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pomegranate is a python package which implements fast, efficient, and extremely flexible probabilistic models ranging
from probability distributions to Bayesian networks to mixtures of hidden Markov models. The most basic level of
probabilistic modeling is the a simple probability distribution. If we’re modeling language, this may be a simple
distribution over the frequency of all possible words a person can say.

1. Probability Distributions

The next level up are probabilistic models which use the simple distributions in more complex ways. A markov chain
can extend a simple probability distribution to say that the probability of a certain word depends on the word(s) which
have been said previously. A hidden Markov model may say that the probability of a certain words depends on the
latent/hidden state of the previous word, such as a noun usually follows an adjective.

2. Markov Chains

3. Bayes Classifiers and Naive Bayes

4. General Mixture Models

5. Hidden Markov Models

6. Bayesian Networks

7. Factor Graphs

The third level are stacks of probabilistic models which can model even more complex phenomena. If a single hidden
Markov model can capture a dialect of a language (such as a certain persons speech usage) then a mixture of hidden
Markov models may fine tune this to be situation specific. For example, a person may use more formal language at
work and more casual language when speaking with friends. By modeling this as a mixture of HMMs, we represent
the persons language as a “mixture” of these dialects.

8. GMM-HMMs

9. Mixtures of Models

10. Bayesian Classifiers of Models
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CHAPTER 1

Thank You

No good project is done alone, and so I’d like to thank all the previous contributors to YAHMM and all the current
contributors to pomegranate as well as the graduate students whom I have pestered with ideas. Contributions are
eagerly accepted! If you would like to contribute a feature then fork the master branch and be sure to run the tests
before changing any code. Let us know what you want to do on the issue tracker just in case we’re already working on
an implementation of something similar. Also, please don’t forget to add tests for any new functions.

1.1 Installation

The easiest way to get pomegranate is through pip using the command

This should install all the dependencies in addition to the package.

You can also get pomegranate through conda using the command

This version may not be as up to date as the pip version though.

Lastly, you can get the bleeding edge from GitHub using the following commands:

git clone https://github.com/jmschrei/pomegranate
cd pomegranate
python setup.py install

On Windows machines you may need to download a C++ compiler if you wish to build from source yourself. For
Python 2 this minimal version of Visual Studio 2008 works well. For Python 3 this version of the Visual Studio build
tools has been reported to work.

The requirements for pomegranate can be found in the requirements.txt file in the repository, and include numpy, scipy,
networkx (below v2.0), joblib, cupy (if using a GPU), and cython (if building from source or on an Ubuntu machine).

1.1.1 FAQ

17. I’m on a Windows machine and I’m still encountering problems. What should I do?

3

https://www.microsoft.com/en-us/download/details.aspx?id=44266
http://go.microsoft.com/fwlink/?LinkId=691126
http://go.microsoft.com/fwlink/?LinkId=691126


pomegranate Documentation, Release 0.6.0

1. If those do not work, it has been suggested that https://wiki.python.org/moin/WindowsCompilers may pro-
vide more information. Note that your compiler version must fit your python version. Run python –ver-
sion to tell which python version you use. Don’t forget to select the appropriate Windows version API
you’d like to use. If you get an error message “ValueError: Unknown MS Compiler version 1900” re-
move your Python’s Lib/distutils/distutil.cfg and retry. See http://stackoverflow.com/questions/34135280/
valueerror-unknown-ms-compiler-version-1900 for details.

17. I’ve been getting the following error: `ModuleNotFoundError: No module named
'pomegranate.utils'.`

1. A reported solution is to uninstall and reinstall without cached files using the following:

If that doesn’t work for you, you may need to downgrade your version of numpy to 1.11.3 and try the above again.

17. I’ve been getting the following error: `MarkovChain.so: unknown file type, first eight
bytes: 0x7F 0x45 0x4C 0x46 0x02 0x01 0x01 0x00.`

A .This can be fixed by removing the .so files from the pomegranate installation or by building pomegranate from
source.

17. I’m encountering some other error when I try to install pomegranate.

1. pomegranate has had some weird linker issues, particularly when users try to upgrade from an older version. In
the following order, try:

1. Uninstalling pomegranate using pip and reiinstalling it with the option –no-cache-dir, like in the above question.

2. Removing all pomegranate files on your computer manually, including egg and cache files that cython may have
left in your site-packages folder

3. Reinstalling the Anaconda distribution (usually only necessary in issues where libgfortran is not linking prop-
erly)

1.2 FAQ

Can I create a usable model if I already know the parameters I want, but don’t have data to fit to?

Yes! pomegranate has two ways of initializing models, either by starting off with pre-initialized distributions or by
using the Model.from_samples class method. In the case where you have a model that you’d like to use you can
create the model manually and use it to make predictions without the need to fit it to data.

How do I create a model directly from data?

pomegranate attempts to closely follow the scikit-learn API. However, a major area in which it diverges is in the
initialization of models directly from data. Typically in scikit-learn one would create an estimator and then call the
fit function on the training data. In pomegranate one would use the Model.from_samples class method, such
as BayesianNetwork.from_samples(X), to learn a model directly from data.

What is the difference between ‘‘fit‘‘ and ‘‘from_samples‘‘?

The fit method trains an initialized model, whereas the from_samples class method will first initialize the model
and then train it. These are separated out because frequently a person already knows a good initialization, such as
the structure of the Bayesian network but maybe not the parameters, and wants to fine-tune that initialization instead
of learning everything directly from data. This also simplifies the backend by allowing the fit function to assume
that the model is initialized instead of having to check to see if it is initialized, and if not then initialize it. This
is particularly useful in structured models such as Bayesian networks or hidden Markov models where the Model.
from_samples task is really structure learning + parameter learning, because it allows the fit function to be solely
parameter learning.

How can I use pomegranate for semi-supervised learning?
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When using one of the supervised models (such as naive Bayes or Bayes classifiers) simply pass in the label -1 for
samples that you do not have a label for.

How can I use out-of-core learning in pomegranate?

Once a model has been initialized the summarizemethod can be used on arbitrarily sized chunks of the data to reduce
them into their sufficient statistics. These sufficient statistics are additive, meaning that if they are calculated for all
chunks of a dataset and then added together they can yield exact updates. Once all chunks have been summarized then
from_summaries is called to update the parameters of the model based on these added sufficient statistics. Out-
of-core computing is supported by allowing the user to load up chunks of data from memory, summarize it, discard it,
and move on to the next chunk.

Does pomegranate support parallelization?

Yes! pomegranate supports parallelized model fitting and model predictions, both in a data-parallel manner. Since
the backend is written in cython the global interpreter lock (GIL) can be released and multi-threaded training can be
supported via joblib. This means that parallelization is utilized time isn’t spent piping data from one process to another
nor are multiple copies of the model made.

Does pomegranate support GPUs?

Currently pomegranate does not support GPUs.

Does pomegranate support distributed computing?

Currently pomegranate is not set up for a distributed environment, though the pieces are currently there to make this
possible.

How can I cite pomegranate?

I don’t currently have a research paper which can be cited, but the GitHub repository can be.

@misc{Schreiber2016,
author = {Jacob Schreiber},
title = {pomegranate},
year = {2016},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/jmschrei/pomegranate}},
commit = {enter commit that you used}

}

How does pomegranate compare to other packages?

A comparison of the features between pomegranate and others in the python ecosystem can be seen in the following
two plots.

1.2. FAQ 5
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The plot on the left shows model stacks which are currently supported by pomegranate. The rows show each model,
and the columns show which models those can fit in. Dark blue shows model stacks which currently are supported,
and light blue shows model stacks which are currently being worked on and should be available soon. For example,
all models use basic distributions as their main component. However, general mixture models (GMMs) can be fit into
both Naive Bayes classifiers and hidden Markov models (HMMs). Conversely, HMMs can be fit into GMMs to form
mixtures of HMMs. Soon pomegranate will support models like a mixture of Bayesian networks.

The plot on the right shows features compared to other packages in the python ecosystem. Dark red indicates features
which no other package supports (to my knowledge!) and orange shows areas where pomegranate has an expanded
feature set compared to other packages. For example, both pomegranate and sklearn support Gaussian naive Bayes
classifiers. However, pomegranate supports naive Bayes of arbitrary distributions and combinations of distributions,
such as one feature being Gaussian, one being log normal, and one being exponential (useful to classify things like
ionic current segments or audio segments). pomegranate also extends naive Bayes past its “naivity” to allow for
features to be dependent on each other, and allows input to be more complex things like hidden Markov models and
Bayesian networks. There’s no rule that each of the inputs to naive Bayes has to be the same type though, allowing
you to do things like compare a markov chain to a HMM. No other package supports a HMM Naive Bayes! Packages
like hmmlearn support the GMM-HMM, but for them GMM strictly means Gaussian mixture model, whereas in
pomegranate it ~can~ be a Gaussian mixture model, but it can also be an arbitrary mixture model of any types of
distributions. Lastly, no other package supports mixtures of HMMs despite their prominent use in things like audio
decoding and biological sequence analysis.

Models can be stacked more than once, though. For example, a “naive” Bayes classifier can be used to compare
multiple mixtures of HMMs to each other, or compare a HMM with GMM emissions to one without GMM emissions.
You can also create mixtures of HMMs with GMM emissions, and so the most stacking currently supported is a
“naive” Bayes classifier of mixtures of HMMs with GMM emissions, or four levels of stacking.

How can pomegranate be faster than numpy?

pomegranate has been shown to be faster than numpy at updating univariate and multivariate gaussians. One of the
reasons is because when you use numpy you have to use numpy.mean(X) and numpy.cov(X) which requires
two full passes of the data. pomegranate uses additive sufficient statistics to reduce a dataset down to a fixed set of
numbers which can be used to get an exact update. This allows pomegranate to calculate both mean and covariance in
a single pass of the dataset. In addition, one of the reasons that numpy is so fast is its use of BLAS. pomegranate also
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uses BLAS, but uses the cython level calls to BLAS so that the data doesn’t have to pass between cython and python
multiple times.

1.3 Release History

1.3.1 Version 0.8.1

Highlights

This will serve as a log for the changes added for the release of version 0.8.1.

• Univariate offsets have been added to allow for distributions to be fit to a column of data rather than a vector of
numbers. This stops the copying of data that had to be done previously.

Changelog

Base

• Parameters column_idx and d have been added to the _summarize method that all models expose. This is only
useful for univariate distributions and models that fit univariate distributions and can be ignored by other models.
The column_idx parameter specifies which column in a data matrix the distribution should be fit to, essentially
serving as an offset. d refers to the number of dimensions that the data matrix has. This means that a univariate
distribution will fit to all samples i such that i*d + column_idx in a pointer array. Multivariate distributions and
models using those can ignore this.

Distributions

• The summarize method has been moved from most individual distributions to the Distribution base object, as
has the fit method.

• min_std has been moved from the from_summaries method and the fit method to the __init__ method for the
NormalDistribution and LogNormalDistribution objects.

NaiveBayes

• Moved the fit and summarize methods to BayesModel due to their similarity with BayesClassifier

BayesClassifier

• Moved the fit and summarize methods to BayesModel due to their similarity to NaiveBayes

GeneralMixtureModel

• Fixed a bug where n_jobs was ignored in the from_samples method because batch_size was reset for the k-means
initialization

HiddenMarkovModel

• The default name of a HiddenMarkovModel has been changed from “None” to “HiddenMarkovModel”

1.3. Release History 7
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1.3.2 Version 0.8.0

Highlights

This will serve as a log for the changes added for the release of version 0.8.0.

Changelog

k-means

• k-means has been changed from using iterative computation to using the alternate formulation of euclidean dis-
tance, from ||a - b||^{2} to using ||a||^{2} + ||b||^{2} - 2||a cdot b||. This allows for the centroid norms to be
cached, significantly speeding up computation, and for dgemm to be used to solve the matrix matrix multipli-
cation. Initial attempts to add in GPU support appeared unsuccessful, but in theory it should be something that
can be added in.

• k-means has been refactored to more natively support an out-of-core learning goal, by allowing for data to
initially be cast as numpy memorymaps and not coercing them to arrays midway through.

Hidden Markov Models

• Allowed labels for labeled training to take in string names of the states instead of the state objects themselves.

• Added in state_names and names parameters to the from_samples method to allow for more control over the
creation of the model.

• Added in semi-supervised learning to the fit step that can be activated by passing in a list of labels where
sequences that have no labels have a None value. This allows for training to occur where some sequences are
fully labeled and others have no labels, not for training to occur on partially labeled sequences.

• Supervised initialization followed by semi-supervised learning added in to the from_samples method simi-
larly to other methods. One should do this by passing in string labels for state names, always starting with
<model_name>-start, where model_name is the name parameter passed into the from_samples method. Se-
quences that do not have labels should have a None instead of a list of corresponding labels. While semi-
supervised learning using the fit method can support arbitrary transitions amongst silent states, the from_samples
method does not produce silent states, and so other than the start and end states, all states should be symbol
emitting states. If using semi-supervised learning, one must also pass in a list of the state names using the
state_names parameter that has been added in.

• Fixed bug in supervised learning where it would not initialize correctly due to an error in the semi-supervised
learning implementation.

• Fixed bug where model could not be plotted without pygraphviz due to an incorrect call to networkx.draw.

General Mixture Models

• Changed the initialization step to be done on the first batch of data instead of the entire dataset. If the entire
dataset fits in memory this does not change anything. However, this allows for out-of-core updates to be done
automatically instead of immediately trying to load the entire dataset into memory. This does mean that out-of-
core updates will have a different initialization now, but then yield exact updates after that.

• Fixed bug where passing in a 1D array would cause an error by recasting all 1D arrays as 2D arrays.

8 Chapter 1. Thank You
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Bayesian Networks

• Added in a reduce_dataset parameter to the from_samples method that will take in a dataset and create a new
dataset that is the unique set of samples, weighted by their weighted occurance in the dataset. Essentially, it
takes a dataset that may have repeating members, and produces a new dataset that is entirely unique members.
This produces an identically scoring Bayesian network as before, but all structure learning algorithms can be
significantly sped up. This speed up is proportional to the redundancy of the dataset, so large datasets on a
smallish (< 12) number of variables will see massive speed gains (sometimes even 2-3 orders of magnitude!)
whereas past that it may not be beneficial. The redundancy of the dataset (and thus the speedup) can be estimated
as n_samples / n_possibilities, where n_samples is the number of samples in the dataset and n_possibilities is the
product of the number of unique keys per variable, or 2**d for binary data with d variables. It can be calculated
exactly as n_samples / n_unique_samples, as many datasets are biased towards repeating elements.

• Fixed a premature optimization where the parents were stripped from conditional probability tables when saving
the Bayesian Network to a json, causing an error in serialization. The premature optimization is that in theory
pomegranate is set up to handle cyclic Bayesian networks and serializing that without first stripping parents
would cause an infinite file size. However, a future PR that enabled cyclic Bayesian networks will account for
this error.

Naive Bayes

• Fixed documentation of from_samples to actually refer to the naive Bayes model.

• Added in semi-supervised learning through the EM algorithm for samples that are labeled with -1.

Bayes Classifier

• Fixed documentation of from_samples to actually refer to the Bayes classifier model.

• Added in semi-supervised learning through the EM algorithm for samples that are labeled with -1.

Distributions

• Multivariate Gaussian Distributions can now use GPUs for both log probability and summarization calculations,
speeding up both tasks ~4x for any models that use them. This is added in through CuPy.

Out Of Core

• The parameter “batch_size” has been added to HMMs, GMMs, and k-means models for built-in out-of-core
calculations. Pass in a numpy memory map instead of an array and set the batch size for exact updates (sans
initialization).

Minibatching

• The parameter “batches_per_epoch” has been added to HMMs, GMMs, and k-means models for build-in mini-
batching support. This specifies the number of batches (as defined by “batch_size”) to summarize before calcu-
lating new parameter updates.

• The parameter “lr_decay” has been added to HMMs and GMMs that specifies the decay in the learning rate over
time. Models may not converge otherwise when doing minibatching.

1.3. Release History 9
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Parallelization

• n_jobs has been added to all models for both fitting and prediction steps. This allows users to make parallelized
predictions with their model without having to do anything more complicated than setting a larger number of
jobs.

Tutorials

• Removed the PyData 2016 Chicago Tutorial due to it’s similarity to tutorials_0_pomegranate_overview.

1.4 Out of Core Learning

Sometimes datasets which we’d like to train on can’t fit in memory but we’d still like to get an exact update.
pomegranate supports out of core training to allow this, by allowing models to summarize batches of data into suf-
ficient statistics and then later on using these sufficient statistics to get an exact update for model parameters. These
are done through the methods `model.summarize` and `model.from_summaries`. Let’s see an example
of using it to update a normal distribution.

>>> from pomegranate import *
>>> import numpy
>>>
>>> a = NormalDistribution(1, 1)
>>> b = NormalDistribution(1, 1)
>>> X = numpy.random.normal(3, 5, size=(5000,))
>>>
>>> a.fit(X)
>>> a
{

"frozen" :false,
"class" :"Distribution",
"parameters" :[

3.012692830297519,
4.972082359070984

],
"name" :"NormalDistribution"

}
>>> for i in range(5):
>>> b.summarize(X[i*1000:(i+1)*1000])
>>> b.from_summaries()
>>> b
{

"frozen" :false,
"class" :"Distribution",
"parameters" :[

3.01269283029752,
4.972082359070983

],
"name" :"NormalDistribution"

}

This is a simple example with a simple distribution, but all models and model stacks support this type of learning. Lets
next look at a simple Bayesian network.

10 Chapter 1. Thank You
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We can see that before fitting to any data, the distribution in one of the states is equal for both. After fitting the
first distribution they become different as would be expected. After fitting the second one through summarize the
distributions become equal again, showing that it is recovering an exact update.

pomegranate provides support for out-of-core computing when one would like to use an iterative method such as EM
without needing to rewrite the convergence criterion themselves. This is done through two parameters, the first being
batch_size and the second being batches_per_epoch. Both parameters are set to None by default meaning that the
batch size is the full dataset and that one epoch means one run through the full dataset. However, both of these can
be set to whatever the user would like. For instance, if one wanted to read only 10,000 samples per batch but still get
exact updates as if they had viewed the whole dataset at the same time, they could pass batch_size=10000 into either
the fit method or the from_samples method. If they wanted to update the parameters of the model after each batch in
a minibatch setting, they could set batches_per_epoch=1. While this still allows the user to use n_jobs as before to
speed up calculations, one should note that if batches_per_epoch != None then it should be greater than or equal to
the number of threads desired.

Here is an example of fitting a mixture model to some data in both a normal and an out-of-core manner.

>>> from pomegranate import *
>>> from sklearn.datasets import make_blobs
>>> import numpy, time
>>> numpy.random.seed(0)
>>>
>>> n, d, m = 55710, 25, 4
>>> X, _ = make_blobs(n, d, m, cluster_std=4, shuffle=True)
>>>
>>> tic = time.time()
>>>
>>> n, d, m = 557100, 25, 4
>>> X, _ = make_blobs(n, d, m, cluster_std=4, shuffle=True)
>>>
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=m, X=X,

n_init=1, max_iterations=5, init='first-k', verbose=True)
[1] Improvement: 2841.61601918 Time (s): 1.052
[2] Improvement: 830.059409089 Time (s): 1.912
[3] Improvement: 368.397171594 Time (s): 1.415
[4] Improvement: 199.537868068 Time (s): 1.119
[5] Improvement: 121.741913736 Time (s): 1.856
Total Improvement: 4361.35238167
Total Time (s): 8.2603
>>>
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=m, X=X,

n_init=1, max_iterations=5, init='first-k', verbose=True, batch_
→˓size=10000)
>>>
>>> print time.time() - tic, model.log_probability(X).sum()
[1] Improvement: 2841.616018 Time (s): 1.246
[2] Improvement: 830.059409752 Time (s): 1.285
[3] Improvement: 368.397172503 Time (s): 1.21
[4] Improvement: 199.537868194 Time (s): 0.9692
[5] Improvement: 121.741913162 Time (s): 0.8211
Total Improvement: 4361.35238161
Total Time (s): 6.4084

It looks like it takes a similar amount of time while still producing identical results. Of course, to use it in an out-of-
core manner one would want to feed in a numpy memory map instead of an in-memory numpy array. The only change
would be to do the following:

1.4. Out of Core Learning 11
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from pomegranate import *
import numpy

X = numpy.load('X_train.npy', mmap_mode='r')
model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=10, X=X,

n_init=1, max_iterations=5, init='first-k', verbose=True, batch_size=10000)

The only change is to the datatype of X, which is now a memory map instead of an array.

