

Welcome to POP-Java’s documentation!

Welcome to POP-Java’s documentation. POP-Java is an implementation of the POP
(Parallel Object Programing) model for the Java programming
language. The POP model is based on the very simple idea that objects are
suitable structures to distribute data and executable code over heterogeneous
distributed hardware and to make them interact between each other.

POP-Java is a comprehensive object-oriented system for developing HPC
applications in large distributed computing infrastructures such as Grid or
P2P. It consists of a programming suite (language, compiler) and a run-time
system for running POP-Java applications.

POP-Java language is minimal an extension of Java that implements the parallel
object model with the integration of resource requirements into distributed
objects. We try to keep this extension as close as possible to Java so that
programmers can easily learn POP-Java and that existing Java applications can
be parallelized using POP-Java without too much effort.

This documentation is divided in three parts:

	The User manual targets the users of the POP-Java framework and
describes how to develop and run POP-enabled Java applications.

	The TFC manual regarding what is TFC and how to use it.

	The Developer manual targets the developers of the POP-Java framework
and contains guidelines and resources for the development process.

	The References collect various reference documents, useful for both
users and developers alike.

User manual

	Introduction and background

	Parallel Object Model

	Developing POP-Java applications

	Compile and run a POP-Java application

	Developing POP-Java and POP-C++ mixed applications

	POP-Java plugin

	Installation

	Configuration

	Troubleshooting

	Bibliography

TFC

	The TFC model

	Basic example

	Advanced example

Developer manual

	Contribution guidelines

	Documentation management

	Architecture

	Broker & Interface

	Packages

	Communication

	Java Agent

	Configuration

	Services

	Annotations

	Testing

References

	POP-Java homepage [http://gridgroup.hefr.ch/popj/]

	API Reference [http://gridgroup.github.io/pop-java/api/]

	POP-Java source code [https://github.com/pop-team/pop-java]

	Examples

	Commands reference

	Release notes

	POP-C++ homepage [http://gridgroup.hefr.ch/popc/]

	TODOs

Introduction and background

Introduction

Programming large heterogeneous distributed environments such as GRID or P2P
infrastructures is a challenging task. This statement remains true even if
we consider research that has focused on enabling these types of
infrastructures for scientific computing such as resource management and
discovery [FK97], [GFKH99], [CFK+88], service
architecture [FKNT02], security [WSF+03] and data management
[ABB+02], [SSA+01]. Efforts to port traditional
programming tools such as MPI [FK98], [RFG+00],
[KTIFoster03] or BSP [TDC03], [WP00], also had some
success. These tools allow programmers to run their existing parallel
applications on large heterogeneous distributed environments. However,
efficient exploitation of performance regarding the heterogeneity still needs
to be manually controlled and tuned by programmers.

POP-C++ and POP-Java are implementations of the POP (Parallel
Object Programing) model first introduced by Dr. Tuan Anh Nguyen in
his PhD thesis [Ngu04]. POP-C++ is an extension of the C++
programming language [KN07] and POP-Java is an extension of the Java
programming language [Cle10]. The POP model is based on the very
simple idea that objects are suitable structures to distribute data and
executable codes over heterogeneous distributed hardware and to make them
interact between each other.

Inspired by CORBA [Object Management Group01] and C++, the POP-C++ programming language
extends C++ by adding a new type of parallel object, allowing to run C++
objects in distributed environments. With POP-C++, programming efficients
distributed applications is as simple as writing a C++ programs. The POP-Java
programming language extends Java and implements the same mechanisms as
POP-C++.

The POP model

The POP model extends the traditional object oriented programming model by
adding the minimum necessary functionality to allow for an easy development
of coarse grain distributed high performance applications.
When the object oriented paradigm has unified the concept of module and type to
create the new concept of class, the POP model unifies the concept
of class with the concept of task (or process). This
is realized by adding to traditional sequential classes a new type of class:
the parallel class. By instantiating parallel classes we are able
to create a new category of objects we will call parallel objects
in the rest of this document.

Parallel objects are objects that can be remotely executed. They coexist and
cooperate with traditional sequential objects during the application execution.
Parallel objects keep advantages of object-orientation such as data
encapsulation, inheritance and polymorphism and adds new properties to
objects such as:

	Distributed shareable objects

	Dynamic and transparent object allocation

	Various method invocation semantics

System overview

Although the POP-C++ programming system focuses on an object-oriented
programming model, it also includes a runtime system which provides the
necessary services to run POP-C++ and POP-Java applications over distributed
environments.

An overview of the POP system (Both POP-C++ and POP-Java) architecture is
illustrated in Figure 1. In POP-Java, only the programming
system is implemented and the runtime system is the same as the one used in
POP-C++.

[image: ../_images/architecture.png]
Figure 1: POP system architecture

The POP-C++ runtime system consists of three layers: the service layer,
the POP-C++ service abstractions layer, and the programming layer. The
service layer is built to interface with lower level toolkits (e.g.
Globus) and the operating system. The essential service abstraction layer
provides an abstract interface for the programming layer. On top of the
architecture is the programming layer, which provides necessary support
for developing distributed object-oriented applications. More details of
the POP-C++ runtime layers are given in a separate document
[Ngu04].

Structure of this manual

This manual has 8 chapters, including this introduction:

	Parallel Object Model explains the POP model.

	Developing POP-Java applications describes the POP-Java application development process.

	Compile and run a POP-Java application explains the compilation and the launch process of a
POP-Java application.

	Developing POP-Java and POP-C++ mixed applications aims to describe and explain how to use of POP-C++ and POP-Java
together in a same application.

	POP-Java plugin describes the POP-Java plugin system.

	Installation guides the user trough the installation process.

	Finally, Troubleshooting gives some hints to solve the main problems that can
occur with a POP-Java application.

Parallel Object Model

Introduction

Object-oriented programming provides high level abstractions for software
engineering. In addition, the nature of objects makes them ideal structures to
distribute data and executable codes over heterogeneous distributed hardware
and to make them interact between each other. Nevertheless, two questions
remain:

	Question 1: which objects should run remotely?

	Question 2: where does each remote object live?

The answers, of course, depend on what these objects do and how they interact
with each other and with the outside world. In other words, we need to know the
communication and the computation requirements of objects. The parallel object
model presented in this chapter provides an object-oriented approach for
requirement-driven high performance applications in a distributed heterogeneous
environment.

Parallel Object Model

POP stands for Parallel Object Programming, and POP parallel objects are
generalizations of traditional sequential objects. POP-Java is an extension of
Java that implements the POP model. POP-Java instantiates parallel objects
transparently and dynamically, assigning suitable resources to objects.
POP-Java also offers various mechanisms to specify different ways to do method
invocations. Parallel objects have all the properties of traditional objects
plus the following ones:

	Parallel objects are shareable. References to parallel objects can be passed
to any other parallel object. This property is described in Shareable Parallel Objects.

	Syntactically, invocations on parallel objects are identical to invocations
on traditional sequential objects. However, parallel objects support various
method invocation semantics: synchronous or asynchronous, and sequential,
mutex or concurrent. These semantics are explained in section
Invocations semantics.

	Parallel objects can be located on remote resources in separate address
spaces. Parallel objects allocations are transparent to the programmer. The
object allocation is presented in section Parallel Object Allocation.

	Each parallel object has the ability to dynamically describe its resource
requirement during its lifetime. This feature is discussed in detail in
section Requirement-driven parallel objects.

As for traditional objects, parallel objects are active only when they execute
a method (non active object semantic). Therefore, communication between
parallel objects are realized thank to remote methods invocation.

Shareable Parallel Objects

Parallel objects are shareable. This means that the reference of a parallel
object can be shared by several other parallel objects. Sharing references of
parallel objects are useful in many cases. For example, Figure 1
illustrates a scenario of using shared parallel objects: input and
output parallel objects are shareable among worker objects. A
worker gets work units from input which is located on the data server,
performs the computation and stores the results in the output located at
the user workstation. The results from different worker objects can be
automatically synthesized and visualized inside output.

[image: ../_images/use_scenario.png]
Figure 1: A scenario using shared parallel objects

To share the reference of a parallel object, POP-Java allows parallel objects
to be arbitrarily passed from one place to another as arguments of method
invocations.

Invocations semantics

Syntactically, method invocations on parallel objects are identical to those
on traditional sequential objects. However, to each method of a parallel
object, one can associate different invocation semantics. Invocation semantics
are specified by programmers when declaring methods of parallel objects. These
semantics define different behaviors for the execution of the method as
described below (example of syntax in Developing POP-Java applications):

	Interface semantics, the semantics that affect the caller of the method:

	Synchronous invocation: the caller waits until the execution of the
called method on the remote object is terminated. This corresponds to the
traditional method invocation.

	Asynchronous invocation: the invocation returns immediately after
sending the request to the remote object. Asynchronous invocation is
important to exploit the parallelism. However, as the caller does not wait
the end of the execution of the called method, no computing result is
available. This excludes asynchronous invocations from producing results.
Results can be actively returned to the caller object using a callback to
the caller. To do so the called object must have a reference to the caller
object. This reference can be passed as an argument to the called method
(see Figure 2).

[image: ../_images/inv_async.png]
Figure 2: Callback method returning values from an asynchronous call

	Object-side semantics, the semantics that affect the order of the
execution of methods in the called parallel object:

	A mutex call is executed after completion of all calls previously
arrived.

	A sequential call is executed after completion of all sequential and
mutex calls previously arrived.

	A concurrent call can be executed concurrently (time sharing) with
other concurrent or sequential calls, except if mutex calls are pending or
executing. In the latter case the call is executed after completion of all mutex
calls previously arrived.

In a nutshell, different object-side invocation semantics can be expressed in
terms of atomicity and execution order. The mutex invocation semantics
guarantees the global order and the atomicity of all method calls. The
sequential invocation semantics guarantees only the execution order of
sequential methods. Concurrent invocation semantics guarantees neither the
order nor the atomicity.

[image: ../_images/inv_semantics.png]
Figure 3: Example of different invocation requests

Figure 3 illustrates different method invocation semantics.
Sequential invocation Seq1() is served immediately, running concurrently
with Conc1(). Although the sequential invocation Seq2() arrives before
the concurrent invocation Conc2(), it is delayed due to the current
execution of Seq1() (no order between concurrent and sequential
invocations). When the mutex invocation Mutex1() arrives, it has to wait
for other running methods to finish. During this waiting, it also blocks other
invocation requests arriving afterward (Conc3()) until the mutex invocation
request completes its execution (atomicity and barrier).

Parallel Object Allocation

The first step to allocate a new object is the selection of an adequate
placeholder. The second step is the object creation itself. Similarly, when an
object is no longer in use, it must be destroyed in order to release the
resources it is occupying in its placeholder. The POP-C++ runtime system
provides automatic placeholder selection, object allocation, and object
destruction. Those automatic features result in a dynamic usage of computational
resources and gives to the applications the ability to adapt to the changes in
both the environment and the user behavior.

The creation of POP-Java parallel objects is driven by high-level requirements
on the resources where the object should lie (see section Requirement-driven parallel objects).
If the programmer specifies these requirements they are taken into
consideration by the runtime system for the transparent object allocation. The
allocation process consists of three phases: first, the system finds a suitable
resource, where the object will lie; then the object code is transmitted and
executed on that resource; and finally, the corresponding interface is created
and connected to the object.

Requirement-driven parallel objects

Parallel processing is increasingly being done using distributed systems, with
a strong tendency towards web and global computing. Efficiently extracting high
performance from highly heterogeneous and dynamic distributed environments is a
challenge today. POP-C++ and POP-Java were conceived under the belief that for
such environments, high performance can only be obtained if the two following
conditions are satisfied:

	The application should be able to adapt to the environment;

	The programming environment should somehow enable objects to describe their
resource requirements.

The application adaptation to the environment can be fulfilled by multilevel
parallelism, dynamic utilization of resources or adaptive task size
partitioning. One solution is to dynamically create parallel objects on demand.

Resource requirements can be expressed by the quality of service that objects
require from the environment. Most of the systems offering quality of service
focus on low-level aspects, such as network bandwidth reservation or real-time
scheduling. Both POP-C++ and POP-Java integrate the programmer requirements
into parallel objects in the form of high-level resource descriptions. Each
parallel object is associated with an object description that depicts the
characteristics of the resources needed to execute the object. The resource
requirements in object descriptions are expressed in terms of:

	Resource (host) name (low level description, mainly used to develop system
services).

	The maximum computing power that the object needs (expressed in MFlops).

	The maximum amount of memory that the parallel object consumes.

	The expected communication bandwidth and latency.

	The preferred communication protocol.

	The preferred encoding protocol.

An object description can contain several items. Each item corresponds to a
type of characteristics of the desired resource. The item is classified into
two types: strict item and non-strict item. A strict item means that the
designated requirement must be fully satisfied. If no satisfying resource is
available, the allocation of parallel object fails. Non-strict items, on the
other hand, give the system more freedom in selecting a resource. Resource that
partially match the requirements are acceptable although a full qualification
resource is preferable. For example, a certain object has a preferred
performance 150MFlops although 100MFlops is acceptable (non-strict item), but
it needs memory storage of at least 128MB (strict item).

The construction of object descriptions occurs during the parallel object
creation. The programmer can provide an object description to each object
constructor. The object descriptions can be parametrized by the arguments of
the constructor. Object descriptions are used by the runtime system to select
an appropriate resource for the object. Some examples of the syntax of object
descriptions can be found in the section Object description.

It can occur that, due to some changes on the object data or some increase of
the computation demand, an object description needs to be re-adjusted during
the life time of the parallel object. If the new requirement exceeds some
threshold, the adjustment could cause the object migration. The current
implementations of POP-C++ and POP-Java do not support object migration yet.

Developing POP-Java applications

The POP model is a suitable programming model for large
heterogeneous distributed environments but it should also remain as close as
possible to traditional object oriented programming. Parallel objects of the
POP model generalize sequential objects, keep the properties of object oriented
programming (data encapsulation, inheritance and polymorphism) and add new
properties.

