages of the pipeline.

3. After the pipeline finishes, if a validate.sh script is defined, its output gets parsed. The validate.sh
script should print to standard output one line per validation, denoting whether a validation passed or not. In
general, the form for validation results is [true|false] <statement>, for example:

[true] algorithm A outperforms B
[false] network throughput is 2x the IO bandwidth

4. Keep track of every pipeline and report their status.

There are three possible values for the status of a pipeline: FAIL, SUCCESS and GOLD. When a pipeline does not run
to completion (i.e. one of the stages failed), the status of the pipeline is FAIL. When the pipeline status’ is GOLD, the
status of all validations is true. When all the stages of a pipeline run successfully but one or more validations fail
(the status of one or more validations is false), the status of a pipeline is SUCCESS.

When multiple pipelines are executed, the lowest status among all the pipelines is reported by the popper run
command, with FAIL being the lowest and GOLD the highest.

23

other_resources.html#ci-setup
cli_features.html#continuously-validating-a-pipeline
cli_features.html#specifying-environment-requirements

Popper Documentation, Release 1.0.0

4.1.1 Skipping stages

The popper run command has a --skip argument that can be used to execute a pipeline in multiple steps. So for
example, assuming we have a pipeline with the following scripts: setup, run, post-run and validate, we can
run:

popper run --skip post-run,validate

Which runs the first part (setup and execution). Then, later we can either manually check whether the run stage is
done or automate this task in the post-run script. In either way, we would then run:

popper run --skip setup,run

and the above will just execute the second half of the pipeline.

4.1.2 Specifying which pipelines to run

By default, the run subcommand will try to run all the pipelines in a project, unless the current working directory is
the folder containing a pipeline. Alternatively, the run subcommand takes as argument the name of a pipeline. For
example:

cd my-popper-repo
popper run

The above runs all the pipelines in a repository. While the following runs only the pipeline named my-pipe.

cd my-popper-repo
popper run my-pipe

or alternatively:

cd my-popper-repo
cd pipelines/my-pipe
popper run

4.1.3 Specifying which pipelines to run via commit messages

The previous subsection applies when popper run is invoked directly on a shell. However, when a CI service
executes a pipeline, it does so by invoking popper run on the CI server, without passing any arguments or flags,
and thus we cannot specify which pipelines to execute or skip. To make this more flexible, the ci command provides
the ability to control which pipelines are executed by looking for special keywords in commit messages.

The popper:whitelist[<list>] keyword can be used in a commit message to specify which pipelines to
execute. For example:

An example commit message

This is a sample commit message that shows how we can request the
execution of a particular pipeline.

popper:whitelist[my-pipe]

The above commit message specifies that the pipeline my-pipe is to be executed and any other pipeline will be
skipped. A comma-separated list of pipeline names can be given in order to request the execution of more then one
pipeline. A skip list is also supported with the popper:skip[<list>] keyword.

24 Chapter 4. CI features

Popper Documentation, Release 1.0.0

4.2 Execution environments

By default, a pipeline runs on the same environment where the popper command is being executed. In certain cases,
it is useful to run a pipeline on a different environment. Popper leverages Docker to accomplish this. For more on how
to define and remove environments, see here. For each environment, an output log folder is created. For example, the
following pipeline 2-stage pipeline:

pipelines:
my-pipe:
path: pipelines/my-pipe
envs:
- host
- debian-9
stages:
- one
- two

Results in the logs folder in pipelines/my-pipe/popper to have the following structure:

$ tree pipelines/my-pipe/popper
pipelines/my-pipe/popper

debian-9
popper_status
one.sh.err
one.sh.out
two.sh.err
two.sh.out

host
popper_status
one.sh.err
one.sh.err
two.sh.err
two.sh.out

That is, there is one folder for each distinct environment. The status of the pipeline reported by popper run is the
lowest status from all the executions, with FAIL being the lowest and GOLD the highest.