We can also use parallelism in conjunction with out-of-core learning. We’ll attempt to learn a Gaussian mixture model
over ~24G of data using a computer with only ~4G of memory. First without parallelism.

>>> import numpy
>>> from pomegranate import *
>>>
>>> X = numpy.load("big_datums.npy", mmap_mode="r")
>>> print X.shape
(60000000, 50)
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution,

3, X, max_iterations=50, batch_size=100000, batches_per_epoch=50,
n_jobs=1, verbose=True)

[1] Improvement: 252989.289729 Time (s): 18.84
[2] Improvement: 58446.0881071 Time (s): 18.75
[3] Improvement: 26323.5638447 Time (s): 18.76
[4] Improvement: 15133.080919 Time (s): 18.8
[5] Improvement: 10138.1656616 Time (s): 18.91
[6] Improvement: 7458.30408692 Time (s): 18.86
[7] Improvement: 5995.06008983 Time (s): 18.89
[8] Improvement: 4838.79921204 Time (s): 18.91
[9] Improvement: 4188.59295541 Time (s): 18.97
[10] Improvement: 3590.57844329 Time (s): 18.93
...

And now in parallel:

>>> import numpy
>>> from pomegranate import *
>>>
>>> X = numpy.load("big_datums.npy", mmap_mode="r")
>>> print X.shape
(60000000, 50)
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution,

3, X, max_iterations=50, batch_size=100000, batches_per_epoch=50,
n_jobs=4, verbose=True)

[1] Improvement: 252989.289729 Time (s): 9.952
[2] Improvement: 58446.0881071 Time (s): 9.952
[3] Improvement: 26323.5638446 Time (s): 9.969
[4] Improvement: 15133.080919 Time (s): 10.0
[5] Improvement: 10138.1656617 Time (s): 9.986
[6] Improvement: 7458.30408692 Time (s): 9.949
[7] Improvement: 5995.06008989 Time (s): 9.971
[8] Improvement: 4838.79921204 Time (s): 10.02
[9] Improvement: 4188.59295535 Time (s): 10.02
[10] Improvement: 3590.57844335 Time (s): 9.989
...

The speed improvement may be sub-linear in cases where data loading takes up a substantial portion of time. A solid
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state drive will likely improve this performance.

1.4.1 FAQ

17. What data storage types are able to be used with out of core training?

1. Currently only stored numpy arrays (.npy files) that can be read as memory maps using numpy.load(‘data.npy’,
mmap_mode=’r’) are supported for data that truly can’t be loaded into memory.

17. Are there plans to add in more on-disc data sources?

1. At some point, yes. However, numpy memory maps are extremely convenient and easy to use.

17. What should I set my batch size to?

1. It should be the largest amount of data that fits in memory. The larger the block of data, the more efficient the
calculations can be, particularly if GPU computing is being used.

17. Can I still do multi-threading / use a GPU with out-of-core learning?

1. Absolutely. No change is needed except to specify the batch size. As said above, the larger the batch size likely
the more efficient the calculations, particularly when using a GPU, but one should play with this themselves for
their specific datasets.

17. Does out of core learning give exact or approximate updates?

1. It gives exact updates. Sufficient statistics are collected for each of the batches and are equal to the sufficient
statistics that one would get from the full dataset. However, the initialization step is done on only a single
batch. This may cause the final models to differ due simply to the different initializations. If one has pre-defined
initializations and simply calls fit, then the exact same model will be yielded.

1.5 Semi-Supervised Learning

Semi-supervised learning is a branch of machine learning that deals with training sets that are only partially labeled.
These types of datasets are common in the world. For example, consider that one may have a few hundred images
that are properly labeled as being various food items. They may wish to augment this dataset with the hundreds of
thousands of unlabeled pictures of food floating around the internet, but not wish to incur the cost of having to hand
label them. Unfortunately, many machine learning methods are not able to handle both labeled and unlabeled data
together and so frequently either the unlabeled data is tossed out in favor of supervised learning, or the labeled data is
only used to identify the meaning of clusters learned by unsupervised techniques on the unlabeled data.

Probabilistic modeling offers an intuitive way of incorporating both labeled and unlabeled data into the training pro-
cess through the expectation-maximization algorithm. Essentially, one will initialize the model on the labeled data,
calculate the sufficient statistics of the unlabeled data and labeled data separately, and then add them together. This
process can be thought of as vanilla EM on the unlabeled data except that at each iteration the sufficient statistics from
the labeled data (MLE estimates) are added.

pomegranate follows the same convention as scikit-learn when it comes to partially labeled datasets. The label vector
y is still of an equal length to the data matrix X, with labeled samples given the appropriate integer label, but unlabeled
samples are given the label -1. While np.nan may be a more intuitive choice for missing labels, it isn’t used because
np.nan is a double and the y vector is integers. When doing semi-supervised learning with hidden Markov models,
however, one would pass in a list of labels for each labeled sequence, or None for each unlabeled sequence, instead of
-1 to indicate an unlabeled sequence.

All models that support labeled data support semi-supervised learning, including naive Bayes classifiers, general
Bayes classifiers, and hidden Markov models. Semi-supervised learning can be done with all extensions of these
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models natively, including on mixture model Bayes classifiers, mixed-distribution naive Bayes classifiers, using multi-
threaded parallelism, and utilizing a GPU. Below is a simple example. Notice that there is no difference in the
from_samples call, the presence of -1 in the label vector is enough.

import numpy

from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from pomegranate import NaiveBayes, NormalDistribution

n, d, m = 50000, 5, 10
X, y = make_blobs(n, d, m, cluster_std=10)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

n_unlabeled = int(X_train.shape[0] * 0.999)
idxs = numpy.random.choice(X_train.shape[0], size=n_unlabeled)
y_train[idxs] = -1

model = NaiveBayes.from_samples(NormalDistribution, X_train, y_train, verbose=True)

While HMMs can theoretically be trained on sequences of data that are only partially labeled, currently semi-
supervised learning for HMMs means that some sequences are fully labeled, and some sequences have no labels
at all. This means that instead of passing in a normal label vector as a list of lists such as [[model.start, s1, s2,
model.end], [model.start, s1, s1, model.end]], one would pass in a list of mixed list/None types, with lists defining the
labels for labeled sequences, and None specifying that a sequence is unlabeled. For example, if the second sequence
was unlabeled, one would pass in [[model.start, s1, s2, model.end], None] instead.

1.5.1 FAQ

17. What ratio of unlabeled / labeled data is typically best?

1. It’s hard to say. However, semi-supervised learning works best when the underlying distributions are more
complicated than the labeled data captures. If your data is simple Gaussian blobs, not many samples are
needed and adding in unlabeled samples likely will not help. However, if the true underlying distributions are
some complex mixture of components but your labeled data looks like a simple blob, semi-supervised learning
can help significantly.

17. If this uses EM, what’s the difference between semi-supervised learning and a mixture model?

1. Semi-supervised learning is a middle ground between unsupervised learning and supervised learning. As such,
it adds together the sufficient statistics from unsupervised learning (using the EM algorithm) and supervised
learning (using MLE) to get the complete model. An immediate benefit of this is that since there is a supervised
initialization, the learned components will always align with the intended classes instead of being randomly
assigning class values.

17. Can parallelism be used with semi-supervised learning?

1. Yes. All aspects of pomegranate that can be used with naive Bayes classifiers or general Bayes classifiers can be
used in the context of semi-supervised learning in the same way one would do so in supervised learning. One
need only set the n_jobs parameters as normal. Literally the only difference for the user that the label vector
now contains many -1 values.
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1.6 Minibatch Learning

The most common and natural way to train a model is to derive updates from the full dataset being used for training. A
good example is batch gradient descent, which derives the direction and magnitude with which to update the weights
of a model from the full dataset. In contrast, minibatch learning involves deriving model updates from only a subset of
the data at a time. A popular variant is called stochastic gradient descent and involves training on only a single sample
at a time. It has surprisingly good properties in some settings and frequently converges faster than batch gradient
descent. In general, as the size of the minibatches increases the noise of the update decreases but the computation time
it takes to calculate the update increases. In practice, the increase in computation time can be diminished by utilizing
specialized hardware like GPUs or tools like BLAS, making larger batch sizes much more favorable.

Similar to the other training strategies in pomegranate, minibatch learning is made possible by the decoupling the
gathering of sufficient statistics from the updating of the model. Out-of-core learning works by aggregating sufficient
statistics among many batches and then calculating a model update at the end. Minibatch learning involves calculating
sufficient statistics from a single batch of data and then immediately updating the model before moving on to the next
batch. In this manner, out-of-core learning can be used to learn the same model one would as if they had seen the
entire dataset, whereas minibatch learning distinctly does not learn the same model.

Minibatch learning in pomegranate is implemented through the use of the batch_size and batches_per_epoch key-
words. Specifically, one must set some batch size and then the number of batches that should be used before calculat-
ing an update. Traditionally one may want to set this to 1, specifying that the update is calculated after a single batch,
but there is no reason why multiple batches couldn’t be used to calculate an update if desired. Here is an example:

>>> from pomegranate import *
>>> from sklearn.datasets import make_blobs
>>> import numpy
>>> numpy.random.seed(0)
>>>
>>> n, d, m = 557100, 25, 4
>>> X, _ = make_blobs(n, d, m, cluster_std=4, shuffle=True)
>>>
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=m, X=X,

n_init=1, max_iterations=5, init='first-k', verbose=True)
[1] Improvement: 2841.61601918 Time (s): 2.373
[2] Improvement: 830.059409089 Time (s): 1.866
[3] Improvement: 368.397171594 Time (s): 1.9
[4] Improvement: 199.537868068 Time (s): 1.936
[5] Improvement: 121.741913736 Time (s): 1.297
Total Improvement: 4361.35238167
Total Time (s): 11.6352
>>> print model.log_probability(X).sum()
-40070118.5672
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=m, X=X,

n_init=1, max_iterations=5, init='first-k', verbose=True, batch_size=10000,
→˓batches_per_epoch=1)
[1] Improvement: 722.089154968 Time (s): 0.04816
[2] Improvement: 1285.42216032 Time (s): 0.1187
[3] Improvement: 1215.87126935 Time (s): 0.1184
[4] Improvement: 1092.96581448 Time (s): 0.1064
[5] Improvement: 1222.47873598 Time (s): 0.1127
Total Improvement: 5538.82713509
Total Time (s): 0.5239
>>> print model.log_probability(X).sum()
-40100556.1073
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We can see that, as expected, each batch takes a significantly shorter amount of time than an epoch on the full dataset.
The model that is produced seems to give similar, though not quite as good, log probability scores on the full dataset.
However, it doesn’t quite appear that the minibatch approach is converging. This is a problem that is common to many
second order update methods, including EM. A frequent solution is to use “stepwise EM” as described in Bishop (p.
368) where a decay is set on the step size. What this means in pomegranate is that the inertia increases as a function of
the number of iterations, ensuring convergence. The step size is calculated as $1 - (1 - inertia) * (2 + k)^{-lr_decay}$
where k is the number of iterations, and inertia is the proportion of the old parameters used (typically 0.0). Let’s see
what happens when we do and don’t use a decay.

Without a decay:

>>> from pomegranate import *
>>> from sklearn.datasets import make_blobs
>>> import numpy
>>> numpy.random.seed(0)
>>>
>>> n, d, m = 557100, 25, 4
>>> X, _ = make_blobs(n, d, m, cluster_std=0.2, shuffle=True)
>>>
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=m, X=X,

n_init=1, init='first-k', max_iterations=25, verbose=True)
[1] Improvement: 2829.31191301 Time (s): 2.301
[2] Improvement: 826.320851962 Time (s): 2.48
...
[24] Improvement: 3.06409630994 Time (s): 1.754
[25] Improvement: 2.80105452973 Time (s): 2.085
Total Improvement: 4689.45119551
Total Time (s): 56.0279
>>> print model.log_probability(X).sum()
825534.114778
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=m, X=X,

n_init=1, init='first-k', verbose=True, max_iterations=25, batch_size=100000,
→˓batches_per_epoch=1)
[1] Improvement: 1053.6233468 Time (s): 0.5352
[2] Improvement: 1376.99673058 Time (s): 0.4793
[3] Improvement: 1252.96547886 Time (s): 0.4395
[4] Improvement: 1198.91839751 Time (s): 0.5888
[5] Improvement: 1215.01340037 Time (s): 0.4509
...
[21] Improvement: 1090.46744541 Time (s): 0.3881
[22] Improvement: 1095.10725289 Time (s): 0.3707
[23] Improvement: 1131.25851107 Time (s): 0.2651
[24] Improvement: 854.786135095 Time (s): 0.301
[25] Improvement: 1514.55094317 Time (s): 0.3382
Total Improvement: 29235.6544552
Total Time (s): 10.8482
>>> print model.log_probability(X).sum()
823170.438085

With a decay of 0.5:

>>> from pomegranate import *
>>> from sklearn.datasets import make_blobs
>>> import numpy
>>> numpy.random.seed(0)
>>>
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>>> n, d, m = 557100, 25, 4
>>> X, _ = make_blobs(n, d, m, cluster_std=0.2, shuffle=True)
>>>
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=m, X=X,

n_init=1, init='first-k', max_iterations=25, verbose=True)
[1] Improvement: 2829.31191301 Time (s): 2.181
[2] Improvement: 826.320851962 Time (s): 2.166
...
[24] Improvement: 3.06409630994 Time (s): 2.206
[25] Improvement: 2.80105452973 Time (s): 2.477
Total Improvement: 4689.45119551
Total Time (s): 60.1254
>>> print model.log_probability(X).sum()
825534.114778
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=m, X=X,

n_init=1, init='first-k', verbose=True, max_iterations=25, batch_size=100000,
→˓lr_decay=0.5, batches_per_epoch=1)
[1] Improvement: 796.097334852 Time (s): 0.3315
[2] Improvement: 752.266746429 Time (s): 0.3974
[3] Improvement: 638.97759942 Time (s): 0.3137
[4] Improvement: 555.537951205 Time (s): 0.4384
[5] Improvement: 494.904335364 Time (s): 0.4975
...
[21] Improvement: 223.957448395 Time (s): 0.6416
[22] Improvement: 230.288166696 Time (s): 0.6673
[23] Improvement: 205.620445758 Time (s): 0.4929
[24] Improvement: 197.345235002 Time (s): 0.5871
[25] Improvement: 210.324390932 Time (s): 0.8142
Total Improvement: 8921.00813791
Total Time (s): 14.5593
>>> print model.log_probability(X).sum()
825199.540663

It does seem like the model is converging. The primary conceptual difference between using a learning rate decay and
a maximum number iterations is that with a decay the updates are smoothed over several batches whereas without the
decay the updates are based primarily on a single batch.

In addition, one can use parallelism with minibatching in the same way one would use it in an out-of-core setting. To
borrow the example from the ooc section, let’s attempt to learn a Gaussian mixture model over ~24G of data using a
computer with only ~4G of memory. First without parallelism.

>>> import numpy
>>> from pomegranate import *
>>>
>>> X = numpy.load("big_datums.npy", mmap_mode="r")
>>> print X.shape
(60000000, 50)
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution,

3, X, max_iterations=50, batch_size=100000, batches_per_epoch=50,
n_jobs=1, verbose=True)

[1] Improvement: 252989.289729 Time (s): 18.84
[2] Improvement: 58446.0881071 Time (s): 18.75
[3] Improvement: 26323.5638447 Time (s): 18.76
[4] Improvement: 15133.080919 Time (s): 18.8
[5] Improvement: 10138.1656616 Time (s): 18.91
[6] Improvement: 7458.30408692 Time (s): 18.86
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[7] Improvement: 5995.06008983 Time (s): 18.89
[8] Improvement: 4838.79921204 Time (s): 18.91
[9] Improvement: 4188.59295541 Time (s): 18.97
[10] Improvement: 3590.57844329 Time (s): 18.93
...

And now in parallel:

>>> import numpy
>>> from pomegranate import *
>>>
>>> X = numpy.load("big_datums.npy", mmap_mode="r")
>>> print X.shape
(60000000, 50)
>>> model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution,

3, X, max_iterations=50, batch_size=100000, batches_per_epoch=50,
n_jobs=4, verbose=True)

[1] Improvement: 252989.289729 Time (s): 9.952
[2] Improvement: 58446.0881071 Time (s): 9.952
[3] Improvement: 26323.5638446 Time (s): 9.969
[4] Improvement: 15133.080919 Time (s): 10.0
[5] Improvement: 10138.1656617 Time (s): 9.986
[6] Improvement: 7458.30408692 Time (s): 9.949
[7] Improvement: 5995.06008989 Time (s): 9.971
[8] Improvement: 4838.79921204 Time (s): 10.02
[9] Improvement: 4188.59295535 Time (s): 10.02
[10] Improvement: 3590.57844335 Time (s): 9.989
...

The speed improvement may be sub-linear in cases where data loading takes up a substantial portion of time. A solid
state drive will likely improve this performance.

1.6.1 FAQ

17. Does minibatch learning produce an exact update?

1. No. Since the model is updated after each batch (or group of batches) it will produce a different model than
waiting to update the model until the entire dataset is seen.

17. Is minibatch learning faster?

1. It is typically faster per epoch simply because now an epoch is a subset of the the full dataset, usually a single
batch. However, it frequently can take less time total to converge depending on the learning rate decay and has
better theoretical properties than batch EM.

17. Are there other names for minibatch learning?

1. The Bishop textbook refers to minibatch learning as “stepwise EM”, and sometimes it is referred to as stochastic
EM.

17. Can minibatch learning be used in an out-of-core manner?

1. Yes! Since only a batch of data is seen at a time there is no reason why the whole dataset needs to be in memory.
However, the initialization step will now only use a single batch of data and so may not be as good as if the
initialization was done on the full dataset.
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1.7 Parallelism

pomegranate supports multi-threaded parallelism through the joblib library. Typically, python applications use multi-
processing in order to get around the Global Interpreter Lock (GIL) that prevents multiple threads from running in the
same Python process. However, since pomegranate does most of its computation using only C level primitives, it can
release the GIL and enable multiple threads to work at the same time. The main difference that a user will notice is
that it is more memory efficient, because instead of copying the data across multiple processes that each have their
own memory allocated, each thread in pomegranate can operate on the same single memory allocation.

Using parallelism in pomegranate is as simple as specifying the n_jobs parameter in any of the methods– both fitting
and prediction methods!

For example:

import pomegranate, numpy

X = numpy.random.randn(1000, 1)

# No parallelism
model = GeneralMixtureModel.from_samples(NormalDistribution, 3, X)

# Some parallelism
model = GeneralMixtureModel.from_samples(NormalDistribution, 3, X, n_jobs=2)

# Maximum parallelism
model = GeneralMixtureModel.from_samples(NormalDistribution, 3, X, n_jobs=-1)

If you instead have a fit model and you’re just looking to speed up prediction time, you need only pass the n_jobs
parameter in to those methods as well.

model = <fit model>
X = numpy.random.randn(1000, 1)

# No parallelism
y = model.predict_proba(X)

# Some parallelism
y = model.predict_proba(X, n_jobs=2)

# Maximum parallelism
y = model.predict_proba(X, n_jobs=-1)

1.7.1 FAQ

17. What models support parallelism?

1. All models should support parallel fitting. All models (except for HMMs) support parallel predictions natively
through the n_jobs parameter. Basic distributions do not support parallelism as they typically take a neglible
amount of time to do anything with.

17. How can I parallelize something that doesn’t have built-in parallelism?

1. You can easily write a parallelized prediction wrapper for any model using multiprocessing. It would likely look
like the following:

from joblib import Parallel, delayed
from pomegranate import BayesianNetwork
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def parallel_predict(name, X):
"""Load up a pomegranate model and predict a subset of X"""

model = BayesianNetwork.from_json(name)
return model.predict(X)

X_train, X_test = numpy.load("train.data"), numpy.load("test.data")

model = BayesianNetwork.from_samples(X_train)
with open("model.json", "w") as outfile:

outfile.write(model.to_json())

n = len(X_test)
starts, ends = [i*n/4 for i in range(4)], [(i+1)*n/4 for i in range(4)]

y_pred = Parallel(n_jobs=4)( delayed(parallel_predict)(
X_test[start:end]) for start, end in zip(starts, ends))

17. What is the difference between multiprocessing and multithreading?

1. Multiprocessing involves creating a whole new Python process and passing the relevant data over to it. Multi-
threading involves creating multiple threads within the same Python process that all have access to the same
memory. Multithreading is frequently more efficient because it doesn’t involve copying potentially large
amounts of data between different Python processes.