The POP-Java language is an extension of Java that implements the POP model.
Its syntax remains as close as possible to standard Java so that Java
programmer can easily learn it and existing Java libraries can be parallelized
without much effort. Changing a sequential Java application into a distributed
parallel application is rather straightforward. POP-Java is also very close to
POP-C++ so that POP programmer can use both systems easily.

Parallel objects are created using parallel classes. Any object that
instantiates a parallel class is a parallel object and can be executed
remotely. To help the POP-C++ runtime to choose a remote machine to execute the
remote object, programmers can add object description information to each
constructor of the parallel object. In order to create parallel execution,
POP-Java offers new semantics for method invocations. These new semantics are
indicated thanks to new POP-Java keywords. This chapter describes the syntax of
the POP-Java programming language and presents the main tools available in the
POP-Java system.

Parallel objects

POP-Java parallel objects are a generalization of sequential objects. Unless
the term sequential object is explicitly specified, a parallel object is simply
referred as an object in the rest of this chapter.

Create a parallel class

Developing POP-Java application mainly consists of designing an implementing
parallel classes. The declaration of a parallel class is the same as a standard
Java class declaration, but it has to be annotated with the annotation
@POPClass. The parallel class can extend another parallel class but not a
sequential class.

Simple parallel class declaration

@POPClass
public class MyParallelClass {
 // Implementation
}

Parallel class declaration with an inheritance

@POPClass
public class MyParallelClass extends AnotherParallelClass {
 // Implementation
}

As Java allows only single inheritance, a parallel class can only inherit
from one other parallel class. The Java language also imposes that the file
including the parallel class has the same name than the parallel class.

Parallel classes are very similar to standard Java classes. As POP-Java has
some different behavior, some restrictions applied to the parallel classes:

	All attributes in a parallel class must be protected or private

	The objects do not access any global variable

	A parallel class does not contain any static methods or non final static attributes

Creation and destruction

The object creation process consists of several steps: locating a resource
satisfying the object description (resource discovery), transmitting and
executing the object code, establishing the communication, transmitting the
constructor arguments and finally invoking the corresponding object
constructor. Failures on the object creation will raise an exception to the
caller. Exception handling will describe the POP-Java exception mechanism.

As a parallel object can be accessible concurrently from multiple distributed
locations (shared object), destroying a parallel object should be carried out
only if there is no other reference to the object. POP-Java manages parallel
objects’ life time by an internal reference counter. A counter value of 0 will
cause the object to be physically destroyed.

Syntactically, the creation of a parallel object is identical to the one in
Java. A parallel object can be created by using the standard new operator of
Java.

Parallel class methods

Like sequential classes, parallel classes contain methods and attributes.
Method can be public or private but attribute must be either protected or
private. For each public method, the programmer must define the invocation
semantics. These semantics, described in Invocations semantics, are specified by an
annotation.

	Interface side: These semantics affect the caller side.
* sync: Synchronous invocation.
* async: Asynchronous invocation.

	Object side: These semantics affect the order of incoming method calls on the object.
* seq: Sequential invocation
* conc: Concurrent invocation
* mutex: Mutual exclusive invocation

The combination of the interface and object-side semantics defines the overall
semantics of a method. There are 6 possible combinations of the interface and
object-side semantics, resulting in 6 annotations:

@POPSyncConc
@POPSyncSeq
@POPSyncMutex
@POPAsyncConc
@POPAsyncSeq
@POPAsyncMutex

The following code example shows a synchronous concurrent method that returns an int value:

@POPSyncConc
public int myMethod(){
 return myIntValue;
}

A method declared as asynchronous must have its return type set to void.
Otherwise, the compiler will raise an error.

Object description

Object descriptions are used to describe the resource requirements for the
execution of an object. Object descriptions are declared along with parallel
object constructor declarations. The object description can be declared in a
static way as an annotation of the constructor, or in a dynamic way as an
annotation on the parameters of the constructor. First an example of a static
annotation:

@POPObjectDescription(url="localhost")
public MyObject(){
}

and now a dynamic example:

public MyObject(@POPConfig(Type.URL) String host){
}

Currently only the url annotation is implemented, allowing to specify the
URL/IP of the machine on which the POP-Object is executed. If the annotation is
not set, POP-Java will use the POP-C++ jobmanager to find a suitable machine.

Data marshaling and IPOPBase

When calling a remote method, the arguments must be transferred to the object
being called (the same happens for the return value and the exception). In
order to operate with different memory spaces and different architectures, the data
is marshaled into a standard format prior to be sent to remote objects. All
data is serialized (marshaled) at the caller side an deserialized
(unmarshaled) at the remote side.

With POP-Java all primitive types, primitive type arrays and parallel classes
can be passed without any trouble to another parallel object. This mechanism is
transparent for the programmer.

If the programmer wants to pass a special object to or between parallel classes,
this object must implement the IPOPBase interface from the POP-Java library.
This library is located in the installation directory
(POPJAVA_LOCATION/JarFile/popjava.jar). By implementing this interface,
the programmer will have to override the two following methods:

@Override
public boolean deserialize(POPBuffer buffer) {
 return true;
}

@Override
public boolean serialize(POPBuffer buffer) {
 return true;
}

These methods will be called by the POP-Java system when an argument of this
type needs to be serialized or deserialized. As the object will be reconstructed
on the other side and after the values will be set to it by the deserialize
method, any class implementing the IPOPBase interface must have a default
constructor.

The code below shows a full example of a class implementing the IPOPBase
interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	import ch.icosys.popjava.core.buffer.Buffer;
import ch.icosys.popjava.core.dataswaper.IPOPBase;

public class MyComplexType implements IPOPBase {
 private int theInt;
 private double theDouble;
 private int[] someInt;

 public MyComplexType(){}

 public MyComplexType(int i, double d, int[] ia){
 theInt = i;
 theDouble = d;
 someInt = ia;
 }

 @Override
 public boolean deserialize(POPBuffer buffer) {
 theInt = buffer.getInt();
 theDouble = buffer.getDouble();
 int size = buffer.getInt();
 someInt = buffer.getIntArray(size);
 return true;
 }

 @Override
 public boolean serialize(POPBuffer buffer) {
 buffer.putInt(is);
 buffer.putDouble(ds);
 buffer.putIntArray(ias);
 return true;
 }
}

POP-Java behavior

This section aims to explain the difference between the standard Java behavior
and the POP-Java behavior.

As in standard Java, the primitive types will not be affected by any
manipulation inside a method as they are passed by value and not by reference.
Objects passed as arguments tho methods will only be affected if the method semantic is “Synchronous”.
In fact, POP-Java serializes the method arguments to
pass them on the object-side. Once the method work is done, the arguments are
serialized once again to be sent back to the interface-side. If the method
semantic is “Synchronous”, the interface-side will deserialize the arguments
and replace the local ones by the deserialized arguments. If the method
semantic is “Asynchronous”, the interface-side will not wait for any answer
from the object-side. It’s important to understand this small difference when
developing POP-Java application.

Exception handling

Errors can be efficiently handled using exceptions. Instead of handling each
error separately based on an error code returned by a function call,
exceptions allow the programmer to filter and centrally manage errors through
several calling stacks. When an error is detected inside a certain method call,
the program can throw an exception that will be caught somewhere else.

The implementation of exception in non-distributed applications, where all
components run within the same memory address space is fairly simple. The
compiler just need to pass a pointer to the exception from the place where it
is thrown to the place where it is caught. However, in distributed
environments where each component is executed in a separated memory address
space (and the data is represented differently due to heterogeneity),
the propagation of exception back to a remote component is complex.

[image: ../_images/exception.png]
Figure 1: Exception handling example

POP-Java supports transparent exception propagation. Exceptions thrown in a
parallel object will be automatically propagated back to the remote caller
(Figure 1). The current POP-Java version allows the following types
of exceptions:

	Exception

	POPException

The invocation semantics of POP-Java affect the propagation of exceptions. For
the moment, only synchronous methods can propagate the exception. Asynchronous
methods will not propagate any exception to the caller. POP-Java current
behavior is to abort the application execution when such an exception occurs.

Compile and run a POP-Java application

This chapter explains the POP-Java compilation process, the POP-Java
application launching process and the tools related to those processes. The
structure of this chapter is as follows: The first section explains the
compilation process. The second describes the application launching tools.
The third one aims to help the programmer to
understand the importance of the object map and the object map generator in the
POP-Java application launching process. Finally, a full example is explained to
pass through the whole process.

POP-Java compilation

POP-Java uses the standard Java compiler and can easily be integrated into an existing compilation process.
As POP-Java java files use features from the POP-Java library, the POP-Java jar file needs to be included in the classpath during the compilation process.
An example of how to compile POP-Java source-code using ant is shown below:

<property environment="env"/>

<target name="build" description="compile the source " >
 <javac srcdir="${source.folder}"
 destdir="${class.folder}"
 classpath="${env.POPJAVA_LOCATION}/JarFile/popjava.jar"
 />
</target>

The POP-Java application launcher

To help POP-Java programmer, POP-Java provides an application launcher that
simplifies the launch of a POP-Java application. This application launcher is
named popjrun and is used with the following syntax:

popjrun <options> [<objectmap>] <MainClass> <arguments>

Here is an explanation of the arguments to provide to the POP-Java application
launcher:

	options: in the current version there is only one option -c or
--classpath that allow the programmer to add some class path for the
execution of the POP-Java application. The different class paths must be
separated with a semicolon.

	objectmap: this informations is not mandatory. If it’s provided, the
object map informs the runtime system about the location of the different
compiled parallel classes of the application. If it’s not provided, the
default object map (located at:
{POPJAVA_LOCATION}/etc/defaultobjectmap.xml) will be used. More
information give in The POP-Java object map and object map generator.

	MainClass: this is a main class of the POP-Java application.

	arguments: these are the arguments of the program.

The POP-Java object map and object map generator

The object map is an XML file that informs the POP-C++ runtime about the
location of the different compiled parallel classes of the application. This
file can be given to the “popjrun” tool. If the programmer does not specify this
file, the default object map located at {POPJAVA_LOCATION}/etc/ will be
used.

The object map can be generated with the POP-Java application launcher. By
using the option -l or --listlong and giving the class files or the JAR
file, the object map will be printed to the standard output. The easiest way to
save this file is to redirect the output into the desired file.

Here are the commands used for our example:

Compiled classes

popjrun --listlong Parclass1.class:Parclass2.class > objectmap.xml

JAR file

popjrun --listlong parclasses.jar > objectmap.xml

An example of a generated objectmap can be found here: The POP-Java object map and object map generator.
The objectmap contains the path to the compiled classfile for every POP-Java class passed to the popjrun command.
The path can either be a path to a folder containing the class file, or a jar file containing the class file.
The path can either be a local path, or a url accessible by http. Keep in mind that all paths indicated
need to be accessible by every machine that will create a POP-Java object.

Full example

This section shows how to write, compile and launch a POP-Java application by
using a simple example. The POP-Java application used in this example includes
only one parallel class. All sources of this example can be found in the
directory examples/integer from the POP-Java distribution.

Programming

When we start to develop a POP-Java application the main part is the parallel
classes. The following code snippet shows the parallel class implementation:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	import ch.icosys.popjava.core.annotation.*;

@POPClass
public class Integer {
 private int value;

 @POPObjectDescription(url="localhost")
 public Integer() {
 value = 0;
 }

 @POPSyncConc
 public int get() {
 return value;
 }

 @POPAsyncSeq
 public void set(int val) {
 value = val;
 }

 @POPAsyncMutex
 public void add(Integer i) {
 value += i.get();
 }
}

As we can see this class uses special POP-Java keywords. In the line 1, the
parclass keyword specifies that this class is a parallel class. The constructor
declaration includes an object description (line 4). The method declarations
includes the invocation semantics (line 8, 12 and 16). The method add
(line 16) receive another parallel object as a parameter and it’s transparent
for the programmer.

Once the parallel class is implemented, we can write a main class that use this
parallel class. The following code snippet shows the code of the main class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	import ch.icosys.popjava.core.annotation.*;

@POPClass(isDistributable = false)
public class TestInteger {
 public static void main(String[] args){
 Integer i1 = new Integer();
 Integer i2 = new Integer();
 i1.set(23);
 i2.set(25);
 System.out.println("i1=" + i1.get());
 System.out.println("i2=" + i2.get());
 i1.add(i2);
 int sum = i1.get();
 System.out.println("i1+i2 = "+sum);
 if(sum==48)
 System.out.println("Test Integer Successful");
 else
 System.out.println("Test Integer failed");
 }
}

The code of the main class is pure Java code.
The instantiation (lines 3-4) and the method calls (lines 5-9) are
transparent for the programmer.

Compiling

To manually compile the source files, use the following command:

Compiling as .class files

	::

	javac -cp $POPJAVA_LOCATION/JarFile/popjava.jar Integer.java TestInteger.java

Create the object map

Before running the example application, the programmer needs to generate the
object map. The object map will be given to the POP-Java launcher which
will inform the POP-C++ runtime system where to find the compiled files.
The specified path needs to be accessible on every machine where an object of that type
is initialized. The POP-Java launcher has a specific option to generate this file from the compiled
files (.class) or the JAR file (.jar). Here is the command used for our
example:

popjrun --listlong Integer.class > objmap.xml

The command will generate the XML file and print it on the standard output. To
save this file, we redirect the output in a file named objmap.xml. This file
contains the following XML code (the path specified in the element CodeFile
will be different on your computer):

<CodeInfoList>
 <CodeInfo>
 <ObjectName>Integer</ObjectName>
 <CodeFile Type="popjava">
 /home/clementval/pop/popjava-1.0/example/integer/</CodeFile>
 <PlatForm>*-*</PlatForm>
 </CodeInfo>
</CodeInfoList>

Running

Once the POP-Java application is compiled and the object map is generated, the
application can be run. A POP-Java application is a pure Java application at
the end and could be run with the standard java program. In order to make this
running easier for the programmer, POP-Java includes an application launcher.
Here are the commands to use to run the POP-Java application example.
At the end an example is given on how run the POP-Java application directly through Java.