4.2.1 Specifying arguments for docker run

A Docker environment image is instantiated with the following command:

docker run --rm \
--volume /path/to/project:/path/to/project \
--workdir /path/to/project/path/to/pipeline \
<popper-docker-image> \
popper run <flags> <arg>

Where <popper-docker-image> is an image with Popper available inside of it. The project folder is shared with
the container and the pipeline folder is the working directory. To specify other flags to the docker run command,
the --argument flag of the env command can be used. For usage, type popper env --help.

4.2. Execution environments 25

cli_features.html#envs

Popper Documentation, Release 1.0.0

4.3 Parametrizing pipelines

A pipeline can be parametrized so that it can be executed multiple times, taking a distinct set of parameters each time.
Parameters are specified with the parameters subcommand and are given in the form of environment variables. For
example, if a pipeline takes parameters par1 and par2, the following can specify these:

popper parameters my-pipe --add 'par1=val1 par2=val2'

This will cause the .popper.yml to look like the following:

pipelines:
my-pipe:
envs:
- host
stages:
- one
- two
parameters:
- { par1: val1, par2: val2 }

Each new set of parameters results in a dictionary of key-value pairs, where each item in the dictionary is an environ-
ment variable. A subsequent set of parameters can be added:

popper parameters my-pipe --add 'par1=val3 par2=val4'

Which will result in the following:

pipelines:
my-pipe:
envs:
- host
stages:
- one
- two
parameters:
- par1: val1

par2: val2
- par1: val3

par2: val4

The above results in executing this same pipeline two times, defining environment variables par1 and par2, with
these 2 sets of values, every time it runs. We refer to each execution in a parametrized pipeline as a Job. In this
example we will have 2 jobs every time the pipeline runs.

When a parametrized pipeline is executed, a subfolder for each job is created. For example, the 2-job pipeline specified
above results in the following folder structure:

$ tree pipelines/your-popper-pipeline/popper
pipelines/your-popper-pipeline/popper

host
0

popper_status
one.sh.err
one.sh.out
two.sh.err
two.sh.out

1

(continues on next page)

26 Chapter 4. CI features

Popper Documentation, Release 1.0.0

(continued from previous page)

popper_status
one.sh.err
one.sh.out
two.sh.err
two.sh.out

Subfolders are numbered (starting from 0), where each ID corresponds to the position of the set of parameters in
the parameters list. So the run 0 above corresponds to par1=val1,par2=val2 and 1 to par1=val3,
par2=val4.

4.4 Matrix Executions

Combining Execution environments with Parameters results in a bi-dimensional matrix of jobs. For example, the
following pipeline:

pipelines:
my-pipe:
envs:
- host
- debian-9
stages:
- one
- two
parameters:
- par1: val1

par2: val2
- par1: val3

par2: val4

Results in the following folder structure for the popper/ logs folder:

$ tree pipelines/your-popper-pipeline/popper
pipelines/your-popper-pipeline/popper

debian-9
0

popper_status
one.sh.err
one.sh.out
two.sh.err
two.sh.out

1
popper_status
one.sh.err
one.sh.out
two.sh.err
two.sh.out

host
0

popper_status
one.sh.err
one.sh.out
two.sh.err
two.sh.out

1

(continues on next page)

4.4. Matrix Executions 27

Popper Documentation, Release 1.0.0

(continued from previous page)

popper_status
one.sh.err
one.sh.out
two.sh.err
two.sh.out

4.5 Popper Badges

See here.

28 Chapter 4. CI features

cli_features.html#popper-badges

CHAPTER 5

Examples

In this section we present a examples of Popper pipelines. All these are available on github and can be added to a local
repo by doing:

popper add popperized/<repo>/<pipeline>

Where <repo> is the name of the repository where a pipeline is contained, and <pipeline> is the name of the
pipeline.

5.1 Pipeline portability

• Using Virtualenv (Python) (and also here).

• Using Packrat (R).

• Using Spack.

• Using Docker.

• Using Vagrant.

5.2 Dataset Management

• Using Datapackages.

• Using data.world.