17. Why don’t all modules use multithreading?

1. Python has the Global Interpreter Lock (GIL) enabled which prevents more than one thread to execute per pro-
cesses. The work-around is multiprocessing, which simply creates multiple processes that each have one thread
working. When one uses Cython, they can disable to GIL when using only C-level primitives. Since most of
the compute-intensive tasks involve only C-level primitives, multithreading is a natural choice for pomegranate.
In situations where the size of the data is small and the cost of transferring it from one process to another is
negligible, then multithreading can simply make things more complicated.

1.8 GPU Usage

pomegranate has GPU accelerated matrix multiplications to speed up all operations involving multivariate Gaussian
distriutions and all models that use them. This has led to an approximately 4x speedup for multivariate Gaussian
mixture models and HMMs compared to using BLAS only. This speedup seems to scale better with dimensionality,
with higher dimensional models seeing a larger speedup than smaller dimensional ones.

By default, pomegranate will activate GPU acceleration if it can import cupy, otherwise it will default to BLAS. You
can check whether pomegranate is using GPU acceleration with this built-in function:

import pomegranate
print(pomegranate.utils._is_gpu_enabled())

If you’d like to deactivate GPU acceleration you can use the following command:

pomegranate.utils.disable_gpu()

Likewise, if you’d like to activate GPU acceleration you can use the following command:

pomegranate.utils.enable_gpu()
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1.8.1 FAQ

17. Why cupy and not Theano?

1. pomegranate only needs to do matrix multiplications using a GPU. While Theano supports an impressive range
of more complex operations, it did not have a simple interface to support a matrix-matrix multiplication in the
same manner that cupy does.

17. Why am I not seeing a large speedup with my GPU?

1. There is a cost to transferring data to and from a GPU. It is possible that the GPU isn’t fast enough, or that there
isn’t enough data to utilize the massively parallel aspect of a GPU for your dataset.

17. Does pomegranate work using my type of GPU?

1. The supported GPUs will be better documented on the cupy package.

17. Is multi-GPU supported?

1. Currently, no. In theory it should be possible, though.

1.9 Probability Distributions

IPython Notebook Tutorial

While probability distributions are frequently used as components of more complex models such as mixtures and
hidden Markov models, they can also be used by themselves. Many data science tasks require fitting a distribution to
data or generating samples under a distribution. pomegranate has a large library of both univariate and multivariate
distributions which can be used with an intuitive interface.

Univariate Distributions

UniformDistribution A uniform distribution between two values.
BernoulliDistribution A Bernoulli distribution describing the probability of a bi-

nary variable.
NormalDistribution A normal distribution based on a mean and standard devia-

tion.
LogNormalDistribution Represents a lognormal distribution over non-negative

floats.
ExponentialDistribution Represents an exponential distribution on non-negative

floats.
PoissonDistribution A discrete probability distribution which expresses the

probability of a number of events occuring in a fixed time
window.

BetaDistribution This distribution represents a beta distribution, parameter-
ized using alpha/beta, which are both shape parameters.

GammaDistribution This distribution represents a gamma distribution, parame-
terized in the alpha/beta (shape/rate) parameterization.

DiscreteDistribution A discrete distribution, made up of characters and their
probabilities, assuming that these probabilities will sum to
1.0.

Kernel Densities
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GaussianKernelDensity A quick way of storing points to represent a Gaussian ker-
nel density in one dimension.

UniformKernelDensity A quick way of storing points to represent an Exponential
kernel density in one dimension.

TriangleKernelDensity A quick way of storing points to represent an Exponential
kernel density in one dimension.

Multivariate Distributions

IndependentComponentsDistribution Allows you to create a multivariate distribution, where each
distribution is independent of the others.

MultivariateGaussianDistribution
DirichletDistribution A Dirichlet distribution, usually a prior for the multinomial

distributions.
ConditionalProbabilityTable A conditional probability table, which is dependent on val-

ues from at least one previous distribution but up to as many
as you want to encode for.

JointProbabilityTable A joint probability table.

While there is a large variety of univariate distributions, multivariate distributions can be made from univariate distri-
butions by using `IndependentComponentsDistribution` with the assumption that each column of data is
independent from the other columns (instead of being related by a covariance matrix, like in multivariate gaussians).
Here is an example:

d1 = NormalDistribution(5, 2)
d2 = LogNormalDistribution(1, 0.3)
d3 = ExponentialDistribution(4)
d = IndependentComponentsDistribution([d1, d2, d3])

1.9.1 Initialization

Initializing a distribution is simple and done just by passing in the distribution parameters. For example, the parameters
of a normal distribution are the mean (mu) and the standard deviation (sigma). We can initialize it as follows:

from pomegranate import *
a = NormalDistribution(5, 2)

However, frequently we don’t know the parameters of the distribution beforehand or would like to directly fit this
distribution to some data. We can do this through the from_samples class method.

b = NormalDistribution.from_samples([3, 4, 5, 6, 7])

If we want to fit the model to weighted samples, we can just pass in an array of the relative weights of each sample as
well.

b = NormalDistribution.from_samples([3, 4, 5, 6, 7], weights=[0.5, 1, 1.5, 1, 0.5])

1.9.2 Probability

Distributions are typically used to calculate the probability of some sample. This can be done using either the proba-
bility or log_probability methods.
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a = NormalDistribution(5, 2)
a.log_probability(8)
-2.737085713764219
a.probability(8)
0.064758797832971712
b = NormalDistribution.from_samples([3, 4, 5, 6, 7], weights=[0.5, 1, 1.5, 1, 0.5])
b.log_probability(8)
-4.437779569430167

These methods work for univariate distributions, kernel densities, and multivariate distributions all the same. For a
multivariate distribution you’ll have to pass in an array for the full sample.

d1 = NormalDistribution(5, 2)
d2 = LogNormalDistribution(1, 0.3)
d3 = ExponentialDistribution(4)
d = IndependentComponentsDistribution([d1, d2, d3])
>>>
X = [6.2, 0.4, 0.9]
d.log_probability(X)
-23.205411733352875

1.9.3 Fitting

We may wish to fit the distribution to new data, either overriding the previous parameters completely or moving the
parameters to match the dataset more closely through inertia. Distributions are updated using maximum likelihood
estimates (MLE). Kernel densities will either discard previous points or downweight them if inertia is used.

d = NormalDistribution(5, 2)
d.fit([1, 5, 7, 3, 2, 4, 3, 5, 7, 8, 2, 4, 6, 7, 2, 4, 5, 1, 3, 2, 1])
d
{

"frozen" :false,
"class" :"Distribution",
"parameters" :[

3.9047619047619047,
2.13596776114341

],
"name" :"NormalDistribution"

}

Training can be done on weighted samples by passing an array of weights in along with the data for any of the training
functions, like the following:

d = NormalDistribution(5, 2)
d.fit([1, 5, 7, 3, 2, 4], weights=[0.5, 0.75, 1, 1.25, 1.8, 0.33])
d
{

"frozen" :false,
"class" :"Distribution",
"parameters" :[

3.538188277087034,
1.954149818564894

],
"name" :"NormalDistribution"

}
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Training can also be done with inertia, where the new value will be some percentage the old value and some percentage
the new value, used like d.from_sample([5,7,8], inertia=0.5) to indicate a 50-50 split between old and new values.

1.9.4 API Reference

class pomegranate.distributions.Distribution
A probability distribution.

Represents a probability distribution over the defined support. This is the base class which must be subclassed
to specific probability distributions. All distributions have the below methods exposed.

Parameters

Varies on distribution.

Attributes

name [str] The name of the type of distributioon.

summaries [list] Sufficient statistics to store the update.

frozen [bool] Whether or not the distribution will be updated during training.

d [int] The dimensionality of the data. Univariate distributions are all 1, while multivariate
distributions are > 1.

clear_summaries()
Clear the summary statistics stored in the object. Parameters ———- None Returns ——- None

copy()
Return a deep copy of this distribution object.

This object will not be tied to any other distribution or connected in any form.

Returns

distribution [Distribution] A copy of the distribution with the same parameters.

fit()
Set the parameters of this Distribution to maximize the likelihood of the given sample. Items holds some
sort of sequence. If weights is specified, it holds a sequence of value to weight each item by.

from_json()
Read in a serialized distribution and return the appropriate object.

Parameters

s [str] A JSON formatted string containing the file.

Returns

model [object] A properly initialized and baked model.

from_samples()
Fit a distribution to some data without pre-specifying it.

from_summaries()
Fit the distribution to the stored sufficient statistics. Parameters ———- inertia : double, optional

The weight of the previous parameters of the model. The new parameters will roughly be
old_param*inertia + new_param*(1-inertia), so an inertia of 0 means ignore the old parameters,
whereas an inertia of 1 means ignore the new parameters. Default is 0.0.

Returns
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None

log_probability()
Return the log probability of the given X under this distribution.

Parameters

X [double] The X to calculate the log probability of (overriden for DiscreteDistributions)

Returns

logp [double] The log probability of that point under the distribution.

marginal()
Return the marginal of the distribution.

Parameters

*args [optional] Arguments to pass in to specific distributions

**kwargs [optional] Keyword arguments to pass in to specific distributions

Returns

distribution [Distribution] The marginal distribution. If this is a multivariate distribution
then this method is filled in. Otherwise returns self.

plot()
Plot the distribution by sampling from it.

This function will plot a histogram of samples drawn from a distribution on the current open figure.

Parameters

n [int, optional] The number of samples to draw from the distribution. Default is 1000.

**kwargs [arguments, optional] Arguments to pass to matplotlib’s histogram function.

Returns

None

summarize()
Take in a series of items and their weights and reduce it down to a summary statistic to be used in training
later.

to_json()
Serialize the distribution to a JSON.

Parameters

separators [tuple, optional] The two separaters to pass to the json.dumps function for for-
matting. Default is (‘,’, ‘ : ‘).

indent [int, optional] The indentation to use at each level. Passed to json.dumps for format-
ting. Default is 4.

Returns

json [str] A properly formatted JSON object.
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1.10 General Mixture Models

IPython Notebook Tutorial

General Mixture models (GMMs) are an unsupervised probabilistic model composed of multiple distributions (com-
monly referred to as components) and corresponding weights. This allows you to model more complex distributions
corresponding to a singular underlying phenomena. For a full tutorial on what a mixture model is and how to use
them, see the above tutorial.

1.10.1 Initialization

General Mixture Models can be initialized in two ways depending on if you know the initial parameters of the model
or not: (1) passing in a list of pre-initialized distributions, or (2) running the from_samples class method on data.
The initial parameters can be either a pre-specified model that is ready to be used for prediction, or the initializa-
tion for expectation-maximization. Otherwise, if the second initialization option is chosen, then k-means is used to
initialize the distributions. The distributions passed for each component don’t have to be the same type, and if an
IndependentComponentDistribution object is passed in, then the dimensions don’t need to be modeled by
the same distribution.

Here is an example of a traditional multivariate Gaussian mixture where we pass in pre-initialized distributions. We
can also pass in the weight of each component, which serves as the prior probability of a sample belonging to that
component when doing predictions.

from pomegranate import *
d1 = MultivariateGaussianDistribution([1, 6, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
d2 = MultivariateGaussianDistribution([2, 8, 4], [[1, 0, 0], [0, 1, 0], [0, 0, 2]])
d3 = MultivariateGaussianDistribution([0, 4, 8], [[2, 0, 0], [0, 3, 0], [0, 0, 1]])
model = GeneralMixtureModel([d1, d2, d3], weights=[0.25, 0.60, 0.15])

Alternatively, if we want to model each dimension differently, then we can replace the multivariate Gaussian distribu-
tions with IndependentComponentsDistribution objects.

from pomegranate import *
d1 = IndependentComponentsDistributions([NormalDistribution(5, 2),
→˓ExponentialDistribution(1), LogNormalDistribution(0.4, 0.1)])
d2 = IndependentComponentsDistributions([NormalDistribution(3, 1),
→˓ExponentialDistribution(2), LogNormalDistribution(0.8, 0.2)])
model = GeneralMixtureModel([d1, d2], weights=[0.66, 0.34])

If we do not know the parameters of our distributions beforehand and want to learn them entirely from data, then
we can use the from_samples class method. This method will run k-means to initialize the components, using
the returned clusters to initialize all parameters of the distributions, i.e. both mean and covariances for multivariate
Gaussian distributions. Afterwards, execptation-maximization is used to refine the parameters of the model, iterating
until convergence.

from pomegranate import *
model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=3, X=X)

If we want to model each dimension using a different distribution, then we can pass in a list of callables and they will
be initialized using k-means as well.

from pomegranate import *
model = GeneralMixtureModel.from_samples([NormalDistribution, ExponentialDistribution,
→˓ LogNormalDistribution], n_components=5, X=X)
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1.10.2 Probability

The probability of a point is the sum of its probability under each of the components, multiplied by the weight of each
component c, 𝑃 =

∑︀
𝑖∈𝑀

𝑃 (𝐷|𝑀𝑖)𝑃 (𝑀𝑖). The probability method returns the probability of each sample under

the entire mixture, and the log_probability method returns the log of that value.

1.10.3 Prediction

The common prediction tasks involve predicting which component a new point falls under. This is done using Bayes
rule 𝑃 (𝑀 |𝐷) = 𝑃 (𝐷|𝑀)𝑃 (𝑀)

𝑃 (𝐷) to determine the posterior probability 𝑃 (𝑀 |𝐷) as opposed to simply the likelihood
𝑃 (𝐷|𝑀). Bayes rule indicates that it isn’t simply the likelihood function which makes this prediction but the like-
lihood function multiplied by the probability that that distribution generated the sample. For example, if you have a
distribution which has 100x as many samples fall under it, you would naively think that there is a ~99% chance that
any random point would be drawn from it. Your belief would then be updated based on how well the point fit each
distribution, but the proportion of points generated by each sample is important as well.

We can get the component label assignments using model.predict(data), which will return an array of indexes
corresponding to the maximally likely component. If what we want is the full matrix of 𝑃 (𝑀 |𝐷), then we can use
model.predict_proba(data), which will return a matrix with each row being a sample, each column being a
component, and each cell being the probability that that model generated that data. If we want log probabilities instead
we can use model.predict_log_proba(data) instead.

1.10.4 Fitting

Training GMMs faces the classic chicken-and-egg problem that most unsupervised learning algorithms face. If we
knew which component a sample belonged to, we could use MLE estimates to update the component. And if we knew
the parameters of the components we could predict which sample belonged to which component. This problem is
solved using expectation-maximization, which iterates between the two until convergence. In essence, an initialization
point is chosen which usually is not a very good start, but through successive iteration steps, the parameters converge
to a good ending.

These models are fit using model.fit(data). A maximimum number of iterations can be specified as well as a
stopping threshold for the improvement ratio. See the API reference for full documentation.

1.10.5 API Reference

class pomegranate.gmm.GeneralMixtureModel
A General Mixture Model.

This mixture model can be a mixture of any distribution as long as they are all of the same dimensionality.
Any object can serve as a distribution as long as it has fit(X, weights), log_probability(X), and summarize(X,
weights)/from_summaries() methods if out of core training is desired.

Parameters

distributions [array-like, shape (n_components,)] The components of the model as initialized
distributions.

weights [array-like, optional, shape (n_components,)] The prior probabilities corresponding to
each component. Does not need to sum to one, but will be normalized to sum to one inter-
nally. Defaults to None.
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Examples

>>> from pomegranate import *
>>>
>>> d1 = NormalDistribution(5, 2)
>>> d2 = NormalDistribution(1, 1)
>>>
>>> clf = GeneralMixtureModel([d1, d2])
>>> clf.log_probability(5)
-2.304562194038089
>>> clf.predict_proba([[5], [7], [1]])
array([[ 0.99932952, 0.00067048],

[ 0.99999995, 0.00000005],
[ 0.06337894, 0.93662106]])

>>> clf.fit([[1], [5], [7], [8], [2]])
>>> clf.predict_proba([[5], [7], [1]])
array([[ 1. , 0. ],

[ 1. , 0. ],
[ 0.00004383, 0.99995617]])

>>> clf.distributions
array([ {

"frozen" :false,
"class" :"Distribution",
"parameters" :[

6.6571359101390755,
1.2639830514274502

],
"name" :"NormalDistribution"

},
{

"frozen" :false,
"class" :"Distribution",
"parameters" :[

1.498707696758334,
0.4999983303277837

],
"name" :"NormalDistribution"

}], dtype=object)

Attributes

distributions [array-like, shape (n_components,)] The component distribution objects.

weights [array-like, shape (n_components,)] The learned prior weight of each object

clear_summaries()
Remove the stored sufficient statistics.

Parameters

None

Returns

None

copy()
Return a deep copy of this distribution object.

This object will not be tied to any other distribution or connected in any form.

28 Chapter 1. Thank You



pomegranate Documentation, Release 0.6.0

Parameters

None

Returns

distribution [Distribution] A copy of the distribution with the same parameters.

fit()
Fit the model to new data using EM.

This method fits the components of the model to new data using the EM method. It will iterate
until either max iterations has been reached, or the stop threshold has been passed.

Parameters

X [array-like, shape (n_samples, n_dimensions)]

This is the data to train on. Each row is a sample, and each column is a dimension to
train on.

weights [array-like, shape (n_samples,), optional] The initial weights of each sample in
the matrix. If nothing is passed in then each sample is assumed to be the same weight.
Default is None.

inertia [double, optional] The weight of the previous parameters of the model. The new
parameters will roughly be old_param*inertia + new_param*(1-inertia), so an inertia
of 0 means ignore the old parameters, whereas an inertia of 1 means ignore the new
parameters. Default is 0.0.

pseudocount : double, optional, positive

A pseudocount to add to the emission of each distribution. This

effectively smoothes the states to prevent 0. probability symbols

if they don’t happen to occur in the data. Only effects mixture

models defined over discrete distributions. Default is 0.

stop_threshold [double, optional, positive] The threshold at which EM will terminate for
the improvement of the model. If the model does not improve its fit of the data by a log
probability of 0.1 then terminate. Default is 0.1.

max_iterations [int, optional, positive] The maximum number of iterations to run EM
for. If this limit is hit then it will terminate training, regardless of how well the model is
improving per iteration. Default is 1e8.

batch_size [int or None, optional] The number of samples in a batch to summarize on.
This controls the size of the set sent to summarize and so does not make the update any
less exact. This is useful when training on a memory map and cannot load all the data
into memory. If set to None, batch_size is 1 / n_jobs. Default is None.

batches_per_epoch [int or None, optional] The number of batches in an epoch. This is
the number of batches to summarize before calling from_summaries and updating the
model parameters. This allows one to do minibatch updates by updating the model
parameters before setting the full dataset. If set to None, uses the full dataset. Default
is None.

lr_decay [double, optional, positive] The step size decay as a function of the number
of iterations. Functionally, this sets the inertia to be (2+k)^{-lr_decay} where k is the
number of iterations. This causes initial iterations to have more of an impact than later
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iterations, and is frequently used in minibatch learning. This value is suggested to be
between 0.5 and 1. Default is 0, meaning no decay.

verbose [bool, optional] Whether or not to print out improvement information over itera-
tions. Default is False.

n_jobs [int, optional] The number of threads to use when parallelizing the job. This
parameter is passed directly into joblib. Default is 1, indicating no parallelism.

Returns

self [GeneralMixtureModel] The fit mixture model.

freeze()
Freeze the distribution, preventing updates from occuring.

from_samples()
Create a mixture model directly from the given dataset.

First, k-means will be run using the given initializations, in order to define initial clusters for the
points. These clusters are used to initialize the distributions used. Then, EM is run to refine the
parameters of these distributions.

A homogenous mixture can be defined by passing in a single distribution callable as the first pa-
rameter and specifying the number of components, while a heterogeneous mixture can be defined
by passing in a list of callables of the appropriate type.

Parameters

distributions [array-like, shape (n_components,) or callable]

The components of the model. If array, corresponds to the initial distributions of the
components. If callable, must also pass in the number of components and kmeans++
will be used to initialize them.

n_components [int] If a callable is passed into distributions then this is the number of
components to initialize using the kmeans++ algorithm.