POP-Java application compiled as .class files

popjrun objectmap.xml TestInteger

POP-Java application compiled as .jar file

popjrun -c myjar.jar objectmap.xml TestInteger

POP-Java application run directly through java

java -javaagent:$POPJAVA_LOCATION/JarFile/popjava.jar -cp myjar.jar TestInteger -codeconf=objectmap.xml

Application output

Here is what we should have as the application output:

i1=23
i2=25
i1+i2=48
Test Integer Successful

If the are any problems with the compilation or the launching of the
application, please refer to the chapter Troubleshooting.

Misc

If you are running a POP-Java application on a computer with multiple network interfaces, make sure you specify the network interface to use.
To specify the name of the network interface, set the POPJ_IFACE environment variable.
If the specified name is not found, POP-Java will fall back to the same behaviour as if no network interface was specified as default.

Developing POP-Java and POP-C++ mixed applications

POP-Java and POP-C++ interoperability

POP-Java can use POP-C++ parallel classes and POP-C++ can also use POP-Java
parallel classes. This chapter will explain everything the programmer needs to
know to develop mixed POP applications.

Restrictions

As Java and C++ are different languages, there are some restrictions. In this
section, all the restrictions or programming tips will be given.

Java primitives

As Java primitives are always passed by value, the is no way to modify a Java
primitive in a POP-C++ object. In pure POP-C++ the programmer can deal with the
passing by reference but not in POP-Java.

Parameters passing

Some parameters cannot be passed from a POP-Java application to a POP-C++
parallel object and vice versa. The list below explain the restrictions on
certain primitive types. The Java primitive types are taken as the basis.

	byte: This type does not exist in C++ so it’s not possible to pass a
byte.

	long: The Java long is coded on 8 bytes as it’s coded on 4 bytes with
C++. Some unexpected behavior can occur.

	char[]: The char array cannot be used in the current version of POP-Java
with POP-C++ parallel classes.

Dealing with array

Passing arrays from POP-Java to POP-C++ is a bit tricky. As POP-Java and
POP-C++ do not behave the same with arrays, the programmer must be aware of the
way to pass the array. Here is an example of a method with an array as
parameter.

The method declaration in POP-C++

In POP-C++, the programmer must give the array size to the compiler.

sync seq void changeIntArray(int n, [in, out, size=n] int *i);

Method declaration in POP-Java

As POP-C++ will need the size of the array, POP-Java must declare this size as
well.

@POPSyncSeq
public void changeIntArray(int n, int[] i){}

Method call from POP-Java

In the POP-Java application, the programmer needs to give the array size in the
method call.

p.changeIntArray(iarray.length, iarray);

POP-Java application using POP-C++ parallel objects

This section will teach the programmer how to develop a POP-Java application
with a POP-C++ parallel class. The same example of the parallel class Integer
will be used. For more details about the POP-C++ programming please have a
look to “Parallel Object Programming C++ - User and Installation Manual”
[Grid and Ubiquitous Computing Group, EIA-FR10]. In the following example, the main class used is the same
as the one shown in the previous chapter. All the sources
can be found in the directory example/mixed1 of the POP-Java distribution.

Develop the POP-C++ parallel class

First, the programmer needs to write the parallel class in POP-C++ as it should
be for a POP-C++ application. The code snippet below shows the header file of
the parclass Integer:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	parclass Integer
{
 classuid(1000);
public:
 Integer();
 ~Integer();

 mutex void Add(Integer &other);
 conc int Get();
 seq async void Set(int val);

private:
 int data;
};

There are two rules to follow when the programmer develop
a POP-C++ parallel class for POP-Java usage.

	The parclass must declare a classuid.

	The methods must be declared in alphabetics order.

The next code snippet shows the implementation of the parallel class
Integer. There is no important information in this file for the POP-Java
usage.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	#include <stdio.h>
#include "integer.ph"
#include <unistd.h>

Integer::Integer() {
 printf("Create remote object Integer on %s\n",
 (const char *)POPSystem::GetHost());
}

Integer::~Integer() {
 printf("Destroying Integer object...\n");
}

void Integer::Set(int val) {
 data=val;
}

int Integer::Get() {
 return data;
}

void Integer::Add(Integer &other) {
 data += other.Get();
}
@pack(Integer);

Compilation of the parallel class

Once the parclass implementation is finished, it can be compiled with the
POP-C++ compiler. The following command will create an object executable of our
parclass Integer.

popcc -object -o integer.obj integer.cc integer.ph

Create the partial POP-Java parallel class

To be used in a POP-Java application, a POP-C++ parallel class must have its
partial implementation in POP-Java language. A partial implementation means
that all the methods must be declared but does not need to be implemented.

The next code snippet shows the partial implementation of the parallel class
Integer. All the methods are just declared. This partial implementation is
a translation of the POP-C++ source code to POP-Java source code.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	@POPClass
public class Integer {
 private int value;

 public Integer() {
 }

 @POPSyncMutex
 public void add(Integer i) {
 }

 @POPSyncConc
 public int get() {
 return 0;
 }

 @POPAsyncSeq
 public void set(int val) {
 }
}

Note

In the future version of POP-C++ and POP-Java, the partial
implementation would be generated by the compiler. For the moment, the
programmer will need to do it by hand.

Special compilation

To compile the partial POP-Java parallel class, the compiler needs some
additional information. The POP-Java compiler has an option to generate an
additional information XML file. To generate this file use the following
command line:

popjc -x Integer.pjava

This command will generate a file (additional-infos.xml) in the current
directory. This file is incomplete. The programmer will need to edit it with
the information of the POP-C++ parallel class. The following snippet shows the
file generated by the POP-Java compiler:

<popjparser-infos>
 <popc-parclass file="Integer.pjava" name="" classuid=""
 hasDestructor="true"/>
</popjparser-infos>

The two empty attributes name and classuid must be completed with the
value of the POP-C++ parallel class. An example of how the complete file must
look like is given below:

<popjparser-infos>
 <popc-parclass file="Integer.pjava" name="Integer" classuid="1000"
 hasDestructor="true"/>
</popjparser-infos>

All the information to compile the POP-Java application is now known. Here is
the command to compile it:

Compilation as .class files

popjc -p additional-infos.xml Integer.pjava TestInteger.pjava

Compilation as .jar file

popjc -j myjar.jar -p additional-infos.xml Integer.pjava TestInteger.pjava

Generate the object map

An object map is also needed for a POP-Java application using POP-C++ parallel
classes. The programmer can generate this object map with the POP-Java
application launcher and the option --listlong. This option also accepts the
POP-C++ executable files. Here is the command used for the example
application:

popjrun --listlong integer.obj > objmap.xml

Generated objmap.xml file (path and architecture can differ from the ones shown
here):

<CodeInfoList>
 <CodeInfo>
 <ObjectName>Integer</ObjectName>
 <CodeFile>/home/clementval/pop/popjava-1.0/example/mixed/
 integer.obj</CodeFile>
 <PlatForm>i686-pc-Linux</PlatForm>
 </CodeInfo>
</CodeInfoList>

Running the application

To run the mixed application, the programmer needs to use the POP-Java
application launcher. As the application main class is written in POP-Java,
only this tool can run this application. Here is the command used to run the
application:

popjrun objmap.xml TestInteger

The output of the example application should be like the following:

i1=23
i2=25
i1+i2=48
Test Integer Successful

If any problems occurred with the compilation or the launching of the
application, please see the chapter Troubleshooting.

POP-C++ application using POP-Java parallel objects

A POP-C++ application can also use POP-Java parallel classes. The following
chapter shows how to develop, compile and run a POP-C++ using POP-Java parallel
objects.

Developing and compiling the POP-Java parallel class

The POP-Java parallel class will be the same as the one shown in the
previous chapter. The compilation will be a little
bit different. As for a POP-Java application using a POP-C++ parclass, the
POP-Java will need some additional informations during the compilation process.
These additional information must be given in a XML file. The POP-Java
compiler can generate a canvas of this file with the option “-x”. Here is the
command we used:

popjc -x Integer.pjava

The generated file will be similar to the one shown in the
Special compilation section. This time the
attribute name must stay empty as we want to keep the real name of the
POP-Java parallel class. The completed file should look like in the following
snippet:

<popjparser-infos>
 <popc-parclass file="Integer.pjava" name="" classuid="1000"
 hasDestructor="true"/>
</popjparser-infos>

This file can be given to the compiler to compile the parallel class with the
following command:

popjc -p additional-infos.xml Integer.pjava

The POP-C++ partial implementation

As for the POP-Java application using POP-C++ parallel objects, the POP-C++
application will need a partial implementation of the parallel class in
POP-C++. The header file will stay the same as the one shown
previously. The code snippet below shows
the partial implementation of the POP-C++ parallel class. Once again, the
methods are declared but not implemented.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	#include <stdio.h>
#include "integer.ph"
#include <unistd.h>

Integer::Integer() {
 printf("Create remote object Integer on %s\n",
 (const char *)POPSystem::GetHost());
}

Integer::~Integer() {
}

void Integer::Set(int val) {
}

int Integer::Get() {
 return 0;
}

void Integer::Add(Integer &other) {
}
@pack(Integer);

The POP-C++ main

To be able to run the application, a main function must be written. An
example of such a function is given below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	#include "integer.ph"
#include <iostream>
using namespace std;
int main(int argc, char **argv)
{
 try{
 // Create 2 Integer objects
 Integer o1;
 Integer o2;
 o1.Set(1); o2.Set(2);
 cout << endl << "o1="<< o1.Get() << "; o2=" << o2.Get() << endl;
 cout<<"Add o2 to o1"<<endl;
 o1.Add(o2);
 cout << "o1=o1+o2; o1=" << o1.Get() << endl << endl;
 } catch (POPException *e) {
 cout << "Exception occurs in application :" << endl;
 e->Print();
 delete e;
 return -1;
 } // catch
 return 0;
}

The main is very similar to the one used in POP-Java but this time it is
written in POP-C++.

Object map

As the current version of POP-C++ is not able to generate the object map for a
POP-Java parallel class, the programmer needs to edit the object map manually.

The code below is the canvas of the line to add in a POP-C++ object map for a
POP-Java parallel class.

POPCObjectName *-* /usr/bin/java -cp POPJAVA_LOCATION
popjava.broker.Broker -codelocation=CODE_LOCATION
-actualobject=POPJAVAObjectName

Here is the line for the example (the path will be different on your computer):

Integer *-* /usr/bin/java -cp /home/clementval/popj
popjava.broker.Broker
-codelocation=/home/clementval/pop/popjava-1.0/example/mixed2
-actualobject=Integer

Compile and run the POP-C++ application

The POP-Java parallel class is compiled and the object map is complete.
The main and the partial implementation of the parallel class in POP-C++ must
be compiled. The following command will compile our application:

popcc -o main integer.ph integer.cc main.cc
popcc -object -o integer.obj integer.cc integer.ph main.cc

Everything is compiled and we can run the application with the “popcrun” tool:

popcrun obj.map ./main

The output of the application should look like this:

popcrun obj.map ./main

o1=1; o2=2
Add o2 to o1
o1=o1+o2; o1=3

POP-Java plugin

The POP-Java system can be augmented by its users. If the programmer feels the
need of a new network protocol or a new encoding protocol, he can create a
POP-Java plugin and add it to the system easily. This chapter aims to present
the combox and the buffer plugin systems.

Combox plugin

The Combox is the component responsible for the network communication between
an application and a parallel object or between two parallel objects. In the
current version of POP-Java, only the protocol socket is implemented. If the
programmer needs another protocol, he can create his own Combox.

To create a new protocol for POP-Java, the programmer needs to create three
different classes : a combox, a combox server and a combox factory.

The combox must inherit from the super class ComboxPlugin located in the
package popjava.combox in the POP-Java library. The
Figure 1 shows the ComboxPlugin class signature.

[image: ../_images/combox.png]
Figure 1: ComboxPlugin class signature

The combox server must inherit from the super class ComboxServer located in
the package popjava.combox in the POP-Java library. The
Figure 2 shows the ComboxServer class signature.

[image: ../_images/comboxserver.png]
Figure 2: ComboxServer class signature

The combox factory must inherit from the super class ComboxFactory located in
the package popjava.combox in the POP-Java library. The
Figure 3 shows the ComboxFactory class signature.

[image: ../_images/comboxfactory.png]
Figure 3: ComboxFactory signature

Once all the classes are implemented, the programmer needs to compile them as
standard Java code and create a JAR file. This JAR file can be added in the
system by editing the file pop_combox.xml located in the directory
POPJAVA_LOCATION/plugin. The XML code below is the current XML file with
the socket protocol.

<ComboxFactoryList>
 <Package JarFile="popjava.combox.jar">
 <ComboxFactory>popjava.combox.ComboxSocketFactory</ComboxFactory>
 </Package>
</ComboxFactoryList>

Buffer plugin

The buffer is the component in charge of the data encoding. In the current
implementation of POP-Java, two buffers are available. One is using the RAW
encoding and the other is using the XDR encoding. If the programmer needs a
special encoding protocol, he can also create his own and add it to the
POP-Java system as a plugin.

To implement a new encoding protocol, the programmer needs to create two classes.
A buffer and a buffer factory.

The buffer must inherit from the class BufferPlugin located in the
package popjava.buffer in the POP-Java library. The
Figure 4 shows the BufferPlugin class signature.

[image: ../_images/buffer.png]
Figure 4: BufferPlugin class signature

The buffer factory must inherit from the super class BufferFactory located
in the package popjava.buffer in the POP-Java library. The
Figure 5 shows the BufferFactory class signature.

[image: ../_images/bufferfactory.png]
Figure 5: BufferFactory class signature

Installation

To use POP-Java and POP-C++ on a computer we need to install them. This chapter
helps the programmer to perform the correct installation of the POP system on a
computer.

POP-C++ installation

In order to use POP-Java we need to install the latest version of POP-C++. This
section will help us to get through th installation process and make sure the
installation is fine for a POP-Java usage.

Requirements

In order to install POP-C++ we need to install additional software. The following
packages are required before compiling:

	a C++ compiler (g++ or equivalent)

	zlib-devel (package name depends on distribution)

	GNU Bison (optional)

	Globus Toolkit (optional)

Before installing

Before installation we should make the following configuration choices. In case
of doubt the default values can be used.