5.3 Infrastructure automation

• On CloudLab using geni-lib.

29

https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/sea-surface-mapping
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/validator
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/sea-surface-mapping-r
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/mpip
https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/docker-data-science
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/vagrant-linux
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/datapackage
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/data-world
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/cloudlab-benchmarking

Popper Documentation, Release 1.0.0

• On Chameleon using enos.

• On Google Compute Platform using terraform.

5.4 Domain-specific pipelines

• Atmospheric science.

• Applied math.

• Machine learning.

• Linux kernel development.

• Relational databases.

• Genomics.

• High Performance Computing.

• Computational Neuroscience.

Coming soon:

• Distributed file systems

• High energy physics

5.5 Results Validation

• Statistical validations.

• Bitwise image comparison.

5.6 Pipeline Parametrization

• Using environment variables

• Using baseliner.

5.7 Provenance and automatic dependency resolution

• Using Sumatra

Coming soon:

• Sci-Unit

• ReproZip

30 Chapter 5. Examples

https://github.com/popperized/nwp-popper
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/blis
https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/docker-data-science
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/vagrant-linux
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/pgbench
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/genomics
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/mpip
https://github.com/popperized/open-comp-rsc-popper
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/validator
https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/docker-data-science
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/envvar-param
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/cloudlab-benchmarking
https://github.com/popperized/open-comp-rsc-popper

CHAPTER 6

Other Resources

6.1 Automated Artifact Evaluation

A growing number of Computer Science conferences and journals incorporate an artifact evaluation process in which
authors of articles submit artifact descriptions that are tested by a committee, in order to verify that experiments
presented in a paper can be re-executed by others. In short, an artifact description is a 2-3 page narrative on how to
replicate results, including steps that detail how to install software and how to re-execute experiments and analysis
contained in a paper.

An alternative to the manual creation and verification of an Artifact Description (AD) is to use a continuous integration
(CI) service such as GitLab-CI or Jenkins. Authors can make use of a CI service to automate the experimentation
pipelines associated to a paper. By doing this, the URL pointing to the project on the CI server that holds execution
logs, as well as the repository containing all the automation scripts, can serve as the AD. In other words, the repository
containing the code for experimentation pipelines, and the associated CI project, serve both as a “self-verifiable AD”.
Thus, instead of requiring manually created ADs, conferences and journals can request that authors submit a link to a
code repository (Github, Gitlab, etc.) where automation scripts reside, along with a link to the CI server that executes
the pipelines.

While automating the execution of a pipeline can be done in many ways, in order for this approach to serve as an
alternative to ADs, there are five high-level tasks that pipelines must carry out in every execution:

• Code and data dependencies. Code must reside on a version control system (e.g. github, gitlab, etc.). If datasets
are used, then they should reside in a dataset management system (datapackage, gitlfs, dataverse, etc.). The
experimentation pipelines must obtain the code/data from these services on every execution.

• Setup. The pipeline should build and deploy the code under test. For example, if a pipeline is using containers
or VMs to package their code, the pipeline should build the container/VM images prior to executing them. The
goal of this is to verify that all the code and 3rd party dependencies are available at the time a pipeline runs, as
well as the instructions on how to build the software.

• Resource allocation. If a pipeline requires a cluster or custom hardware to reproduce results, resource allocation
must be done as part of the execution of the pipeline. This allocation can be static or dynamic. For example,
if an experiment runs on custom hardware, the pipeline can statically allocate (i.e. hardcode IP/hostnames) the
machines where the code under study runs (e.g. GPU/FPGA nodes). Alternatively, a pipeline can dynamically

31

http://ctuning.org/ae/submission.html

Popper Documentation, Release 1.0.0

allocate nodes (using infrastructure automation tools) on CloudLab, Chameleon, Grid5k, SLURM, Terraform
(EC2, GCE, etc.), etc.

• Environment capture. Capture information about the runtime environment. For example, hardware description,
OS, system packages (i.e. software installed by system administrators), remote services (e.g. a scheduler).
Many open-source tools can aid in aggregating this information such as SOSReport or facter.