X [array-like, shape (n_samples, n_dimensions)] This is the data to train on. Each row is
a sample, and each column is a dimension to train on.

weights [array-like, shape (n_samples,), optional] The initial weights of each sample in
the matrix. If nothing is passed in then each sample is assumed to be the same weight.
Default is None.

n_init [int, optional] The number of initializations of k-means to do before choosing the
best. Default is 1.

init [str, optional] The initialization algorithm to use for the initial k-means clustering.
Must be one of ‘first-k’, ‘random’, ‘kmeans++’, or ‘kmeans||’. Default is ‘kmeans++’.

max_kmeans_iterations [int, optional] The maximum number of iterations to run
kmeans for in the initialization step. Default is 1.

inertia [double, optional] The weight of the previous parameters of the model. The new
parameters will roughly be old_param*inertia + new_param*(1-inertia), so an inertia
of 0 means ignore the old parameters, whereas an inertia of 1 means ignore the new
parameters. Default is 0.0.

pseudocount : double, optional, positive

A pseudocount to add to the emission of each distribution. This

30 Chapter 1. Thank You



pomegranate Documentation, Release 0.6.0

effectively smoothes the states to prevent 0. probability symbols

if they don’t happen to occur in the data. Only effects mixture

models defined over discrete distributions. Default is 0.

stop_threshold [double, optional, positive] The threshold at which EM will terminate for
the improvement of the model. If the model does not improve its fit of the data by a log
probability of 0.1 then terminate. Default is 0.1.

max_iterations [int, optional, positive] The maximum number of iterations to run EM
for. If this limit is hit then it will terminate training, regardless of how well the model is
improving per iteration. Default is 1e8.

batch_size [int or None, optional] The number of samples in a batch to summarize on.
This controls the size of the set sent to summarize and so does not make the update any
less exact. This is useful when training on a memory map and cannot load all the data
into memory. If set to None, batch_size is 1 / n_jobs. Default is None.

batches_per_epoch [int or None, optional] The number of batches in an epoch. This is
the number of batches to summarize before calling from_summaries and updating the
model parameters. This allows one to do minibatch updates by updating the model
parameters before setting the full dataset. If set to None, uses the full dataset. Default
is None.

lr_decay [double, optional, positive] The step size decay as a function of the number
of iterations. Functionally, this sets the inertia to be (2+k)^{-lr_decay} where k is the
number of iterations. This causes initial iterations to have more of an impact than later
iterations, and is frequently used in minibatch learning. This value is suggested to be
between 0.5 and 1. Default is 0, meaning no decay.

verbose [bool, optional] Whether or not to print out improvement information over itera-
tions. Default is False.

n_jobs [int, optional] The number of threads to use when parallelizing the job. This
parameter is passed directly into joblib. Default is 1, indicating no parallelism.

from_summaries()
Fit the model to the collected sufficient statistics.

Fit the parameters of the model to the sufficient statistics gathered during the summarize calls. This should
return an exact update.

Parameters

inertia [double, optional] The weight of the previous parameters of the model. The new
parameters will roughly be old_param*inertia + new_param*(1-inertia), so an inertia of 0
means ignore the old parameters, whereas an inertia of 1 means ignore the new parameters.
Default is 0.0.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. If discrete data, will smooth both the prior probabilities of each
component and the emissions of each component. Otherwise, will only smooth the prior
probabilities of each component. Default is 0.

Returns

None

log_probability()
Calculate the log probability of a point under the distribution.
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The probability of a point is the sum of the probabilities of each distribution multiplied by the weights.
Thus, the log probability is the sum of the log probability plus the log prior.

This is the python interface.

Parameters

X [numpy.ndarray, shape=(n, d) or (n, m, d)] The samples to calculate the log probability of.
Each row is a sample and each column is a dimension. If emissions are HMMs then shape
is (n, m, d) where m is variable length for each obervation, and X becomes an array of n
(m, d)-shaped arrays.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

log_probability [double] The log probabiltiy of the point under the distribution.

predict()
Predict the most likely component which generated each sample.

Calculate the posterior P(M|D) for each sample and return the index of the component most likely to fit it.
This corresponds to a simple argmax over the responsibility matrix.

This is a sklearn wrapper for the maximum_a_posteriori method.

Parameters

X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

y [array-like, shape (n_samples,)] The predicted component which fits the sample the best.

predict_log_proba()
Calculate the posterior log P(M|D) for data.

Calculate the log probability of each item having been generated from each component in the model. This
returns normalized log probabilities such that the probabilities should sum to 1

This is a sklearn wrapper for the original posterior function.

Parameters

X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

y [array-like, shape (n_samples, n_components)] The normalized log probability log P(M|D)
for each sample. This is the probability that the sample was generated from each compo-
nent.

predict_proba()
Calculate the posterior P(M|D) for data.
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Calculate the probability of each item having been generated from each component in the model. This
returns normalized probabilities such that each row should sum to 1.

Since calculating the log probability is much faster, this is just a wrapper which exponentiates the log
probability matrix.

Parameters

X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

probability [array-like, shape (n_samples, n_components)] The normalized probability
P(M|D) for each sample. This is the probability that the sample was generated from each
component.

probability()
Return the probability of the given symbol under this distribution.

Parameters

symbol [object] The symbol to calculate the probability of

Returns

probability [double] The probability of that point under the distribution.

sample()
Generate a sample from the model.

First, randomly select a component weighted by the prior probability, Then, use the sample method from
that component to generate a sample.

Parameters

n [int, optional] The number of samples to generate. Defaults to 1.

Returns

sample [array-like or object] A randomly generated sample from the model of the type
modelled by the emissions. An integer if using most distributions, or an array if using
multivariate ones, or a string for most discrete distributions. If n=1 return an object, if n>1
return an array of the samples.

summarize()
Summarize a batch of data and store sufficient statistics.

This will run the expectation step of EM and store sufficient statistics in the appropriate distribution objects.
The summarization can be thought of as a chunk of the E step, and the from_summaries method as the M
step.

Parameters

X [array-like, shape (n_samples, n_dimensions)] This is the data to train on. Each row is a
sample, and each column is a dimension to train on.

weights [array-like, shape (n_samples,), optional] The initial weights of each sample in the
matrix. If nothing is passed in then each sample is assumed to be the same weight. Default
is None.
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Returns

logp [double] The log probability of the data given the current model. This is used to speed
up EM.

thaw()
Thaw the distribution, re-allowing updates to occur.

1.11 Hidden Markov Models

• IPython Notebook Tutorial

• IPython Notebook Sequence Alignment Tutorial

Hidden Markov models (HMMs) are a structured probabilistic model that forms a probability distribution of sequences,
as opposed to individual symbols. It is similar to a Bayesian network in that it has a directed graphical structure where
nodes represent probability distributions, but unlike Bayesian networks in that the edges represent transitions and
encode transition probabilities, whereas in Bayesian networks edges encode dependence statements. A HMM can be
thought of as a general mixture model plus a transition matrix, where each component in the general Mixture model
corresponds to a node in the hidden Markov model, and the transition matrix informs the probability that adjacent
symbols in the sequence transition from being generated from one component to another. A strength of HMMs is
that they can model variable length sequences whereas other models typically require a fixed feature set. They are
extensively used in the fields of natural language processing to model speech, bioinformatics to model biosequences,
and robotics to model movement.

The HMM implementation in pomegranate is based off of the implementation in its predecessor, Yet Another Hidden
Markov Model (YAHMM). To convert a script that used YAHMM to a script using pomegranate, you only need to
change calls to the Model class to call HiddenMarkovModel. For example, a script that previously looked like
the following:

from yahmm import *
model = Model()

would now be written as

from pomegranate import *
model = HiddenMarkovModel()

and the remaining method calls should be identical.

1.11.1 Initialization

Hidden Markov models can be initialized in one of two ways depending on if you know the initial parameters of
the model, either (1) by defining both the distributions and the graphical structure manually, or (2) running the
from_samples method to learn both the structure and distributions directly from data. The first initialization
method can be used either to specify a pre-defined model that is ready to make predictions, or as the initialization
to a training algorithm such as Baum-Welch. It is flexible enough to allow sparse transition matrices and any type of
distribution on each node, i.e. normal distributions on several nodes, but a mixture of normals on some nodes mod-
eling more complex phenomena. The second initialization method is less flexible, in that currently each node must
have the same distribution type, and that it will only learn dense graphs. Similar to mixture models, this initialization
method starts with k-means to initialize the distributions and a uniform probability transition matrix before running
Baum-Welch.
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If you are initializing the parameters manually, you can do so either by passing in a list of distributions and a transition
matrix, or by building the model line-by-line. Let’s first take a look at building the model from a list of distributions
and a transition matrix.

from pomegranate import *
dists = [NormalDistribution(5, 1), NormalDistribution(1, 7), NormalDistribution(8,2)]
trans_mat = numpy.array([[0.7, 0.3, 0.0],

[0.0, 0.8, 0.2],
[0.0, 0.0, 0.9]])

starts = numpy.array([1.0, 0.0, 0.0])
ends = numpy.array([0.0, 0.0, 0.1])
model = HiddenMarkovModel.from_matrix(trans_mat, dists, starts, ends)

Next, let’s take a look at building the same model line by line.

from pomegranate import *
s1 = State(Distribution(NormalDistribution(5, 1)))
s2 = State(Distribution(NormalDistribution(1, 7)))
s3 = State(Distribution(NormalDistribution(8, 2)))
model = HiddenMarkovModel()
model.add_states(s1, s2, s3)
model.add_transition(model.start, s1, 1.0)
model.add_transition(s1, s1, 0.7)
model.add_transition(s1, s2, 0.3)
model.add_transition(s2, s2, 0.8)
model.add_transition(s2, s3, 0.2)
model.add_transition(s3, s3, 0.9)
model.add_transition(s3, model.end, 0.1)
model.bake()

Initially it may seem that the first method is far easier due to it being fewer lines of code. However, when building
large sparse models defining a full transition matrix can be cumbersome, especially when it is mostly 0s.

Models built in this manner must be explicitly “baked” at the end. This finalizes the model topology and creates the
internal sparse matrix which makes up the model. This step also automatically normalizes all transitions to make sure
they sum to 1.0, stores information about tied distributions, edges, pseudocounts, and merges unneccesary silent states
in the model for computational efficiency. This can cause the bake step to take a little bit of time. If you want to reduce
this overhead and are sure you specified the model correctly you can pass in merge=”None” to the bake step to avoid
model checking.

The second way to initialize models is to use the from_samples class method. The call is identical to initializing a
mixture model.

from pomegranate import *
model = HiddenMarkovModel.from_samples(NormalDistribution, n_components=5, X=X)

Much like a mixture model, all arguments present in the fit step can also be passed in to this method. Also like
a mixture model, it is initialized by running k-means on the concatenation of all data, ignoring that the symbols are
part of a structured sequence. The clusters returned are used to initialize all parameters of the distributions, i.e. both
mean and covariances for multivariate Gaussian distributions. The transition matrix is initialized as uniform random
probabilities. After the components (distributions on the nodes) are initialized, the given training algorithm is used to
refine the parameters of the distributions and learn the appropriate transition probabilities.

1.11.2 Log Probability

There are two common forms of the log probability which are used. The first is the log probability of the most likely
path the sequence can take through the model, called the Viterbi probability. This can be calculated using model.
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viterbi(sequence). However, this is 𝑃 (𝐷|𝑆𝑀𝐿, 𝑆𝑀𝐿, 𝑆𝑀𝐿) not 𝑃 (𝐷|𝑀). In order to get 𝑃 (𝐷|𝑀) we have
to sum over all possible paths instead of just the single most likely path. This can be calculated using model.
log_probability(sequence) and uses the forward algorithm internally. On that note, the full forward matrix
can be returned using model.forward(sequence) and the full backward matrix can be returned using model.
backward(sequence), while the full forward-backward emission and transition matrices can be returned using
model.forward_backward(sequence).

1.11.3 Prediction

A common prediction technique is calculating the Viterbi path, which is the most likely sequence of states that gen-
erated the sequence given the full model. This is solved using a simple dynamic programming algorithm similar to
sequence alignment in bioinformatics. This can be called using model.viterbi(sequence). A sklearn wrapper
can be called using model.predict(sequence, algorithm='viterbi').

Another prediction technique is called maximum a posteriori or forward-backward, which uses the forward and back-
ward algorithms to calculate the most likely state per observation in the sequence given the entire remaining alignment.
Much like the forward algorithm can calculate the sum-of-all-paths probability instead of the most likely single path,
the forward-backward algorithm calculates the best sum-of-all-paths state assignment instead of calculating the single
best path. This can be called using model.predict(sequence, algorithm='map') and the raw normal-
ized probability matrices can be called using model.predict_proba(sequence).

1.11.4 Fitting

A simple fitting algorithm for hidden Markov models is called Viterbi training. In this method, each observation is
tagged with the most likely state to generate it using the Viterbi algorithm. The distributions (emissions) of each
states are then updated using MLE estimates on the observations which were generated from them, and the transition
matrix is updated by looking at pairs of adjacent state taggings. This can be done using model.fit(sequence,
algorithm='viterbi').

However, this is not the best way to do training and much like the other sections there is a way of doing training us-
ing sum-of-all-paths probabilities instead of maximally likely path. This is called Baum-Welch or forward-backward
training. Instead of using hard assignments based on the Viterbi path, observations are given weights equal to the
probability of them having been generated by that state. Weighted MLE can then be done to update the distribu-
tions, and the soft transition matrix can give a more precise probability estimate. This is the default training algo-
rithm, and can be called using either model.fit(sequences) or explicitly using model.fit(sequences,
algorithm='baum-welch').

Fitting in pomegranate also has a number of options, including the use of distribution or edge inertia, freezing certain
states, tying distributions or edges, and using pseudocounts. See the tutorial linked to at the top of this page for full
details on each of these options.

1.11.5 API Reference

class pomegranate.hmm.HiddenMarkovModel
A Hidden Markov Model

A Hidden Markov Model (HMM) is a directed graphical model where nodes are hidden states which contain
an observed emission distribution and edges contain the probability of transitioning from one hidden state to
another. HMMs allow you to tag each observation in a variable length sequence with the most likely hidden
state according to the model.

Parameters

name [str, optional] The name of the model. Default is None.
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start [State, optional] An optional state to force the model to start in. Default is None.

end [State, optional] An optional state to force the model to end in. Default is None.

Examples

>>> from pomegranate import *
>>> d1 = DiscreteDistribution({'A' : 0.35, 'C' : 0.20, 'G' : 0.05, 'T' : 40})
>>> d2 = DiscreteDistribution({'A' : 0.25, 'C' : 0.25, 'G' : 0.25, 'T' : 25})
>>> d3 = DiscreteDistribution({'A' : 0.10, 'C' : 0.40, 'G' : 0.40, 'T' : 10})
>>>
>>> s1 = State(d1, name="s1")
>>> s2 = State(d2, name="s2")
>>> s3 = State(d3, name="s3")
>>>
>>> model = HiddenMarkovModel('example')
>>> model.add_states([s1, s2, s3])
>>> model.add_transition(model.start, s1, 0.90)
>>> model.add_transition(model.start, s2, 0.10)
>>> model.add_transition(s1, s1, 0.80)
>>> model.add_transition(s1, s2, 0.20)
>>> model.add_transition(s2, s2, 0.90)
>>> model.add_transition(s2, s3, 0.10)
>>> model.add_transition(s3, s3, 0.70)
>>> model.add_transition(s3, model.end, 0.30)
>>> model.bake()
>>>
>>> print model.log_probability(list('ACGACTATTCGAT'))
-4.31828085576
>>> print ", ".join(state.name for i, state in model.viterbi(list('ACGACTATTCGAT
→˓'))[1])
example-start, s1, s2, s2, s2, s2, s2, s2, s2, s2, s2, s2, s2, s3, example-end

Attributes

start [State] A state object corresponding to the initial start of the model

end [State] A state object corresponding to the forced end of the model

start_index [int] The index of the start object in the state list

end_index [int] The index of the end object in the state list

silent_start [int] The index of the beginning of the silent states in the state list

states [list] The list of all states in the model, with silent states at the end

add_edge()
Add a transition from state a to state b which indicates that B is dependent on A in ways specified by the
distribution.

add_model()
Add the states and edges of another model to this model.

Parameters

other [HiddenMarkovModel] The other model to add

Returns
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None

add_node()
Add a node to the graph.

add_nodes()
Add multiple states to the graph.

add_state()
Add a state to the given model.

The state must not already be in the model, nor may it be part of any other model that will eventually be
combined with this one.

Parameters

state [State] A state object to be added to the model.

Returns

None

add_states()
Add multiple states to the model at the same time.

Parameters

states [list or generator] Either a list of states which are entered sequentially, or just comma
separated values, for example model.add_states(a, b, c, d).

Returns

None

add_transition()
Add a transition from state a to state b.

Add a transition from state a to state b with the given (non-log) probability. Both states must be in the
HMM already. self.start and self.end are valid arguments here. Probabilities will be normalized such that
every node has edges summing to 1. leaving that node, but only when the model is baked. Psueodocounts
are allowed as a way of using edge-specific pseudocounts for training.

By specifying a group as a string, you can tie edges together by giving them the same group. This means
that a transition across one edge in the group counts as a transition across all edges in terms of training.

Parameters

a [State] The state that the edge originates from

b [State] The state that the edge goes to

probability [double] The probability of transitioning from state a to state b in [0, 1]

pseudocount [double, optional] The pseudocount to use for this specific edge if using edge
pseudocounts for training. Defaults to the probability. Default is None.

group [str, optional] The name of the group of edges to tie together during training. If
groups are used, then a transition across any one edge counts as a transition across all
edges. Default is None.

Returns

None

add_transitions()
Add many transitions at the same time,
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Parameters

a [State or list] Either a state or a list of states where the edges originate.

b [State or list] Either a state or a list of states where the edges go to.

probabilities [list] The probabilities associated with each transition.

pseudocounts [list, optional] The pseudocounts associated with each transition. Default is
None.

groups [list, optional] The groups of each edge. Default is None.

Returns

None

Examples

>>> model.add_transitions([model.start, s1], [s1, model.end], [1., 1.])
>>> model.add_transitions([model.start, s1, s2, s3], s4, [0.2, 0.4, 0.3, 0.9])
>>> model.add_transitions(model.start, [s1, s2, s3], [0.6, 0.2, 0.05])

backward()
Run the backward algorithm on the sequence.

Calculate the probability of each observation being aligned to each state by going backward through a
sequence. Returns the full backward matrix. Each index i, j corresponds to the sum-of-all-paths log
probability of starting at the end of the sequence, and aligning observations to hidden states in such a
manner that observation i was aligned to hidden state j. Uses row normalization to dynamically scale each
row to prevent underflow errors.

If the sequence is impossible, will return a matrix of nans.

See also:

• Silent state handling taken from p. 71 of “Biological

Sequence Analysis” by Durbin et al., and works for anything which does not have loops of silent states.

• Row normalization technique explained by

http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf on p. 14.

Parameters

sequence [array-like] An array (or list) of observations.

Returns

matrix [array-like, shape (len(sequence), n_states)] The probability of aligning the se-
quences to states in a backward fashion.

bake()
Finalize the topology of the model.

Finalize the topology of the model and assign a numerical index to every state. This method must be called
before any of the probability- calculating methods.

This fills in self.states (a list of all states in order) and self.transition_log_probabilities (log probabilities
for transitions), as well as self.start_index and self.end_index, and self.silent_start (the index of the first
silent state).

Parameters
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verbose [bool, optional] Return a log of changes made to the model during normalization or
merging. Default is False.

merge [“None”, “Partial, “All”] Merging has three options: “None”: No modifications will
be made to the model. “Partial”: A silent state which only has a probability 1 transition

to another silent state will be merged with that silent state. This means that if silent
state “S1” has a single transition to silent state “S2”, that all transitions to S1 will
now go to S2, with the same probability as before, and S1 will be removed from the
model.

“All”: A silent state with a probability 1 transition to any other state, silent or sym-
bol emitting, will be merged in the manner described above. In addition, any orphan
states will be removed from the model. An orphan state is a state which does not have
any transitions to it OR does not have any transitions from it, except for the start and
end of the model. This will iteratively remove orphan chains from the model. This is
sometimes desirable, as all states should have both a transition in to get to that state, and
a transition out, even if it is only to itself. If the state does not have either, the HMM
will likely not work as intended.

Default is ‘All’.

Returns

None

clear_summaries()
Clear the summary statistics stored in the object.

Parameters

None

Returns

None

concatenate()
Concatenate this model to another model.

Concatenate this model to another model in such a way that a single probability 1 edge is added between
self.end and other.start. Rename all other states appropriately by adding a suffix or prefix if needed.

Parameters

other [HiddenMarkovModel] The other model to concatenate

suffix [str, optional] Add the suffix to the end of all state names in the other model. Default
is ‘’.

prefix [str, optional] Add the prefix to the beginning of all state names in the other model.
Default is ‘’.