	The compilation directory that should hold roughly 50MB. This directory will
contain the distribution tree and the source files of POP-C++. It may be
erased after installation.

	The installation directory that will hold less than 40M. It will contain the
compiled files for POP-C++, include and configuration files. This directory
is necessary in every computer executing POP-C++ program (default location
/usr/local/popc).

	A temporary directory will be asked in the installation process. This
directory will be used by POP-C++ to hold file during the application
execution (default /tmp).

	Resource topology. The administrator must choose what computer form the grid.

For more information about the POP-C++ installation and configuration process,
please see “Parallel Object Programming C++ - User and Installation Manual”
[Grid and Ubiquitous Computing Group, EIA-FR10].

Installation process

This section will guide us through the POP-C++ installation process. In the POP
distribution we find a directory including POP-C++. First, we need to configure
the installation. If we use the configure script without any option, POP-C++
will be installed in the default directory (/usr/local/popc). We can also
specify the directory by using the option –prefix.

Default directory

./configure

Specific directory

./configure --prefix=/home/user/popc

Once the configuration script is done, we will need to compile the source of
POP-C++ for our architecture. For this, we just need to run the make command in
the root directory of POP-C++.

make

Finally, to install POP-C++, we need to run the install target of the make
file. This script will guide us through the installation. To be sure that our
installation will fit the requirements of POP-Java, please follow the
instructions below.

Answer “y” to the first question. We need to configure POP-C++ services.

make install
...
DO YOU WANT TO CONFIGURE POP-C++ SERVICES? (y/n)
y

We need to make a special installation so answer “n” to the second question:

...
DO YOU WANT TO MAKE A SIMPLE INSTALLATION ? (y/n):
n

The answers to the questions below are up to our configuration but if we don’t
know our configuration just pass every question.

===
GENERATING SERVICE MAPS...
CONFIGURING POP-C++ SERVICES ON YOUR LOCAL MACHINE...
Enter the full qualified master host name (POPC gateway):

Enter the child node:

Enter number of processors available (default:1):

Enter the maximum number of POP-C++ jobs that can run concurrently
(default: 100):

Enter the available RAM for job execution in MB (default 1024) :

Which local user you want to use for running POP-C++ jobs?

CONFIGURING THE RUNTIME ENVIRONMENT
Enter the script to submit jobs to the local system:

Communication pattern:

SETTING UP RUNTIME ENVIRONMENT VARIABLES
Enter variable name:

We need the startup script to use the global runtime service with POP-Java so
answer “y” to the question “Do you want to generate the POP-C++ startup
scripts?”.

===
CONFIGURATION POP-C++ SERVICES COMPLETED!
===
Do you want to generate the POP-C++ startup scripts? (y/n)
y

Depending on our configuration, we can modify the default values of the startup
script or just keep them. One important thing is to copy the environment
variables on the .bashrc or equivalent file.

===
CONFIGURING STARTUP SCRIPT FOR YOUR LOCAL MACHINE...
Enter the service port[2711]:

Enter the domain name:

Enter the temporary directory for intermediate results:

===
CONFIGURATION DONE!
===

IMPORTANT : Do not forget to add these lines to your .bashrc
file or equivalent :

 POPC_LOCATION=/home/clementval/popc
 PATH=$PATH:$POPC_LOCATION/bin:$POPC_LOCATION/sbin

Press <Return> to continue

The POP-C++ installation is done. We can now use POP-C++ and also install
POP-Java.

System startup

Before executing any POP-C++ application, the runtime system (Job manager and
resource discovery) must be started. There is a script provided for that
purpose, so every node must run the following command:

POPC_LOCATION/sbin/SXXpopc start

SXXpopc is a standard Unix deamon control script, with the traditional start,
stop and restart options.

POP-Java installation

This section will guide us through the POP-Java installation process.

Requirements

In order to install POP-Java, some packages are required. Here is the list of
required packages:

	JDK 8 or higher

	Apache ANT (optional)

Installation process

To install POP-Java we need to launch the command ./gradlew build int the POP-Java
directory. Once the source code is compiled, launch the installation with the
install script: sudo ./install.
This script will guide us through the installation by asking us some questions.
Be aware that if we install POP-Java in the default location we need the
administrator rights. Please use the option -E with the sudo command to
keep the environment variables.

Here is the output we should have on our shell:

[POP-Java installation]: Detecting java executable ...
[POP-Java installation]: Java executable detected under
 /usr/bin/java
[POP-Java installation]: Please enter the location of your desired
 POP-Java installation (default: /usr/local/popj) :
/home/clementval/popj
[POP-Java installation]: Installing POP-Java under
 /home/clementval/popj ? (y/n)
y
[POP-Java installation]: Copying files ...
[POP-Java installation]: Generating configuration files ...
[POP-Java installation]: Generating object map file for the test suite
[POP-Java installation]: POP-Java has been installed under
 /home/clementval/popj. Please copy the following lines into your
 .bashrc files or equivalent

POPJAVA_LOCATION=/home/clementval/popj
export POPJAVA_LOCATION
POPJAVA_JAVA=/usr/bin/java
export POPJAVA_JAVA
PATH=$PATH:$POPJAVA_LOCATION/bin

[POP-Java installation]: Installation done.

At the end of the installation, the script asks to copy some environment
variable declarations in the .bashrc or equivalent file. This step is mandatory
to make POP-Java work correctly.

Test the installation

POP-Java includes a test suite. We can run this test suite to check if our POP
system is correctly installed. To run this test suite, we need to launch the
launch_testsuite script located in the POP-Java installation location.

Here is the output we should get after the completion of the test suite:

./launch_testsuite
##
POP-Java 1.0 Test Suite started
##
POP-C++ detected under /home/clementval/popc
POP-C++ was not running. Starting POP-C++ runtime global services ...
Starting POPC Job manager service:
POPCSearchNode access point: socket://172.28.10.67:38331
Starting Parallel Object JobMgr service
socket://172.28.10.67:2711POP-C++ started
##############################
POP-Java standard test
##############################
Starting POP-Java test suite
Launching passing arguments test (test 1/6)...
Arguments test successful
Passing arguments test is finished ...
Launching multi parallel object test (test 2/6)...
Multiobjet test started ...
Result is : 1234
Multiobjet test finished ...
Multi parallel object test is finished...
Launching callback test (test 3/6)...
Callback test started ...
Identity callback is -1
Callback test successful
Callback test is finished...
Launching barrier test (test 4/6)...
Barrier: Starting test...
Barrier test successful
Barrier test is finished...
Launching integer test (test 5/6)...
i1 = 23
i2 = 25
i1+i2 = 48
Test Integer Successful
Integer test is finished...
Launching Demo POP-Java test (test 6/6)...
START of DemoMain program with 4 objects
Demopop with ID=1 created with access point : socket://127.0.1.1:39556
Demopop with ID=2 created with access point : socket://127.0.1.1:60575
Demopop with ID=3 created with access point : socket://127.0.1.1:50088
Demopop with ID=4 created with access point : socket://127.0.1.1:39475
Demopop:1 with access point socket://127.0.1.1:39556 is sending his ID to object:2
Demopop:2 receiving id=1
Demopop:2 with access point socket://127.0.1.1:60575 is sending his ID to object:3
Demopop:3 receiving id=2
Demopop:3 with access point socket://127.0.1.1:50088 is sending his ID to object:4
Demopop:4 receiving id=3
Demopop:4 with access point socket://127.0.1.1:39475 is sending his ID to object:1
Demopop:1 receiving id=4
END of DemoMain program
Demo POP-Java test is finished...

####################################
POP-C++ interoperability test
####################################
popcc -o main integer.ph integer.cc main.cc
popcc -object -o integer.obj integer.cc integer.ph main.cc
./integer.obj -listlong > obj.map
Launching POP-C++ integer with POP-Java application test (test 1/2)
POPC Integer test started ...
o1 = 10
o2 = 20
10 + 20 = 30
POPC Integer test successful
POP-C++ integer with POP-Java application test is finishied ...
popcc -parclass-nobroker -c integer2.ph
popcc -o main integer2.stub.o integer.ph integer.cc main.cc
popcc -parclass-nobroker -c integer2.ph
popcc -object -o integer.obj integer2.stub.o integer.cc integer.ph
popcc -object -o integer2.obj integer2.cc integer2.ph
./integer.obj -listlong > obj.map
./integer2.obj -listlong >> obj.map
Launching Integer mix (POP-C++ and POP-Java) with POP-Java application test(test 2/2)
i=20
j=12
i+j=32
Integer mix (POP-C++ and POP-Java) with POP-Java application test is finishied ...
##
POP-Java 1.0 Test Suite finished
##
Stopping POPC Job manager service...
Connecting to 172.28.10.67:2711....
POPCSearchNode stopped
JobMgr stopped

Configuration

After installation of POP-Java we need to take some steps if we want to enable some advanced features.

To do this a small dedicated shell was created. To run it go into the POP installation directory and run:

$ java -javaagent:JarFile/popjava.jar -cp JarFile/popjava.jar popjava.scripts.POPJShell
This shell is not interactive, you must type every command.
Use ``help`` to know the available commands.
Every command has a --help (-h) flag which print its options.

This will open the shell. To execute a command simply write it and press enter. No history is available at this time.

$ help
Available options:
 help print this help
 jm configuration of the local job manager
 debug toggle system debug option
 keystore all keystore related operations.

About the Shell

Every command in the shell has a help method, usually by adding -h or --help to it. When it asks for a missing value is because that value could have been given by an option. See below.

$ jm node add -h
usage: jm node add [OPTIONS]
add a new node to a network
Available options:
 --type, -t The type of node we are working with (jobmanager, tfc, direct)
 --uuid, -u The UUID of the network to add the node into
 --host, -H The destination host of the node
 --port, -p The destination port of the node
 --protocol, -P The node specific protocol (socket, ssl, daemon)
 --certificate, -c The certificate for the SSL connection
Node specific options will be asked.

TLS Configuration

In case you want to use secure connections, you first have to create a keystore.
Using the keystore create command the command will ask us to insert all the needed values. It will also save the keystore information in the POP-Java’s global configuration so users will be able to use secure connection too.

$ keystore create
missing value for 'file': global.jks
missing value for 'storepass':
missing value for 'keypass':
missing value for 'alias': localNodeOnly
missing value for 'rdn': OU=PopJava,CN=testNode
Generating keystore...
Saving configuration...

Job Manager Configuration

If there is not a third party application to configure the Job Manager, the shell also partially give this capability.

The first thing to do is start the Job Manager.

$ jm start
Job Manager started.

With this we can now interact with it.

Network creation

To create a new network you will have to execute the jm network create command. Its output should something like the folowing snippet.

$ jm network create
missing value for 'name': friendly net
missing value for 'uuid':
Network 'friendly net' created with id [d3fe0096-e582-4b85-bdc0-a429b169d24f]
Network certificate available at '/home/dosky/pop-java-dist/friendly net@d3fe0096-e582-4b85-bdc0-a429b169d24f.cer'

The command will also export a .cer file which can be shared with trusted parties to communicate with them.

Note

The UUID value is what really identify the network, if someone else want to communicate with you it has to create a network matching the generated UUID in the command above.
This means not leaving it blank.

You can see the existing network by running jm network list

$ jm network list
Note that networks are identified by their UUID.
+--+--------------------------------+
| UUID | Friendly name |
+==+================================+
| d3fe0096-e582-4b85-bdc0-a429b169d24f | friendly net |
+--+--------------------------------+

Adding friendly nodes

Similarly to how we add network, a command exists in order to add friendly nodes.

$ jm node add
missing value for 'type': jobmanager
missing value for 'uuid': d3fe0096-e582-4b85-bdc0-a429b169d24f
missing value for 'host': <host>
missing value for 'port': <port>
missing value for 'protocol': ssl
missing value for 'certificate': other certificate.cer
Node added to network 'd3fe0096-e582-4b85-bdc0-a429b169d24f'

Note

Currently there exists three type of node: tfc, jobmanager, direct.

Currently there exists two protocol: socket, ssl.

When working with ssl a certificate is needed and the connection will be encrypted, while socket will be unencrypted.

Executing object as another user

Generally speaking the Job Manager on a machine has access to sensitive information like the content of the keystore. We don’t want anyone except the system administrator to be able to modify those files.

Other options

POP-Java is very flexible, most of its options can be user configurable.

The shell by itself doesn’t give the possibility of setting most of those options, bu they can be manually modified by adding the keyword and the value in the popjava.properties file situated in the etc directory of the POP installation.

A use can potentially modify those option for its own application by adding a -configfile=<file> option at the program execution.

For more information in regards of the options, check the popjava.util.Configuration class in the Javadoc or the developer Configuration section.

Troubleshooting

POP-Java exception

This section lists some of the main POP-Java exception that can occurred during
the application execution and gives the cause of the problem.

Cannot bind to access point: socket://your-computer-name:2711

This exception occurs when the application cannot contact the POP-C++ runtime
system. To fix this problem, we need to start the POP-C++ runtime system with
the following command:

POPC_LOCATION/sbin/SXXpopc start

Error message: OBJECT_EXECUTABLE_NOTFOUND

This exception occurs when the executable file is not found. This might be
due to a bad object map or the deletion of the object executable file. To fix
this problem we should generate a new object map with the object executable.

Error message: NO_RESOURCE_MATCH

This exception occurs when no resource match the requirements of a specific
object. To fix this problem we should check the object descriptions in the
parallel objects. We might have put a too high requirement for a parallel
object creation.

Error message: Cannot run program "/usr/local/popc/services/appservice"

If we get an error with “cannot run program” and the path contains the
appservice of POP-C++, you have certainly reinstalled POP-C++ and the
configuration file of POP-Java is now wrong. The easiest way to fix this
problem is to reinstall also POP-Java. We can also edit the configuration file
under POPJAVA_LOCATION/etc/popj_config.xml. The item
popc_appcoreservice_location must be modified with the good path.