• Validation. Scripts must verify that the output corroborates the claims made on the article. For example, the
pipeline might check that the throughput of a system is within an expected confidence interval (e.g. defined with
respect to a baseline obtained at runtime).

A list of example Popper pipelines meeting the above criteria:

• BLIS paper. We took an appendix and turned it into executable pipeline.

• HPC Proxy App. Runs LULESH linked against MPIp to capture runtime MPI perf metrics.

• Linux kernel development. Uses a VM to compile, test and deploy Linux.

• Relational database performance. Runs pgbench to compare two versions of postgres.

More examples are listed here.

NOTE: A pipeline can be implemented by any means and does not need to be implemented using the
Popper CLI. While the examples we link above are of Popper pipelines, this subsection has the intention
to apply, in general, to any type of automated approach. Our intention is to define, in written form, the
criteria for Automated Artifact Evaluation.

6.1.1 CI Infrastructure for Automated Artifact Evaluation

We have an instance of Jenkins running at http://ci.falsifiable.us, maintained by members of the Systems Research
Lab (SRL) at UC Santa Cruz. Detailed instructions on how to create an account on this service and how to use it
is available here (also includes instructions on how to self-host it). This service allows researchers and students to
automate the execution and validation of experimentation pipelines without happing to deploy infrastructure of their
own.

6.2 Self-paced Tutorial

A hands-on, self-paced tutorial is available here.

32 Chapter 6. Other Resources

https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/blis
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/mpip
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/linux-cgroups
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/pgbench
examples.html
http://ci.falsifiable.us
https://popper.readthedocs.io/en/latest/ci/jenkins.html
https://popperized.github.io/swc-lesson

CHAPTER 7

FAQ

7.1 How can we deal with large datasets? For example I have to work
on large data of hundreds GB, how would this be integrated into
Popper?

For datasets that are large enough that they cannot be managed by Git, solutions such as a PFS, GitLFS, Datapackages,
ckan, among others exist. These tools and services allow users to manage large datasets and version-control them.
From the point of view of Popper, this is just another tool that will get invoked as part of the execution of a pipeline.
As part of our documentation, we have examples on how to use datapackages, and another on how to use data.world.

7.2 How can Popper capture more complex workflows? For example,
automatically restarting failed tasks?

A Popper pipeline is a simple sequence of bash scripts. Popper is not a replacement for scientific workflow engines,
instead, its goal is to capture the highest-most workflow: the human interaction with a terminal. For more on this,
please take a look at the Popper vs. other software section of our documentation.

7.3 Can I follow Popper in computational science research, as op-
posed to computer science?

Yes, the goal for Popper is to make it a domain-agnostic experimentation protocol. Examples of how to follow Popper
on distinct domains: atmospheric science, computational neuroscience, genomics and applied math.

33

concepts.html#scientific-workflow-engines
https://github.com/popperized/nwp-popper
https://github.com/popperized/open-comp-rsc-popper
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/genomics
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/blis

Popper Documentation, Release 1.0.0

7.4 How to apply the Popper protocol for applications that take large
quantities of computer time?

The popper run command has a --skip argument that can be used to execute a pipeline in multiple steps. See
here for more information.

Another practice we have been following is to have a specific set of parameters for the pipeline with the goal of running
a smaller scale simulation/analysis. The idea is to use this when running on a CI service such as Travis in order to test
the entire pipeline in a relatively short amount of time (Travis times out jobs after 3 hours). So this ends up looking
something like this, i.e. a conditional in a stage that, depending on the environment (in this case a CI variable defined),
the parametrization and setup is different, but the rest of the pipeline runs in the same fashion. While this approach
doesn’t really executes the actual original simulation, at least it lets us test the integrity of the scripts.