Returns

None

copy()
Returns a deep copy of the HMM.

Parameters

None
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Returns

model [HiddenMarkovModel] A deep copy of the model with entirely new objects.

dense_transition_matrix()
Returns the dense transition matrix.

Parameters

None

Returns

matrix [numpy.ndarray, shape (n_states, n_states)] A dense transition matrix, containing the
log probability of transitioning from each state to each other state.

edge_count()
Returns the number of edges present in the model.

fit()
Fit the model to data using either Baum-Welch, Viterbi, or supervised training.

Given a list of sequences, performs re-estimation on the model parameters. The two supported algorithms
are “baum-welch”, “viterbi”, and “labeled”, indicating their respective algorithm. “labeled” corresponds to
supervised learning that requires passing in a matching list of labels for each symbol seen in the sequences.

Training supports a wide variety of other options including using edge pseudocounts and either edge or
distribution inertia.

Parameters

sequences [array-like] An array of some sort (list, numpy.ndarray, tuple..) of sequences,
where each sequence is a numpy array, which is 1 dimensional if the HMM is a one
dimensional array, or multidimensional if the HMM supports multiple dimensions.

weights [array-like or None, optional] An array of weights, one for each sequence to train
on. If None, all sequences are equaly weighted. Default is None.

labels [array-like or None, optional] An array of state labels for each sequence. This is only
used in ‘labeled’ training. If used this must be comprised of n lists where n is the number
of sequences to train on, and each of those lists must have one label per observation.
A None in this list corresponds to no labels for the entire sequence and triggers semi-
supervised learning, where the labeled sequences are summarized using labeled fitting and
the unlabeled are summarized using the specified algorithm. Default is None.

stop_threshold [double, optional] The threshold the improvement ratio of the models log
probability in fitting the scores. Default is 1e-9.

min_iterations [int, optional] The minimum number of iterations to run Baum-Welch train-
ing for. Default is 0.

max_iterations [int, optional] The maximum number of iterations to run Baum-Welch train-
ing for. Default is 1e8.

algorithm [‘baum-welch’, ‘viterbi’, ‘labeled’] The training algorithm to use. Baum-Welch
uses the forward-backward algorithm to train using a version of structured EM. Viterbi it-
eratively runs the sequences through the Viterbi algorithm and then uses hard assignments
of observations to states using that. Default is ‘baum-welch’. Labeled training requires
that labels are provided for each observation in each sequence.

pseudocount [double, optional] A pseudocount to add to both transitions and emissions. If
supplied, it will override both transition_pseudocount and emission_pseudocount in the
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same way that specifying inertia will override both edge_inertia and distribution_inertia.
Default is None.

transition_pseudocount [double, optional] A pseudocount to add to all transitions to add a
prior to the MLE estimate of the transition probability. Default is 0.

emission_pseudocount [double, optional] A pseudocount to add to the emission of each
distribution. This effectively smoothes the states to prevent 0. probability symbols if
they don’t happen to occur in the data. Only effects hidden Markov models defined over
discrete distributions. Default is 0.

use_pseudocount [bool, optional] Whether to use the pseudocounts defined in the add_edge
method for edge-specific pseudocounts when updating the transition probability parame-
ters. Does not effect the transition_pseudocount and emission_pseudocount parameters,
but can be used in addition to them. Default is False.

inertia [double or None, optional, range [0, 1]] If double, will set both edge_inertia and
distribution_inertia to be that value. If None, will not override those values. Default is
None.

edge_inertia [bool, optional, range [0, 1]] Whether to use inertia when updating the transi-
tion probability parameters. Default is 0.0.

distribution_inertia [double, optional, range [0, 1]] Whether to use inertia when updating
the distribution parameters. Default is 0.0.

batch_size [int or None, optional] The number of samples in a batch to summarize on. This
controls the size of the set sent to summarize and so does not make the update any less
exact. This is useful when training on a memory map and cannot load all the data into
memory. If set to None, batch_size is 1 / n_jobs. Default is None.

batches_per_epoch [int or None, optional] The number of batches in an epoch. This is the
number of batches to summarize before calling from_summaries and updating the model
parameters. This allows one to do minibatch updates by updating the model parameters
before setting the full dataset. If set to None, uses the full dataset. Default is None.

lr_decay [double, optional, positive] The step size decay as a function of the number of
iterations. Functionally, this sets the inertia to be (2+k)^{-lr_decay} where k is the number
of iterations. This causes initial iterations to have more of an impact than later iterations,
and is frequently used in minibatch learning. This value is suggested to be between 0.5
and 1. Default is 0, meaning no decay.

verbose [bool, optional] Whether to print the improvement in the model fitting at each iter-
ation. Default is True.

n_jobs [int, optional] The number of threads to use when performing training. This leads to
exact updates. Default is 1.

Returns

improvement [double] The total improvement in fitting the model to the data

forward()
Run the forward algorithm on the sequence.

Calculate the probability of each observation being aligned to each state by going forward through a se-
quence. Returns the full forward matrix. Each index i, j corresponds to the sum-of-all-paths log probability
of starting at the beginning of the sequence, and aligning observations to hidden states in such a manner
that observation i was aligned to hidden state j. Uses row normalization to dynamically scale each row to
prevent underflow errors.

If the sequence is impossible, will return a matrix of nans.
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See also:

• Silent state handling taken from p. 71 of “Biological

Sequence Analysis” by Durbin et al., and works for anything which does not have loops of silent states.

• Row normalization technique explained by

http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf on p. 14.

Parameters

sequence [array-like] An array (or list) of observations.

Returns

matrix [array-like, shape (len(sequence), n_states)] The probability of aligning the se-
quences to states in a forward fashion.

forward_backward()
Run the forward-backward algorithm on the sequence.

This algorithm returns an emission matrix and a transition matrix. The emission matrix returns the normal-
ized probability that each each state generated that emission given both the symbol and the entire sequence.
The transition matrix returns the expected number of times that a transition is used.

If the sequence is impossible, will return (None, None)

See also:

• Forward and backward algorithm implementations. A comprehensive

description of the forward, backward, and forward-background algorithm is here: http://en.wikipedia.
org/wiki/Forward%E2%80%93backward_algorithm

Parameters

sequence [array-like] An array (or list) of observations.

Returns

emissions [array-like, shape (len(sequence), n_nonsilent_states)] The normalized probabil-
ities of each state generating each emission.

transitions [array-like, shape (n_states, n_states)] The expected number of transitions
across each edge in the model.

freeze()
Freeze the distribution, preventing updates from occuring.

freeze_distributions()
Freeze all the distributions in model.

Upon training only edges will be updated. The parameters of distributions will not be affected.

Parameters

None

Returns

None

from_json()
Read in a serialized model and return the appropriate classifier.

Parameters
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s [str] A JSON formatted string containing the file.

Returns

——-

model [object] A properly initialized and baked model.

from_matrix()
Create a model from a more standard matrix format.

Take in a 2D matrix of floats of size n by n, which are the transition probabilities to go from any state to any
other state. May also take in a list of length n representing the names of these nodes, and a model name.
Must provide the matrix, and a list of size n representing the distribution you wish to use for that state, a
list of size n indicating the probability of starting in a state, and a list of size n indicating the probability of
ending in a state.

Parameters

transition_probabilities [array-like, shape (n_states, n_states)] The probabilities of each
state transitioning to each other state.

distributions [array-like, shape (n_states)] The distributions for each state. Silent states are
indicated by using None instead of a distribution object.

starts [array-like, shape (n_states)] The probabilities of starting in each of the states.

ends [array-like, shape (n_states), optional] If passed in, the probabilities of ending in each
of the states. If ends is None, then assumes the model has no explicit end state. Default is
None.

state_names [array-like, shape (n_states), optional] The name of the states. If None is
passed in, default names are generated. Default is None

name [str, optional] The name of the model. Default is None

verbose [bool, optional] The verbose parameter for the underlying bake method. Default is
False.

merge [‘None’, ‘Partial’, ‘All’, optional] The merge parameter for the underlying bake
method. Default is All

Returns

model [HiddenMarkovModel] The baked model ready to go.

Examples

matrix = [[0.4, 0.5], [0.4, 0.5]] distributions = [NormalDistribution(1, .5), NormalDistribution(5, 2)] starts
= [1., 0.] ends = [.1., .1] state_names= [“A”, “B”]

model = Model.from_matrix(matrix, distributions, starts, ends, state_names, name=”test_model”)

from_samples()
Learn the transitions and emissions of a model directly from data.

This method will learn both the transition matrix, emission distributions, and start probabilities for each
state. This will only return a dense graph without any silent states or explicit transitions to an end state.
Currently all components must be defined as the same distribution, but soon this restriction will be re-
moved.
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If learning a multinomial HMM over discrete characters, the initial emisison probabilities are initialized
randomly. If learning a continuous valued HMM, such as a Gaussian HMM, then kmeans clustering is
used first to identify initial clusters.

Regardless of the type of model, the transition matrix and start probabilities are initialized uniformly.
Then the specified learning algorithm (Baum-Welch recommended) is used to refine the parameters of the
model.

Parameters

distribution [callable] The emission distribution of the components of the model.

n_components [int] The number of states (or components) to initialize.

X [array-like] An array of some sort (list, numpy.ndarray, tuple..) of sequences, where each
sequence is a numpy array, which is 1 dimensional if the HMM is a one dimensional array,
or multidimensional if the HMM supports multiple dimensions.

weights [array-like or None, optional] An array of weights, one for each sequence to train
on. If None, all sequences are equaly weighted. Default is None.

labels [array-like or None, optional] An array of state labels for each sequence. This is only
used in ‘labeled’ training. If used this must be comprised of n lists where n is the number
of sequences to train on, and each of those lists must have one label per observation.
A None in this list corresponds to no labels for the entire sequence and triggers semi-
supervised learning, where the labeled sequences are summarized using labeled fitting and
the unlabeled are summarized using the specified algorithm. Default is None.

algorithm [‘baum-welch’, ‘viterbi’, ‘labeled’] The training algorithm to use. Baum-Welch
uses the forward-backward algorithm to train using a version of structured EM. Viterbi it-
eratively runs the sequences through the Viterbi algorithm and then uses hard assignments
of observations to states using that. Default is ‘baum-welch’. Labeled training requires
that labels are provided for each observation in each sequence.

inertia [double or None, optional, range [0, 1]] If double, will set both edge_inertia and
distribution_inertia to be that value. If None, will not override those values. Default is
None.

edge_inertia [bool, optional, range [0, 1]] Whether to use inertia when updating the transi-
tion probability parameters. Default is 0.0.

distribution_inertia [double, optional, range [0, 1]] Whether to use inertia when updating
the distribution parameters. Default is 0.0.

pseudocount [double, optional] A pseudocount to add to both transitions and emissions. If
supplied, it will override both transition_pseudocount and emission_pseudocount in the
same way that specifying inertia will override both edge_inertia and distribution_inertia.
Default is None.

transition_pseudocount [double, optional] A pseudocount to add to all transitions to add a
prior to the MLE estimate of the transition probability. Default is 0.

emission_pseudocount [double, optional] A pseudocount to add to the emission of each
distribution. This effectively smoothes the states to prevent 0. probability symbols if
they don’t happen to occur in the data. Only effects hidden Markov models defined over
discrete distributions. Default is 0.

use_pseudocount [bool, optional] Whether to use the pseudocounts defined in the add_edge
method for edge-specific pseudocounts when updating the transition probability parame-
ters. Does not effect the transition_pseudocount and emission_pseudocount parameters,
but can be used in addition to them. Default is False.
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stop_threshold [double, optional] The threshold the improvement ratio of the models log
probability in fitting the scores. Default is 1e-9.

min_iterations [int, optional] The minimum number of iterations to run Baum-Welch train-
ing for. Default is 0.

max_iterations [int, optional] The maximum number of iterations to run Baum-Welch train-
ing for. Default is 1e8.

n_init [int, optional] The number of times to initialize the k-means clustering before taking
the best value. Default is 1.

init [str, optional] The initialization method for kmeans. Must be one of ‘first-k’, ‘random’,
‘kmeans++’, or ‘kmeans||’. Default is kmeans++.

max_kmeans_iterations [int, optional] The number of iterations to run k-means for before
starting EM.

batch_size [int or None, optional] The number of samples in a batch to summarize on. This
controls the size of the set sent to summarize and so does not make the update any less
exact. This is useful when training on a memory map and cannot load all the data into
memory. If set to None, batch_size is 1 / n_jobs. Default is None.

batches_per_epoch [int or None, optional] The number of batches in an epoch. This is the
number of batches to summarize before calling from_summaries and updating the model
parameters. This allows one to do minibatch updates by updating the model parameters
before setting the full dataset. If set to None, uses the full dataset. Default is None.

lr_decay [double, optional, positive] The step size decay as a function of the number of
iterations. Functionally, this sets the inertia to be (2+k)^{-lr_decay} where k is the number
of iterations. This causes initial iterations to have more of an impact than later iterations,
and is frequently used in minibatch learning. This value is suggested to be between 0.5
and 1. Default is 0, meaning no decay.

end_state [bool, optional] Whether to calculate the probability of ending in each state or
not. Default is False.

state_names [array-like, shape (n_states), optional] The name of the states. If None is
passed in, default names are generated. Default is None

name [str, optional] The name of the model. Default is None

verbose [bool, optional] Whether to print the improvement in the model fitting at each iter-
ation. Default is True.

n_jobs [int, optional] The number of threads to use when performing training. This leads to
exact updates. Default is 1.

Returns

model [HiddenMarkovModel] The model fit to the data.

from_summaries()
Fit the model to the stored summary statistics.

Parameters

inertia [double or None, optional] The inertia to use for both edges and distributions without
needing to set both of them. If None, use the values passed in to those variables. Default
is None.

pseudocount [double, optional] A pseudocount to add to both transitions and emissions. If
supplied, it will override both transition_pseudocount and emission_pseudocount in the
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same way that specifying inertia will override both edge_inertia and distribution_inertia.
Default is None.

transition_pseudocount [double, optional] A pseudocount to add to all transitions to add a
prior to the MLE estimate of the transition probability. Default is 0.

emission_pseudocount [double, optional] A pseudocount to add to the emission of each
distribution. This effectively smoothes the states to prevent 0. probability symbols if
they don’t happen to occur in the data. Only effects hidden Markov models defined over
discrete distributions. Default is 0.

use_pseudocount [bool, optional] Whether to use the pseudocounts defined in the add_edge
method for edge-specific pseudocounts when updating the transition probability parame-
ters. Does not effect the transition_pseudocount and emission_pseudocount parameters,
but can be used in addition to them. Default is False.

edge_inertia [bool, optional, range [0, 1]] Whether to use inertia when updating the transi-
tion probability parameters. Default is 0.0.

distribution_inertia [double, optional, range [0, 1]] Whether to use inertia when updating
the distribution parameters. Default is 0.0.

Returns

None

log_probability()
Calculate the log probability of a single sequence.

If a path is provided, calculate the log probability of that sequence given the path.

Parameters

sequence [array-like] Return the array of observations in a single sequence of data

check_input [bool, optional] Check to make sure that all emissions fall under the support
of the emission distributions. Default is True.

Returns

logp [double] The log probability of the sequence

maximum_a_posteriori()
Run posterior decoding on the sequence.

MAP decoding is an alternative to viterbi decoding, which returns the most likely state for each observa-
tion, based on the forward-backward algorithm. This is also called posterior decoding. This method is
described on p. 14 of http://ai.stanford.edu/~serafim/CS262_2007/ notes/lecture5.pdf

WARNING: This may produce impossible sequences.

Parameters

sequence [array-like] An array (or list) of observations.

Returns

logp [double] The log probability of the sequence under the Viterbi path

path [list of tuples] Tuples of (state index, state object) of the states along the posterior path.

node_count()
Returns the number of nodes/states in the model
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plot()
Draw this model’s graph using NetworkX and matplotlib.

Note that this relies on networkx’s built-in graphing capabilities (and not Graphviz) and thus can’t draw
self-loops.

See networkx.draw_networkx() for the keywords you can pass in.

Parameters

precision [int, optional] The precision with which to round edge probabilities. Default is 4.

**kwargs [any] The arguments to pass into networkx.draw_networkx()

Returns

None

predict()
Calculate the most likely state for each observation.

This can be either the Viterbi algorithm or maximum a posteriori. It returns the probability of the sequence
under that state sequence and the actual state sequence.

This is a sklearn wrapper for the Viterbi and maximum_a_posteriori methods.

Parameters

sequence [array-like] An array (or list) of observations.

algorithm [“map”, “viterbi”] The algorithm with which to decode the sequence

Returns

path [list of integers] A list of the ids of states along the MAP or the Viterbi path.

predict_log_proba()
Calculate the state log probabilities for each observation in the sequence.

Run the forward-backward algorithm on the sequence and return the emission matrix. This is the log
normalized probability that each each state generated that emission given both the symbol and the entire
sequence.

This is a sklearn wrapper for the forward backward algorithm.

See also:

• Forward and backward algorithm implementations. A comprehensive

description of the forward, backward, and forward-background algorithm is here: http://en.wikipedia.
org/wiki/Forward%E2%80%93backward_algorithm

Parameters

sequence [array-like] An array (or list) of observations.

Returns

emissions [array-like, shape (len(sequence), n_nonsilent_states)] The log normalized prob-
abilities of each state generating each emission.

predict_proba()
Calculate the state probabilities for each observation in the sequence.

48 Chapter 1. Thank You

http://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm
http://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm


pomegranate Documentation, Release 0.6.0

Run the forward-backward algorithm on the sequence and return the emission matrix. This is the nor-
malized probability that each each state generated that emission given both the symbol and the entire
sequence.

This is a sklearn wrapper for the forward backward algorithm.

See also:

• Forward and backward algorithm implementations. A comprehensive

description of the forward, backward, and forward-background algorithm is here: http://en.wikipedia.
org/wiki/Forward%E2%80%93backward_algorithm

Parameters

sequence [array-like] An array (or list) of observations.

Returns

emissions [array-like, shape (len(sequence), n_nonsilent_states)] The normalized probabil-
ities of each state generating each emission.

probability()
Return the probability of the given symbol under this distribution.

Parameters

symbol [object] The symbol to calculate the probability of

Returns

probability [double] The probability of that point under the distribution.

sample()
Generate a sequence from the model.

Returns the sequence generated, as a list of emitted items. The model must have been baked first in order
to run this method.

If a length is specified and the HMM is infinite (no edges to the end state), then that number of samples
will be randomly generated. If the length is specified and the HMM is finite, the method will attempt to
generate a prefix of that length. Currently it will force itself to not take an end transition unless that is the
only path, making it not a true random sample on a finite model.

WARNING: If the HMM has no explicit end state, must specify a length to use.

Parameters

length [int, optional] Generate a sequence with a maximal length of this size. Used if you
have no explicit end state. Default is 0.

path [bool, optional] Return the path of hidden states in addition to the emissions. If true
will return a tuple of (sample, path). Default is False.

Returns

sample [list or tuple] If path is true, return a tuple of (sample, path), otherwise return just
the samples.

state_count()
Returns the number of states present in the model.

summarize()
Summarize data into stored sufficient statistics for out-of-core training. Only implemented for Baum-
Welch training since Viterbi is less memory intensive.
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Parameters

sequences [array-like] An array of some sort (list, numpy.ndarray, tuple..) of sequences,
where each sequence is a numpy array, which is 1 dimensional if the HMM is a one
dimensional array, or multidimensional if the HMM supports multiple dimensions.

weights [array-like or None, optional] An array of weights, one for each sequence to train
on. If None, all sequences are equaly weighted. Default is None.

labels [array-like or None, optional] An array of state labels for each sequence. This is only
used in ‘labeled’ training. If used this must be comprised of n lists where n is the number of
sequences to train on, and each of those lists must have one label per observation. Default
is None.

algorithm [‘baum-welch’, ‘viterbi’, ‘labeled’] The training algorithm to use. Baum-Welch
uses the forward-backward algorithm to train using a version of structured EM. Viterbi it-
eratively runs the sequences through the Viterbi algorithm and then uses hard assignments
of observations to states using that. Default is ‘baum-welch’. Labeled training requires
that labels are provided for each observation in each sequence.

check_input [bool, optional] Check the input. This casts the input sequences as numpy
arrays, and converts non-numeric inputs into numeric inputs for faster processing later.
Default is True.

Returns

logp [double] The log probability of the sequences.

thaw()
Thaw the distribution, re-allowing updates to occur.

thaw_distributions()
Thaw all distributions in the model.