Test suite frozen

If the test suite seems to be frozen, we should abort the test suite and
restart the POP-C++ global service with the following command:

POPC_LOCATION/sbin/SXXpopc restart

Bibliography

	Object Management Group01

	The Common Object Request Broker: Architecture and Specification - Version 2.6. Object Management Group, Framingham, Massachusetts, December 2001.

	Grid and Ubiquitous Computing Group, EIA-FR10

	Parallel Object Programming C++, User and installation Manual. Grid and Ubiquitous Computing Group, EIA-FR, Fribourg, Switzerland, 2010.

	ABB+02

	W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, and S. Tuecke. GridFTP Protocol Specification. GGF GridFTP Working Group, September 2002.

	Cle10

	Valentin Clément. Pop-java - technical report. Technical Report, EIA-FR, Fribourg, Switzerland, August 2010.

	CFK+88

	K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S.Tuecke. A resource management architecture for metacomputing systems. In Proc. IPPS/SPDP ‘98 Workshop on Job Scheduling Strategies for Parallel Processing, 62–82. 1988.

	FK98

	I. Foster and N. Karonis. A grid-enabled mpi: message passing in heterogeneous distributed computing systems. In Proc. 1998 SC Conference. November 1998.

	FK97

	I. Foster and C. Kesselman. Globus: a metacomputing infrastructure toolkit. Intl J. Supercomputer Applications, 11(2):115–128, 1997.

	FKNT02

	I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for distributed system integration. Computer, 2002.

	GFKH99

	Andrew Grimshaw, Adam Ferrari, Fritz Knabe, and Marty Humphrey. Legion: an operating system for wide-area computing. IEEE Computer, 32(5):29–37, May 1999.

	KTIFoster03

	N. Karonis, B. Toonen, and I.Foster. Mpich-g2: a grid-enabled implementation of the message passing interface. Journal of Parallel and Distributed Computing, 2003.

	KN07

	P. Kuonen and T. A. Nguyen. Programming the grid with pop-c++. Future Generation Computer Systems (FGCS), 23(1):23–30, January 2007.

	Ngu04

	Thuan-Anh Nguyen. An object-oriented model for adaptive high performance computing on the computational GRID. PhD thesis, EPFL, Lausanne, Switzerland, 2004.

	RFG+00

	A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and B. Toonen. Mpich-gq: quality-of-service for message passing programs. In Proc. of the IEEE/ACM SC2000 Conference. November 2000.

	SSA+01

	H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tierney. File and object replication in data grids. In 10th IEEE Symposium on High Performance and Distributed Computing (HPDC2001). San Francisco, California, 2001.

	TDC03

	Weiqin Tong, Jingbo Ding, and Lizhi Cai. A parallel programming environment on grid. In International Conference on Computational Science 2003, 225–234. 2003.

	WSF+03

	V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for grid services. In IEEE Press, editor, Twelfth International Symposium on High Performance Distributed Computing (HPDC-12). 2003.

	WP00

	Tiffani L. Williams and Rebecca J. Parsons. The heterogeneous bulk synchronous parallel model. Lecture Notes in Computer Science, 2000.

The TFC model

TFC (Trusted Friend Computing) is a POP-Java object sharing model, which can be implemented in any context.

The model allows to share objects and resources of a given program or module between nodes in a network, without having to run any third party code on a given machine (see Figure 1).

[image: ../_images/tfc-model.png]
Figure 1: Nodes sharing the same program/module

A typical use case of TFC appears e.g. when someone wants to publish an object and someone else to find and use that object (see basic and advanced examples in the next sections).

Todo

explain better

Basic example

In this section, we explain how to publish an object and how to retrieve one inside a friend network.

Publishing TFC objects

TFC requires that a connected friend shares a known application consisting of a POP object.

Let’s take the following class as an example:

@POPClass
public class A {

 private int n;

 public A() { }

 @POPObjectDescription(url = "localhost", protocols = "ssl")
 public A(int n) {
 this.n = n;
 }

 @POPSyncConc
 public int get() {
 return n;
 }
}

The class A is very basic. It only offers one method to retrieve a stored value n.

The following application shows how to publish an instance of A to our network:

@POPClass(isDistributable = false)
public class TFCPublish {
 private static final String NET = "abc-123-def";
 public static void main(String[] args) throws IOException {
 A a = new A();
 System.out.println("Object at " + PopJava.getAccessPoint(a));

 System.out.println("Publishing via JMC...");
 JobManagerConfig jmc = new JobManagerConfig();
 jmc.publishTFCObject(a, NET, "mysecret");

 System.out.println("Press enter to destroy the object...");
 System.in.read();
 }
}

At line 5, we can see a standard POP object creation.
At line 9, we connect to the Job Manager using its configuration API class.
At line 10, we publish the created object by giving it to the Job Manager and setting which network should be able to search for the object. The secret allows to remove the object from the published list without killing it.

Note

We took an unique network identifier abc-123-def for sake of simplicity. See Configuration to learn how to create networks.

Searching for a TFC object

To search for an object, we require to know its interface (and not necessarily its implementation). In our example, we have its implementation.

Note that friend nodes may be offline at the time of search, meaning that multiple searchs for the same object might yield different results.

	Retrieving objects require the following steps:

	
	Setup of the search parameters (lines 6,7);

	Initialization of the search (line 8);

	Connection to the obtained results (line 12).

@POPClass(isDistributable = false)
public class TFCRetrieve {
 private static final String NET = "abc-123-def";
 public static void main(String[] args) {
 System.out.println("Retrieving from network...");
 ObjectDescription od = new ObjectDescription();
 od.setNetwork(NET);
 POPAccessPoint[] aps = PopJava.newTFCSearch(A.class, 10, od);
 System.out.println("Got " + Arrays.toString(aps));

 for (POPAccessPoint ap : aps) {
 A r = PopJava.connect(A.class, NET, ap);
 System.out.println(ap + " -> " + r.get());
 }
 }
}

The ObjectDescriptor at line 6,7 sets the network in which we will search for objects. There we can also specify some options such as setSearch for the depth of the search, or setSearchHosts to select the hosts which are allowed to answer us from the host list.

The API call to PopJava.newTFCSearch requires the class we are looking for, the maximum number of instances we want and the ObjectDescriptor as parameters.

In order to connect to an existing object, we use the PopJava.connect method which requires the network, the remote object and its address.

Note

The current way to publish and retrieve objects require several API calls, which is not in the best spirit of a POP model (KISS). This might be simplified in the future.

Advanced example

In this section, we detail a more complex example of a TFC use case. In this example, we don’t have any default network and we publish only partially on the available networks.

We also introduce some advanced annotations such as @POPPrivate that can be used in more complex applications, and new parameters such as localhost, tracking and localJVM.

@POPClass
public static class A {

 private int n;

 public A() { }

 @POPObjectDescription(url = "localhost", protocols = "ssl",
 tracking = true, localJVM = true)
 public A(int n) {
 this.n = n;
 }

 @POPSyncSeq
 public int get() {
 return n;
 }

 @POPAsyncMutex(localhost = true)
 public void set(int n) {
 this.n = n;
 }

 @POPSyncSeq
 @POPPrivate
 public void divide() {
 n /= 2;
 }
}

This class does the same as the one in the preceding example: it exposes a value to whoever wants to know it, except that now we have the possibility to modify the value even after the object creation. However, this feature is not for everyone!

Local JVM objects

We can see in the @POPObjectDescription annotation that we have two new attributes:

	tracking, which allows to know who used the object;

	localJVM, which allows to integrate the object in the current JVM instead of spawning a new one (see Figure 1).

[image: ../_images/localjvm-schema.png]
Figure 1: Main create two POP objects: the first is a localJVM and the second a classic JVM.

Why creating an object this way? There are multiple reasons, the main one being that a POP object spawned locally does not require the data to be transmitted via a Combox and has access to all non-POP objects created in the JVM. This notably permits to make data accessed from a non-POP platform available to a POP application.

That said, this not an all in one solution: localJVM should be used with care! The annotations used to achieve synchronicity may not work (particularly async), unless we treat the object as if it were remote.

A al = new A(10); // local JVM
A ar = PopJava.getThis(al); // connect to the local JVM object

In the example above al is a localJVM object and is treated as such. ar also points to the same object al but must pass through a Combox to make calls. Thus, it also loses access to some methods.

Local special access method

localJVM is generally used to make a hybrid application working with non-POP objects. Thus, some object methods might not be available for every connecting client but only for the JVM which created the object itself.

The @POPPrivate annotation is meant for keeping a method accessible to the JVM which created the object and not exposing it remotely.

// Node A
A local = new A(10); // local JVM
A ref1 = PopJava.getThis(local); // Connect to the local JVM object

// Node B
A ref2 = PopJava.connect(...) // Connect to nodeA -> local remotely

In the code above, we create a localJVM object and connect to it by creating a reference. Then we have a remote machine which is also connected to it. Figure Figure 2 shows the situation.

[image: ../_images/localjvm-situation.png]
Figure 2: Local JVM with local and remote connections

In this local example, we can call the method divide; ref1 and ref2 do not have this method exposed because it is annotated with @POPPrivate.

Remote special access method

@POPPrivate is not the only restriction that we can make. The set method has an attribute in its annotation: localhost = true. This attribute automatically checks that the calls to this method come from someone on the same machine than the object.

In the same preceding example, we can see that the set method is not accessible by everyone, but only by objects on Node A. Table below shows the access to the three methods of A.

	Method

	local

	ref1

	ref2

	get

	✔

	✔

	✔

	set

	✔

	✔

	✖

	divide

	✔

	✖

	✖

Tracking

Tracking allows to know how long an object was used and by who. Calls to a specific API with a POP object as a target permit to obtain this information.

Let’s take the same example used in the two previous chapters: one object receives two connections from two different sources and is also used locally.

Note

It’s important to know that we can not track the usage of a localJVM object, unless we are connected to it via a Combox. This means that we will never know how local uses A.

The person who created the POP object has access to its usage statistics. In fact, only the owner of the object knows all the users who used it.

The following information is usually extracted from a connecting user: the certificate (if present) used to identify the user, the IP address and the network used for the connection.

Note

POP-Java does not handle the real identification of a user. It’s the job of the one creating an application to provide this ability.

	To access the statistics of a POP object, we use the API provided by the class POPAccounting, which can do 3 main things:

	
	Check if an object has tracking enabled

	Retrieve the users which used the object

	Ask the statistics of a given user

	Ask the statistics of a current connection

Own statistics

Accessing your own statistics can be useful to check how much you used another person’s‘ shared object before closing a connection. The usage is stacked and connection independent, meaning that the statistics cumulate and are not reset between two connections to an object.

POPTracking own = POPAccounting.getMyInformation(a);

POPTracking contains information that the owner of the object can see about you, in order to identify you and see your usage of the methods in the object.

Object statistics

As the owner of an object, you may be interested in knowing who used your object. To do that, you first need to request a list of users of the object. Then you can successively ask detailed information about each user.

POPRemoteCaller[] users = POPAccounting.getUsers(a);
for (POPRemoteCaller user : users) {
 POPTracking info = POPAccounting.getInformation(a, user);
 // do something
}

Tracked information

	We generally track three things done by the user:

	
	the methods he used;

	the number of times he called each method;

	the duration of the method execution (usage);

	the size of the method input data;

	the size of the method output data.

With those information, the owner of an object can gather enough information e.g. to fill in an invoice.

Contribution guidelines

Contributing to POP-Java is very simple. All the code is hosted in a public git repository hosted on gitlab.
It can be found at <https://github.com/pop-team/pop-java> and is open to merge requests for new developments.

Coding conventions

When writing new code for POP-Java you should always:

	Indent with 4 spaces

	Always surround blocks with { }

	…

	…

Creation of a new release

	Update changelog file

All notable changes to the POP-Java project will be documented in the CHANGELOG.md file as follows (source: SemVer [https://semver.org]). Given a version number MAJOR.MINOR.PATCH, increment the:

	MAJOR version, when incompatible API changes are made;

	MINOR version, when functionalities in a backwards-compatible manner are added;

	PATCH version, when backwards-compatible bug fixes are made.

Additional labels for pre-release (e.g. Beta, RC1) and build metadata may be added as extensions to the MAJOR.MINOR.PATCH format.

For each new version released, the related section will list its novelties under the following potential sub-sections: Features, Bug Fixes and BREAKING CHANGES.

New functionalities, which are not yet released, will be listed at the top of the CHANGELOG.md under the so-called UNRELEASED section.

	Update version

Increment the version number of POP-Java in the build.gradle file.

Note

This step is mandatory in order to publish a new Maven release.

	Update author file

All current and/or previous authors (core committers) shall be listed in the AUTHORS file as follows:

Current core committers:

* Beat Wolf
* Jonathan Stoppani
* Christophe Gisler

Previous core commiters:

* Beat Wolf
* Davide Mazzoleni
* Valentin Clément

	Build Jar

A fat Jar version of POP-Java must be built locally in order to run the tests by using the following command:

$./gradlew fatJar

Note

Make sure you use Java JDK 8 (not 9) in order to build POP-Java. Otherwise it will not run under Java 8.

	Run tests locally

POP-Java must be tested locally by using the following command:

$./gradlew test

All tests must pass before going to the next step.

	Build and upload Maven package to OSSRH

Build the POP-Java Jar files and signing files required for the Maven package, and upload (deploy) them to the OSSRH repository [https://oss.sonatype.org] by using the following commands:

$./gradlew clean
$./gradlew uploadArchives

Note

	We first clean the build directory to get rid of the fat Jar bundle, which must not be deployed to the OSSRH repository [https://oss.sonatype.org].

	To perform this step, one must have a Sonatype JIRA login [https://issues.sonatype.org] and credentials [http://central.sonatype.org/pages/gradle.html] in his gradle.properties file (generally stored in ~/.gradle/) like this:

signing.keyId=YourKeyId
signing.password=YourPublicKeyPassword
signing.secretKeyRingFile=PathToYourKeyRingFile

ossrhUsername=your-jira-id
ossrhPassword=your-jira-password

	The signing data must be generated, e.g. with GnuPG [http://central.sonatype.org/pages/working-with-pgp-signatures.html].