34 Chapter 7. FAQ

ci_features.html#skipping-stages
https://travis-ci.org
https://github.com/ivotron/quiho-popper/blob/master/pipelines/single-node/setup.sh

CHAPTER 8

Contributing

8.1 Code of Conduct

Anyone is welcome to contribute to Popper! To get started, take a look at our contributing guidelines, then dive in
with our list of good first issues and open projects.

Popper adheres to the code of conduct posted in this repository. By participating or contributing to Popper, you’re
expected to uphold this code. If you encounter unacceptable behavior, please immediately email us.

8.2 Contributing CLI features

To contribute new CLI features:

1. Add a new issue describing the feature.

2. Fork the official repo and implement the issue on a new branch.

3. Add tests for the new feature. We test the popper CLI command using Popper itself. The Popper pipeline for
testing the popper command is available here.

4. Open a pull request against the master branch.

8.3 Contributing example pipelines

We invite anyone to implement (and document) Popper pipelines demonstrating the use of a DevOps tool, or how to
apply Popper in a particular domain. Implementing a new example is done in two parts.

8.3.1 Implement the pipeline

A popper pipeline is implemented by following the convention. See the Concepts and Examples section for more.

35

CONTRIBUTING.md
https://github.com/systemslab/popper/issues?utf8=%E2%9C%93&q=is%3Aissue+label%3A%22good+first+issue%22+is%3Aopen
https://github.com/systemslab/popper/projects
CODE_OF_CONDUCT.md
mailto:ivo@cs.ucsc.edu
https://github.com/systemslab/popper/issues/new
https://github.com/systemslab/popper
https://github.com/systemslab/popper/blob/master/ci/
concepts.html
examples.html

Popper Documentation, Release 1.0.0

Once a pipeline has been implemented, it needs to be uploaded to github, gitlab or any other repo publicly available. We
use the organization https://github.com/popperized to host examples developed by the Popper team and collaborators.
Pipelines on this organization are available by default to the popper search command, so users can add it easily
to their repos (using popper add). To add a repository containing one or more pipelines to this organization, please
first create the repository on GitHub under an organization you own and then do one of the following:

• Transfer ownership of the repo to the popperized organization.

• Open an issue requesting the repository to be forked or mirrored. NOTE: forks and mirrors need to be updated
manually in order to reflect changes done on the base/upstream repository.

8.3.2 Document the pipeline

We encourage contributors to document pipelines by adding them to our list of examples. To add new documentation:

1. Fork the official repo.

2. Add a new item on the docs/sections/examples.md file.

3. Open pull request against the master branch.

36 Chapter 8. Contributing

https://github.com/popperized
cli_features.html#searching-and-importing-existing-pipelines
https://github.com/systemslab/popper/issues/new
examples.html
https://github.com/systemslab/popper
https://github.com/systemslab/popper/blob/master/docs/sections/examples.md

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

37

	Getting Started
	New pipeline
	Popper Run
	Adding Project to GitHub
	Adding Project to Travis

	Concepts
	Scientific Exploration Pipelines
	Popper Pipelines
	Popper vs. Other Software

	CLI feautures
	New pipeline initialization
	Executing a pipeline
	Specifying environment requirements
	Reusing existing pipelines
	Continuously validating a pipeline
	Popper Badges
	Visualizing a pipeline
	Adding metadata to a project
	Archiving and DOI generation
	The popper.yml configuration file

	CI features
	Execution logic
	Execution environments
	Parametrizing pipelines
	Matrix Executions
	Popper Badges

	Examples
	Pipeline portability
	Dataset Management
	Infrastructure automation
	Domain-specific pipelines
	Results Validation
	Pipeline Parametrization
	Provenance and automatic dependency resolution

	Other Resources
	Automated Artifact Evaluation
	Self-paced Tutorial

	FAQ
	How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?
	How can Popper capture more complex workflows? For example, automatically restarting failed tasks?
	Can I follow Popper in computational science research, as opposed to computer science?
	How to apply the Popper protocol for applications that take large quantities of computer time?

	Contributing
	Code of Conduct
	Contributing CLI features
	Contributing example pipelines

	Indices and tables