Upon training distributions will be updated again.

Parameters

None

Returns

None

to_json()
Serialize the model to a JSON.

Parameters

separators [tuple, optional] The two separaters to pass to the json.dumps function for for-
matting.

indent [int, optional] The indentation to use at each level. Passed to json.dumps for format-
ting.

Returns

json [str] A properly formatted JSON object.

viterbi()
Run the Viteri algorithm on the sequence.

Run the Viterbi algorithm on the sequence given the model. This finds the ML path of hidden states given
the sequence. Returns a tuple of the log probability of the ML path, or (-inf, None) if the sequence is
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impossible under the model. If a path is returned, it is a list of tuples of the form (sequence index, state
object).

This is fundamentally the same as the forward algorithm using max instead of sum, except the traceback
is more complicated, because silent states in the current step can trace back to other silent states in the
current step as well as states in the previous step.

See also:

• Viterbi implementation described well in the wikipedia article

http://en.wikipedia.org/wiki/Viterbi_algorithm

Parameters

sequence [array-like] An array (or list) of observations.

Returns

logp [double] The log probability of the sequence under the Viterbi path

path [list of tuples] Tuples of (state index, state object) of the states along the Viterbi path.

pomegranate.hmm.log()
Return the natural log of the value or -infinity if the value is 0.

1.12 Bayes Classifiers and Naive Bayes

IPython Notebook Tutorial

Bayes classifiers are simple probabilistic classification models based off of Bayes theorem. See the above tutorial
for a full primer on how they work, and what the distinction between a naive Bayes classifier and a Bayes classifier
is. Essentially, each class is modeled by a probability distribution and classifications are made according to what
distribution fits the data the best. They are a supervised version of general mixture models, in that the predict,
predict_proba, and predict_log_proba methods return the same values for the same underlying distribu-
tions, but that instead of using expectation-maximization to fit to new data they can use the provided labels directly.

1.12.1 Initialization

Bayes classifiers and naive Bayes can both be initialized in one of two ways depending on if you know the parameters
of the model beforehand or not, (1) passing in a list of pre-initialized distributions to the model, or (2) using the
from_samples class method to initialize the model directly from data. For naive Bayes models on multivariate
data, the pre-initialized distributions must be a list of IndependentComponentDistribution objects since
each dimension is modeled independently from the others. For Bayes classifiers on multivariate data a list of any type
of multivariate distribution can be provided. For univariate data the two models produce identical results, and can be
passed in a list of univariate distributions. For example:

from pomegranate import *
d1 = IndependentComponentsDistribution([NormalDistribution(5, 2),
→˓NormalDistribution(6, 1), NormalDistribution(9, 1)])
d2 = IndependentComponentsDistribution([NormalDistribution(2, 1),
→˓NormalDistribution(8, 1), NormalDistribution(5, 1)])
d3 = IndependentComponentsDistribution([NormalDistribution(3, 1),
→˓NormalDistribution(5, 3), NormalDistribution(4, 1)])
model = NaiveBayes([d1, d2, d3])
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would create a three class naive Bayes classifier that modeled data with three dimensions. Alternatively, we can
initialize a Bayes classifier in the following manner

from pomegranate import *
d1 = MultivariateGaussianDistribution([5, 6, 9], [[2, 0, 0], [0, 1, 0], [0, 0, 1]])
d2 = MultivariateGaussianDistribution([2, 8, 5], [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
d3 = MultivariateGaussianDistribution([3, 5, 4], [[1, 0, 0], [0, 3, 0], [0, 0, 1]])
model = BayesClassifier([d1, d2, d3])

The two examples above functionally create the same model, as the Bayes classifier uses multivariate Gaussian distri-
butions with the same means and a diagonal covariance matrix containing only the variances. However, if we were to
fit these models to data later on, the Bayes classifier would learn a full covariance matrix while the naive Bayes would
only learn the diagonal.

If we instead wish to initialize our model directly onto data, we use the from_samples class method.

from pomegranate import *
import numpy
X = numpy.load('data.npy')
y = numpy.load('labels.npy')
model = NaiveBayes.from_samples(NormalDistribution, X, y)

This would create a naive Bayes model directly from the data with normal distributions modeling each of the dimen-
sions, and a number of components equal to the number of classes in y. Alternatively if we wanted to create a model
with different distributions for each dimension we can do the following:

model = NaiveBayes.from_samples([NormalDistribution, ExponentialDistribution], X, y)

This assumes that your data is two dimensional and that you want to model the first distribution as a normal distribution
and the second dimension as an exponential distribution.

We can do pretty much the same thing with Bayes classifiers, except passing in a more complex model.

model = BayesClassifier.from_samples(MultivariateGaussianDistribution, X, y)

One can use much more complex models than just a multivariate Gaussian with a full covariance matrix when using a
Bayes classifier. Specifically, you can also have your distributions be general mixture models, hidden Markov models,
and Bayesian networks. For example:

model = BayesClassifier.from_samples(BayesianNetwork, X, y)

That would require that the data is only discrete valued currently, and the structure learning task may be too long if
not set appropriately. However, it is possible. Currently, one cannot simply put in GeneralMixtureModel or Hidden-
MarkovModel despite them having a from_samples method because there is a great deal of flexibility in terms of
the structure or emission distributions. The easiest way to set up one of these more complex models is to build each of
the components separately and then feed them into the Bayes classifier method using the first initialization method.

d1 = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=5, X=X[y==0])
d2 = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, n_
→˓components=5, X=X[y==1])
model = BayesClassifier([d1, d2])

1.12.2 Prediction

Bayes classifiers and naive Bayes supports the same three prediction methods that the other models support, predict,
predict_proba, and predict_log_proba. These methods return the most likely class given the data
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(argmax_m P(M|D)), the probability of each class given the data (P(M|D)), and the log probability of each class
given the data (log P(M|D)). It is best to always pass in a 2D matrix even for univariate data, where it would have a
shape of (n, 1).

The predict method takes in samples and returns the most likely class given the data.

from pomegranate import *
model = NaiveBayes([NormalDistribution(5, 2), UniformDistribution(0, 10),
→˓ExponentialDistribution(1.0)])
model.predict( np.array([[0], [1], [2], [3], [4]]))
[2, 2, 2, 0, 0]

Calling predict_proba on five samples for a Naive Bayes with univariate components would look like the follow-
ing.

from pomegranate import *
model = NaiveBayes([NormalDistribution(5, 2), UniformDistribution(0, 10),
→˓ExponentialDistribution(1)])
model.predict_proba(np.array([[0], [1], [2], [3], [4]]))
[[ 0.00790443 0.09019051 0.90190506]
[ 0.05455011 0.20207126 0.74337863]
[ 0.21579499 0.33322883 0.45097618]
[ 0.44681566 0.36931382 0.18387052]
[ 0.59804205 0.33973357 0.06222437]]

Multivariate models work the same way.

from pomegranate import *
d1 = MultivariateGaussianDistribution([5, 5], [[1, 0], [0, 1]])
d2 = IndependentComponentsDistribution([NormalDistribution(5, 2),
→˓NormalDistribution(5, 2)])
model = BayesClassifier([d1, d2])
clf.predict_proba(np.array([[0, 4],

[1, 3],
[2, 2],
[3, 1],
[4, 0]]))

array([[ 0.00023312, 0.99976688],
[ 0.00220745, 0.99779255],
[ 0.00466169, 0.99533831],
[ 0.00220745, 0.99779255],
[ 0.00023312, 0.99976688]])

predict_log_proba works the same way, returning the log probabilities instead of the probabilities.

1.12.3 Fitting

Both naive Bayes and Bayes classifiers also have a fit method that updates the parameters of the model based on
new data. The major difference between these methods and the others presented is that these are supervised methods
and so need to be passed labels in addition to data. This change propagates also to the summarize method, where
labels are provided as well.

from pomegranate import *
d1 = MultivariateGaussianDistribution([5, 5], [[1, 0], [0, 1]])
d2 = IndependentComponentsDistribution(NormalDistribution(5, 2), NormalDistribution(5,
→˓ 2)])
model = BayesClassifier([d1, d2])
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X = np.array([[6.0, 5.0],
[3.5, 4.0],
[7.5, 1.5],

[7.0, 7.0 ]])
y = np.array([0, 0, 1, 1])
model.fit(X, y)

As we can see, there are four samples, with the first two samples labeled as class 0 and the last two samples labeled
as class 1. Keep in mind that the training samples must match the input requirements for the models used. So if using
a univariate distribution, then each sample must contain one item. A bivariate distribution, two. For hidden markov
models, the sample can be a list of observations of any length. An example using hidden markov models would be the
following.

d1 = HiddenMarkovModel...
d2 = HiddenMarkovModel...
d3 = HiddenMarkovModel...
model = BayesClassifier([d1, d2, d3])
X = np.array([list('HHHHHTHTHTTTTH'),

list('HHTHHTTHHHHHTH'),
list('TH'),
list('HHHHT')])

y = np.array([2, 2, 1, 0])
model.fit(X, y)

1.12.4 API Reference

class pomegranate.NaiveBayes.NaiveBayes
A naive Bayes model, a supervised alternative to GMM.

A naive Bayes classifier, that treats each dimension independently from each other. This is a simpler version of
the Bayes Classifier, that can use any distribution with any covariance structure, including Bayesian networks
and hidden Markov models.

Parameters

models [list] A list of initialized distributions.

weights [list or numpy.ndarray or None, default None] The prior probabilities of the compo-
nents. If None is passed in then defaults to the uniformly distributed priors.

Examples

>>> from pomegranate import *
>>> X = [0, 2, 0, 1, 0, 5, 6, 5, 7, 6]
>>> y = [0, 0, 0, 0, 0, 1, 1, 0, 1, 1]
>>> clf = NaiveBayes.from_samples(NormalDistribution, X, y)
>>> clf.predict_proba([6])
array([[0.01973451, 0.98026549]])

>>> from pomegranate import *
>>> clf = NaiveBayes([NormalDistribution(1, 2), NormalDistribution(0, 1)])
>>> clf.predict_log_proba([[0], [1], [2], [-1]])
array([[-1.1836569 , -0.36550972],

[-0.79437677, -0.60122959],
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[-0.26751248, -1.4493653],
[-1.09861229, -0.40546511]])

Attributes

models [list] The model objects, either initialized by the user or fit to data.

weights [numpy.ndarray] The prior probability of each component of the model.

clear_summaries()
Remove the stored sufficient statistics.

Parameters

None

Returns

None

copy()
Return a deep copy of this distribution object.

This object will not be tied to any other distribution or connected in any form.

Parameters

None

Returns

distribution [Distribution] A copy of the distribution with the same parameters.

fit()
Fit the Bayes classifier to the data by passing data to its components.

The fit step for a Bayes classifier with purely labeled data is a simple MLE update on the underlying
distributions, grouped by the labels. However, in the semi-supervised the model is trained on a mixture of
both labeled and unlabeled data, where the unlabeled data uses the label -1. In this setting, EM is used to
train the model. The model is initialized using the labeled data and then sufficient statistics are gathered
for both the labeled and unlabeled data, combined, and used to update the parameters.

Parameters

X [numpy.ndarray or list] The dataset to operate on. For most models this is a numpy array
with columns corresponding to features and rows corresponding to samples. For markov
chains and HMMs this will be a list of variable length sequences.

y [numpy.ndarray or list or None, optional] Data labels for supervised training algorithms.
Default is None

weights [array-like or None, shape (n_samples,), optional] The initial weights of each sam-
ple in the matrix. If nothing is passed in then each sample is assumed to be the same
weight. Default is None.

inertia [double, optional] Inertia used for the training the distributions.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. Default is 0.

stop_threshold [double, optional, positive] The threshold at which EM will terminate for
the improvement of the model. If the model does not improve its fit of the data by a log
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probability of 0.1 then terminate. Only required if doing semisupervised learning. Default
is 0.1.

max_iterations [int, optional, positive] The maximum number of iterations to run EM for.
If this limit is hit then it will terminate training, regardless of how well the model is im-
proving per iteration. Only required if doing semisupervised learning. Default is 1e8.

verbose [bool, optional] Whether or not to print out improvement information over itera-
tions. Only required if doing semisupervised learning. Default is False.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

self [object] Returns the fitted model

freeze()
Freeze the distribution, preventing updates from occuring.

from_samples()
Create a naive Bayes classifier directly from the given dataset.

This will initialize the distributions using maximum likelihood estimates derived by partitioning the dataset
using the label vector. If any labels are missing, the model will be trained using EM in a semi-supervised
setting.

A homogenous model can be defined by passing in a single distribution callable as the first parameter and
specifying the number of components, while a heterogeneous model can be defined by passing in a list of
callables of the appropriate type.

A naive Bayes classifier is a subrset of the Bayes classifier in that the math is identical, but the distributions
are independent for each feature. Simply put, one can create a multivariate Gaussian Bayes classifier with
a full covariance matrix, but a Gaussian naive Bayes would require a diagonal covariance matrix.

Parameters

distributions [array-like, shape (n_components,) or callable] The components of the model.
This should either be a single callable if all components will be the same distribution, or
an array of callables, one for each feature.

X [array-like, shape (n_samples, n_dimensions)] This is the data to train on. Each row is a
sample, and each column is a dimension to train on.

y [array-like, shape (n_samples,)] The labels for each sample. The labels should be integers
between 0 and k-1 for a problem with k classes, or -1 if the label is not known for that
sample.

weights [array-like, shape (n_samples,), optional] The initial weights of each sample in the
matrix. If nothing is passed in then each sample is assumed to be the same weight. Default
is None.

pseudocount [double, optional, positive] A pseudocount to add to the emission of each
distribution. This effectively smoothes the states to prevent 0. probability symbols if
they don’t happen to occur in the data. Only effects mixture models defined over discrete
distributions. Default is 0.

stop_threshold [double, optional, positive] The threshold at which EM will terminate for
the improvement of the model. If the model does not improve its fit of the data by a log
probability of 0.1 then terminate. Only required if doing semisupervised learning. Default
is 0.1.
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max_iterations [int, optional, positive] The maximum number of iterations to run EM for.
If this limit is hit then it will terminate training, regardless of how well the model is im-
proving per iteration. Only required if doing semisupervised learning. Default is 1e8.

verbose [bool, optional] Whether or not to print out improvement information over itera-
tions. Only required if doing semisupervised learning. Default is False.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. Default is 1.

Returns

model [NaiveBayes] The fit naive Bayes model.

from_summaries()
Fit the model to the collected sufficient statistics.

Fit the parameters of the model to the sufficient statistics gathered during the summarize calls. This should
return an exact update.

Parameters

inertia [double, optional] The weight of the previous parameters of the model. The new
parameters will roughly be old_param*inertia + new_param*(1-inertia), so an inertia of 0
means ignore the old parameters, whereas an inertia of 1 means ignore the new parameters.
Default is 0.0.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. If discrete data, will smooth both the prior probabilities of each
component and the emissions of each component. Otherwise, will only smooth the prior
probabilities of each component. Default is 0.

Returns

None

log_probability()
Calculate the log probability of a point under the distribution.

The probability of a point is the sum of the probabilities of each distribution multiplied by the weights.
Thus, the log probability is the sum of the log probability plus the log prior.

This is the python interface.

Parameters

X [numpy.ndarray, shape=(n, d) or (n, m, d)] The samples to calculate the log probability of.
Each row is a sample and each column is a dimension. If emissions are HMMs then shape
is (n, m, d) where m is variable length for each obervation, and X becomes an array of n
(m, d)-shaped arrays.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

log_probability [double] The log probabiltiy of the point under the distribution.

predict()
Predict the most likely component which generated each sample.

Calculate the posterior P(M|D) for each sample and return the index of the component most likely to fit it.
This corresponds to a simple argmax over the responsibility matrix.
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This is a sklearn wrapper for the maximum_a_posteriori method.

Parameters

X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

y [array-like, shape (n_samples,)] The predicted component which fits the sample the best.

predict_log_proba()
Calculate the posterior log P(M|D) for data.

Calculate the log probability of each item having been generated from each component in the model. This
returns normalized log probabilities such that the probabilities should sum to 1

This is a sklearn wrapper for the original posterior function.

Parameters

X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

y [array-like, shape (n_samples, n_components)] The normalized log probability log P(M|D)
for each sample. This is the probability that the sample was generated from each compo-
nent.

predict_proba()
Calculate the posterior P(M|D) for data.

Calculate the probability of each item having been generated from each component in the model. This
returns normalized probabilities such that each row should sum to 1.

Since calculating the log probability is much faster, this is just a wrapper which exponentiates the log
probability matrix.

Parameters

X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

probability [array-like, shape (n_samples, n_components)] The normalized probability
P(M|D) for each sample. This is the probability that the sample was generated from each
component.

probability()
Return the probability of the given symbol under this distribution.
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Parameters

symbol [object] The symbol to calculate the probability of

Returns

probability [double] The probability of that point under the distribution.

sample()
Generate a sample from the model.

First, randomly select a component weighted by the prior probability, Then, use the sample method from
that component to generate a sample.

Parameters

n [int, optional] The number of samples to generate. Defaults to 1.

Returns

sample [array-like or object] A randomly generated sample from the model of the type
modelled by the emissions. An integer if using most distributions, or an array if using
multivariate ones, or a string for most discrete distributions. If n=1 return an object, if n>1
return an array of the samples.

summarize()
Summarize data into stored sufficient statistics for out-of-core training.

Parameters

X [array-like, shape (n_samples, variable)] Array of the samples, which can be either fixed
size or variable depending on the underlying components.

y [array-like, shape (n_samples,)] Array of the known labels as integers

weights [array-like, shape (n_samples,) optional] Array of the weight of each sample, a
positive float

Returns

None

thaw()
Thaw the distribution, re-allowing updates to occur.

class pomegranate.BayesClassifier.BayesClassifier
A Bayes classifier, a more general form of a naive Bayes classifier.

A Bayes classifier, like a naive Bayes classifier, uses Bayes’ rule in order to calculate the posterior probability
of the classes, which are used for the predictions. However, a naive Bayes classifier assumes that each of the
features are independent of each other and so can be modelled as independent distributions. A generalization
of that, the Bayes classifier, allows for an arbitrary covariance between the features. This allows for more
complicated components to be used, up to and including even HMMs to form a classifier over sequences, or
mixtures to form a classifier with complex emissions.

Parameters

models [list] A list of initialized distribution objects to use as the components in the model.

weights [list or numpy.ndarray or None, default None] The prior probabilities of the compo-
nents. If None is passed in then defaults to the uniformly distributed priors.
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Examples

>>> from pomegranate import *
>>>
>>> d1 = NormalDistribution(3, 2)
>>> d2 = NormalDistribution(5, 1.5)
>>>
>>> clf = BayesClassifier([d1, d2])
>>> clf.predict_proba([[6]])
array([[ 0.2331767, 0.7668233]])
>>> X = [[0], [2], [0], [1], [0], [5], [6], [5], [7], [6]]
>>> y = [0, 0, 0, 0, 0, 1, 1, 0, 1, 1]
>>> clf.fit(X, y)
>>> clf.predict_proba([[6]])
array([[ 0.01973451, 0.98026549]])

Attributes

models [list] The model objects, either initialized by the user or fit to data.

weights [numpy.ndarray] The prior probability of each component of the model.

clear_summaries()
Remove the stored sufficient statistics.

Parameters

None

Returns

None

copy()
Return a deep copy of this distribution object.

This object will not be tied to any other distribution or connected in any form.

Parameters

None

Returns

distribution [Distribution] A copy of the distribution with the same parameters.

fit()
Fit the Bayes classifier to the data by passing data to its components.

The fit step for a Bayes classifier with purely labeled data is a simple MLE update on the underlying
distributions, grouped by the labels. However, in the semi-supervised the model is trained on a mixture of
both labeled and unlabeled data, where the unlabeled data uses the label -1. In this setting, EM is used to
train the model. The model is initialized using the labeled data and then sufficient statistics are gathered
for both the labeled and unlabeled data, combined, and used to update the parameters.