	Newer (2.1+) GPG versions use a new keyring file format (.kbx). You need to convert/export your key to the old format.

gpg --export-secret-keys -o secring.gpg

	With the 2.1+ GPG version you also need to use a special command to list the available keys to get the correct id.

gpg --list-keys --keyid-format short

	More information about the Maven packaging process is given on the OSSRH Guide [http://central.sonatype.org/pages/ossrh-guide.html].

	Commit, tag and push

Commit your changes to the project, tag your version and push them:

$ git commit -m "My commit message"
$ git tag -a v2.1.0 -m "my version 2.1.0"
$ git push origin master
$ git push --tags

	Wait for tests to pass and documentation to build

Here nothing to do but wait. While one or more tests fail, please fix the related bugs and go back to previous step.

	Update release details on GitHub

Please follow these steps:

	Go to the GitHub release page [https://github.com/pop-team/pop-java/releases];

	Click on the new release link;

	Click on the Edit tag button (on the top right of the page);

	Fill in the related fields;

	Click on the Publish release button.

	Release deployed Maven package from OSSRH to the Central Repository

Automatically close and release the staging version from OSSRH [https://oss.sonatype.org] to the Central Repository [https://search.maven.org] by using the following command:

./gradlew closeAndReleaseRepository

Note

	To pass this step, the deployed files are verified and thus must fulfil some requirements [http://central.sonatype.org/pages/requirements.html].

	This step was fully automatized thanks to the Gradle Nexus Staging Plugin [https://github.com/Codearte/gradle-nexus-staging-plugin/]. However, it can manually be done on the OSSRH website [https://oss.sonatype.org] as described here [http://central.sonatype.org/pages/releasing-the-deployment.html].

	It takes about 2 hours to synchronize between OSSRH and the Central Repository

Documentation management

This chapter describes all the processes related to the documentation of the
POP-Java project.

Documentation types

The POP-Java project currently has two main types of documentation:

	Prose documentation

	The documentation you are reading right now. It contains manuals, guides and
how-tos about the project itself. The prose documentation is written by
humans for humans. This documentation is currently edited using
Sphinx [http://sphinx-doc.org/].

	API reference

	The API Reference [http://gridgroup.github.io/pop-java/api/] contains the
documentation for each functional unit of the project (packages, classes,
methods, …) and is generated by parsing the source code. The API reference
is currently being generated using Doxygen [http://www.doxygen.org/].

Editing the prose documentation

As mentioned in the previous section, the prose documentation is managed by
Sphinx [http://sphinx-doc.org/]. Sphinx is a tool to create documentation
from reStructuredText sources and can produce a variety of output formats (e.g.
HTML, LaTeX -> PDF, ePub, Texinfo, man pages, plain text, …).

The prose documentation resides in the docs/ directory at the root of the
repository and can be edited with any text editor. The complete reference for
the reStructuredText syntax and the addons added by Sphinx are available on
the reStructuredText [http://docutils.sourceforge.net/rst.html] (see also
http://sphinx-doc.org/rest.html) and
Sphinx Markup Constructs [http://sphinx-doc.org/markup/index.html] pages,
respectively.

For quick and small edits, it is possible to use the GitHub editing interface
instead of a complete local clone + edit + commit + push process. The
documentation files are available on GitHub in the gridgroup/pop-java [https://github.com/gridgroup/pop-java/tree/master/docs]
repository.

Building and publishing the prose documentation

The building process transforms the input documents in reStructuredText format
into one of the output formats supported by Sphinx (HTML, PDF, ePub, …).

There are two different ways to build the documentation:

	Locally on the development machine, by installing the necessary tools and
executing the right command.

	Remotely, via a custom post-commit hook on a CI server or through a
specialized service, such as http://readthedocs.org/.

In the next two subsections we will discuss these two possibilities. In the
second case we will limit ourselves to building through
http://readthedocs.org/.

Locally

To build the documentation locally we need a working
Sphinx [http://sphinx-doc.org/] installation.

Sphinx requires at least Python 2.5 or 3.1; you can read more about additional
details regarding the requirements on the
Sphinx introduction [http://sphinx-doc.org/intro.html#prerequisites] page.

To check which version of python you have installed, run the following
command:

python -V

If python is not installed or does not meet Sphinx’s version requirements,
you can either install or update it by using your distribution package
manager (apt-get on Debian/Ubuntu, yum on CentOS/Fedora, emerge on
Gentoo, …).

Below we report some easy steps to install Sphinx on your system. For a more
complete walk-through (including platforms such as OS X and Windows), you can
always refer to the
Sphinx installation instructions [http://sphinx-doc.org/latest/install.html].

To install Sphinx, you can use either easy_install:

easy_install sphinx

or pip (recommended):

pip install sphinx

Depending on the platform and your setup, you probably have to run these
commands with administration privileges:

sudo pip install sphinx

You can check if Sphinx was successfully installed by running the following
command:

python -c 'import sphinx'

In addition to Sphinx itself, this documentation makes use of one additional
required and one additional optional packages:

	The bibtex extension allows to use BibTeX databases to manage
references. You can install it by executing:

pip install sphinxcontrib-bibtex

	The sphinx_rtd_theme is the theme used on Read The Docs. If the
corresponding package is installed, it will be used for local builds as
well. The theme can be installed by running:

pip install sphinx_rtd_theme

Note

If you had to use sudo When installing Sphinx, then the commands to
install these additional packages will have to be prefixed with it as well.

Once you have a working Sphinx installation on your system, it’s time to start
building your documentation. As the initial setup is already done for the
POP-Java project, you don’t have to configure anything.

Different ways exist to build the documentation. The easiest is by far to use
the generated Makefile present in the docs/ directory:

cd path/to/pop-java/docs/
make html

If successfull, the last line of the command output will indicate the location
of the build. In this case, the HTML files will be located in _build/html.

To publish the generated documentation, it suffices to upload the html
directory (or the equivalent artifact for a different output format) to a
publicly accessible web server.

In order to support the other output formats managed by Sphinx, the
Makefile has different additional targets. You can find out more about them
by running the help target, whose output is shown below:

Please use `make <target>' where <target> is one of
 html to make standalone HTML files
 dirhtml to make HTML files named index.html in directories
 singlehtml to make a single large HTML file
 pickle to make pickle files
 json to make JSON files
 htmlhelp to make HTML files and a HTML help project
 qthelp to make HTML files and a qthelp project
 devhelp to make HTML files and a Devhelp project
 epub to make an epub
 latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter
 latexpdf to make LaTeX files and run them through pdflatex
 latexpdfja to make LaTeX files and run them through platex/dvipdfmx
 text to make text files
 man to make manual pages
 texinfo to make Texinfo files
 info to make Texinfo files and run them through makeinfo
 gettext to make PO message catalogs
 changes to make an overview of all changed/added/deprecated items
 xml to make Docutils-native XML files
 pseudoxml to make pseudoxml-XML files for display purposes
 linkcheck to check all external links for integrity
 doctest to run all doctests embedded in the documentation (if enabled)

readthedocs.org

Read the Docs (RTD) [https://readthedocs.org/] is a free service to build
and host Sphinx documentation sets. It supports polling any GIT or Mercurial
repository and re-running a build each time a new commit is detected.
The POP-Java documentation is currently available on RTD at the following link:
http://pop-java.readthedocs.org/en/latest/.

In order to update the documentation hosted on RTD, it suffices to commit the
changes to the GIT repository and push them to the GitHub remote:

git commit -m 'Documentation update'
git push origin master

The repository hosted on GitHub is configured with a post-commit hook to
trigger a new RTD build and the updated version should be available in a short
time (usually < 2 minutes).

Thanks to RTD’s integration with GitHub, an even easier way to carry out
small, self-contained edits to the documentation is directly through the
GitHub editing interface:

	Each HTML page generated on RTD contains a GitHub edit link in the right
corner which brings up the GitHub interface browsing.

[image: ../_images/ghedit1.png]

	We can then click on the edit button to enter the editing interface.

[image: ../_images/ghedit2.png]

	From there we can carry out the desired changes, commit them directly (if
the account with which we are logged in to GitHub allows it; fork and open a
pull request otherwise) and have the documentation hosted on RTD updated
automatically.

[image: ../_images/ghedit3.png]

Building and publishing the API reference

In the introduction to the present chapter we mentioned that the
API Reference [http://gridgroup.github.io/pop-java/api/] is currently being
generated using Doxygen [http://www.doxygen.org/]. In the following
paragraphs we will describe how the documentation can be rebuilt and how the
resulting artifact can be published on the GitHub pages service.

Building

To build the documentation you need a working installation of Doxygen on your
system. Extensive documentation about the installation process is available
directly from the
Doxygen manual [http://www.stack.nl/~dimitri/doxygen/manual/install.html].

Once installed, the steps needed to build the documentation are very simple:

doxygen doxygen.conf

The resulting build will be available in the doxygen/html and
doxygen/latex directories. The HTML version is ready to use, while the
LaTeX version needs and additional build to get to the PDF version:

cd doxygen/latex
make

The resulting PDF will be available at doxygen/latex/refman.pdf.

Publishing on GitHub pages

GitHub supports a basic kind of static website hosting, based on GIT
repositories. This service is called GitHub pages; you can find out more about
it on http://pages.github.com/.

Currently, the latest build of the HTML version of the API reference is made
available for browsing at http://gridgroup.github.io/pop-java/api/ and the PDF
version at http://gridgroup.github.io/pop-java/api/POP-Java.pdf.

The steps involved in the update process of the gh-pages branch (the branch
from which the static website is made available on GitHub) are summarized as
follows:

git checkout gh-pages # Checkout the 'gh-pages' branch
mv doxygen/html api # Move the built HTML reference into place
git commit -am 'API reference update' # Commit everything
git push origin gh-pages # Push to GitHub (publish)
git checkout <oldbranch> # Go back to the branch we were working on

To make it easier to build and publish the documentation, a script to automate
the process is made available at scripts/api-reference from the root of the
repository. In order to build, commit, and publish a new version of the API
reference, it suffices to execute it with no arguments:

./scripts/api-reference

Architecture

POP-Java’s general architecture is not fundamentally different from alternatives like RMI, see Figure 1.
Like in RMI, POP’s Interface act like RMI’s Stub, while POP’s Broker act like RMI’s Skeleton, but the similarities end there.

[image: ../_images/pop-rmi.png]
Figure 1: POP-Java RMI similarity

The similarities end on the way object communicate with each other, since RMI require that object are registered on an RMI Server while every POP Object is independent and is a server on its own.
We also need to write a single class with POP-Java while we need multiple for RMI.

Object Creation

The creation of a new POP Object always start in the same manner, via a call to PopJava.newActive(...).
This will call Javassist to wrap the @POPClass annotated class into a POPObject, creating a fictitious class used as a proxy to the actual instantiated remote object. See Figure 2 to understand how the fictitious class is created.

[image: ../_images/popobj-creation.png]
Figure 2: Creation of Proxy class with Javaassist

The allocate method in Figure 2 will handle the creation of a new JVM and the connection to the remote object. This happen transparently without the user intervention or knowledge.

Figure 3 shows a simplified version of how a new JVM is spawned and the connection between PJMethodHandler and Broker is established.

[image: ../_images/popobj-allocate.png]
Figure 3: PJMethodHandler (Interface) spawn a connect to a new JVM

bind, at the end, connect PJMethodHandler and the Broker instance directly so they can communicate.
treatRequests is a loop designed to handle all method calls toward an object.

Broker & Interface

The Broker and Interface are the two fundamental blocks of POP-Java, the former represent the server instance of a POP Object while the latter is the client connecting to it.

Broker

The Broker class is a wrapper for an instance of a POP Object. Meaning that each instantiated POP Object will have its own Broker instance associated with it. It is also the entry point for newly created POP Objects.

General architecture

As we can see in Figure 1 we have two distinct JVMs, one running the Main of the application while the second running the Broker’s Main.

The Broker’s Main will create a new Broker instance which will be the wrapper for the POP Object requested by the application Main. The instance will open one or more listening ComboxServer which will enable Broker to receive method calls from PJMethodHandler and send them to the wrapped object. See Architecture to understand how POP Objects are created.

[image: ../_images/popobj-broker.png]
Figure 1: Broker components

Note

PJMethodHandler extends Interface, which is the base of communication with a Broker; without PJMethodHandler is what enable us to make remote calls to methods.

Entry Point

A Broker can be create in two ways: as the entry point (main) of a new JVM (Figure 1) or directly by PJProxyFactory if we decide not to create a new dedicated JVM.

Let’s take a look at an example of the former case in a classic scenario, the arguments received by the Broker main are:

-object=MyPopObject
-codelocation=http://myapp.com/app.jar
-callback=socket://IP:PORT1
-appservice=socket://IP:PORT2 ssl://IP:PORT3
-socket_port=0
-ssl_port=0

	object is the name of the class of our POP Object.

	codelocation tell the Broker where to load object from.

	callback is an immediate location to report which ComboxServer Broker has opened.

	appservice the location where AppService can be accessed from.

	<PROTOCOL>_port open a ComboxServer of type PROTOCOL.

If the user is using a personal POP-Java configuration file and used @POPObjectDescription(url = "localhost") a extra parameter configfile is added with the path to the file which will be loaded by the Broker.

Initialization

In both Entry Point`s the method ``public boolean initialize(java.util.List<java.lang.String>);` is called, the main objective of this method is to start ComboxServer in relation to how many <PROTOCOL>_port were supplied.

In the case no particular protocol was supplied, the default one specified in DEFAULT_PROTOCOL will be used.

Note

It’s possible to open multiple ComboxServer of the same type by supplying <PROTOCOL>_port multiple times.

Interface & PJMethodHandler

Interface is the class we use to allocate a new JVM and connect to a new POP Object; PJMethodHandler, instead, by extending it, add the ability to invoke the POP Object methods.

Generally Interface enable us only to connect to a POP Object, while PJMethodHandler allow us to use it.

Note

Currently Interface contains multiple static methods used to run a command on the local machine and lauch a new JVM. Those methods, name-wise and location-wise, are confusing and should be moved.