Parameters

X [numpy.ndarray or list] The dataset to operate on. For most models this is a numpy array
with columns corresponding to features and rows corresponding to samples. For markov
chains and HMMs this will be a list of variable length sequences.
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y [numpy.ndarray or list or None, optional] Data labels for supervised training algorithms.
Default is None

weights [array-like or None, shape (n_samples,), optional] The initial weights of each sam-
ple in the matrix. If nothing is passed in then each sample is assumed to be the same
weight. Default is None.

inertia [double, optional] Inertia used for the training the distributions.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. Default is 0.

stop_threshold [double, optional, positive] The threshold at which EM will terminate for
the improvement of the model. If the model does not improve its fit of the data by a log
probability of 0.1 then terminate. Only required if doing semisupervised learning. Default
is 0.1.

max_iterations [int, optional, positive] The maximum number of iterations to run EM for.
If this limit is hit then it will terminate training, regardless of how well the model is im-
proving per iteration. Only required if doing semisupervised learning. Default is 1e8.

verbose [bool, optional] Whether or not to print out improvement information over itera-
tions. Only required if doing semisupervised learning. Default is False.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

self [object] Returns the fitted model

freeze()
Freeze the distribution, preventing updates from occuring.

from_samples()
Create a Bayes classifier directly from the given dataset.

This will initialize the distributions using maximum likelihood estimates derived by partitioning the dataset
using the label vector. If any labels are missing, the model will be trained using EM in a semi-supervised
setting.

A homogenous model can be defined by passing in a single distribution callable as the first parameter and
specifying the number of components, while a heterogeneous model can be defined by passing in a list of
callables of the appropriate type.

A Bayes classifier is a superset of the naive Bayes classifier in that the math is identical, but the distri-
butions used do not have to be independent for each feature. Simply put, one can create a multivariate
Gaussian Bayes classifier with a full covariance matrix, but a Gaussian naive Bayes would require a diag-
onal covariance matrix.

Parameters

distributions [array-like, shape (n_components,) or callable] The components of the model.
This should either be a single callable if all components will be the same distribution, or
an array of callables, one for each feature.

X [array-like, shape (n_samples, n_dimensions)] This is the data to train on. Each row is a
sample, and each column is a dimension to train on.

y [array-like, shape (n_samples,)] The labels for each sample. The labels should be integers
between 0 and k-1 for a problem with k classes, or -1 if the label is not known for that
sample.
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weights [array-like, shape (n_samples,), optional] The initial weights of each sample in the
matrix. If nothing is passed in then each sample is assumed to be the same weight. Default
is None.

inertia [double, optional] Inertia used for the training the distributions.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. Default is 0.

stop_threshold [double, optional, positive] The threshold at which EM will terminate for
the improvement of the model. If the model does not improve its fit of the data by a log
probability of 0.1 then terminate. Only required if doing semisupervised learning. Default
is 0.1.

max_iterations [int, optional, positive] The maximum number of iterations to run EM for.
If this limit is hit then it will terminate training, regardless of how well the model is im-
proving per iteration. Only required if doing semisupervised learning. Default is 1e8.

verbose [bool, optional] Whether or not to print out improvement information over itera-
tions. Only required if doing semisupervised learning. Default is False.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

model [BayesClassifier] The fit Bayes classifier model.

from_summaries()
Fit the model to the collected sufficient statistics.

Fit the parameters of the model to the sufficient statistics gathered during the summarize calls. This should
return an exact update.

Parameters

inertia [double, optional] The weight of the previous parameters of the model. The new
parameters will roughly be old_param*inertia + new_param*(1-inertia), so an inertia of 0
means ignore the old parameters, whereas an inertia of 1 means ignore the new parameters.
Default is 0.0.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. If discrete data, will smooth both the prior probabilities of each
component and the emissions of each component. Otherwise, will only smooth the prior
probabilities of each component. Default is 0.

Returns

None

log_probability()
Calculate the log probability of a point under the distribution.

The probability of a point is the sum of the probabilities of each distribution multiplied by the weights.
Thus, the log probability is the sum of the log probability plus the log prior.

This is the python interface.

Parameters

X [numpy.ndarray, shape=(n, d) or (n, m, d)] The samples to calculate the log probability of.
Each row is a sample and each column is a dimension. If emissions are HMMs then shape
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is (n, m, d) where m is variable length for each obervation, and X becomes an array of n
(m, d)-shaped arrays.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

log_probability [double] The log probabiltiy of the point under the distribution.

predict()
Predict the most likely component which generated each sample.

Calculate the posterior P(M|D) for each sample and return the index of the component most likely to fit it.
This corresponds to a simple argmax over the responsibility matrix.

This is a sklearn wrapper for the maximum_a_posteriori method.

Parameters

X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

y [array-like, shape (n_samples,)] The predicted component which fits the sample the best.

predict_log_proba()
Calculate the posterior log P(M|D) for data.

Calculate the log probability of each item having been generated from each component in the model. This
returns normalized log probabilities such that the probabilities should sum to 1

This is a sklearn wrapper for the original posterior function.

Parameters

X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

y [array-like, shape (n_samples, n_components)] The normalized log probability log P(M|D)
for each sample. This is the probability that the sample was generated from each compo-
nent.

predict_proba()
Calculate the posterior P(M|D) for data.

Calculate the probability of each item having been generated from each component in the model. This
returns normalized probabilities such that each row should sum to 1.

Since calculating the log probability is much faster, this is just a wrapper which exponentiates the log
probability matrix.

Parameters
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X [array-like, shape (n_samples, n_dimensions)] The samples to do the prediction on. Each
sample is a row and each column corresponds to a dimension in that sample. For univariate
distributions, a single array may be passed in.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

probability [array-like, shape (n_samples, n_components)] The normalized probability
P(M|D) for each sample. This is the probability that the sample was generated from each
component.

probability()
Return the probability of the given symbol under this distribution.

Parameters

symbol [object] The symbol to calculate the probability of

Returns

probability [double] The probability of that point under the distribution.

sample()
Generate a sample from the model.

First, randomly select a component weighted by the prior probability, Then, use the sample method from
that component to generate a sample.

Parameters

n [int, optional] The number of samples to generate. Defaults to 1.

Returns

sample [array-like or object] A randomly generated sample from the model of the type
modelled by the emissions. An integer if using most distributions, or an array if using
multivariate ones, or a string for most discrete distributions. If n=1 return an object, if n>1
return an array of the samples.

summarize()
Summarize data into stored sufficient statistics for out-of-core training.

Parameters

X [array-like, shape (n_samples, variable)] Array of the samples, which can be either fixed
size or variable depending on the underlying components.

y [array-like, shape (n_samples,)] Array of the known labels as integers

weights [array-like, shape (n_samples,) optional] Array of the weight of each sample, a
positive float

Returns

None

thaw()
Thaw the distribution, re-allowing updates to occur.
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1.13 Markov Chains

IPython Notebook Tutorial

Markov chains are form of structured model over sequences. They represent the probability of each character in the
sequence as a conditional probability of the last k symbols. For example, a 3rd order Markov chain would have
each symbol depend on the last three symbols. A 0th order Markov chain is a naive predictor where each symbol is
independent of all other symbols. Currently pomegranate only supports discrete emission Markov chains where each
symbol is a discrete symbol versus a continuous number (like ‘A’ ‘B’ ‘C’ instead of 17.32 or 19.65).

1.13.1 Initialization

Markov chains can almost be represented by a single conditional probability table (CPT), except that the probability
of the first k elements (for a k-th order Markov chain) cannot be appropriately represented except by using special
characters. Due to this pomegranate takes in a series of k+1 distributions representing the first k elements. For
example for a second order Markov chain:

from pomegranate import *
d1 = DiscreteDistribution({'A': 0.25, 'B': 0.75})
d2 = ConditionalProbabilityTable([['A', 'A', 0.1],

['A', 'B', 0.9],
['B', 'A', 0.6],
['B', 'B', 0.4]], [d1])

d3 = ConditionalProbabilityTable([['A', 'A', 'A', 0.4],
['A', 'A', 'B', 0.6],
['A', 'B', 'A', 0.8],
['A', 'B', 'B', 0.2],
['B', 'A', 'A', 0.9],
['B', 'A', 'B', 0.1],
['B', 'B', 'A', 0.2],
['B', 'B', 'B', 0.8]], [d1, d2])

model = MarkovChain([d1, d2, d3])

1.13.2 Probability

The probability of a sequence under the Markov chain is just the probabiliy of the first character under the first
distribution times the probability of the second character under the second distribution and so forth until you go past
the (k+1)th character, which remains evaluated under the (k+1)th distribution. We can calculate the probability or log
probability in the same manner as any of the other models. Given the model shown before:

>>> model.log_probability(['A', 'B', 'B', 'B'])
-3.324236340526027
>>> model.log_probability(['A', 'A', 'A', 'A'])
-5.521460917862246

1.13.3 Fitting

Markov chains are not very complicated to train. For each sequence the appropriate symbols are sent to the appropriate
distributions and maximum likelihood estimates are used to update the parameters of the distributions. There are no
latent factors to train and so no expectation maximization or iterative algorithms are needed to train anything.
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1.13.4 API Reference

class pomegranate.MarkovChain.MarkovChain
A Markov Chain.

Implemented as a series of conditional distributions, the Markov chain models P(X_i | X_i-1. . . X_i-k) for a k-th
order Markov network. The conditional dependencies are directly on the emissions, and not on a hidden state
as in a hidden Markov model.

Parameters

distributions [list, shape (k+1)] A list of the conditional distributions which make up the
markov chain. Begins with P(X_i), then P(X_i | X_i-1). For a k-th order markov chain
you must put in k+1 distributions.

Examples

>>> from pomegranate import *
>>> d1 = DiscreteDistribution({'A': 0.25, 'B': 0.75})
>>> d2 = ConditionalProbabilityTable([['A', 'A', 0.33],

['B', 'A', 0.67],
['A', 'B', 0.82],
['B', 'B', 0.18]], [d1])

>>> mc = MarkovChain([d1, d2])
>>> mc.log_probability(list('ABBAABABABAABABA'))
-8.9119890701808213

Attributes

distributions [list, shape (k+1)] The distributions which make up the chain.

fit()
Fit the model to new data using MLE.

The underlying distributions are fed in their appropriate points and weights and are updated.

Parameters

sequences [array-like, shape (n_samples, variable)] This is the data to train on. Each row is
a sample which contains a sequence of variable length

weights [array-like, shape (n_samples,), optional] The initial weights of each sample. If
nothing is passed in then each sample is assumed to be the same weight. Default is None.

inertia [double, optional] The weight of the previous parameters of the model. The new
parameters will roughly be old_param*inertia + new_param*(1-inertia), so an inertia of 0
means ignore the old parameters, whereas an inertia of 1 means ignore the new parameters.
Default is 0.0.

Returns

None

from_json()
Read in a serialized model and return the appropriate classifier.

Parameters

s [str] A JSON formatted string containing the file.
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Returns

model [object] A properly initialized and baked model.

from_samples()
Learn the Markov chain from data.

Takes in the memory of the chain (k) and learns the initial distribution and probability tables associated
with the proper parameters.

Parameters

X [array-like, list or numpy.array] The data to fit the structure too as a list of sequences of
variable length. Since the data will be of variable length, there is no set form

weights [array-like, shape (n_nodes), optional] The weight of each sample as a positive
double. Default is None.

k [int, optional] The number of samples back to condition on in the model. Default is 1.

Returns

model [MarkovChain] The learned markov chain model.

from_summaries()
Fit the model to the collected sufficient statistics.

Fit the parameters of the model to the sufficient statistics gathered during the summarize calls. This should
return an exact update.

Parameters

inertia [double, optional] The weight of the previous parameters of the model. The new
parameters will roughly be old_param*inertia + new_param * (1-inertia), so an inertia of 0
means ignore the old parameters, whereas an inertia of 1 means ignore the new parameters.
Default is 0.0.

Returns

None

log_probability()
Calculate the log probability of the sequence under the model.

This calculates the first slices of increasing size under the corresponding first few components of the model
until size k is reached, at which all slices are evaluated under the final component.

Parameters

sequence [array-like] An array of observations

Returns

logp [double] The log probability of the sequence under the model.

sample()
Create a random sample from the model.

Parameters

length [int or Distribution] Give either the length of the sample you want to generate, or a
distribution object which will be randomly sampled for the length. Continuous distribu-
tions will have their sample rounded to the nearest integer, minimum 1.

Returns
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sequence [array-like, shape = (length,)] A sequence randomly generated from the markov
chain.

summarize()
Summarize a batch of data and store sufficient statistics.

This will summarize the sequences into sufficient statistics stored in each distribution.

Parameters

sequences [array-like, shape (n_samples, variable)] This is the data to train on. Each row is
a sample which contains a sequence of variable length

weights [array-like, shape (n_samples,), optional] The initial weights of each sample. If
nothing is passed in then each sample is assumed to be the same weight. Default is None.

Returns

None

to_json()
Serialize the model to a JSON.

Parameters

separators [tuple, optional] The two separaters to pass to the json.dumps function for for-
matting. Default is (‘,’, ‘ : ‘).

indent [int, optional] The indentation to use at each level. Passed to json.dumps for format-
ting. Default is 4.

Returns

json [str] A properly formatted JSON object.

1.14 Bayesian Networks

• IPython Notebook Tutorial

• IPython Notebook Structure Learning Tutorial

Bayesian networks are a probabilistic model that are especially good at inference given incomplete data. Much like
a hidden Markov model, they consist of a directed graphical model (though Bayesian networks must also be acyclic)
and a set of probability distributions. The edges encode dependency statements between the variables, where the
lack of an edge between any pair of variables indicates a conditional independence. Each node encodes a probability
distribution, where root nodes encode univariate probability distributions and inner/leaf nodes encode conditional
probability distributions. Bayesian networks are exceptionally flexible when doing inference, as any subset of variables
can be observed, and inference done over all other variables, without needing to define these groups in advance. In
fact, the set of observed variables can change from one sample to the next without needing to modify the underlying
algorithm at all.

Currently, pomegranate only supports discrete Bayesian networks, meaning that the values must be categories, i.e.
‘apples’ and ‘oranges’, or 1 and 2, where 1 and 2 refer to categories, not numbers, and so 2 is not explicitly ‘bigger’
than 1.

1.14.1 Initialization

Bayesian networks can be initialized in two ways, depending on whether the underlying graphical structure is known
or not: (1) the graphical structure can be built one node at a time with pre-initialized distributions set for each node,
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or (2) both the graphical structure and distributions can be learned directly from data. This mirrors the other models
that are implemented in pomegranate. However, typically expectation maximization is used to fit the parameters of
the distribution, and so initialization (such as through k-means) is typically fast whereas fitting is slow. For Bayesian
networks, the opposite is the case. Fitting can be done quickly by just summing counts through the data, while
initialization is hard as it requires an exponential time search through all possible DAGs to identify the optimal graph.
More is discussed in the tutorials above and in the fitting section below.

Let’s take a look at initializing a Bayesian network in the first manner by quickly implementing the Monty Hall
problem. The Monty Hall problem arose from the gameshow Let’s Make a Deal, where a guest had to choose which
one of three doors had a prize behind it. The twist was that after the guest chose, the host, originally Monty Hall,
would then open one of the doors the guest did not pick and ask if the guest wanted to switch which door they had
picked. Initial inspection may lead you to believe that if there are only two doors left, there is a 50-50 chance of you
picking the right one, and so there is no advantage one way or the other. However, it has been proven both through
simulations and analytically that there is in fact a 66% chance of getting the prize if the guest switches their door,
regardless of the door they initially went with.

Our network will have three nodes, one for the guest, one for the prize, and one for the door Monty chooses to open.
The door the guest initially chooses and the door the prize is behind are uniform random processes across the three
doors, but the door which Monty opens is dependent on both the door the guest chooses (it cannot be the door the
guest chooses), and the door the prize is behind (it cannot be the door with the prize behind it).

from pomegranate import *

guest = DiscreteDistribution({'A': 1./3, 'B': 1./3, 'C': 1./3})
prize = DiscreteDistribution({'A': 1./3, 'B': 1./3, 'C': 1./3})
monty = ConditionalProbabilityTable(

[['A', 'A', 'A', 0.0],
['A', 'A', 'B', 0.5],
['A', 'A', 'C', 0.5],
['A', 'B', 'A', 0.0],
['A', 'B', 'B', 0.0],
['A', 'B', 'C', 1.0],
['A', 'C', 'A', 0.0],
['A', 'C', 'B', 1.0],
['A', 'C', 'C', 0.0],
['B', 'A', 'A', 0.0],
['B', 'A', 'B', 0.0],
['B', 'A', 'C', 1.0],
['B', 'B', 'A', 0.5],
['B', 'B', 'B', 0.0],
['B', 'B', 'C', 0.5],
['B', 'C', 'A', 1.0],
['B', 'C', 'B', 0.0],
['B', 'C', 'C', 0.0],
['C', 'A', 'A', 0.0],
['C', 'A', 'B', 1.0],
['C', 'A', 'C', 0.0],
['C', 'B', 'A', 1.0],
['C', 'B', 'B', 0.0],
['C', 'B', 'C', 0.0],
['C', 'C', 'A', 0.5],
['C', 'C', 'B', 0.5],
['C', 'C', 'C', 0.0]], [guest, prize])

s1 = Node(guest, name="guest")
s2 = Node(prize, name="prize")
s3 = Node(monty, name="monty")
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model = BayesianNetwork("Monty Hall Problem")
model.add_states(s1, s2, s3)
model.add_edge(s1, s3)
model.add_edge(s2, s3)
model.bake()

Note: The objects ‘state’ and ‘node’ are really the same thing and can be used interchangable. The only difference
is the name, as hidden Markov models use ‘state’ in the literature frequently whereas Bayesian networks use ‘node’
frequently.

The conditional distribution must be explicitly spelled out in this example, followed by a list of the parents in the same
order as the columns take in the tabble that is provided (e.g. the columns in the table correspond to guest, prize, monty,
probability.)

However, one can also initialize a Bayesian network based completely on data. As mentioned before, the exact version
of this algorithm takes exponential time with the number of variables and typically can’t be done on more than ~25
variables. This is because there are a super-exponential number of directed acyclic graphs that one could define over a
set of variables, but fortunately one can use dynamic programming in order to reduce this complexity down to “simply
exponential.” The implementation of the exact algorithm actually goes further than the original dynamic programing
algorithm by implementing an A* search to somewhat reduce computational time but drastically reduce required
memory, sometimes by an order of magnitude.

from pomegranate import *
import numpy

X = numpy.load('data.npy')
model = BayesianNetwork.from_samples(X, algorithm='exact')

The exact algorithm is not the default, though. The default is a novel greedy algorithm that greedily chooses a
topological ordering of the variables, but optimally identifies the best parents for each variable given this ordering.
It is significantly faster and more memory efficient than the exact algorithm and produces far better estimates than
using a Chow-Liu tree. This is set to the default to avoid locking up the computers of users that unintentionally tell
their computers to do a near-impossible task.

1.14.2 Probability

You can calculate the probabiity of a sample under a Bayesian network as the product of the probability of each variable

given its parents, if it has any. This can be expressed as 𝑃 =
𝑑∏︀

𝑖=1

𝑃 (𝐷𝑖|𝑃𝑎𝑖) for a sample with $d$ dimensions. For

example, in the Monty Hal problem, the probability of a show is the probability of the guest choosing the respective
door, times the probability of the prize being behind a given door, times the probability of Monty opening a given door
given the previous two values. For example, using the manually initialized network above:

>>> print model.probability([['A', 'A', 'A'],
['A', 'A', 'B'],
['C', 'C', 'B']])

[ 0. 0.05555556 0.05555556]

1.14.3 Prediction

Bayesian networks are frequently used to infer/impute the value of missing variables given the observed values. In
other models, typically there is either a single or fixed set of missing variables, such as latent factors, that need to be
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imputed, and so returning a fixed vector or matrix as the predictions makes sense. However, in the case of Bayesian
networks, we can make no such assumptions, and so when data is passed in for prediction it should be in the format
as a matrix with None in the missing variables that need to be inferred. The return is thus a filled in matrix where the
Nones have been replaced with the imputed values. For example:

>>> print model.predict([['A', 'B', None],
['A', 'C', None],
['C', 'B', None]])

[['A' 'B' 'C']
['A' 'C' 'B']
['C' 'B' 'A']]

In this example, the final column is the one that is always missing, but a more complex example is as follows:

>>> print model.predict([['A', 'B', None],
['A', None, 'C'],
[None, 'B', 'A']])

[['A' 'B' 'C']
['A' 'B' 'C']
['C' 'B' 'A']]

1.14.4 Fitting

Fitting a Bayesian network to data is a fairly simple process. Essentially, for each variable, you need consider only
that column of data and the columns corresponding to that variables parents. If it is a univariate distribution, then
the maximum likelihood estimate is just the count of each symbol divided by the number of samples in the data. If
it is a multivariate distribution, it ends up being the probability of each symbol in the variable of interest given the
combination of symbols in the parents. For example, consider a binary dataset with two variables, X and Y, where X
is a parent of Y. First, we would go through the dataset and calculate P(X=0) and P(X=1). Then, we would calculate
P(Y=0|X=0), P(Y=1|X=0), P(Y=0|X=1), and P(Y=1|X=1). Those values encode all of the parameters of the Bayesian
network.

1.14.5 API Reference

class pomegranate.BayesianNetwork.BayesianNetwork
A Bayesian Network Model.

A Bayesian network is a directed graph where nodes represent variables, edges represent conditional dependen-
cies of the children on their parents, and the lack of an edge represents a conditional independence.

Parameters

name [str, optional] The name of the model. Default is None

Attributes

states [list, shape (n_states,)] A list of all the state objects in the model

graph [networkx.DiGraph] The underlying graph object.

add_edge()
Add a transition from state a to state b which indicates that B is dependent on A in ways specified by the
distribution.

add_node()
Add a node to the graph.
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add_nodes()
Add multiple states to the graph.

add_state()
Another name for a node.

add_states()
Another name for a node.

add_transition()
Transitions and edges are the same.

bake()
Finalize the topology of the model.

Assign a numerical index to every state and create the underlying arrays corresponding to the states and
edges between the states. This method must be called before any of the probability-calculating methods.
This includes converting conditional probability tables into joint probability tables and creating a list of
both marginal and table nodes.

Parameters

None

Returns

None

clear_summaries()
Clear the summary statistics stored in the object.

copy()
Return a deep copy of this distribution object.

This object will not be tied to any other distribution or connected in any form.

Parameters

None

Returns

distribution [Distribution] A copy of the distribution with the same parameters.

dense_transition_matrix()
Returns the dense transition matrix. Useful if the transitions of somewhat small models need to be ana-
lyzed.

edge_count()
Returns the number of edges present in the model.

fit()
Fit the model to data using MLE estimates.

Fit the model to the data by updating each of the components of the model, which are univariate or mul-
tivariate distributions. This uses a simple MLE estimate to update the distributions according to their
summarize or fit methods.

This is a wrapper for the summarize and from_summaries methods.

Parameters

X [array-like, shape (n_samples, n_nodes)] The data to train on, where each row is a sample
and each column corresponds to the associated variable.

72 Chapter 1. Thank You



pomegranate Documentation, Release 0.6.0

weights [array-like, shape (n_nodes), optional] The weight of each sample as a positive
double. Default is None.

inertia [double, optional] The inertia for updating the distributions, passed along to the
distribution method. Default is 0.0.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. Only effects hidden Markov models defined over discrete distribu-
tions. Default is 0.

verbose [bool, optional] Whether or not to print out improvement information over itera-
tions. Only required if doing semisupervised learning. Default is False.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

self [BayesianNetwork] The fit Bayesian network object with updated model parameters.

freeze()
Freeze the distribution, preventing updates from occuring.

from_json()
Read in a serialized Bayesian Network and return the appropriate object.

Parameters

s [str] A JSON formatted string containing the file.

Returns

model [object] A properly initialized and baked model.

from_samples()
Learn the structure of the network from data.

Find the structure of the network from data using a Bayesian structure learning score. This currently
enumerates all the exponential number of structures and finds the best according to the score. This allows
weights on the different samples as well. The score that is optimized is the minimum description length
(MDL).

Parameters

X [array-like, shape (n_samples, n_nodes)] The data to fit the structure too, where each row
is a sample and each column corresponds to the associated variable.

weights [array-like, shape (n_nodes), optional] The weight of each sample as a positive
double. Default is None.

algorithm [str, one of ‘chow-liu’, ‘greedy’, ‘exact’, ‘exact-dp’ optional] The algorithm to
use for learning the Bayesian network. Default is ‘greedy’ that greedily attempts to find
the best structure, and frequently can identify the optimal structure. ‘exact’ uses DP/A*
to find the optimal Bayesian network, and ‘exact-dp’ tries to find the shortest path on the
entire order lattice, which is more memory and computationally expensive. ‘exact’ and
‘exact-dp’ should give identical results, with ‘exact-dp’ remaining an option mostly for
debugging reasons. ‘chow-liu’ will return the optimal tree-like structure for the Bayesian
network, which is a very fast approximation but not always the best network.

max_parents [int, optional] The maximum number of parents a node can have. If used, this
means using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on
parents. Default is -1.
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root [int, optional] For algorithms which require a single root (‘chow-liu’), this is the root
for which all edges point away from. User may specify which column to use as the root.
Default is the first column.

constraint_graph [networkx.DiGraph or None, optional] A directed graph showing valid
parent sets for each variable. Each node is a set of variables, and edges represent which
variables can be valid parents of those variables. The naive structure learning task is just
all variables in a single node with a self edge, meaning that you know nothing about

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. Default is 0.

state_names [array-like, shape (n_nodes), optional] A list of meaningful names to be ap-
plied to nodes

name [str, optional] The name of the model. Default is None.

reduce_dataset [bool, optional] Given the discrete nature of these datasets, frequently a
user will pass in a dataset that has many identical samples. It is time consuming to go
through these redundant samples and a far more efficient use of time to simply calculate a
new dataset comprised of the subset of unique observed samples weighted by the number
of times they occur in the dataset. This typically will speed up all algorithms, including
when using a constraint graph. Default is True.

n_jobs [int, optional] The number of threads to use when learning the structure of the net-
work. If a constraint graph is provided, this will parallelize the tasks as directed by the
constraint graph. If one is not provided it will parallelize the building of the parent graphs.
Both cases will provide large speed gains.

Returns

model [BayesianNetwork] The learned BayesianNetwork.

from_structure()
Return a Bayesian network from a predefined structure.

Pass in the structure of the network as a tuple of tuples and get a fit network in return. The tuple should
contain n tuples, with one for each node in the graph. Each inner tuple should be of the parents for that
node. For example, a three node graph where both node 0 and 1 have node 2 as a parent would be specified
as ((2,), (2,), ()).

Parameters

X [array-like, shape (n_samples, n_nodes)] The data to fit the structure too, where each row
is a sample and each column corresponds to the associated variable.

structure [tuple of tuples] The parents for each node in the graph. If a node has no parents,
then do not specify any parents.

weights [array-like, shape (n_nodes), optional] The weight of each sample as a positive
double. Default is None.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. Default is 0.

name [str, optional] The name of the model. Default is None.

state_names [array-like, shape (n_nodes), optional] A list of meaningful names to be ap-
plied to nodes
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n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

model [BayesianNetwoork] A Bayesian network with the specified structure.

from_summaries()
Use MLE on the stored sufficient statistics to train the model.

This uses MLE estimates on the stored sufficient statistics to train the model.

Parameters

inertia [double, optional] The inertia for updating the distributions, passed along to the
distribution method. Default is 0.0.

pseudocount [double, optional] A pseudocount to add to the emission of each distribution.
This effectively smoothes the states to prevent 0. probability symbols if they don’t happen
to occur in the data. Default is 0.

Returns

None

log_probability()
Return the log probability of samples under the Bayesian network.

The log probability is just the sum of the log probabilities under each of the components. The log proba-
bility of a sample under the graph A -> B is just P(A)*P(B|A). This will return a vector of log probabilities,
one for each sample.

Parameters

X [array-like, shape (n_samples, n_dim)] The sample is a vector of points where each di-
mension represents the same variable as added to the graph originally. It doesn’t matter
what the connections between these variables are, just that they are all ordered the same.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

logp [numpy.ndarray or double] The log probability of the samples if many, or the single log
probability.

marginal()
Return the marginal probabilities of each variable in the graph.

This is equivalent to a pass of belief propogation on a graph where no data has been given. This will
calculate the probability of each variable being in each possible emission when nothing is known.

Parameters

None

Returns

marginals [array-like, shape (n_nodes)] An array of univariate distribution objects showing
the marginal probabilities of that variable.

node_count()
Returns the number of nodes/states in the model
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plot()
Draw this model’s graph using NetworkX and matplotlib.

Note that this relies on networkx’s built-in graphing capabilities (and not Graphviz) and thus can’t draw
self-loops.

See networkx.draw_networkx() for the keywords you can pass in.

Parameters

**kwargs [any] The arguments to pass into networkx.draw_networkx()

Returns

None

predict()
Predict missing values of a data matrix using MLE.

Impute the missing values of a data matrix using the maximally likely predictions according to the forward-
backward algorithm. Run each sample through the algorithm (predict_proba) and replace missing values
with the maximally likely predicted emission.

Parameters

X [array-like, shape (n_samples, n_nodes)] Data matrix to impute. Missing values must
be either None (if lists) or np.nan (if numpy.ndarray). Will fill in these values with the
maximally likely ones.

max_iterations [int, optional] Number of iterations to run loopy belief propogation for.
Default is 100.

n_jobs [int] The number of jobs to use to parallelize, either the number of threads or the
number of processes to use. -1 means use all available resources. Default is 1.

Returns

X [numpy.ndarray, shape (n_samples, n_nodes)] This is the data matrix with the missing
values imputed.

predict_proba()
Returns the probabilities of each variable in the graph given evidence.

This calculates the marginal probability distributions for each state given the evidence provided through
loopy belief propogation. Loopy belief propogation is an approximate algorithm which is exact for certain
graph structures.

Parameters

data [dict or array-like, shape <= n_nodes, optional] The evidence supplied to the graph.
This can either be a dictionary with keys being state names and values being the observed
values (either the emissions or a distribution over the emissions) or an array with the
values being ordered according to the nodes incorporation in the graph (the order fed into
.add_states/add_nodes) and None for variables which are unknown. If nothing is fed in
then calculate the marginal of the graph. Default is {}.

max_iterations [int, optional] The number of iterations with which to do loopy belief pro-
pogation. Usually requires only 1. Default is 100.

check_input [bool, optional] Check to make sure that the observed symbol is a valid symbol
for that distribution to produce. Default is True.

Returns
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probabilities [array-like, shape (n_nodes)] An array of univariate distribution objects show-
ing the probabilities of each variable.

probability()
Return the probability of the given symbol under this distribution.

Parameters

symbol [object] The symbol to calculate the probability of

Returns

probability [double] The probability of that point under the distribution.

sample()
Return a random item sampled from this distribution.

Parameters

n [int or None, optional] The number of samples to return. Default is None, which is to
generate a single sample.

Returns

sample [double or object] Returns a sample from the distribution of a type in the support of
the distribution.

state_count()
Returns the number of states present in the model.

summarize()
Summarize a batch of data and store the sufficient statistics.

This will partition the dataset into columns which belong to their appropriate distribution. If the distribu-
tion has parents, then multiple columns are sent to the distribution. This relies mostly on the summarize
function of the underlying distribution.

Parameters

X [array-like, shape (n_samples, n_nodes)] The data to train on, where each row is a sample
and each column corresponds to the associated variable.

weights [array-like, shape (n_nodes), optional] The weight of each sample as a positive
double. Default is None.

Returns

None

thaw()
Thaw the distribution, re-allowing updates to occur.

to_json()
Serialize the model to a JSON.

Parameters

separators [tuple, optional] The two separaters to pass to the json.dumps function for for-
matting.

indent [int, optional] The indentation to use at each level. Passed to json.dumps for format-
ting.

Returns

json [str] A properly formatted JSON object.
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class pomegranate.BayesianNetwork.ParentGraph
Generate a parent graph for a single variable over its parents.

This will generate the parent graph for a single parents given the data. A parent graph is the dynamically
generated best parent set and respective score for each combination of parent variables. For example, if we are
generating a parent graph for x1 over x2, x3, and x4, we may calculate that having x2 as a parent is better than
x2,x3 and so store the value of x2 in the node for x2,x3.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

parent_set [tuple, default ()] The variables which are possible parents for this variable. If
nothing is passed in then it defaults to all other variables, as one would expect in the naive
case. This allows for cases where we want to build a parent graph over only a subset of the
variables.

Returns

structure [tuple, shape=(d,)] The parents for each variable in this SCC

pomegranate.BayesianNetwork.discrete_exact_a_star()
Find the optimal graph over a set of variables with no other knowledge.

This is the naive dynamic programming structure learning task where the optimal graph is identified from a
set of variables using an order graph and parent graphs. This can be used either when no constraint graph is
provided or for a SCC which is made up of a node containing a self-loop. It uses DP/A* in order to find the
optimal graph without considering all possible topological sorts. A greedy version of the algorithm can be used
that massively reduces both the computational and memory cost while frequently producing the optimal graph.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

n_jobs [int] The number of threads to use when learning the structure of the network. This
parallelizes the creation of the parent graphs.

Returns

structure [tuple, shape=(d,)] The parents for each variable in this SCC
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pomegranate.BayesianNetwork.discrete_exact_component()
Find the optimal graph over a multi-node component of the constaint graph.

The general algorithm in this case is to begin with each variable and add all possible single children for that
entry recursively until completion. This will result in a far sparser order graph than before. In addition, one can
eliminate entries from the parent graphs that contain invalid parents as they are a fast of computational time.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

n_jobs [int] The number of threads to use when learning the structure of the network. This
parallelizes the creation of the parent graphs.

Returns

structure [tuple, shape=(d,)] The parents for each variable in this SCC

pomegranate.BayesianNetwork.discrete_exact_dp()
Find the optimal graph over a set of variables with no other knowledge.

This is the naive dynamic programming structure learning task where the optimal graph is identified from a
set of variables using an order graph and parent graphs. This can be used either when no constraint graph is
provided or for a SCC which is made up of a node containing a self-loop. This is a reference implementation
that uses the naive shortest path algorithm over the entire order graph. The ‘exact’ option uses the A* path in
order to avoid considering the full order graph.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

n_jobs [int] The number of threads to use when learning the structure of the network. This
parallelizes the creation of the parent graphs.

Returns

structure [tuple, shape=(d,)] The parents for each variable in this SCC

pomegranate.BayesianNetwork.discrete_exact_slap()
Find the optimal graph in a node with a Self Loop And Parents (SLAP).
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Instead of just performing exact BNSL over the set of all parents and removing the offending edges there are
efficiencies that can be gained by considering the structure. In particular, parents not coming from the main
node do not need to be considered in the order graph but simply added to each entry after creation of the order
graph. This is because those variables occur earlier in the topological ordering but it doesn’t matter how they
occur otherwise. Parent graphs must be defined over all variables however.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

n_jobs [int] The number of threads to use when learning the structure of the network. This
parallelizes the creation of the parent graphs.

Returns

structure [tuple, shape=(d,)] The parents for each variable in this SCC

pomegranate.BayesianNetwork.discrete_exact_with_constraints()
This returns the optimal Bayesian network given a set of constraints.

This function controls the process of learning the Bayesian network by taking in a constraint graph, identifying
the strongly connected components (SCCs) and solving each one using the appropriate algorithm. This is mostly
an internal function.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

constraint_graph [networkx.DiGraph] A directed graph showing valid parent sets for each
variable. Each node is a set of variables, and edges represent which variables can be valid
parents of those variables. The naive structure learning task is just all variables in a single
node with a self edge, meaning that you know nothing about

n_jobs [int] The number of threads to use when learning the structure of the network. This
parallelized both the creation of the parent graphs for each variable and the solving of the
SCCs. -1 means use all available resources. Default is 1, meaning no parallelism.

Returns

structure [tuple, shape=(d,)] The parents for each variable in the network.
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pomegranate.BayesianNetwork.discrete_exact_with_constraints_task()
This is a wrapper for the function to be parallelzied by joblib.

This function takes in a single task as an id and a set of parents and children and calls the appropriate function.
This is mostly a wrapper for joblib to parallelize.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

task [tuple] A 3-tuple containing the id, the set of parents and the set of children to learn a
component of the Bayesian network over. The cases represent a SCC of the following:

0 - Self loop and no parents 1 - Self loop and parents 2 - Parents and no self loop 3 -
Multiple nodes

n_jobs [int] The number of threads to use when learning the structure of the network. This
parallelizes the creation of the parent graphs for each task or the finding of best parents in
case 2.

Returns

structure [tuple, shape=(d,)] The parents for each variable in this SCC

pomegranate.BayesianNetwork.discrete_greedy()
Find the optimal graph over a set of variables with no other knowledge.

This is the naive dynamic programming structure learning task where the optimal graph is identified from a
set of variables using an order graph and parent graphs. This can be used either when no constraint graph is
provided or for a SCC which is made up of a node containing a self-loop. It uses DP/A* in order to find the
optimal graph without considering all possible topological sorts. A greedy version of the algorithm can be used
that massively reduces both the computational and memory cost while frequently producing the optimal graph.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

greedy [bool, default is True] Whether the use a heuristic in order to massive reduce computa-
tion and memory time, but without the guarantee of finding the best network.
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n_jobs [int] The number of threads to use when learning the structure of the network. This
parallelizes the creation of the parent graphs.

Returns

structure [tuple, shape=(d,)] The parents for each variable in this SCC

pomegranate.BayesianNetwork.generate_parent_graph()
Generate a parent graph for a single variable over its parents.

This will generate the parent graph for a single parents given the data. A parent graph is the dynamically
generated best parent set and respective score for each combination of parent variables. For example, if we are
generating a parent graph for x1 over x2, x3, and x4, we may calculate that having x2 as a parent is better than
x2,x3 and so store the value of x2 in the node for x2,x3.

Parameters

X [numpy.ndarray, shape=(n, d)] The data to fit the structure too, where each row is a sample
and each column corresponds to the associated variable.

weights [numpy.ndarray, shape=(n,)] The weight of each sample as a positive double. Default
is None.

key_count [numpy.ndarray, shape=(d,)] The number of unique keys in each column.

pseudocount [double] A pseudocount to add to each possibility.

max_parents [int] The maximum number of parents a node can have. If used, this means
using the k-learn procedure. Can drastically speed up algorithms. If -1, no max on parents.
Default is -1.

parent_set [tuple, default ()] The variables which are possible parents for this variable. If
nothing is passed in then it defaults to all other variables, as one would expect in the naive
case. This allows for cases where we want to build a parent graph over only a subset of the
variables.

Returns

structure [tuple, shape=(d,)] The parents for each variable in this SCC

1.15 Factor Graphs

1.15.1 API Reference

class pomegranate.FactorGraph.FactorGraph
A Factor Graph model.

A biparte graph where conditional probability tables are on one side, and marginals for each of the variables
involved are on the other side.

Parameters

name [str, optional] The name of the model. Default is None.

bake()
Finalize the topology of the model.

Assign a numerical index to every state and create the underlying arrays corresponding to the states and
edges between the states. This method must be called before any of the probability-calculating methods.
This is the same as the HMM bake, except that at the end it sets current state information.
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Parameters

None

Returns

None

from_json()
Read in a serialized FactorGraph and return the appropriate instance.

Parameters

s: str A JSON formatted string containing the file.

Returns

model: object A properly instantiated and baked model.

marginal()
Return the marginal probabilities of each variable in the graph.

This is equivalent to a pass of belief propogation on a graph where no data has been given. This will
calculate the probability of each variable being in each possible emission when nothing is known.

Parameters

None

Returns

marginals [array-like, shape (n_nodes)] An array of univariate distribution objects showing
the marginal probabilities of that variable.

plot()
Draw this model’s graph using NetworkX and matplotlib.

Note that this relies on networkx’s built-in graphing capabilities (and not Graphviz) and thus can’t draw
self-loops.

See networkx.draw_networkx() for the keywords you can pass in.

Parameters

**kwargs [any] The arguments to pass into networkx.draw_networkx()

Returns

None

predict_proba()
Returns the probabilities of each variable in the graph given evidence.

This calculates the marginal probability distributions for each state given the evidence provided through
loopy belief propogation. Loopy belief propogation is an approximate algorithm which is exact for certain
graph structures.

Parameters

data [dict or array-like, shape <= n_nodes, optional] The evidence supplied to the graph.
This can either be a dictionary with keys being state names and values being the observed
values (either the emissions or a distribution over the emissions) or an array with the
values being ordered according to the nodes incorporation in the graph (the order fed into
.add_states/add_nodes) and None for variables which are unknown. If nothing is fed in
then calculate the marginal of the graph.
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max_iterations [int, optional] The number of iterations with which to do loopy belief pro-
pogation. Usually requires only 1.

check_input [bool, optional] Check to make sure that the observed symbol is a valid symbol
for that distribution to produce.

Returns

probabilities [array-like, shape (n_nodes)] An array of univariate distribution objects show-
ing the probabilities of each variable.

to_json()
Serialize the model to JSON

Parameters

separators: tuple, optional The two separators to pass to the json.dumps function for for-
matting.

indent: int, optional The indentation to use at each level. Passed to json.dumps for format-
ting.
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