Packages

POP-Java is divided in two parts, the first is a small public APIs for the user to make use of for its application in the simplest way possible, while the second is the core POP-Java’s runtime.

In this chapter we will explore the two and their details.

	Public packages and classes

	Internal packages and classes

Public packages and classes

This section explain the public available classes a user can use to make his POP application.

In POP the User never has to interact with the framework directly apart in very specific occasions. Which means that the public POP API are a simple set of annotations and some helper classes, as we can see below.

If we want to add new functionality visible to the User adding parameter in one annotation or adding a method popjava.PopJava should be the preferred way to go.

In case of very specific API, like popjava.JobManagerConfig used for configuring POPJavaJobManager, it is acceptable to add a new class to the public API.

	
popjava.annotation.✳

	The minimum needed to use POP. This package contains all the @POP annotations for methods and classes.

Note

We have 6 different method annotations and, generally, if we want to add an option to one we add it to the six of them, or at least half of them.

	
popjava.PopJava

	Needed for some POP specific tasks like getting the Access Point of a POP Object.

It contains all methods to initiate a new POP Object.

	
popjava.JobManagerConfig

	Used to configure the JobManager on the local machine. It’s a Proxy to methods of POPJavaJobManager.

	
popjava.util.Configuration

	If the user need some more control on the behavior of POP-Java. Controls include timeouts and the defaults
used in various situations.

	
popjava.baseobject.ConnectionProtocol

	Used by @POPObjectDescription(connection = ...) to define the direct method of connection used.

Note

JobManagerConfig is a special class that enable the configuration of a peculiar POP service, for this reason it access to extra classes.

Internal packages and classes

This section explain the most important internal classes used by the POP Runtime.

Note

We are not going to describe every class in this section, only the most important which may need further
explanation.

When modifying POP’s internal classes be sure to run the JUnit tests before and after and ensure that no new error are generated from the modification.
If what is added is designed to fail in some scenarios it is advised to add a new test to JUnit, to see how to do this see Testing.

	
popjava.PJProxyFactory

	Use Javaassist [https://jboss-javassist.github.io/javassist/] to wrap a class into a POP Object.
In newPOPObject it will create a new PJMethodHandler which will also create the new JVM for the POP Object.

	
popjava.PJMethodFilter

	A helper class to knew which method are to be handled by PJMethodHandler, it also contains a static set of special POP methods which are to be handled internally.

	
popjava.PJMethodHandler

	Extends Interface and add the ability of calling methods. The methods in the special set in PJMethodFilter are implemented here.

	
popjava.interfacebase.Interface

	Handle the connection with a Broker instance and how to communicate with it.

	
popjava.annotation.processors.POPClassProcessor

	`` ``

	
popjava.base.POPObject

	`` ``

	
popjava.base.POPErrorCode

	`` ``

	
popjava.baseobject.ObjectDescription

	`` ``

	
popjava.baseobject.AccessPoint

	`` ``

	
popjava.baseobject.POPAccessPoint

	`` ``

	
popjava.broker.Broker

	`` ``

	
popjava.broker.Request

	`` ``

	
popjava.buffer.POPBuffer

	`` ``

	
popjava.buffer.BufferXDR

	`` ``

	
popjava.buffer.BufferRaw

	`` ``

	
abc

	`` ``

	
def

	`` ``

Todo

Continue adding and write descriptions

Communication

Communication in POP is abstract, multiple communication protocols can be used at the same time. Those protocols are abstracted by the Combox object and its companion, a 3 generic and 3 helper classes for a total of 6.

POP-Java plugin explains how to create a new user generated Combox while in this chapter we want to explain what’s behind a standard Combox and what happen between a Client’s Interface and the POP Object’s Broker.

Combox architecture

Broker ↔ Interface architecture

POP Buffer

Standard Data Types

POP Data Types

Special Data Types

Java Agent

???

Configuration

POP-Java can be configured by placing a file in a specific location: ${POPJAVA_LOCATION}/etc/popjava.properties.

There exists three level of configuration in POP-Java, the first level is POP Hardcoded values, the second is system level override in the location specified above, while the third level is user level override which enable the user to tweak POP even more locally. This can be seen in Figure 1.

[image: ../_images/popj-configuration-layers.png]
Figure 1: POP-Java Configuration Layers

Note

For testing purpose the path ./etc/popjava.properties is also valid.

Parameters available

	
SYSTEM_JOBMANAGER_CONFIG : File

	$POPJAVA_LOCATION/etc/jobmgr.conf with $POPJAVA_LOCATION falling back to ./ if not set.
The location where the Job Manager configuration file located.

	
DEBUG : Booelan

	false print debug information to console.

	
DEBUG_COMBOBOX : Booelan

	false print Combox debug information to console.

	
RESERVE_TIMEOUT : Int

	60000 milliseconds before the Job Manager free reserved registered resources.

	
ALLOC_TIMEOUT : Int

	30000 milliseconds waiting for a connection to happen after a reservation.

	
CONNECTION_TIMEOUT : Int

	30000 milliseconds waiting before a connection exception is thrown.

	
JOBMANAGER_UPDATE_INTERVAL : Int

	10000 milliseconds waiting from interval to interval to check to free resources.

	
JOBMANAGER_SELF_REGISTER_INTERVAL : Int

	43200000 milliseconds (1/2 day) when the Job Manager register itself on its neighbors.

	
JOBMANAGER_DEFAULT_CONNECTOR : String

	jobmanager which connector is used when none is specified.

	
JOBMANAGER_PROTOCOLS : String[]

	["socket"] protocols which are used for the Job Manager.

	
JOBMANAGER_PORTS : Int[]

	[2711] ports which are used in combination with JOBMANAGER_PROTOCOLS.

	
JOBMANAGER_EXECUTION_BASE_DIRECTORY : File

	. which directory should Job Manager use to start objects.

	
JOBMANAGER_EXECUTION_USER : String

	null with which user should the Job Manager start objects as.

	
POP_JAVA_DEAMON_PORT : Int

	43424 the default port that the Java Daemon should use.

	
SEARCH_NODE_UNLOCK_TIMEOUT : Int

	10000 default time before unlocking the semaphore if no result was received.

	
SEARCH_NODE_SEARCH_TIMEOUT : Int

	0 default timeout for a Search Node research. 0 means that the first node responding will be used.

	
SEARCH_NODE_MAX_REQUESTS : Int

	Integer.MAX_VALUE how many nodes should we visit before stopping. Unlimited by default.

	
SEARCH_NODE_EXPLORATION_QUEUE_SIZE : Int

	300 how many nodes should we remember before dropping them to save memory.

	
TFC_SEARCH_TIMEOUT : Int

	5000 minimum time to wait for TFC results are returned to the user. Similar to SEARCH_NODE_SEARCH_TIMEOUT.

	
DEFAULT_ENCODING : String

	xdr

	
SELECTED_ENCODING : String

	raw

	
DEFAULT_PROTOCOL : String

	socket which protocol should we use when none is specified.

	
PROTOCOLS_WHITELIST : Set<String>

	[] which protocols should be allowed to be used.

	
PROTOCOLS_BLACKLIST : Set<String>

	[] which protocols should be blocked and not be used; also applied when using PROTOCOLS_BLACKLIST

	
ASYNC_CONSTRUCTOR : Booelan

	true

	
ACTIVATE_JMX : Booelan

	false

	
CONNECT_TO_POPCPP : Booelan

	false

	
CONNECT_TO_JAVA_JOBMANAGER : Booelan

	true

	
REDIRECT_OUTPUT_TO_ROOT : Booelan

	true

	
USE_NATIVE_SSH_IF_POSSIBLE : Booelan

	true

	
SSL_PROTOCOL_VERSION : String

	TLSv1.2

	
SSL_KEY_STORE_FILE : File

	null the file with the Key Store with the private key.

	
SSL_KEY_STORE_PASSWORD : String

	null password for opening and checking the keystore.

	
SSL_KEY_STORE_PRIVATE_KEY_PASSWORD : String

	null password to decrypt the private key in the keystore.

	
SSL_KEY_STORE_LOCAL_ALIAS : String

	null alias of the private key and public certificate.

	
SSL_KEY_STORE_FORMAT : KeyStoreFormat.

	null, format JKS, PKCS12 (experimental).

New attribute

Adding a new attribute require the modification of the Configuration class, this is because we grant access to attributes via get and set methods.
The process is done 4 steps.

	Choose the name of the attribute and add it to the Settable enumerator.

private enum Settable {
 MY_NEW_ATTRIBUTE,
 ...
}

	Add a class attribute which will be used to store the value.

private String myNewAttribute = "";

	Create getter and setter methods.

public String getMyNewAttribute() {
 return myNewAttribute;
}
public void setMyNewAttribute(String value) {
 setUserProp(Settable.MY_NEW_ATTRIBUTE, value);
 myNewAttribute = value;
}

Note

Using setUserProp enable us to save only the changed information if the User call store().

	Add the parsing rules in load.

switch(keyEnum) {
 case MY_NEW_ATTRIBUTE: myNewAttribute = value; break;
 ...
}

Remarks

All Java version except Java 9, properties file are encoded with ISO-8859-1 which means that all character outside the first 256 byte will be encoded with its hexadecimal form \uXXXX.
For this reason be on alert when using characters outside this charset manually.
From Java 9 properties files are saved using UTF-8 so this problem shouldn’t matter.

Services

POP Java Job Manager

POP Java App Service

POP Java Daemon

Annotations

Object Description

Add a new OD

Testing

There are two types of tests, JUnit and environment dependant tests.

JUnit

This kind of tests are used to see if many expected behaviors don’t changes over time.

This kind of tests can tricky because contrarily to Test Suite tests, all of the JUnit tests a

Create a new test

In the junit package in the POP-Java workspace look for an appropriate package or create a new one to host a new test.

Use the following template to start creating a test class. It’s important that each unit test initialize and end the POP Environment, the methods marked with @Before and @After do exactly this. For further information in regards how JUnit works visit JUnit’s documentation [http://junit.org/junit4/].

public class SomeTests {

 @Before
 public void initPOP() {
 POPSystem.initialize();
 }

 @After
 public void endPOP() {
 POPSystem.end();
 }

 @Test
 public void myTest() {
 ...
 assertTrue(...)
 }
}

Note

As of now we are using JUnit4, when POP-Java will use Java 8 as a minimum platform we will probably upgrade.

After the test is written don’t forget to add it to the Test Suite. For example

@Suite.SuiteClasses({ ..., SomeTests.class})
public class LocalTests

Peculiarities

The is one extra details we have to be on alert with writing JUnit tests, all POP Object apart from having the @POPClass annotation should also extends POPObject directly.
Furthermore, all new POP Object create must use the PopJava.newInstance method since there is no Java Agent running in the JUnit tests.

@POPClass
class MyPOP extends POPObject {
 void MyPOP() { }
}

class MyTest {
 ... // before & after
 @Test
 public void test() {
 MyPOP my = PopJava.newInstance(MyPOP.class);
 ...
 }
}

Test Suite

The POP-Java Test Suite is a Shell Script with the objective of executing some small POP-Java program in a configured POP Environment.

Todo

continue

Examples

The POP-Java distribution includes some examples of POP-Java application. These
examples can be found in the folder POPJAVA_DISTRIBUTION/example. All
examples have a Makefile to compile and a special target run to run
them. The following examples are available for the moment:

	Callback: this example shows the ability of a parallel object to
call back the one that called him.

	Integer: this is a simple example of a parallel object integer
(same as the example in POP-C++).

	Mixed1: this example is a POP-Java application using a POP-C++
integer parallel object

	Mixed2: this example is a POP-C++ application using a POP-Java
integer parallel object.

	Multiobj: this example shows a chaining of parallel object.

Commands reference

popjc

The result of the execution of popjc -h command is shown below:

POP-Java Compiler v1.0

This program is used to compile a POP-Java program

Usage: popjc <options> <source files>

OPTIONS:
 -h, --help Show this message
 -n, --noclean Do not clean the intermediate Java file
 generated by the POP-Java parser
 -p, --popcpp <xml_file> Compile a POP-Java parallel class for
 POP-C++ usage (Need XML additional
 informations file)
 -j, --jar <filename> Create a JAR archive with the given name
 (Need the JAR file name)
 -v, --verbose Verbose mode
 -c, --classpath <files> Include JAR or compiled Java class to the
 compilation process. Files must be
 separated by a semicolon ":"

OPTIONS FOR POP-C++ INTEROPERABILITY:
 -x, --xmlpopcpp <files> Generate a canvas of the POP-C++ XML
 additional informations file for the
 given Java files. This option must be
 used alone.
 -g, --generate <pjava> Generate the POP-C++ partial
 implementation to use the given
 POP-Java parclass in a POP-C++ application
 (NOT IMPLEMENTED YET)

popjrun

The result of the execution of popjrun -h command is shown below:

POP-Java Application Runner v1.0

This program is used to run a POP-Java application or to generate
object map

Usage: popjrun <options> <objectmap> <mainclass>

OPTIONS:
 -h, --help Show this message
 -v, --verbose Verbose mode
 -c, --classpath <files> Include JAR or compiled Java class
 needed to run the application. Files must
 be separated by a semicolon ":"

OPTIONS FOR OBJECT MAP GENERATION:
 -l, --listlong <parclass> Generate the object map for the given
 parclasses. Parclasses can be a .class,
 .jar, .obj or .module file. Parclasses
 must be separated by :

Release notes

Todo

Write…

TODOs

Todo

Continue adding and write descriptions

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pop-java/checkouts/stable/docs/dev/packages-internal.rst, line 99.)

Todo

continue

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pop-java/checkouts/stable/docs/dev/testing.rst, line 73.)

Todo

Write…

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pop-java/checkouts/stable/docs/refs/releases.rst, line 4.)

Todo

explain better

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pop-java/checkouts/stable/docs/tfc/tfc-model.rst, line 15.)

Index

 A
 | D
 | P

A

 	
 	abc (built-in variable)

D

 	
 	def (built-in variable)

P

 	
 	popjava.annotation.processors.POPClassProcessor (built-in variable)

 	popjava.base.POPErrorCode (built-in variable)

 	popjava.base.POPObject (built-in variable)

 	popjava.baseobject.AccessPoint (built-in variable)

 	popjava.baseobject.ConnectionProtocol (built-in variable)

 	popjava.baseobject.ObjectDescription (built-in variable)

 	popjava.baseobject.POPAccessPoint (built-in variable)

 	popjava.broker.Broker (built-in variable)

 	popjava.broker.Request (built-in variable)

 	
 	popjava.buffer.BufferRaw (built-in variable)

 	popjava.buffer.BufferXDR (built-in variable)

 	popjava.buffer.POPBuffer (built-in variable)

 	popjava.interfacebase.Interface (built-in variable)

 	popjava.JobManagerConfig (built-in variable)

 	popjava.PJMethodFilter (built-in variable)

 	popjava.PJMethodHandler (built-in variable)

 	popjava.PJProxyFactory (built-in variable)

 	popjava.PopJava (built-in variable)

 	popjava.util.Configuration (built-in variable)

User manual

	Introduction and background

	Parallel Object Model

	Developing POP-Java applications

	Compile and run a POP-Java application

	Developing POP-Java and POP-C++ mixed applications

	POP-Java plugin

	Installation

	Configuration

	Troubleshooting

	Bibliography

TFC

	The TFC model

	Basic example

	Advanced example

Developer manual

	Contribution guidelines

	Documentation management

	Architecture

	Broker & Interface

	Packages

	Communication

	Java Agent

	Configuration

	Services

	Annotations

	Testing

 _images/ghedit3.png
gridgroup / pop-java @ Unwatch ~ 1 Star 0§ Fork 0

pop-java / docs / index.rst B cancel o

=

=] Code Preview O Spaces S 2 S No wrap

o

. _index:

Welcome to POP-Java's documentation!

Welcome to POP-Java's documentation. POP-Java is an implementation of the POP
(**P**\ arallel **0**\ bject **P**\ rograming) model for the Java programming
language. The POP model is based on the very simple idea that objects are
suitable structures to distribute data and executable code over heterogeneous
distributed hardware and to make them interact between each other.

POP-Java is a comprehensive object-oriented system for developing HPC
applications in large distributed computing infrastructures such as Grid or
P2P. It consists of a programming suite (language, compiler) and a run-time
system for running POP-Java applications.

POP-Java language is minimal an extension of Java that implements the parallel
object model with the integration of resource requirements into distributed
objects. We try to keep this extension as close as possible to Java so that
programmers can easily learn POP-Java and that existing Java applications can
be parallelized using POP-Java without too much effort.

This documentation is divided in three parts:

* The :ref: user-manual” targets the users of the POP-Java framework and
describes how to develop and run POP-enabled Java applications.

* The :ref: developer-manual” targets the developers of the POP-Java framework
and contains guidelines and resources for the development process.

* The :ref: references’ collect various reference documents, useful for both
users and developers alike.

. _user-manual:

3 Commit changes
&

_images/inv_async.png
o1

concurrent call
to return results

03

_images/ghedit1.png
» Welcome to POP-Java’s documentation!

Introduction and background Welcome to POP-Java's documentation!

Parallel Object Model

Welcome to POP-Java’s documentation. POP-Java is an implementation of the POP (Parallel Object

Draoramino) madal far +he lava nraoramminoe lanoiince The DOD madeal ic haced Aan +the vearv cimnle

Developing POP-Java applications

_images/ghedit2.png
gridgroup / pop-java @uUnwatch v 1 J Star 0 [Fork 0

P branch: sphinx-documen... - pop-java/docs / index.rst &
©

. GaretJax a day ago Added remaining sections, bibliography and cleaned up LaTeX leftovers.

1 contributor

n
Rfile 80 lines (58 sloc) 2.394 kb aw Blame History Delete
ER

1 u e
Welcome to POP-Java's documentation!
fah
Welcome to POP-Java's documentation. POP-Java is an implementation of the POP (Parallel Object Programing) model for the P
Java programming language. The POP model is based on the very simple idea that objects are suitable structures to distribute data
and executable code over heterogeneous distributed hardware and to make them interact between each other. 2
LY

POP-Java is a comprehensive object-oriented system for developing HPC applications in large distributed computing infrastructures
such as Grid or P2P. It consists of a programming suite (language, compiler) and a run-time system for running POP-Java

applications.

POP-Java language is minimal an extension of Java that implements the parallel object model with the integration of resource
requirements into distributed objects. We try to keep this extension as close as possible to Java so that programmers can easily
learn POP-Java and that existing Java applications can be parallelized using POP-Java without too much effort.

_images/localjvm-situation.png
Node A Node B

> 8l o> 8l
e g © o> 8

<<component>> g

ReflA

_images/pop-rmi.png
Client

Stub /
Interface

Skeleton /
Broker

Server

_images/inv_semantics.png
time.

delays Mutex1() §

object

_images/localjvm-schema.png
Node A

<<component>>
Main

<<component>>
localJVM Obj A

<<component>>
ReflB

<<component>>
obj B

O

ComboxServer A

O

ComboxServer B

_images/popj-configuration-layers.png
System

POP Hardcoded

_images/popobj-allocate.png
TV Wi
Fethodnandler POPSystem

T T
1:allocate] i
!

1.1: build Broker command
| [
1.2: unCmd !

VI POP Object

2 new system process Broker.

- F (main)
3: start Allocator T

4 connect (Allocator) !

5: actual instance

6: initialize

; 8: treatRequests

7: send Broker location (via Allocator)

N
:‘ 7.1: set Broker location
bl

I
|
|
|

7.2: bind !
|
|

_images/comboxfactory.png
ComboxFactory

+createClientCombox (accessPoint:POPAccessPoint):
+createClientCombox (accessPoint:POPAccessPoint,
timeout:int): Combox

+createServerCombox(accessPoint:AccessPoint,

buffer:Buffer,broker:Broker): ComboxServer
+createServerCombox (accessPoint:AccessPoint,
timeout:int,buffer:Buffer,
Broker:broker): ComboxServer

_images/comboxserver.png
: broker
+ int
#accessPoint: AccessPoint
+Running: int = ©
+Exit: int = 1
+Abort: int = 2
+ComboxServer (accesspoint:AccessPoint, timeout:int,
Broker:broker)
+getRequestQueue(): RequestQueue

_images/bufferfactory.png
BufferFactory

+createBuffer(
+getBufferName()

_images/combox.png
#accessPoint: POPAccessPoint
#timeOQut: int = 0
#available: boolean = false
#bufferFactory: BufferFactory

+Combox ()

+Combox (accesspoint:POPAccessPoint, timeout:int)

+close(): void

+connect(): boolean

+connect (accesspoint :POPAccessPoint,timeout:int): boolean
+getBufferFactory()

+receive(buffer:Buffer): int

+send(buffer:Buffer): int
+setBufferFactory(bufferFactory:BufferFactory): void

_images/exception.png
= o= =
— =
Machine A Machine B
try {
.o-l-)ject.memw(); public sync seq int method(){
} catch (POPException €){ throw new POPException(*");
//Handle exception
}
}

_images/popobj-broker.png
VM Main

<<component=>]

i
PJProxyFactory E
]

PJMethodHandler

O

JVM POP Object

pm—
a8

Combox Server (1)

pm——
it

—_—
POP Object E

Combox Server (n)

nav.xhtml

 Table of Contents

 		
 Welcome to POP-Java’s documentation!

 		
 Introduction and background

 		
 Introduction

 		
 The POP model

 		
 System overview

 		
 Structure of this manual

 		
 Parallel Object Model

 		
 Introduction

 		
 Parallel Object Model

 		
 Shareable Parallel Objects

 		
 Invocations semantics

 		
 Parallel Object Allocation

 		
 Requirement-driven parallel objects

 		
 Developing POP-Java applications

 		
 Parallel objects

 		
 Create a parallel class

 		
 Creation and destruction

 		
 Parallel class methods

 		
 Object description

 		
 Data marshaling and IPOPBase

 		
 POP-Java behavior

 		
 Exception handling

 		
 Compile and run a POP-Java application

 		
 POP-Java compilation

 		
 The POP-Java application launcher

 		
 The POP-Java object map and object map generator

 		
 Full example

 		
 Programming

 		
 Compiling

 		
 Create the object map

 		
 Running

 		
 Misc

 		
 Developing POP-Java and POP-C++ mixed applications

 		
 POP-Java and POP-C++ interoperability

 		
 Restrictions

 		
 Java primitives

 		
 Parameters passing

 		
 Dealing with array

 		
 POP-Java application using POP-C++ parallel objects

 		
 Develop the POP-C++ parallel class

 		
 Create the partial POP-Java parallel class

 		
 Special compilation

 		
 Generate the object map

 		
 Running the application

 		
 POP-C++ application using POP-Java parallel objects

 		
 Developing and compiling the POP-Java parallel class

 		
 The POP-C++ partial implementation

 		
 The POP-C++ main

 		
 Object map

 		
 Compile and run the POP-C++ application

 		
 POP-Java plugin

 		
 Combox plugin

 		
 Buffer plugin

 		
 Installation

 		
 POP-C++ installation

 		
 Requirements

 		
 Before installing

 		
 Installation process

 		
 System startup

 		
 POP-Java installation

 		
 Requirements

 		
 Installation process

 		
 Test the installation

 		
 Configuration

 		
 About the Shell

 		
 TLS Configuration

 		
 Job Manager Configuration

 		
 Network creation

 		
 Adding friendly nodes

 		
 Executing object as another user

 		
 Other options

 		
 Troubleshooting

 		
 POP-Java exception

 		
 Cannot bind to access point: socket://your-computer-name:2711

 		
 Error message: OBJECT_EXECUTABLE_NOTFOUND

 		
 Error message: NO_RESOURCE_MATCH

 		
 Error message: Cannot run program “/usr/local/popc/services/appservice”

 		
 Test suite frozen

 		
 Bibliography

 		
 The TFC model

 		
 Basic example

 		
 Publishing TFC objects

 		
 Searching for a TFC object

 		
 Advanced example

 		
 Local JVM objects

 		
 Local special access method

 		
 Remote special access method

 		
 Tracking

 		
 Own statistics

 		
 Object statistics

 		
 Tracked information

 		
 Contribution guidelines

 		
 Coding conventions

 		
 Creation of a new release

 		
 Documentation management

 		
 Documentation types

 		
 Editing the prose documentation

 		
 Building and publishing the prose documentation

 		
 Locally

 		
 readthedocs.org

 		
 Building and publishing the API reference

 		
 Building

 		
 Publishing on GitHub pages

 		
 Architecture

 		
 Object Creation

 		
 Broker & Interface

 		
 Broker

 		
 General architecture

 		
 Entry Point

 		
 Initialization

 		
 Interface & PJMethodHandler

 		
 Packages

 		
 Public packages and classes

 		
 Internal packages and classes

 		
 Communication

 		
 Combox architecture

 		
 Broker ↔ Interface architecture

 		
 POP Buffer

 		
 Standard Data Types

 		
 POP Data Types

 		
 Special Data Types

 		
 Java Agent

 		
 Configuration

 		
 Parameters available

 		
 New attribute

 		
 Remarks

 		
 Services

 		
 POP Java Job Manager

 		
 POP Java App Service

 		
 POP Java Daemon

 		
 Annotations

 		
 Object Description

 		
 Add a new OD

 		
 Testing

 		
 JUnit

 		
 Create a new test

 		
 Peculiarities

 		
 Test Suite

 		
 Examples

 		
 Commands reference

 		
 popjc

 		
 popjrun

 		
 Release notes

 		
 TODOs

_images/architecture.png
POP-C++ Programming POP-Java Programming
(programming model, language, compiler) | (programming model, language, compiler,
library)

POP-C++ service abstractions layer

POP-C++ POP-C++ POP-C++ Other
services for services for services for Customizable
Globus XtremWeb testing services

Infrastructure services

_images/use_scenario.png
data server

input data flow

worker |

worker |

user
workstation

_images/buffer.png
+messageHeader: MessageHeader

: void
+put(value:byte): void
+putBoolean(value:boolean): void
+putChar(value:char): void
+putInt(value:int): void
+putLong(value:long): void
+putShort(value:short void
+putFloat(value:float): void
+putDouble(value:double): void
+put (data:byte[]): void
+put(data:byte[],offset:int,length:int): void
+putCharArray(value:char[]): void
+putBooleanArray(value:boolean[]): void
+putIntArray(value:int[]): void
+putShortArray(value:short[]): void
+putLongArray(value:long[]): void
+putFloatArray(value:long[]): void
+putDoubleArray(value:double[]): void
+getByteArray(length:int): byte[]
+getCharArray(length:int): char[]
+getBooleanArray(length:int): boolean[]
+getIntArray(length:int): int[]
+getLongArray(length:int): long[]
+getShortArray(length:int): short[]
+getFloatArray(length:int): float[]
+getDoubleArray(length:int): double[]
+putString(value:String): void
+get(): byte
+getBoolean(): boolean
: char
¢ int
: long
: short
: float
: double
: String
: byte[]
+getTranslatedInteger(value:byte[]): int
+extractHeader(): MessageHeader
+resetToReceive(): void
+Buffer (messageHeader :MessageHeader)
+setHeader (messageHeader :MessageHeader): void
+getHeader(): MessageHeader
+size(): int
+getValue(c:Class<?>): Object
+putValue(o:0bject,c:Class<?>): void
+putArray(o:0bject): void
+getArray(arrayType:Class<?>): Object
+serializeReferenceObject(c:Class<?>,0bject:obj): void
+deserializeReferenceObject(c:Class<?>,0bject:0): void
+checkAndThrow(systemErrorCode:int,buffer:Buffer): void
+toIntString(): String
+toCharString(): String

_static/ajax-loader.gif

_images/popobj-creation.png
TV Wi

FlProxyFactory

FlfethodHandler

_images/tfc-model.png
Node A

<<component>>
Shared Component A

]

<<component=>
Shared Component B

]

<<component>>
Shared Component A

]

Shared Component B

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

